ー般化状態空間モデルによる 分散変動時系列の解析

きたがわ げんしろう さとうせいしょう

要旨

確率的ボラティリティ・モデルを非線形状態空間モデルで表現する 方法を拡張するとトレンド、定常変動と分散変動(ボラティリティ) を同時に考慮し、これらの成分に分解することができる。このような ボラティリティの変動を考慮したモデルのAICは通常のトレンドモデル 等よりも著しく小さく、変動するボラティリティを明示的に表現する ことによってよいモデルが得られることを示している。このモデルに 基づく日経225データの解析結果では、トレンドの階差と局所的な分散 との間に明らかな関連がみられる。そこで、本稿ではさらにトレンド と分散の関係を仮定したモデル化を行った。日経225データに関しては、 このモデル化によってさらにAICが減少し、両成分間の関係が確認でき た。一方、為替データに関しては、トレンドとボラティリティ間の明 らかな関係は検出できなかった。

キーワード:ボラティリティ、金融時系列、非定常、日経225データ、 モンテカルロ・フィルタ、AIC

北川源四郎 統計数理研究所(E-mail: kitagawa@ism.ac.jp) 佐藤整尚 統計数理研究所(E-mail: sato@ism.ac.jp)

本稿は北川と佐藤がそれぞれ国内客員研究員、研究生として日本銀行金融研究所にて行った 研究成果の一部をまとめたものです。他では得がたい研究の機会を与えていただいた金融研 究所のスタッフの皆様には心から感謝いたします。

ボラティリティに関する多くの文献では、株価などの金融時系列 y_n の対数値の 一階階差系列 $r_n = \Delta \log y_n = \log y_n - \log y_{n-1}$ を考え、それに対してモデルを想定して いる。代表的なものとしては、ARCHモデル (Engle [1982])

$$r_n = \sigma_n w_n$$

$$\log \sigma_n^2 = \alpha + \beta w_{n-1}^2$$
(1)

や確率的ボラティリティ・モデル

$$r_n = \sigma_n w_n$$

$$\log \sigma_n^2 = \alpha + \beta \log \sigma_{n-1}^2 + v_n$$
(2)

などがある。通常、w,,は平均0、分散1の標準正規分布と仮定する。

これらのモデルの背景には、時系列がランダムウォークに従って変動している という仮定と、トレンドとボラティリティの間の無相関性の仮定がある。しかし ながら、金融時系列に関して必ずしもこれらの仮定が妥当なわけではなく、積極 的に時系列的構造やトレンドとボラティリティの関係をモデル化することによっ て、より良いモデルが得られる可能性がある。

確率的ボラティリティ・モデルのパラメータ推定に関しては最近、非ガウス型のフィルタを用いて最尤推定値を求める方法が提案されている。従来は、確率的ボラティリティ・モデルの推定のためにはr_nを以下のように非線形変換し、線形・ガウス型の状態空間モデルで近似し、カルマンフィルタによって計算を行うことが多かった(北川・佐藤・永原[1999])。

$$\log r_n^2 = \log \sigma_n^2 + \log w_n^2$$

$$\log \sigma_n^2 = \alpha + \beta \log \sigma_{n-1}^2 + v_n$$
(3)

しかしながら、以下のように観測モデルに関して非線形な、非線形状態空間モデ ルを用いると確率的ボラティリティ・モデルをなんら近似することなく表現する ことができる。さらに、本稿で示すようにこの方法を拡張すると、比較的簡単に トレンドとボラティリティを同時にモデル化するとともに、それらの間の影響を 明示的にモデル化することができる。

一般化状態空間モデルによる分散変動時系列の解析

2. モデル

2.1 トレンド+確率的ボラティリティ型のモデル

本稿では分散変動を伴う時系列を、以下のように、直接トレンドとそのまわりを 変動する系列に分解するモデルを考える。

$$y_n = T_n + \sigma_n \varepsilon_n, \quad \varepsilon_n \sim N(0, 1) \tag{4}$$

ただし、 T_n は時刻 *n* におけるトレンド成分、 ε_n は平均0、分散1の正規白色ノイズで、 σ_n は時間とともに変動するものとする。このモデルでは、時系列 y_n の分散変動は σ_n の時間変化によって説明される。したがって、本稿では σ_n を一種のボラティリ ティとみなし、 σ_n^2 を時変分散と呼ぶことにする。

季節調整 (Kitagawa and Gersch [1984]) の場合と同様、トレンド成分 T_n は次数kの確率的階差モデル

$$\Delta^{k} T_{n} = e_{1n}, \quad e_{1n} \sim N(0, \tau_{1}^{2})$$
(5)

に従うと仮定する。また、時変分散 σ_n^2 も同様に $\log \sigma_n^2$ に関する ℓ 階の確率階差モデル

$$\Delta^{\ell} \log \sigma_n^2 = e_{2n}, \quad e_{2n} \sim N(0, \tau_2^2) \tag{6}$$

に従うものと仮定する。ただし、 $e_{1n} \ge e_{2n}$ はそれぞれ分散 τ_1^2 および τ_2^2 の正規白色ノ イズである。次数kおよび分散 τ_1^2 はトレンドの滑らかさを、また ℓ および τ_2^2 は分 散の変化の滑らかさを制御するパラメータである。トレンド成分と時変分散のモデ ルの次数 $k \ge \ell$ としては通常1または2が用いられる。

2.2 トレンド + AR + 確率的ボラティリティ型のモデル

一般に経済時系列はさまざまな周波数成分から構成されている。したがって、このような時系列を長周期成分を中心とするトレンドと、すべての周波数成分を同じ割合で含む白色ノイズだけの和で表現するモデルでは不十分なことが多い。そこで、(4)式のモデルをさらに拡張して、トレンド、定常変動成分および白色ノイズから構成される以下のようなモデルを考えることにする。

$$y_n = T_n + p_n + \sigma_n \varepsilon_n, \quad \varepsilon_n \sim N(0, 1) \tag{7}$$

ただし、 T_n 、 σ_n および ε_n は(4)の場合と同様のモデル、 p_n は定常時系列成分でAR

モデル

$$p_n = \sum_{j=1}^m a_j p_{n-j} + e_{3n}, \quad e_{3n} \sim N(0, \tau_3^2)$$
(8)

に従うと仮定する。 e_{3n} は平均 0、分散 τ_3^2 の正規白色ノイズとする。(7)式のモデル により、長周期成分および独立な変動成分の二つだけでなく中間的な周期成分から なる変動をも表現できるものと期待できる。

3. 状態空間モデル

3.1 分散変動時系列モデルの状態空間表現

2.2節で導入した確率的ボラティリティ・モデルは状態空間モデルの形で表現 できる。(*k*+*m*+*ℓ*)次元状態ベクトルを

$$x_n = (T_{n,\dots,T_{n-k+1}} | p_{n,\dots,p_{n-m+1}} | \log \sigma_{n,\dots,\log}^2 \log \sigma_{n-\ell+1}^2)^T$$
(9)

と定義する。さらに、 T_n 、 p_n および $\log \sigma_n^2$ はそれぞれ(5)(8)(6)に従うとするとき、($k+m+\ell$)×($k+m+\ell$) 行列Fおよび ($k+m+\ell$)×3行列Gを

	$\begin{bmatrix} c_1^k & c_2^k & \dots & c_k^k \end{bmatrix}$ $\vdots \\ \vdots \\ \vdots \\ 1 \\ \vdots \\ 1 \\ \vdots \\ 1 \\ 1 \\ \vdots \\ 1 \\ 1$	0	0		$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix}$	
F =	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	, <i>G</i> =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(10)
	0	0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

と定義すると、各成分の変動は

$$x_n = Fx_{n-1} + Gv_n \tag{11}$$

と表現できる。ただし、*v*, は

$$v_n = (e_{1n}, e_{2n}, e_{3n})^T \tag{12}$$

によって定義される 3 次元白色ノイズで、その分散共分散行列は $Q=diag \{\tau_1^2, \tau_2^2, \tau_3^2\}$ である。

一方、(9)式より T_n 、 p_n および $\log \sigma_n^2$ は状態ベクトル x_n の成分の一部を構成するので、モデル(6)から時系列 y_n は、適当な非線形関数fを用いて

 $y_n = T_n + p_n + \sigma_n \varepsilon_n = f(x_n, \varepsilon_n)$ ⁽¹³⁾

の形で表現でき、非線形の観測モデルが得られる。

上記の(11)式と(13)式により、 x_n を状態ベクトルとする状態空間モデルが得られる。(11)式がシステムモデル、(13)式が観測モデルとなる。また v_n がシステムノイズ、 ε_n が観測ノイズである。 σ_n は状態ベクトル x_n の一成分である $\log \sigma_n^2$ の非線形変換によって得られ、さらに σ_n と観測ノイズ ε_n の積が観測値 y_n に含まれているので、この状態空間モデルは非線形状態空間モデルの一例となる。

4. モデルの推定と各成分への分解

4.1 状態の推定

ー般に、時刻 j までの観測値 $Y_j = \{y_1, ..., y_j\}$ が得られたとき、時刻n の状態 x_n を推定することを状態推定の問題という。とくに、j < n、j = n - 1、j = n およびj > nのとき状態推定の問題を予測、一期先予測、フィルタ、平滑化と呼んで区別する。

状態空間モデルの方法では、観測値 Y_j から状態 x_n が推定されると(9)式の定義 から直ちにトレンド成分 T_n 、定常変動成分 p_n および時変分散 σ_n^2 あるいは"ボラ ティリティ" σ_n の推定値が得られる。すなわち、状態ベクトル x_n の第1成分 $x_n(1)$ 、 第 k+1成分 $x_n(k+1)$ および第 k+m+1 成分 $x_n(k+m+1)$ がそれぞれトレンド、定常変 動成分および時変分散の対数値となる。すなわち状態推定により、時系列の分解と ボラティリティの推定が同時に実現されることになる。

ただし、状態空間モデルが線形・ガウス型の場合にはカルマンフィルタ(片山[1983] 尾崎・北川[1998])により簡単に状態推定が実現できるが、(13)式のような非線形モデルの場合には非線形フィルタの利用が必要となる。

第3節で示したように、トレンドを考慮した確率的ボラティリティ・モデルを考 える場合には、非線形・非ガウス型の状態空間モデルを用いる必要がある。状態ベ クトルが3次元以下程度の場合には、数値積分を利用する非ガウス型フィルタを用 いれば一般の状態空間のモデルに対しても正確に計算を行うことができる (Kitagawa [1987]、北川・佐藤・永原 [1999])。しかし、より高次元の状態ベクト ルをもつ非線形の状態空間モデルに対しては数値計算の直接的適用は非現実的であ る。モンテカルロ・フィルタはこのような状況を想定して開発されたものである (Kitagawa [1996]、北川 [1996])。

モンテカルロ・フィルタでは状態の一期先予測分布 $p(x_n|Y_{n-1})$ 、フィルタ分布 $p(x_n|Y_n)$ およびシステムノイズの分布 $p(v_n)$ を多数の"粒子"で近似する。これらの "粒子"は実際には x_n や v_n の次元に対応する高次元空間上の点である。 $p(v_n)$ に関し ては、その密度関数がモデルの仮定より決まっているので、 $p(v_n)$ に従う乱数をm個、 $V_n^{(1)}, \dots, V_n^{(m)}$ 、発生させる。このとき、 $V_n^{(1)}, \dots, V_n^{(m)}$ で定まる経験分布関数

$$P_n(x) = \frac{1}{m} \sum_{j=1}^m I(x; V_n^{(j)})$$
(14)

は真の分布関数

$$P(x) = \int_{-\infty}^{x} p(t) dt$$
(15)

の近似とみなせる。ただし、*I*(*x*;*a*)は

$$I(x;a) = \begin{cases} 0 & x < a \\ 1 & x \ge a \end{cases}$$
(16)

をみたす定義関数である。

一方、予測分布 $p(x_n|Y_{n-1})$ を近似する粒子 $P_n^{(j)}$ およびフィルタ分布 $p(x_n|Y_n)$ を近 似する粒子 $F_n^{(j)}$ の生成は V_n のようには簡単ではない。しかしながら、以下の手続 きによって計算を行うと、これらの分布に従って独立に得られたとみなせる粒子を 必要な個数だけ生成することができる (Kitagawa [1996])。

- 1. 初期分布の近似: $F_0^{(j)} \sim p(x_0|Y_0)$ を生成する。
- 2. システムノイズの近似: $V_n^{(j)} \sim p(v)$ を生成する。
- 3. 予測分布の近似: $P_n^{(j)} = f(F_{n-1}^{(j)}, V_n^{(j)})$ を計算する。
- 4. ベイズ係数の計算: $\alpha_n^{(j)} = p(y_n | x_n = P_n^{(j)})$ を計算する。
- 5. リサンプリングによるフィルタ分布の近似: $\{P_n^{(j)}\}$ から $\{F_n^{(j)}\}$ を生成する。

ステップ1では、乱数を用いて与えられた初期分布 $p(x_0|Y_0)$ に従うm個の粒子を生成する。ステップ2 - 5 はデータの個数に従ってN回繰り返す。ステップ2では乱数を用いてシステムノイズに従う粒子を生成し、ステップ3ではその粒子と1サイクル前のステップ5 (n=1の場合はステップ1)で求めた粒子を右辺に代入して、 $P_n^{(j)}$ を求める。ステップ4では3で求めた各粒子のベイズ係数を求める。このベイズ係数はそれぞれの粒子の重要さを表していると解釈できる。ステップ5では、このベイズ係数を確率として復元抽出を行い粒子をm個発生させる。この粒子はフィルタの分布から独立に発生させたとみなすことができる。実際の状態推定においては、このモンテカルロ・フィルタの方法は平滑化にも拡張でき、さらに精度のよい推定値、 $S_n^{(j)}$ 、が得られる(Kitagawa [1996])。

前節で述べたように状態の推定結果を用いてトレンドや確率的ボラティリティな どを求めることができる。上記のアルゴリズムで得られる粒子、 $P_n^{(j)}$ 、 $F_n^{(j)}$ および $S_n^{(j)}$ は $k+m+\ell$ 次元のベクトルであり、その第1番目、第k+1番目、第k+m+1番目 の成分はそれぞれ、 $T_{nL}^{(j)}$ 、 $P_{nL}^{(j)}$ 、 $\log\sigma_{nL}^{2(j)}$ となる。

このとき、*m*個の1次元粒子 { $T_{n|L}^{(1)}$,…, $T_{n|L}^{(m)}$ }, { $P_{n|L}^{(1)}$,…, $P_{n|L}^{(m)}$ }および{ $\log \sigma_{n|L}^{2(1)}$,…, $\log \sigma_{n|L}^{2(m)}$ }はそれぞれ、トレンド、定常変動成分およびボラティリティの対数値となる。ただし、例えば $T_{n|L}^{(j)}$ は j 番目の粒子の第1成分を表し、L=n-1、*n* および*N* に対応して、それぞれ一期先予測、フィルタおよび平滑値を表すものとする。このとき、

$$\frac{1}{m}\sum_{j=1}^{m}I(x;T_{n|L}^{(j)}), \quad \frac{1}{m}\sum_{j=1}^{m}I(x;P_{n|L}^{(j)}), \quad \frac{1}{m}\sum_{j=1}^{m}I(x;\sigma_{n|L}^{(j)})$$
(17)

はそれぞれの成分の周辺分布関数の近似値となる。とくに、その平均値は

$$\frac{1}{m}\sum_{j=1}^{m} T_{n|L}^{(j)} , \frac{1}{m}\sum_{j=1}^{m} P_{n|L}^{(j)} , \frac{1}{m}\sum_{j=1}^{m} \sigma_{n|L}^{(j)}$$
(18)

で与えられる。

4.3 パラメータの推定

状態空間モデルの状態 x_n の一期先予測分布 $p(x_n|Y_{n-1})$ が得られると、観測値 y_n の 一期先予測分布は

$$p(y_n|Y_{n-1}) = \int p(y_n|x_n) p(x_n|Y_{n-1}) dx_n$$
(19)

で与えられる。モンテカルロ・フィルタでは一期先予測分布 $p(x_n|Y_{n-1})$ をm個の粒 子 $P_n^{(1)}, ..., P_n^{(m)}$ で近似しているので、(14)式より

$$p(y_n|Y_{n-1}) \approx \int p(y_n|x_n) \frac{1}{m} \sum_{j=1}^m I(x_n; P_n^{(j)}) dx_n$$
$$= \frac{1}{m} \sum_{j=1}^m p(P_n^{(j)}|Y_{n-1})$$
(20)

と近似される。一方、一般に N 個の観測値 $Y_N = \{y_1, ..., y_N\}$ が与えられると時系列モデルの尤度は

$$L(\theta) = p(Y_N) = p(Y_{N-1})p(y_N|Y_{N-1}) = \dots = \prod_{n=1}^N p(y_n|Y_{n-1})$$
(21)

と表現できる。したがって、確率的ボラティリティ・モデルの対数尤度は一期先予 測分布p(y_n|Y_{n-1})を用いて

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n | Y_{n-1}) \approx \frac{1}{m} \sum_{n=1}^{N} \sum_{j=1}^{m} \log p(y_n | P_n^{(j)})$$
(22)

と計算できる。

擬似ニュートン法(DFP公式やBFGS公式)などの数値的最適化のアルゴリズム を使えば、この対数尤度関数をパラメータ θ に関して最大化することにより最尤推 定値 $\hat{\theta}$ を求めることができる(北川[1993])。実際には、(22)のようにモンテカル ロ・フィルタによる計算ではモンテカルロ近似にもとづく誤差が混入するので、厳 密に最尤推定値を求めることは困難である。ただし、成分モデルの分散パラメータ τ_1^2 、 τ_2^2 、 τ_3^2 に対する対数尤度の感度はあまり高くないので、格子点上の探索を行う 等の方法により実用上十分な精度で対数尤度の最大化を行うことができることが多 い。

また、上記の問題を解決するために自己組織型のモデリングの方法も開発されて いる(Kitagawa [1998])。この方法では、本来の状態ベクトルに未知のパラメータ を付加して拡大された状態ベクトル

 $z_n = \begin{bmatrix} x_n \\ \theta \end{bmatrix}$ (23)

を考える。このとき、この拡大した状態ベクトルを用いた時系列の状態空間モデル が簡単に導出できる。このモデルに対してモンテカルロ・フィルタを適用すること によって状態の推定を行えるが、状態には本来の状態ベクトルと未知パラメータが 含まれるので、状態推定とパラメータ推定が同時に行えることになる。

一般化状態空間モデルによる分散変動時系列の解析

5. 解析例

5.1 日経225データ

図1は日経225データ(1987年1月 - 1990年8月31日)に対して通常の季節調整ソフトを用いてトレンドとノイズに分解した結果を示す。ただし、推定には季節調整 プログラムDECOMPにおいて2次のトレンドモデル

$$y_n = t_n + w_n$$

$$t_n = 2t_{n-1} - t_{n-2} + v_n$$
 (24)

を用い、ノイズ項 $w_n \ge v_n$ はそれぞれ一定の分散 σ^2 および τ^2 の正規白色ノイズと仮定している。これらの分散の最尤推定値は、 $\hat{\sigma}^2 = 4.70 \times 10^4$ 、 $\hat{\tau}^2 = 1.93 \times 10^4$ でAICの値は 14,190 であった。

図1の(a)-(c)はそれぞれ、原系列y_n、トレンド成分t_nおよびノイズ項w_nを示 す。ブラックマンデーとバブル崩壊後の株価急落時にノイズの変動幅が平常時と比 較して数倍増加し、ボラティリティが著しく増大していることを示している。 図1 トレンドモデル

また、図2は、情報量規準AICを最小とする次数30のARモデルにより得られた ノイズ系列w_nのパワースペクトルを示す。*f*=0.23付近(周期3.5日程度)に顕著な ピークが見られ、(24)のモデルは分散一定という点だけでなく、白色性の仮定に も問題があることが明らかとなる。

図2 パワースペクトル

そこで、まずDECOMPにおいてM₂=2として、定常AR成分を含むモデル

 $y_n = t_n + p_n + w_n$

(25)

による分解を行った結果を図3に示す。ただし、ここでも各成分の分散は一定と仮定している。表1に示すように、このモデルのAICは13,882となり、(24)の場合と比較して308減少しており、モデルの当てはまりが著しく改善されたことを示している。実際、原データに含まれる循環的な変動は定常AR成分 *p*_nとして分離されている。この結果、トレンドの推定値は図1の場合と比較してかなり滑らかで変動が少ないものとなり、ノイズ項*w*_nは白色的な変動になっている。ただし、このモデルによる分解でもボラティリティの変動に対応して *p*_nおよび*w*_nの振幅はいずれも時間とともに大きく変化している。

図3 トレンドモデル(AR成分を含む)

そこで次に、第3節で取り上げた分散変動を考慮したモデルの推定を行った。(4) 式のトレンド+分散変動のモデルにおいて $k = \ell = 2$ とした場合には、パラメータの 近似的最尤推定値は $\hat{\tau}_1^2 = 9,000$ 、 $\hat{\tau}_2^2 = 0.0026$ でAIC=13,580となった。分散変動を考慮 しない通常のトレンドモデルのAIC=14,190と比較すると610も減少しており、著し くモデルが改善されている。

図4はこのモデルによって推定されたトレンドとノイズの各成分と、同時に推定 された"ボラティリティ"の。を示す。ブラックマンデー後およびバブル崩壊後のボ ラティリティの増加が明確に捉えられている。本例からわかるように、本稿で導入 した確率的ボラティリティ・モデルは、このように最も簡単な場合でも、変動する ボラティリティを自動的に捉えることができる。

モデル	AIC
Constant Variance Model	
Trend + Noise	14,190
Trend + AR +Noise	13,882
Stochastic Volatility Model	
Trend +Noise	
Gauss分布	13,580
Cauchy分布	13,648
(30)式のモデル+混合分布	13,553
Trend + AR +Noise	
混合分布	13,412
(36)式のモデル	13,352
(37)式のモデル	13,339

表1 さまざまな確率的ボラティリティ・モデルとAIC

図4 トレンド + 時変分散ノイズ (Nikkei 225 Stock Price Data)

6. トレンドモデルの拡張

本節では図4で推定されたトレンドに見られる傾きの急激な変化や、レベルシフトに対応するためにトレンドモデルの一般化とシステムノイズの非ガウス化を行う。

6.1 レベルシフトのモデル化

まず、2階のトレンドモデル

$$T_n = 2T_{n-1} - T_{n-2} + e_{n1} \tag{26}$$

において T_n の一階階差を $\Delta T_n = T_n - T_{n-1}$ と定義すると

$$T_{n} = T_{n-1} + (T_{n-1} - T_{n-2}) + e_{n1} = T_{n-1} + \Delta T_{n-1} + e_{n1}$$

$$\Delta T_{n} = T_{n} - T_{n-1} = (T_{n-1} + \Delta T_{n-1} + e_{n1}) - T_{n-1} = \Delta T_{n-1} + e_{n1}$$
(27)

となる。したがって、(26)のトレンドモデルは

$$T_{n} = T_{n-1} + \Delta T_{n-1} + e_{n1}$$

$$\Delta T_{n} = \Delta T_{n-1} + e_{n1}$$
(28)

と同等である (Harvey [1989])。このモデルに対応する状態空間モデルは

$$x_n = \begin{bmatrix} T_n \\ \Delta T_n \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(29)

で与えられる。通常のトレンドモデルでは、トレンドの変化は傾きの変化だけに よって引き起こされ、レベルの変化と傾きの変化が同じという仮定がおかれてい ることになる。

そこで、新たにノイズ項 *e*_{n4}を導入し、

$$T_{n} = T_{n-1} + \delta T_{n-1} + e_{n1} + e_{n2}$$

$$\delta T_{n} = \delta T_{n-1} + e_{n1}$$
(30)

という拡張したモデルを考えることにする。ただし、 e_{n1} はトレンドの傾斜の変化、 e_{n2} はレベルシフトだけに相当するノイズとなる。ここで、 δT_n は時刻 n における T_n の傾きを表すものとするが、 ΔT_n と異なり T_n の差分と厳密に対応するわけではな い。このモデルによって、トレンドの傾きの変化を伴わないレベルシフトと傾きの 変化を区別し、自由に表現できるようになる(図5)。

図5 トレンドモデルにおける(a)傾きの変化と(b)レベルシフト

6.2 非ガウス型分布による傾きの急激な変化とレベルシフトのモデル化

(29)式のような拡張によって、トレンドの傾きとレベルがそれぞれ別個に変化するモデルが得られる。しかしながら、このモデルでもブラックマンデー後のような急激な変化は想定していないので、この拡張したモデルでも十分には対応できない。これは、システムノイズ e_{n1} および e_{n2} の両方に正規分布(ガウス分布)を使うモデルでは、その分散($\tau_1^2 \lor \tau_2^2$)によってノイズの出現の割合が完全に規定され、まれに起こる暴落などの現象を十分表現できないからである。そこで、本小節ではシステムノイズの分布に非ガウス型の分布を導入する。異常値を含むデータを表現するためには、以下の密度関数をもつコーシー分布がよく利用される。

 $p(v | \tau^2) = \frac{\tau}{\pi} \frac{1}{v^2 + \tau^2}$ (31)

コーシー分布は正規分布と比較して、原点付近に密度が集中する反面、裾が厚く の絶対値が大きくなるときの0への収束が遅いという性質をもつ。したがって、こ の分布は、ほとんどの場合は0に近い値をとるが、ごく低い確率では絶対値が大き なノイズが出現することを表現できる(北川[1995], Kitagawa and Matsumoto [1996])。本稿の金融データの場合に照らして考えれば、これはごく低い確率で暴 落か暴騰がありうることをモデルの中に取り込むことができることを示している。

さらに一般的な分布としては以下の Pearson VII型の分布族がある。

$$P(v | \tau^{2}, b) = \frac{\tau^{2b-1} \Gamma(b)}{\Gamma(b-1/2) \Gamma(1/2)} \frac{1}{(v^{2} + \tau^{2})^{b}}$$
(32)

この分布ではbの値を適当に設定することによって分布の形を調整することができる(Kitagawa [1987] 北川 [1993])。

また、以下のような混合分布を用いると、マイナス側(暴落)とプラス側(暴騰) とで異なる確率をもつような分布を考えることもできる。

$$p(v) = (1 - \alpha)\phi_1(v) + \alpha\phi_2(v)$$
(33)

ここで、αは異常な事態が発生する確率、φ₁は正常時の分布、φ₂は異常時の分布で ある。φ₁としては適当な(未知の)分散をもつ正規分布を考えることが多い。一 方、φ₂としては分散の大きな正規分布や平均が0でない正規分布などを用いるこ ともある。ただし、暴騰や暴落時には一定範囲であればどのような値も取りうると して一様分布を使うことも考えられる。本稿の以下の分析では、レベルシフトの急 激な変化に対応するノイズとしてはマイナス側だけを考え、 原点より左側だけに 密度をもつ一様分布

 $\phi_2(v) \sim U(-d, 0)$ (34)

を用いることにした。もちろん、以上の分布をさらに拡張して3つ以上の分布を考えることも可能である。また、このような非対称な分布をPearson IV型の分布族を用いてモデル化しようとする試みもある(Nagahara [1996])。

6.3 例

表1に示すように、図4の場合と同様にトレンドと確率的ボラティリティからなるモデルにおいて、システムモデルをコーシー分布に代えた場合にはAIC=13,648となって、かえってあてはまりが悪くなった。これは、大きな変化についてはその変化の仕方が非対称であることを示唆している。一方、モデルをレベルシフトを含む(30)式に代え、さらにシステムノイズを正規分布と一様分布の混合分布とするとAIC=13,553となって、AICの値が約50減少した。

さらに(7)式のトレンド、定常変動成分およびノイズ成分からなるモデルでノ イズに混合分布を用いた場合にはAIC=13,412となってさらに140以上減少し、あて はまりはさらに改善されたことを示している。図6はこのモデルによって推定され たトレンド、定常AR成分、ノイズ項およびボラティリティの推定値を示す。ボラ ティリティの時間変化が大きく、ブラックマンデーとバブル崩壊後には通常時の10 倍余りに達していることがわかる。

一方、図7は図6のトレンドの一階階差 ΔT_n 、トレンドモデルの残差系列の平方 w_n^2 およびそれを適当に平滑化して得られた分散の局所的推定値を示す。この局所的分散をトレンドの階差系列と比較すると、これらの二つの系列に逆相関が見られる。図8はトレンドの階差を横軸、分散の対数を縦軸にとって、散布図を描いたものである。この図からも分散とトレンドの階差には負の相関があることが明らかである。

以上のことから、この日経225系列の解析にあたってはトレンドのまわりの変動 分散が時間変化し、しかもその分散がトレンドの変化と関係があることを考慮しモ デル化することによって、より良いモデルが得られる可能性があることが明らかと なる。

7. トレンドとボラティリティ変化の関係を考慮したモデル

状態空間モデルは極めて多様なモデルを統一的に表現できるモデルであり、さま ざまな拡張を容易に行うことができる。本節では、トレンド成分のレベルシフトと 傾きの変化を考慮してトレンドモデルの一般化、システムノイズの非ガウス化、ト レンドの変化量と分散の関係を表現するモデルの導入を行う。

7.1 トレンドの変化から分散への影響

図7や図8に見られるように、トレンドの変化量が分散の変化に影響を及ぼすことを考慮すると以下のようなモデルが考えられる。

$$\log_{s_{n}}^{2} = \log_{s_{n-1}}^{2} + b(dT_{n-1}) + u_{n}$$
(35)

ここで、 $\beta(x)$ は一般にはxの非線形関数である。図9(a)のように $\beta(x) = cx$ の場合には、分散の対数値の変化への影響はトレンドの変化量に比例することになる。とくにc = 0の場合はトレンドと分散の変化が独立であると仮定したモデルとなる。一方、(b)のような非線形関数の場合には、トレンドが減少する場合のみ、その絶対値に比例して分散の対数が増加することになる。

図9 トレンドから分散への影響関数 (a)線形関数(b)非線形関数の例

このとき、全体としては以下のようなモデルが得られる。

$$y_n = T_n + p_n + \sigma_n w_n$$

$$T_n = T_{n-1} + \delta T_{n-1} + v_{sn} + v_{\ell n}$$

$$\delta T_n = \delta T_{n-1} + v_{sn}$$

$$(36)$$

$$\log \sigma_n^2 = \log \sigma_{n-1}^2 + \beta (\delta T_{n-1}) + e_{2n}$$

$$p_n = \sum_{j=1}^m a_j p_{n-j} + e_n$$

日経225データに対し、このモデルのAICは13,352となり、トレンドの変化と分散 の変化を独立と仮定したモデルより、さらに60減少した。図10はこのモデルによっ て推定した、トレンド、ノイズ成分およびボラティリティを示す。

図10 トレンドとVolatilityの相関を考慮したモデル Nikkei 225

7.2 分散のシステムノイズへの影響

前小節では、トレンドの変化が分散の対数の変化量の平均値に影響を及ぼすもの としてモデル化を行った。例えば、トレンドの急激な減少が分散の増加を招くよ うな傾向が見られる場合にはこのようなモデリングが有効である。しかしながら、 トレンドの変化がシステムノイズの分布形に直接影響を及ぼす以下のようなモデル を用いることによってさまざまな影響を表現できる。

$$\log \sigma_n^2 = \log \sigma_{n-1}^2 + u_n$$

$$u_n \sim (1 - \beta (\delta T_{n-1})) \phi_0(u) + \beta (\delta T_{n-1}) \phi_1(u)$$
(37)

このモデルにおいては、二つの分布の混合比 $\beta(x)$ が δT_n の値によって変化する。したがって、 $\beta(x)$ を0 $\leq \beta(x) \leq 1$ を満たすように定義しておくと、 δT_n に依存してlog σ_n^2 の変化のしかたが変わるようにできる。このモデルのAICは13,339となり、前小節のモデルより少しAICの値が減少した。

8. 為替データの解析例

これまで、日経225データの解析を行ってきたが、同様の分析を日米為替レート (1987年1月1日 - 1991年8月31日)の系列にも適用してみた。図11にその結果の一例 を示す。少なくとも今回解析を行った区間に関しては、株価と比較するとボラティ リティの変化は小さいことがわかる。また、為替データについて、図8と同様にト レンドの階差とボラティリティの関係をプロットしてみた。この場合には、図8の ような負の相関は見られず、このような相関関係は常に見られるものではないこと を示している。

図11 トレンドとVolatilityの相関を考慮したモデル Yen-Dollar

9. まとめ

金融時系列のボラティリティは収益率のように原系列の対数階差系列の変動に関 して考えていることが多い。それに対して本稿では、原系列を直接トレンドと定常 変動成分と分散変動する白色ノイズに分解するモデルを提案した。このモデルは非 線形状態空間モデルを用いて表現でき、その状態はモンテカルロ・フィルタおよび 平滑化のアルゴリズムを用いて推定できる。このモデルの状態ベクトルにはトレン ド、定常成分およびボラティリティが含まれているので、モンテカルロ平滑化に よってボラティリティの推定が自動的に行われることになる。

1980年代後半の日経225データの解析結果によると、推定されたボラティリティ の変化はトレンドの変化と負の相関がみられる。そこで、トレンドの変化が分散の 変化に影響を与えるものとしてモデル化を行った。これらのモデルの改良によって 情報量規準の値は徐々に減少し、最終的に得られたモデルは標準的なトレンドのモ デルと比較して著しくよいあてはまりが得られた。

為替データについても同様の解析を行ったが、この場合にはトレンドの変化量と ボラティリティにはほとんど関係は見いだせなかった。

参考文献

尾崎 統、北川源四郎編、『時系列解析の方法』、朝倉書店、1998年 片山 徹、『応用カルマンフィルター』、朝倉書店、1983年

北川源四郎、『FORTRAN 77 時系列解析プログラミング』、岩波書店、1993年

、『欠測値と異常値の処理』、時系列解析の実際 、赤池弘次、北川源四郎編、朝倉 書店、1995年、181-195頁

、「モンテカルロ・フィルタおよび平滑化について」、『統計数理』、特集「計算統計 学の発展」、第44巻第1号、1996年、31-48頁

、「DECOMP」、『統計数理』、特集「季節調整法の新展開」、第46巻第2号、1998年、 217-232頁

、佐藤整尚、永原裕一、「非ガウス型状態空間表現による確率的ボラティリティモ デルの推定」、『金融研究』第18巻第1号、日本銀行金融研究所、1999年、45-64頁

- Akaike, H. et al., "TIMSAC-78," Computer Science Monographs, No. 11, The Institute of Statistical Mathematics, 1985.
- Harvey, A. C., *Forcasting, Structural Time Series Models and the Kalman Filter*, Cambridge University Press, 1989.

and Shephard, N., "Estimation of an Asymmetric Stochastic Volatility Model of Asset Returns," *Journal of Business & Economic Statistics*, 14 (4), 1996, pp.429-434.

Jacquier, E., Polson, N and Rossi, P. E., "Bayesian Analysis of Stochastic Volatility Models," (with discussion), *Journal of Business & Economic Statistics*, 12 (4), 1994, pp.371-417.

Kitagawa, G., "Non-Gaussian State-Space Modeling of Nonstationary Time Series," (with discussion), Journal of the American Statistical Mathematics, 82 (400), 1987, pp.1032-1063.

, "Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models," *Journal of Computational and Graphical Statistics*, 5 (1), 1996, pp.1-25.

, "Self-organizing State Space Model," *Journal of the American Statistical Association*, 93 (444), 1998, pp.1203-1215.

and Gersch, W., "A Smoothness Priors-State Space Modeling of Time Series With Trend and Seasonality," *Journal of the American Statistical Association*, 79(386), 1984, pp.378-389.

and Matsumoto, N., "Detection of Coseismic Effect From Underground Water Level," *Journal of the American Statistical Association*, 91 (434), 1996, pp.521-528.

Nagahara, Y., "Non-Gaussian Distribution for Stock Returns and Related Stochastic Differential Equation," *Financial Engineering and the Japanese Market*, 3 (2), 1996, pp.121-149.

and Kitagawa, G., "Non-Gaussian Stochastic Volatility Model," *Journal of Computational Finance*, 2 (2), 1999, pp.33-47.