# IMES DISCUSSION PAPER SERIES

与信ポートフォリオ VaR の解析的な評価法: 条件付鞍点法による近似計算の理論と数値検証

> き(ち けんたろう **菊池健太郎**

Discussion Paper No. 2007-J-16

# IMES

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES

BANK OF JAPAN

# 日本銀行金融研究所

〒103-8660 日本橋郵便局私書箱 30 号

日本銀行金融研究所が刊行している論文等はホームページからダウンロードできます。 http://www.imes.boj.or.jp

無断での転載・複製はご遠慮下さい

備考: 日本銀行金融研究所ディスカッション・ペーパー・シリーズは、金融研究所スタッフおよび外部研究者による研究成果をとりまとめたもので、学界、研究機関等、関連する方々から幅広くコメントを頂戴することを意図している。ただし、ディスカッション・ペーパーの内容や意見は、執筆者個人に属し、日本銀行あるいは金融研究所の公式見解を示すものではない。

# 与信ポートフォリオ VaR の解析的な評価法: 条件付鞍点法による近似計算の理論と数値検証

# きくち けんたろう 菊池 健太郎\*

#### 要旨

与信ポートフォリオのバリュー・アット・リスク(VaR)算出に解析的な近似手法を用いると、計測時間を大幅に短縮することができる。加えて、個別債務者のリスク寄与度や VaR のパラメータに対する感応度が容易に求められるようになり、与信集中リスクの計測やデフォルト率の変化に伴う信用リスクの変動計測が簡便に行えるようになる。こうした活用法の前提として、VaRの計測精度が保証されている必要がある。本研究では、条件付鞍点法による VaR の近似表現を導出し、その近似精度の検証を行った。その結果、様々なポートフォリオに対して良好な近似精度が得られることが確認された。また、与信集中度が極めて高く、損失分布が歪な形状を示す場合でも、ポートフォリオを大口上位とその他に分割し、前者にはツリー法、後者には条件付鞍点法という組み合わせで対応した「分割型条件付鞍点法」を用いると VaR や損失分布を小さい誤差で表現できることが確認された。

キーワード:ファクター型信用リスクモデル、VaR、条件付鞍点法、無 条件鞍点法、分割型条件付鞍点法

JEL classification: G21

本稿は、2007 年 3 月に日本銀行金融研究所で開催された「信用リスク評価の高速化手法」をテーマとするファイナンス研究会への提出論文に加筆・修正を施したものである。同研究会の参加者からは、貴重なコメントを多数頂戴した。記して感謝したい。また、室町幸雄氏(ニッセイ基礎研究所)とオースターリー教授(デルフト工科大学)からも多くの示唆に富むコメントを頂戴した。併せてここに謝意を表したい。ただし、本稿に示されている意見は、筆者個人に属し、日本銀行の公式見解を示すものではない。また、ありうべき誤りはすべて筆者個人に属する。

<sup>\*</sup>日本銀行金融研究所(現総務人事局)

# 目 次

| 1 | . はじめに                                                                                                                      | 1          |
|---|-----------------------------------------------------------------------------------------------------------------------------|------------|
| 2 | . ファクター型信用リスクモデル                                                                                                            | 4          |
|   | <ul><li>(1)ファクター型信用リスクモデルの概要</li><li>(2)ファクター型マートン・モデル</li></ul>                                                            |            |
| _ |                                                                                                                             |            |
| 3 | . 与信ポートフォリオの損失分布関数の積分表現の導出と VaR                                                                                             | 7          |
|   | (1)条件付損失分布関数の積分表現と VaR<br>(2)無条件損失分布関数の積分表現と VaR                                                                            |            |
| 4 | . 鞍点法による VaR の近似                                                                                                            | 12         |
|   | (1)数学上の準備                                                                                                                   | 12         |
|   | (2)条件付鞍点法による VaR の近似表現                                                                                                      |            |
|   | (3)無条件鞍点法による VaR の近似表現                                                                                                      | 19         |
|   | (4)分割型条件付鞍点法による VaR の近似表現                                                                                                   | 20         |
| 5 | . VaR および損失分布全体の近似精度の検証                                                                                                     | 23         |
|   | ( 1 ) 精度検証方法、サンプル• ポートフォリオ                                                                                                  | 23         |
|   | (2) VaR の近似精度                                                                                                               |            |
|   | (3)条件付鞍点法の分布全体の近似精度                                                                                                         | 31         |
|   | (4)分割型条件付鞍点法による VaR と分布全体の近似                                                                                                | 39         |
| 6 | . まとめと今後の研究課題                                                                                                               | 41         |
| 補 | 論1.ファクター型信用リスクモデルの例                                                                                                         | 42         |
|   | ( 1 ) スチューデントの <i>t</i> モデル                                                                                                 | 42         |
|   | 、                                                                                                                           | 42         |
|   | (3)ランダム・ファクター・ローディング・モデル                                                                                                    | 44         |
| 補 | 論2. $G_{\mathbf{z}}(lpha)\coloneqq P(L \le lpha \mid \mathbf{Z} = \mathbf{z})$ のラプラス変換が $M_{L \mathbf{z}}(-s) / s$ となることの証明 | 46         |
| 補 | 論3.エッシャー関数の計算方法                                                                                                             | 47         |
| 補 | 論4.条件付分布関数(31)式の計算                                                                                                          | 48         |
| 補 | 論5.高次の展開を用いた条件付鞍点法による VaR の近似表現                                                                                             | <b>4</b> 9 |
| 補 | 論 6 . キュムラント母関数およびその導関数の計算式                                                                                                 | 52         |
| 補 | <b>論7.ガウス=エルミート積分の概説</b>                                                                                                    | 54         |
| 参 | 考文献                                                                                                                         | 55         |

# 1.はじめに

金融機関の信用リスク管理実務では、与信ポートフォリオの信用リスクをバリュー・アット・リスク(VaR)によって定量的に把握している場合が多い。この VaR を計測する手法のひとつとしてファクター型信用リスクモデルが知られている。同モデルでは、各債務者の企業価値を全債務者に共通するファクター(共通ファクター)と債務者固有のファクター(固有ファクター)の線形和として表し、これがある閾値を下回った場合にデフォルト状態に陥ったとみなす。資産相関やデフォルト相関を共通ファクターを通じて簡便に導入できる利点があり、リスク管理実務において広く受け入れられてきた。特に、ファクター型信用リスクモデルの中でも、共通ファクターと固有ファクターが正規分布に従うようモデル化したファクター型マートン・モデルは、信用リスク計測の標準的なモデルとなっている。しかし、ファクター型信用リスクモデルでシミュレーションにより VaR の計測を行う場合、債務者の数だけ固有ファクターを発生させねばならないため、計算負荷が高くなるという問題がある。

このようなシミュレーションに伴う計算負荷の問題を解消するため、近年、VaRを解析的に近似計算する手法の研究が行われてきた¹。そのひとつとして、与信ポートフォリオの損失分布関数に鞍点法(saddlepoint method)と呼ばれる積分の近似手法を適用し VaR を計算する方法がある。Martin, Thompson and Browne[2001] では、共通ファクターに所与の値を設定しない無条件損失分布関数に対して鞍点法を適用し VaR を近似計算する手法が示されている。これに対し、Muromachi[2004]や室町[2005] は、社債ポートフォリオの共通ファクターを所与とした条件付損益分布に鞍点法を適用する手法を提案し、VaR の近似精度の検証を行っている。本稿では、前者を無条件鞍点法、後者を条件付鞍点法による VaR の近似と呼ぶ。

Martin and Ordovás[2006]は、無条件鞍点法と条件付鞍点法による与信ポートフォリ

-

<sup>&</sup>lt;sup>1</sup> 解析近似により VaR の計算負荷を低減させるアプローチの他に、効率的なシミュレーション手法を用いて VaR の計算負荷を低減させる研究も行われている。例えば、加重サンプリング法を用いた VaR の計算については、Glasserman[2004, 2005]が詳しい。

オの損失分布の近似精度を比較している<sup>2</sup>。Martin らは、5 つのサンプル・ポートフォリオに対して、ファクター型マートン・モデルを適用した場合の損失分布をプロットし、いずれのケースにおいても、条件付鞍点法の近似精度が優れていることを示している<sup>3</sup>。また、Huang *et al.*[2007]は、いくつかの簡単なポートフォリオを用いて条件付鞍点法による VaR の近似精度が高いことを指摘している。

VaR が解析的に求まることの利点は、計算時間の短縮化だけにとどまらない。解析的に求められた VaR は、債務者別の寄与度に分解することができ、与信集中リスクの把握や債務者別配賦資本コストに基づく収益性評価への活用が考えられる。このほか、デフォルト率や資産相関パラメータの変化に対する VaR の感応度を計測することも可能となる。実際、与信ポートフォリオマネジメント勉強会[2007]では、クレジット・ポートフォリオ・マネジメント(CPM)の実務担当者が CPM の重要な目的として、与信集中リスクへの対応、リスク・リターンの最適化、信用度悪化に対する予防的な措置などを挙げており、上述のリスク分析技術に対するニーズは高いと考えられる。条件付鞍点法を用いた VaR の寄与度分解や感応度の導出と数値検証については、別稿の菊池[2007]で詳細に解説する。

本稿では、上述のような活用の前提となる VaR の解析評価法の近似精度について 検証を行う。これは、Martin and Ordovás[2006]や Huang *et al.*[2007]で既に検証されて いるが、本稿では、 Wilde[2001]、Gordy[2003]による『グラニュラリティ調整法<sup>4</sup>』

-

<sup>&</sup>lt;sup>2</sup> Martin and Ordovás[2006]では、本稿で条件付鞍点法と呼ぶ損失分布や VaR の近似手法を Indirect Method、無条件鞍点法のそれを Direct Method と呼んでいる。

 $<sup>^3</sup>$  鞍点法による VaR 近似を扱ったその他の研究としては、CreditRisk+に鞍点法を適用して VaR の精度検証を行った Gordy[2002]や Annaert  $et\ al.$ [2005]のほか、デフォルト率とデフォルト時損失率の間に相関がある場合について無条件鞍点法による VaR の近似表現の導出と数値計算を行った Giese[2006]がある。

<sup>&</sup>lt;sup>4</sup> 各債務者へのエクスポージャーが十分分散化された無数の債務者からなるポートフォリオを『無限分散ポートフォリオ』と呼び、その損失分布を『極限損失分布』と呼ぶ。グラニュラリティ調整法とは、リスク属性が不均一で有限の債務者から構成されるポートフォリオの損失分布を、極限損失分布に調整を加えて近似する手法である。その詳細を解説した論文として、安藤[2005] が挙げられる。

との比較を試みた点、 与信大口集中という現実の与信ポートフォリオの特徴を持たせたサンプル・ポートフォリオの他、多様なポートフォリオで検証を行っている点、 精度の更なる改善につながりうる高次の鞍点法による VaR 近似表現を導出し、比較検証を試みた点が特徴となっている。

VaR の近似精度の比較検証の結果、 グラニュラリティ調整法や無条件鞍点法より条件付鞍点法が優れていること、 比較的低次の条件付鞍点法で高い精度が得られること、 一部の大口先へ与信の集中がみられるような場合、VaR の信頼水準の設定次第で VaR 計測値が不連続的に大きく変わりうること、 このとき、真の損失分布は歪な形状となっており、条件付鞍点法ではこうした分布の近似が困難になることがわかった。 の VaR 計測の不安定性は、既存の研究では指摘されてこなかった。与信の大口集中状態は金融機関によって様々であるため、与信ポートフォリオごとに損失額が不連続的に上昇する信頼水準は異なっていると考えられる。これは、99%や 99.9%といったある一つの信頼水準で VaR を計測することの危険性を示唆している。

本稿では、上記 の問題に対応するために、肥後[2006]で示された考え方を応用した。まず、少数の大口先から構成されるポートフォリオとそれ以外の先から構成されるポートフォリオに分割し、次に、大口先のデフォルト・非デフォルト状態の組み合わせを表したツリーの枝ごとに、後者のポートフォリオに鞍点法を適用して VaR を近似する手法を考えた。本稿では、この手法を『分割型条件付鞍点法』と呼ぶ。数値検証の結果、分割型条件付鞍点法により VaR および損失分布全体の近似精度が大幅に改善されることが確認された。

本稿の構成は以下のとおりであるが、特にリスク管理実務上の有用性に関心がある読者は5節から読み進めることも可能である。まず、2節では、ファクター型信用リスクモデルの概要の説明と、代表例であるファクター型マートン・モデルの紹介を行う。3節では、一般的なファクター型信用リスクモデルに基づき、与信ポートフォリオの損失分布関数と VaR の表現の導出を行う。4節では、鞍点法を用いた VaR の近似表現を導出する。条件付鞍点法、無条件鞍点法、分割型条件付鞍点法による3

つの近似表現を示している。5 節では、まず、様々な与信ポートフォリオに対して各近似手法の精度を比較し、次に、条件付鞍点法による損失分布全体の近似精度検証を行う。さらに、与信集中度が極めて高いポートフォリオに対して分割型条件付鞍点法を適用し、VaR と損失分布全体の近似精度を調べる。6 節ではまとめを行う。

# 2.ファクター型信用リスクモデル

本節では、ファクター型信用リスクモデルの概要を説明した後、5 節の数値計算で用いるファクター型マートン・モデルの解説を行う。なお、ファクター型信用リスクモデルには、スチューデントの t モデル、正規逆ガウシアン・モデル、ランダム・ファクター・ローディング・モデルなど他にも様々なモデルが存在するが、これらについては、補論 1 で解説を行っている5。

# (1)ファクター型信用リスクモデルの概要

債務者 j の企業価値  $X_j$  を、以下のような確率変数で与える。

$$X_{j} = \mathbf{F}_{j} \cdot \mathbf{Z} + b_{j} \varepsilon_{j} \tag{1}$$

ここで、 $\mathbf{Z}=(Z_1,...,Z_N)$  は、全債務者の企業価値に影響を与える確率変数(共通ファクター)、 $\varepsilon_j$  は債務者 j に固有の確率変数(固有ファクター)である。また、  $\mathbf{F}_j=(f_j^{(1)},...,f_j^{(N)})$  は、債務者 j ごとに定義される共通ファクターのローディング・ベクトルである。 $b_j$  は、固有ファクターのローディング・スカラーを表している。

共通ファクターと固有ファクターはすべて独立であると仮定するが、共通ファクターや固有ファクターが従う確率分布に特段の仮定は置かない。また、共通ファクターと固有ファクターのローディング・ベクトル(スカラー)は確定的であるとする。この仮定のため、全ての企業価値は共通ファクターZの条件の下で条件付独立とな

4

<sup>&</sup>lt;sup>5</sup> CDO では、ファクター型マートン・モデルの共通ファクター間に相関構造が入ったガウシアン・コピュラ・モデルが標準的なプライシング手法として活用されているが、CDO トランシェの市場価格の表現に限界があるといわれており、代替モデルの研究が盛んに行われている。

リ、VaR の解析的な近似表現を導出するうえで計算が容易となる $^6$ 。

ファクター型信用リスクモデルにおけるデフォルト定義は、債務者 j の企業価値  $X_j$  がある閾値  $C_j$  を下回った時とする。これより、債務者 j のデフォルト率  $p_j$  について

$$p_j = P(X_j \le C_j) \tag{2}$$

が成り立つ。

債務者jのデフォルト時損失額は、与信額 $e_j$ とデフォルト時損失率 $l_j$ を用いて $e_j l_j$ と表せる。また、与信ポートフォリオの損失額Lは、債務者jの指標関数 $Y_j$ (デフォルトなら1、そうでないなら0の値をとる関数)を用いて、

$$L = \sum_{i=1}^{M} e_i l_j Y_j \tag{3}$$

と表せる。なお、本稿では、与信額 $e_j$ とデフォルト時損失率 $l_j$ は確率変数ではなく確定的であるとする。

本稿で使用する記法・定義を以下にまとめておく。

- M: 与信ポートフォリオを構成する債務者の数
- $p_i(\mathbf{z}): \mathbf{Z} = \mathbf{z}$  が与えられた時の債務者 j の条件付デフォルト率
- $f_{L|\mathbf{z}}(u)$ : 与信ポートフォリオ損失額 L の共通ファクター  $\mathbf{Z}$  を条件とする条件付確率密度関数
- ullet  $L_i$ : 債務者 j に関する損失額 ( $e_i l_i Y_i$ に等しい)
- $oldsymbol{q}_{lpha}$ : 信頼水準lpha の VaR、数学的には $q_{lpha}=\inf\{u:P(L\geq u)\leq 1-lpha\}$  と表せる。 以下の議論では、 $0<q_{lpha}<\sum_{j=1}^{M}e_{j}l_{j}$  の範囲にある VaR のみを考えることにする。

 $<sup>^6</sup>$  ローディング・ベクトル (スカラー)を確率変数として扱うことも可能である。必要最小限のファクター (これらのファクターをまとめてベクトル  $\mathbf U$  とする)を適当に選択すれば、 $\mathbf U$  の条件の下で各債務者の企業価値が独立となり、 $\mathbf U$  の条件の下で、各債務者のデフォルト事象は独立に発生する。ローディング・ベクトル (スカラー)を確定的とする本論の仮定では、 $\mathbf U=\mathbf Z$  である。

# (2)ファクター型マートン・モデル

ファクター型マートン・モデルは、CreditMetrics $^{TM}$  (Gupton *et al.* [1997]) のベース となっている 1 期間リスク計測モデルであり、金融機関のリスク管理実務では広く 知られている。このモデルは、共通ファクターと固有ファクターに標準正規分布を 仮定している点が特徴である。債務者 j の企業価値は、共通ファクター Z の成分数 が 1 つである場合、以下のように表される。

$$X_{j} = \sqrt{\rho_{j}}Z + \sqrt{1 - \rho_{j}}\varepsilon_{j} \tag{4}$$

ここで、 $\rho_j$  は定数で資産相関と呼ばれているパラメータである。(4)式の共通ファクターZ と固有ファクター $\varepsilon_j$  が標準正規分布に従うため、 $X_j$  も標準正規分布に従う。これより、債務者 j のデフォルト率は、標準正規分布の分布関数  $\Phi(\cdot)$  を用いて、

$$p_{j} = P(X_{j} < C_{j}) = \Phi(C_{j})$$
 (5)

と表せる。また、共通ファクターZ=zを条件とする債務者jの条件付デフォルト率 $p_{j}(z)$ は、

$$p_{j}(z) = \Phi\left(\frac{C_{j} - \sqrt{\rho_{j}}z}{\sqrt{1 - \rho_{j}}}\right) = \Phi\left(\frac{\Phi^{-1}(p_{j}) - \sqrt{\rho_{j}}z}{\sqrt{1 - \rho_{j}}}\right).$$
 (6)

と表せる。

# 3.与信ポートフォリオの損失分布関数の積分表現の導出と VaR

本節では、VaR 算出に必要な与信ポートフォリオの損失分布関数の積分表現を導出する。次節以降の準備として、共通ファクターを条件とする条件付損失分布関数の積分表現と無条件損失分布関数の積分表現を順に示す。

# (1)条件付損失分布関数の積分表現と VaR

共通ファクターZ=zの条件の下で各債務者のデフォルトは独立に発生する。この条件付デフォルトの性質から、与信ポートフォリオ損失額の条件付分布関数を解析的に記述することが可能となる。

まず、与信ポートフォリオ損失額Lの共通ファクター $\mathbf{Z} = \mathbf{z}$ を条件とする条件付モーメント母関数 $M_{T,\mathbf{z}}(s)$ を、

$$M_{L|\mathbf{z}}(s) := E[e^{sL} \mid \mathbf{Z} = \mathbf{z}] \tag{7}$$

と定義する。確率変数のモーメント母関数は一般に存在するとは限らないが、Lは有限な値しかとらない確率変数( $0 \le L \le \sum_{j=1}^M e_j l_j$ )なので、そのモーメント母関数は、任意のsに対して必ず存在し、

$$M_{L|\mathbf{z}}(s) = E[e^{sL} \mid \mathbf{Z} = \mathbf{z}] = E[\exp(s\sum_{j=1}^{M} L_j) \mid \mathbf{Z} = \mathbf{z}]$$

$$= \prod_{i=1}^{M} E[\exp(sL_j) \mid \mathbf{Z} = \mathbf{z}] = \prod_{i=1}^{M} (1 - p_j(\mathbf{z}) + p_j(\mathbf{z})e^{se_j l_j})$$
(8)

と具体的に計算できる。

L の条件付密度関数  $f_{L|z}(u)$  と $M_{L|z}(s)$  の間には、 $f_{L|z}(u)$  のラプラス変換を用いて次の関係が成立する $^7$ 。

 $<sup>^7</sup>$  領域 $\mathbf{D} \subset \mathbf{R}$  ( $\mathbf{R}$  は実数空間)に対して、 $s \in \mathbf{D}$  で  $g(s) = \int_{-\infty}^{\infty} f(t)e^{-st}dt$  が存在するとき、g を f のラプラス変換と呼び $g = \mathsf{L}\{f\}$  と表現する。さらに、 $g = \mathsf{L}\{f\}$  を満たす f,g に対して、 $f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} g(s)e^{ts}ds$  ( $\forall c \in \mathbf{D}$ ) となる。これを、ラプラス逆変換と呼び、 $f = \mathsf{L}^{-1}\{g\}$  と

$$L\{f_{L|\mathbf{z}}\} := \int_{-\infty}^{\infty} f_{L|\mathbf{z}}(u)e^{-su}ds = M_{L|\mathbf{z}}(-s)$$
(9)

ここで、 $L\{f_{I|x}\}$  は、 $f_{I|x}(u)$  のラプラス変換を表している。

ラプラス逆変換を表す作用素L-1を(9)式の両辺に作用させると、

$$f_{L|\mathbf{z}}(u) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} M_{L|\mathbf{z}}(-s)e^{su} ds \quad (c は任意の実数)$$
 (10)

となる。以上より、与信ポートフォリオ損失額Lの条件付密度関数の表現(10)式が導出された。

次に、与信ポートフォリオ損失額Lの条件付分布関数の積分表現を導出する。条件付分布関数を $F_{\mathbf{z}}(\alpha) := P(L > \alpha \mid \mathbf{Z} = \mathbf{z})$  とおくと $^8$ 、次式が成立する。

$$M_{L|\mathbf{z}}(-s) = \int_{-\infty}^{\infty} f_{L|\mathbf{z}}(\alpha) e^{-s\alpha} d\alpha$$

$$= -\int_{-\infty}^{\infty} \frac{dF_{\mathbf{z}}}{d\alpha} e^{-s\alpha} d\alpha = -\left[F_{\mathbf{z}}(\alpha)e^{-s\alpha}\right]_{-\infty}^{\infty} - s\int_{-\infty}^{\infty} F_{\mathbf{z}}(\alpha)e^{-s\alpha} d\alpha \qquad (11)$$

$$= -s\int_{-\infty}^{\infty} F_{\mathbf{z}}(\alpha)e^{-s\alpha} d\alpha \quad (\Box \Box \Box \Box, \forall s < 0)$$

1 行目の等号成立はモーメント母関数の定義から、2 行目の最初の等号成立は $F_{\mathbf{z}}(\alpha)$ の定義から、2 行目 2 番目の等号成立は部分積分で説明される。3 行目の等号成立は、 $\alpha$  が十分大きいところでは $F_{\mathbf{z}}(\alpha)=0$  であるので、 $F_{\mathbf{z}}(\alpha)e^{-s\alpha}\to 0$   $(\alpha\to\infty)$  が成り立つことと、s<0から  $F_{\mathbf{z}}(\alpha)e^{-s\alpha}\to 0$   $(\alpha\to\infty)$  が成り立つことによる。

(11)式から、 $F_{\mathbf{z}}(\alpha) := P(L > \alpha \mid \mathbf{Z} = \mathbf{z})$  のラプラス変換は、-M(-s)/s であることがわかったので、 $\mathsf{L}\{P(L > \alpha \mid \mathbf{Z} = \mathbf{z})\} = -M_{L|\mathbf{z}}(-s)/s$  に対して逆ラプラス変換 $\mathsf{L}^{-1}$  を作用させると、条件付分布関数 $P(L > \alpha \mid \mathbf{Z} = \mathbf{z})$  は次のようになる。

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) = \frac{-1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{M_{L\mid\mathbf{z}}(-s)}{s} e^{su} ds = \frac{-1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_{L\mid\mathbf{z}}(-s) + su)}{s} ds$$

$$= \frac{1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} \frac{\exp(K_{L\mid\mathbf{z}}(s) - su)}{s} ds \qquad \qquad \forall c < 0, \forall c' > 0$$
(12)

表現する。詳細は木村[1993]を参照。ラプラス逆変換の積分区間に現れるcの値を $c \in \mathbf{D}$ の範囲で任意に設定しても、ラプラス逆変換の結果は不変である。

 $<sup>^8</sup>$  確率変数 X の分布関数 F(x) とは、通常、 X が x 以下となる確率  $P(X \le x)$  を指すが、本稿では、 X が x を上回る確率 P(X > x) も分布関数と呼ぶ。

(12)式の 2 行目の等号では、 $s \to -s$  と積分の変数変換を行った。また、(12)式の  $K_{L|z}(s)$  は、(8)式を用いて、以下のように定義、計算される L の条件付キュムラント 母関数と呼ばれる関数である。

$$K_{L|\mathbf{z}}(s) := \log M_{L|\mathbf{z}}(s) = \sum_{j=1}^{M} \log(1 - p_j(\mathbf{z}) + p_j(\mathbf{z})e^{se_j l_j})$$
 (13)

次節での鞍点法を用いた計算のために、(12)式の別の積分表現をあらかじめ用意しておく。  $G_{\mathbf{z}}(\alpha) \coloneqq P(L \le \alpha \mid \mathbf{Z} = \mathbf{z})$  と置くと、(11)式と同様の数式展開により  $\mathsf{L}\{G_{\mathbf{z}}\} = M_{L\mid\mathbf{z}}(-s)/s$  (ただし、 $\forall s>0$ ) が示される。証明は補論 2 を参照。これと  $F_{\mathbf{z}}(\alpha) = 1 - G_{\mathbf{z}}(\alpha)$  を用いると、条件付分布関数は(12)式とは異なる以下の式で表せる。

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) = 1 - \frac{1}{2\pi i} \int_{c' - i\infty}^{c' + i\infty} \frac{M(-s)e^{su}}{s} ds \quad (\forall c' > 0)$$

$$= 1 + \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} \frac{\exp(K_{L|\mathbf{z}}(s) - su)}{s} ds \quad (\forall c < 0)$$
(14)

(14)式の 2 行目では $s \rightarrow -s$  の変数変換を行っており、これを鞍点法を用いた計算に用いる。

以上より、与信ポートフォリオ損失額Lの条件付分布関数の積分表現が2つの形式で導出された。

これより、与信ポートフォリオ損失額 L の無条件分布関数 P(L>u) は、  $P(L>\alpha \mid \mathbf{Z}=\mathbf{z})$  の共通ファクターに関する期待値を用いて以下のようにかける。

$$P(L > u) := E \left[ \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_{L|\mathbf{z}}(s) - su)}{s} ds \right] \qquad (\forall c > 0)$$
 (15)

また、VaR の積分表現は、上式の u に信頼水準  $\alpha$  の VaR  $q_{\alpha}$  を代入することにより以下の式として得られる。

$$1 - \alpha = P(L > q_{\alpha}) = E \left[ \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_{L|\mathbf{z}}(s) - sq_{\alpha})}{s} ds \right] \quad (\forall c > 0)$$
 (16)

(16)式は、VaR  $q_{\alpha}$  に関する陰形式の表現になっている。すなわち、信頼水準 $\alpha$  の VaR を計算するためには、(16)式を満たすような損失額 $q_{\alpha}$  を見つけることが必要に

なる。したがって、VaR 計算のためには、(16)式の右辺が比較的容易に計算されることが望ましい。しかし、(16)式の右辺の積分の原始関数を求めることは容易ではなく、数値計算に頼らざるを得ない。例えば、高速フーリエ変換を用いて右辺の数値計算を行うことは可能ではあるが、計算負荷が過大になる問題がある。そこで、4 節では、鞍点法と呼ばれる計算負荷が比較的軽い積分の近似計算手法を導入し、信頼水準 $\alpha$ の VaR を容易に求められるようにする。

#### (2)無条件損失分布関数の積分表現とVaR

ラプラス変換、逆ラプラス変換を用いて、条件付分布関数の積分表現を導出したが、これとほぼ同様の議論を行い、無条件損失分布関数の積分表現や VaR の表現を導出できる。

まず、与信ポートフォリオ損失額Lの無条件確率密度関数を $f_L(u)$ 、モーメント母関数を $M(s) \coloneqq E[e^{sL}]$ とすると、ラプラス変換の定義から $L\{f\} = M(-s)$ が成り立つ。 無条件損失分布関数を $F(\alpha) \coloneqq P(L > \alpha)$ とすると、(11)式の議論と同様に、

$$M(-s) = \int_{-\infty}^{\infty} f_L(\alpha) e^{-s\alpha} d\alpha$$

$$= -\int_{-\infty}^{\infty} \frac{dF}{d\alpha} e^{-s\alpha} d\alpha = -\left[F(\alpha) e^{-s\alpha}\right]_{-\infty}^{\infty} - s \int_{-\infty}^{\infty} F(\alpha) e^{-s\alpha} d\alpha$$

$$= -s \int_{-\infty}^{\infty} F(\alpha) e^{-s\alpha} d\alpha \quad (\forall s < 0)$$
(17)

となる。

上式より、 $F(\alpha) := P(L > \alpha)$  のラプラス変換は-M(-s)/s となるので、-M(-s)/s に逆ラプラス変換を行うと、以下のように $F(\alpha) := P(L > \alpha)$  の表現が得られる。

$$P(L > u) = \frac{-1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} \frac{M(-s)e^{su}}{s} ds = \frac{1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} \frac{\exp(K_L(-s) + su)}{s} ds \quad (\forall c' < 0)$$

$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_L(s) - su)}{s} ds \quad (\forall c > 0)$$
(18)

ここで、 $K_L(s)$  は次のように具体的に計算される。

$$K_{L}(s) = \log E[e^{sL}] = \log E[E[e^{sL} \mid \mathbf{Z} = \mathbf{z}]] = \log E\left[\prod_{j=1}^{M} (1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}})\right]$$
(19)

これは、(無条件)キュムラント母関数と呼ばれる関数である。(18)式 2 行目右辺は 1 行目右辺を  $s \rightarrow -s$  と変数変換することによって得られる。

4 節の準備として、無条件分布関数の(18)式とは異なる表現を用意しておく。これは、(14)式と同じ議論により導出することができる。すなわち、 $G(\alpha) := P(L \le \alpha)$  について、 $L\{G\} = M$  (-s)/s (ただし、 $\forall s > 0$ )が成立することを用いる。すると、無条件損失分布関数P(L > u) は、

$$P(L>u) = 1 + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_L(s) - su)}{s} ds \quad (\forall c < 0)$$
 (20)

となる。

(18)、(20)式のu に VaR  $q_{\alpha}$  を代入すると VaR の積分表現は次のように表せる。

$$1 - \alpha = P(L > q_{\alpha}) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\exp(K_{L}(s) - sq_{\alpha})}{s} ds \quad (\forall c > 0)$$

$$= 1 + \frac{1}{2\pi i} \int_{c'-i\infty}^{c'+i\infty} \frac{\exp(K_{L}(s) - sq_{\alpha})}{s} ds \quad (\forall c' < 0)$$
(21)

(21)式も(16)式と同様に、VaR  $q_\alpha$  に関する陰形式の表現になっている。このため、信頼水準 $\alpha$  の VaR を計算するには、(21)式を満たすような損失額 $q_\alpha$  を見つけることが必要になる。これについても、4 節で扱う鞍点法を用いれば $q_\alpha$  の計算が可能となる。

## 4 . 鞍点法による VaR の近似

3 節では VaR の陰形式積分表現を得たが、積分の原始関数を求めることが難しいため、VaR を具体的に求めるためには何らかの工夫を要する。本節では、鞍点法と呼ばれる積分の近似計算手法を援用し、VaR の近似表現を導出する。鞍点法は、被積分関数(またはその一部)を、積分への寄与の大きな点の回りでいったんテイラー展開した後に積分を実行する手法である。鞍点法の特長は、テイラー展開により被積分関数の積分が解析的に扱い易くなり、鞍点とよばれる積分計算に最も大きく寄与する点の回りでテイラー展開を行うことにより積分の近似精度が高まることにある。

本節では、まず鞍点法に必要な数学上の準備を行い、次に損失分布関数の積分表現に鞍点法を適用し、VaR の近似表現を導出する。最後に、大口債務者への与信集中度が高いポートフォリオに対応した分割型条件付鞍点法について、VaR の近似表現を導出する。

#### (1)数学上の準備

与信ポートフォリオ損失額の条件付分布関数(12)、(14)式と無条件分布関数(18)、(20)式に鞍点法を適用することが最初の目標となる。準備として、下記(22)式のような積分の近似計算を例に、鞍点法の説明を行う。

$$g(x) = \int_C e^{xh(z)} k(z) dz \tag{22}$$

ここで、説明上の簡単化のため、 $h(z), z \in \mathbb{C}$  は複素平面全体で正則と仮定する。また、C は複素平面上の積分経路とする。

鞍点法は、上記(22)式の積分を、積分区間のある限られた部分、すなわち鞍点からの寄与が大きくなるように積分区間を変形し $^9$ 、被積分関数を鞍点の回りでテイラー

 $^9$  積分区間の変形可能性はコーシーの積分定理が保証している。複素積分では、積分区間をコーシーの積分定理に基づき計算しやすい区間に変更することが計算上の常套手段となっている。コーシーの積分定理とは、『複素関数 f(z) が単連結領域 D で正則ならば、D 内の 2 点 a,b に対し

展開した後に積分を実行するものである。

複素平面上で定義された正則関数 h(z) の鞍点は、

$$\frac{dh}{dz}(z_0) = 0, \ \frac{d^2h}{dz^2}(z_0) \neq 0$$
 (23)

を満たす点 $z=z_0$  として定義される。h(z) を鞍点 $z=z_0$  のまわりでテイラー展開すると、

$$h(z) = h(z_0) + \frac{1}{2}h''(z_0)(z - z_0)^2 + \cdots$$
 (24)

となるが、  $z-z_0=re^{i\theta}$   $(0 \le \theta < 2\pi)$ ,  $h''(z_0)=ve^{i\alpha}$  ( $\alpha$ は定数) と極座標表示すると、 (24)式の実部は、

$$\operatorname{Re} h(z) = \operatorname{Re} h(z_0) + \frac{1}{2} v r^2 \cos(2\theta + \alpha) + O(|z - z_0|^3)$$
 (25)

となる(ここで、Reh はh の実部を表している)。仮にv の符号が正だとすると、(25) 式から、 $2\theta + \alpha$  が $0,2\pi$  となる箇所に『山』があり、 $0,3\pi$  となる箇所に『谷』があることがわかる。すなわち、 $z = z_0$  はある方向から見ると極大点になっており、それと直交する方向から見ると極小点になっている。これが、(23)式で定義される点が鞍点と呼ばれるゆえんである。

本節(2)では、関数 h(z) が実軸上( $\forall z \in \mathbf{R}$ )で必ず実数値をとり、鞍点  $z = z_0$  が実軸上にあり、v の符号が正であるという設定の下で議論を進める。以下では、この設定の下での鞍点の特徴と(22)式の近似計算についての説明を行っておく。

上記設定の下では、  $h''(z_0)$  は必ず実数値をとるため、 $\alpha$  を 0 とおいてよい。このとき、(25)式の『山』は $\theta=0,\pi$  (実軸方向)にあり、『谷』は $\theta=\pi/2,3\pi/2$  (虚軸方向)にあることがわかる。すなわち、 $\nu$  の符号は正なので、実軸方向から見ると鞍点は極小点になっており、虚軸方向から見ると鞍点は極大点になっている。

次に、(22)式の積分区間 C を『谷』に変更して積分計算することを考える。上記の 設定では『谷』が続く箇所は複素平面上で虚軸と平行な直線となるので、積分区間

 $<sup>\</sup>int_C f(z)dz$  (  $C:[0,1] \to \mathbf{R}, C(0) = a, C(1) = b$  ) の値は、積分区間 C の取り方に依存しない。』というものである。詳細は有馬・神部[1991]を参照。

は $z_0 - i\infty \sim z_0 + i\infty$  となる。この積分区間においては、被積分関数の一部である h(z) の実部は鞍点  $z = z_0$  で極大となり、 $h(z_0)$  の(22)式の積分への寄与は大きいと考えられる。そこで、h(z) を鞍点  $z_0$  の回りでテイラー展開した関数(24)式を(22)式に代入して積分を行えば、テイラー展開の 0 次の項  $h(z_0)$  が積分結果に大きく寄与し、その計算精度が高まることが予想される。このような積分を実行すると、

$$g(x) \approx \int_{z_0 - i\infty}^{z_0 + i\infty} \exp(xh(z_0) + \frac{1}{2}xh''(z_0)(z - z_0)^2)k(z_0)dz$$

$$= k(z_0) \exp(xh(z_0)) \int_{-\infty}^{\infty} \exp(-\frac{1}{2}xvr^2)e^{i\pi/2}dr$$

$$= k(z_0) \exp(xh(z_0))e^{i\pi/2} \sqrt{\frac{2\pi}{xv}}$$
(26)

を得る。なお、(26)式では、被積分関数の一部であるk(z) について、 $k(z) \approx k(z_0)$  となるような 0 次のテイラー展開による近似を行っている $^{10}$ 。

### (2)条件付鞍点法による VaR の近似表現

ここでは、与信ポートフォリオ損失額の条件付分布関数の積分表現(12)、(14)式に 鞍点法を適用し、条件付分布関数の近似表現を導出することによって VaR の近似表 現を導出する。

まず、(12)式の被積分関数の一部  $a(s)\coloneqq K_{L|\mathbf{z}}(s)-su$  (u の範囲は、 $0< u<\sum_{j=1}^{M}e_{j}l_{j}$  とする $^{11}$  )の鞍点を求める。

a(s) の 1 次微分 a'(s)、 2 次微分 a''(s) に関し、

<sup>10</sup> ここで述べた鞍点法の概要は直感的なものである。より数学的に厳密な説明を行っている文献として江沢[1995]がある。

 $u=0,\sum_{j=1}^M e_j l_j$  の場合、条件付分布関数は容易に計算できるため、近似計算を行う範囲を  $0 < u < \sum_{j=1}^M e_j l_j$  とする。

$$a''(s) = K_{L|\mathbf{z}}^{(II)}(s) = \sum_{j=1}^{M} \frac{p_{j}(\mathbf{z})(1 - p_{j}(\mathbf{z}))(e_{j}l_{j})^{2} e^{se_{j}l_{j}}}{(1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}})^{2}} > 0$$

$$\lim_{s \to -\infty} a'(s) = \lim_{s \to -\infty} K_{L|\mathbf{z}}^{(I)}(s) - u = \lim_{s \to -\infty} \sum_{j=1}^{M} \frac{p_{j}(\mathbf{z})e_{j}l_{j}e^{se_{j}l_{j}}}{1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}}} - u = \sum_{j=1}^{M} e_{j}l_{j} - u > 0$$

$$\lim_{s \to \infty} a'(s) = \lim_{s \to \infty} K_{L|\mathbf{z}}^{(I)}(s) - u = \lim_{s \to \infty} \sum_{j=1}^{M} \frac{p_{j}(\mathbf{z})e_{j}l_{j}e^{se_{j}l_{j}}}{1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}}} - u = -u < 0$$

が成り立つことから、a(s) は下に凸な関数であることがわかる。したがって、a(s) の 鞍点はa(s) の唯一の極小点であり、 $K_{ls}(\cdot)$  の 1 階の導関数 $K_{ls}^{(I)}(\cdot)$  に関して、

$$u = K_{\text{Liz}}^{(I)}(\hat{s}(\mathbf{z}, u)), \, \hat{s}(\mathbf{z}, u) \in \mathbf{R}$$
(27)

を満たす $\mathbf{z}$ ,u に依存する実数値 $\hat{s}(\mathbf{z},u)$  である。この鞍点は条件 $\mathbf{Z} = \mathbf{z}$  の下で定まるため、本稿ではこれを条件付鞍点と呼ぶことにする。

以下の計算では、 $\hat{s}(\mathbf{z},u)$  の符号が重要となるので、ここでまとめておくと、

$$\hat{s}(\mathbf{z}, u) > 0 \Leftrightarrow E[L \mid \mathbf{Z} = \mathbf{z}] < u$$

$$\hat{s}(\mathbf{z}, u) = 0 \Leftrightarrow E[L \mid \mathbf{Z} = \mathbf{z}] = u$$

$$\hat{s}(\mathbf{z}, u) < 0 \Leftrightarrow E[L \mid \mathbf{Z} = \mathbf{z}] > u$$
(28)

となる。これは、a(s) が下に凸で、極小点を唯一つ有する関数であることから導かれる。すなわち、a(s) がこのような関数ならば、a(s) の極小点がs=0 より大きいことが、s=0 でのa(s) の傾き  $a'(0)=E[L|\mathbf{Z}=\mathbf{z}]-u$  が負(a(s) はs=0 で減少)となることの必要十分条件となる。また、a(s) の極小点がs=0 となることが、s=0 でのa(s) の傾き  $a'(0)=E[L|\mathbf{Z}=\mathbf{z}]-u$  が 0 となることの必要十分条件となる。同様に、a(s) の 極 小 点 が s=0 よ り 小 さ い こ と が 、 s=0 で の a(s) の 傾 き  $a'(0)=E[L|\mathbf{Z}=\mathbf{z}]-u$  が正(a(s) は a(s) の で増加 )となることの必要十分条件となる。

次に、a(s) を条件付鞍点  $\hat{s}(\mathbf{z},u)$  の回りでテイラー展開する。キュムラント母関数の 2 階の導関数  $K_{Lz}^{(II)}(\cdot)$  を用いて 2 次までのテイラー展開を示すと、

$$K_{L|\mathbf{z}}(s) - su = K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u + \frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))(s - \hat{s}(\mathbf{z}, u))^{2}$$
(29)

となる。

(12)式に(29)式を代入すると、

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) \approx \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{e^{\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))(s - \hat{s}(\mathbf{z}, u))^{2}}}{s} ds \quad (c > 0)$$
(30)

となる。

ここで、(28)式より、 $E[L | \mathbf{Z} = \mathbf{z}] < u$  の場合は $\hat{s}(\mathbf{z}, u) > 0$  となるので、(30)式は以下のように計算できる。

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) \approx \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{e^{\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))(s-\hat{s}(\mathbf{z}, u))^{2}}}{s} ds \quad (c > 0)$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{\hat{s}(\mathbf{z}, u) - i\infty}^{\hat{s}(\mathbf{z}, u) + i\infty} \frac{e^{\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))(s-\hat{s}(\mathbf{z}, u))^{2}}}{s} ds$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))y^{2}}}{\hat{s}(\mathbf{z}, u) + iy} dy$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{\hat{s}(\mathbf{z}, u)\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))}} B_{0}(\hat{s}(\mathbf{z}, u)\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))})$$

1 行目の右辺の積分区間のc は任意の非負の実数なので、 $E[L | \mathbf{Z} = \mathbf{z}] < u$  の場合は、 $c = \hat{s}(\mathbf{z}, u) > 0$  としてよい。3 行目の等号成立は、 $s \to \hat{s}(\mathbf{z}, u) + iy$  と変数変換したことによる。4 行目の右辺の $B_k(\lambda)$  は、次数k のエッシャー関数と呼ばれるものである。エッシャー関数について詳しくは Jensen[1995]を参照。なお、補論 3 では  $0 \sim 9$  次のエッシャー関数の計算結果を示している。(31)式の 4 行目の等号成立は補論 4 を参照。

次に、 $E[L \mid \mathbf{Z} = \mathbf{z}] > u$  の場合の条件付分布関数の鞍点法による近似表現の導出を行う。 $E[L \mid \mathbf{Z} = \mathbf{z}] > u$  の場合は $\hat{s}(\mathbf{z}, u) < 0$  なので、(31)式 2 行目の等号は成立しない。 そこで、条件付分布関数の(14)式の方に鞍点法を適用する。上述の議論と同様に、(14)式の被積分関数の一部である  $a(s) = K_{L|\mathbf{z}}(s) - su$  を、条件付鞍点 $\hat{s}(\mathbf{z}, u)$  の回りでテイラー展開して得た(29)式を(14)式に再代入し、条件付損失分布関数の近似表現を導出する。 a(s) を $\hat{s}(\mathbf{z}, u)$  の回りで 2 次までテイラー展開した関数を(14)式に代入すると、

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) \approx 1 + \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{e^{\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))(s-\hat{s}(\mathbf{z}, u))^{2}}}{s} ds \quad (c < 0)$$
 (32)

となる。

さらに、(32)式の計算を進めると、

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) \approx 1 + \frac{\exp(K_{L\mid\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}K_{L\mid\mathbf{z}}^{(H)}(\hat{s}(\mathbf{z}, u))y^{2}}}{\hat{s}(\mathbf{z}, u) + iy} dy$$

$$= 1 - \frac{\exp(K_{L\mid\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{\hat{s}(\mathbf{z}, u)\sqrt{K_{L\mid\mathbf{z}}^{(H)}(\hat{s}(\mathbf{z}, u))}} B_{0}\left(-\hat{s}(\mathbf{z}, u)\sqrt{K_{L\mid\mathbf{z}}^{(H)}(\hat{s}(\mathbf{z}, u))}\right)$$
(33)

となる。(33)式 1 行目は(32)式の積分区間に現れる c < 0 を  $c = \hat{s}(\mathbf{z}, u) < 0$  とし、  $s \to \hat{s}(\mathbf{z}, u) + iy$  と変数変換した。2 行目の等号成立は、(31)式 4 行目の等号成立と同様の方法により証明される。詳しくは補論 4 を参照。

以上をまとめると、与信ポートフォリオ損失額の条件付分布関数  $P(L>u \mid \mathbf{Z}=\mathbf{z})$ は、以下の条件付鞍点を用いた近似表現を持つことがわかる。

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) \approx \begin{cases} \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{\lambda(\mathbf{z}, u)} B_0(\lambda(\mathbf{z}, u)) & \cdots (E[L \mid \mathbf{Z} = \mathbf{z}] < u) \\ \frac{1/2}{1 - \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, u)) - \hat{s}(\mathbf{z}, u)u)}{\lambda(\mathbf{z}, u)} B_0(-\lambda(\mathbf{z}, u)) \cdots (E[L \mid \mathbf{Z} = \mathbf{z}] > u) \end{cases}$$

$$= \mathbf{z} = \mathbf{C}, \quad \lambda(\mathbf{z}, u) := \hat{s}(\mathbf{z}, u) \sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))}$$

$$(34)$$

(34)式の右辺をまとめて $Q(\mathbf{z},u)$  と置くと、与信ポートフォリオの損失額の VaR  $q_{\alpha}$  と信頼水準 $\alpha$  の間に次の近似関係式が成立する。

$$1 - \alpha = E[Q(\mathbf{z}, q_{\alpha})] \tag{35}$$

以上より条件付鞍点を用いた VaR の近似表現が導出された。(35)式は、与信ポートフォリオ損失額がある額を上回る確率を計算するためには、最後に共通ファクターに関して期待値をとる必要があることを示している。その方法としては、モンテカルロ積分と数値積分の 2 つの方法が考えられる。前者は、共通ファクターのシナリオをモンテカルロ法によってサンプリングし、与信ポートフォリオ損失額がある額を上回る条件付確率を共通ファクターの確率密度関数を用いてリオ損失額がある額を上回る条件付確率を共通ファクターの確率密度関数を用いて

積分する方法である。さらに、数値積分の具体的な手法として、台形則、ガウス数値積分、変数変換型数値積分などがある(詳細は、森・室田・杉原[1993]を参照)。いずれの積分手法においても、計算の過程をまとめると以下のようになる。

#### 損失額を1つ定める

共通ファクターを1つサンプリングする

で定めた額と でサンプリングした共通ファクターに対応する条件付鞍点を (27)式を用いて求める

で定めた額と で求めた条件付鞍点を(34)式に代入することにより、 の額を与信ポートフォリオの損失額が上回る条件付確率の近似値を算出するサンプリングされた共通ファクターに応じて ~ を繰り返し、それぞれの条件確率の近似値を共通ファクターの起こりやすさに応じて加重平均((35)式の期待値計算に相当)すると、 で定めた額をポートフォリオ損失額が上回る確率が求まる

次節の VaR の数値検証では、 の共通ファクターに関して期待値をとる方法として、ガウス数値積分の一種であるガウス = エルミート積分<sup>12</sup>を採用することにより、計算負荷を低減する工夫を行っている。

上記の過程では、条件付鞍点の回りのテイラー展開では 2 次までの近似を用いたが、高次の展開を用いても同様に VaR の近似表現を得ることができる。展開の次数に応じて、複数の近似表現が得られるため、5 節の近似精度の検証では、これらを CSP[i] (i=0,1,2,3)として比較している。詳細は補論 5 に記した。なお、Gordy[2002]や Anaaert et al.[2006] 、Martin and Ordovás[2006]では、Lugannani-Rice 公式 Service 安点法を用いて、本稿とは異なる近似表現を導出し、数値検証を行っている。

13 Lugannani-Rice 公式は、  $P(L > u \mid \mathbf{Z} = \mathbf{z}) = \Phi(-w) + \phi(w) \left\{ \frac{1}{\hat{s}(\mathbf{z}, u) \sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}, u))}} - \frac{1}{w} \right\}$ 

と表される公式である。ここで、 $w=\sqrt{2\mid \hat{s}(\mathbf{z},u)u-K_{L\mid\mathbf{z}}(\hat{s}(\mathbf{z},u))\mid}$  である。

<sup>12</sup> ガウス=エルミート積分の概要については、補論6参照。

## (3)無条件鞍点法による VaR の近似表現

ここでは、共通ファクター Z によらない VaR の表現(21)式に鞍点法を適用して近似表現を導出する。

まず、(21)式の被積分関数の一部  $K_L(s)-sq_a$  の鞍点は、 $K_L(\cdot)$  の 1 階の導関数  $K_L^{(\cdot)}(\cdot)$  を用いると、

$$q_{\alpha} = K_L^{()}(\hat{s}(q_{\alpha})), \, \hat{s}(q_{\alpha}) \in \mathbf{R}.$$
(36)

を満たす点 $s=\hat{s}(q_\alpha)$ となる。この点は、条件 $\mathbf{Z}=\mathbf{z}$  によらず、損失額 $q_\alpha$  にのみ依存して定まるものであることから、本稿ではこれを無条件鞍点と呼ぶ。無条件鞍点  $s=\hat{s}(q_\alpha)$  の符号についても、条件付鞍点の符号 ((28)式)と同様に、以下のように場合分けができる。

$$\hat{s}(q_{\alpha}) > 0 \Leftrightarrow E[L] < q_{\alpha}$$

$$\hat{s}(q_{\alpha}) = 0 \Leftrightarrow E[L] = q_{\alpha}$$

$$\hat{s}(q_{\alpha}) < 0 \Leftrightarrow E[L] > q_{\alpha}$$
(37)

次に、 $K_L(s)-sq_\alpha$ を無条件鞍点のまわりでテイラー展開し、これを(21)式に代入して、(37)式で示された無条件鞍点 $s=\hat{s}(q_\alpha)$ の符号に気をつけて計算すると、

$$1-\alpha = \begin{cases} \frac{\exp(K_L(\hat{s}(q_\alpha)) - \hat{s}(q_\alpha)q_\alpha)}{\lambda(q_\alpha)} B_0(\lambda(q_\alpha)) \cdots (E[L] < q_\alpha) \\ \frac{1}{2} \cdots (E[L] = q_\alpha) \\ 1 - \frac{\exp(K_L(\hat{s}(q_\alpha)) - \hat{s}(q_\alpha)q_\alpha)}{\lambda(q_\alpha)} B_0(-\lambda(q_\alpha)) \cdots (E[L] > q_\alpha), \end{cases}$$

$$\Xi = C \lambda(q_\alpha) := \hat{s}(q_\alpha) \sqrt{K_L^{(\cdot)}(\hat{s}(q_\alpha))}$$
(38)

を得る。(38)式は、その右辺に損失額 $q_{\alpha}$ と(無条件)キュムラント母関数から計算される無条件鞍点を代入することにより、ポートフォリオ損失額が $q_{\alpha}$ を上回る確率  $1-\alpha$  が計算できることを意味している。

#### (4)分割型条件付鞍点法による VaR の近似表現

冒頭の1節で述べたように条件付鞍点法による VaR および損失分布の近似精度の 検証では、大半の与信ポートフォリオに対して近似精度が良好であることが確認さ れたが、与信集中度が高いポートフォリオに対しては、近似精度が大きく悪化した。

そこで、元の与信ポートフォリオを、少数の大口与信先から構成されるポートフォリオとそれ以外の多数の与信先からなるポートフォリオに分割し、前者のポートフォリオに属する全ての債務者の状態(デフォルトまたは生存)を表すツリーの枝ごとに、後者のポートフォリオについて共通ファクターを所与とした損失分布を考える。与信ポートフォリオを分割して VaR を計測するという考え方は、肥後[2006]においてモンテカルロ法の計算負荷を軽減する目的で提案されている<sup>14</sup>。本稿では、条件付鞍点法による VaR の解析的な評価の精度を向上させるために、ポートフォリオの分割手法を用いる。

以下では、与信ポートフォリオの債務者を与信額の降順の並びで 1 からインデックスを付け、債務者1,...,N ( $1 \le N < M$ ) からなる『大口ポートフォリオ』と債務者N+1,...,M からなる『小口ポートフォリオ』に分割する。大口ポートフォリオの債務者の生存・デフォルトの状態の全ての組合せを $s_k$  ( $k=1,...,2^N$ ) とし $^{15}$ 、各状態 $s_k$  に相当する大口ポートフォリオの損失額を $loss_k$  ( $k=1,...,2^N$ ) とする。また、小口ポートフォリオの損失額の合計をL' とおく。

このとき、Z=zの条件の下で、元の与信ポートフォリオの条件付損失分布関数は以下のように表せる。

数を大口先の数まで減少させ、計算15 大口信務者ポートスナリオは N 2

<sup>&</sup>lt;sup>14</sup> 肥後[2006]では、元の与信ポートフォリオを、無限分散ポートフォリオに近いと想定される与信額が極めて微小な債務者からなるサブ・ポートフォリオと与信額が大きめの不均一なポートフォリオに分割することにより、モンテカルロ・シミュレーションで発生させる固有ファクターの数を大口先の数まで減少させ、計算負荷の低減を図っている。

 $<sup>^{15}</sup>$  大口債務者ポートフォリオはN 社からなり、各債務者がとりうる状態の数はデフォルトか生存の $^2$  つであるため、各債務者の状態の全ての組合せの数は $^2$  となる。

$$P(L > u \mid \mathbf{Z} = \mathbf{z}) = \sum_{k=1}^{2^{N}} P(s_k \mid \mathbf{Z} = \mathbf{z}) P(L' > u - loss_k \mid \mathbf{Z} = \mathbf{z})$$
(39)

(39)式のu を信頼水準 $\alpha$  の VaR  $q_{\alpha}$  とすると、

$$1 - \alpha = E[P(L > q_{\alpha} \mid \mathbf{Z} = \mathbf{z})] = \sum_{k=1}^{2^{N}} E[P(s_{k} \mid \mathbf{Z} = \mathbf{z})P(L' > q_{\alpha} - loss_{k} \mid \mathbf{Z} = \mathbf{z})]$$

$$(40)$$

となる。

上式の $P(L'>q_\alpha-loss_k\mid \mathbf{Z}=\mathbf{z})$  は、前節(1)の条件付損失分布関数の表現(12)、(14)式と小口ポートフォリオの損失額 $q_\alpha-loss_k$  に対する $\mathbf{Z}=\mathbf{z}$  の時の条件付鞍点  $\overline{s}(\mathbf{z},q_\alpha-loss_k)\equiv \overline{s}_k(\mathbf{z})$  ( $\overline{s}_k(\mathbf{z})$  は $K_{L'|\mathbf{z}}^{(I)}(\overline{s}_k(\mathbf{z}))=q_\alpha-loss_k$  を満たす鞍点)を用いて以下のように表現できる。

$$P(L' > q_{\alpha} - loss_{k} \mid \mathbf{Z} = \mathbf{z}) = \begin{cases} \frac{1}{2\pi i} \int_{\bar{s}_{k}(\mathbf{z}) + i\infty}^{\bar{s}_{k}(\mathbf{z}) + i\infty} \frac{\exp(K_{L'|\mathbf{z}}(s) - s(q_{\alpha} - loss_{k}))}{s} ds \\ \cdots (E[L'|\mathbf{Z} = \mathbf{z}] < q_{\alpha} - loss_{k} \Leftrightarrow \bar{s}_{k}(\mathbf{z}) > 0) \end{cases}$$

$$P(L' > q_{\alpha} - loss_{k} \mid \mathbf{Z} = \mathbf{z}) = \begin{cases} \frac{1}{2} & \cdots (E[L'|\mathbf{Z} = \mathbf{z}] = q_{\alpha} - loss_{k} \Leftrightarrow \bar{s}_{k}(\mathbf{z}) = 0) \\ 1 + \frac{1}{2\pi i} \int_{\bar{s}_{k}(\mathbf{z}) + i\infty}^{\bar{s}_{k}(\mathbf{z}) + i\infty} \frac{\exp(K_{L'|\mathbf{z}}(s) - s(q_{\alpha} - loss_{k}))}{s} ds \\ \cdots (E[L'|\mathbf{Z} = \mathbf{z}] > q_{\alpha} - loss_{k} \ge 0 \Leftrightarrow \bar{s}_{k}(\mathbf{z}) < 0) \end{cases}$$

$$1 - \cdots (q_{\alpha} - loss_{k} < 0)$$

(41)式に本節(2)で説明した条件付鞍点法を適用し、近似表現を求めると以下のようになる。

$$P(L'>q_{\alpha}-loss_{k} \mid \mathbf{Z}=\mathbf{z}) \approx \begin{cases} \frac{\exp(K_{L'|\mathbf{z}}(\sigma_{k}(\mathbf{z}))-\sigma_{k}(\mathbf{z})(q_{\alpha}-loss_{k}))}{\lambda_{k}(\mathbf{z})} B_{0}(\lambda_{k}(\mathbf{z})) \\ \cdots(E[L'\mid \mathbf{Z}=\mathbf{z}] < q_{\alpha}-loss_{k} \Leftrightarrow \overline{s}_{k}(\mathbf{z}) > 0) \end{cases}$$

$$\frac{1}{2} \qquad \cdots(E[L'\mid \mathbf{Z}=\mathbf{z}] = q_{\alpha}-loss_{k} \Leftrightarrow \overline{s}_{k}(\mathbf{z}) = 0)$$

$$1 - \frac{\exp(K_{L'|\mathbf{z}}(\sigma_{k}(\mathbf{z}))-\sigma_{k}(\mathbf{z})(q_{\alpha}-loss_{k}))}{\lambda_{k}(\mathbf{z})} B_{0}(-\lambda_{k}(\mathbf{z}))$$

$$\cdots(E[L'\mid \mathbf{Z}=\mathbf{z}] > q_{\alpha}-loss_{k} \geq 0 \Leftrightarrow \overline{s}_{k}(\mathbf{z}) < 0)$$

$$1 \qquad \cdots(q_{\alpha}-loss_{k} < 0)$$

$$1 \qquad \cdots(q_{\alpha}-loss_{k} < 0)$$

$$1 \qquad \cdots(q_{\alpha}-loss_{k} < 0)$$

上式右辺を $Q_L(\mathbf{z},q_\alpha-loss_k)$  と表すと、信頼水準 $\alpha$  と Var  $q_\alpha$  の近似関係式は、(40) 式を用いて次のようになる。

$$1 - \alpha = \sum_{k=1}^{2^{N}} E[P(s_k \mid \mathbf{Z} = \mathbf{z})Q_{L'}(\mathbf{z}, q_\alpha - loss_k)]$$

$$(43)$$

なお、N が大きくなると状態  $s_k$  の数が急増するため計算負荷が大きくなる。したがって、近似精度の改善と計算負荷のトレード・オフを勘案する必要がある。

# 5. VaR および損失分布全体の近似精度の検証

本節では、1 ファクター・マートン・モデルに条件付鞍点法を適用して求めた VaR と損失分布の近似精度の検証を行う。まず、精度検証に用いるサンプル・ポートフォリオを説明する。次に、モンテカルロ法により計測された信頼水準 99.9%の VaR と、

条件付鞍点法、 無条件鞍点法、 Wilde[2001]、Gordy[2003]による『グラニュラリティ調整』の3手法により計測された VaR の乖離率を調べることにより各手法の近似精度をみる。ここでは、試行回数を十分多くとったモンテカルロ法の結果を真の損失分布、真の VaR とみなしている。また、損失分布の分位点である VaR のみならず、分布全体についても近似精度を確認している。

# (1)精度検証方法、サンプル・ポートフォリオ

まず近似精度の検証方法とサンプル・ポートフォリオの設定について説明する。

使用リスク・モデル:1ファクター・マートン・モデル

VaR の信頼水準:99.9%

VaR 計測法: モンテカルロ法 (シミュレーション回数は 100 万回)

条件付鞍点法

無条件鞍点法

グラニュラリティ調整法

#### 備考

- 条件付鞍点法 (conditional saddlepoint method) による VaR をテイラー展開の次数に応じて CSP[0]、CSP[1]、CSP[2]、CSP[3]と表記する。CSP[0] ~ CSP[3]の具体的な表現は補論 5 を参照。
- 無条件鞍点法(unconditional saddlepoint method)による VaR を USP[0]と表す。
- グラニュラリティ調整法は、各債務者へのエクスポージャーが十分に分散化された無限の債務者からなる『無限分散ポートフォリオ』の損失分布である『極限損失分布』にある調整をほどこすことで、リスク属性が不均一で有限の債務者から構成される現実のポートフォリオの損失分布を近似する手法で

ある。詳しくは安藤[2005]を参照。

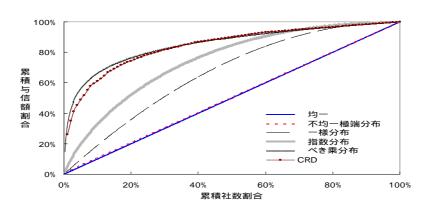
● 条件付鞍点法における共通ファクターの期待値計算((36)式の期待値計算)の 方法は、ガウス=エルミート積分による数値積分を利用している。ガウス= エルミート積分の概要は補論7を参照。

サンプル・ポートフォリオとしては、表1の5つの与信額分布を取り上げた。累積 社数と累積与信額の関係をプロットすると図1のようになる。

最大大口先与信 債務者 与信額 $e_i$ 額(全体=100) 数M $e_i = 1/M \quad (j = 1,...,M)$ 均一分布 1000 0.10  $e_1 = 10/M$ ,  $e_j = 1/M$  (j = 2,...,M)不均一極端分布 1000 0.99  $e_i = j/M \ (j = 1,...,M)$ 一様分布 1000 0.20  $e_j = -\frac{1}{2}\log(1 + 0.001 - j/M) \ (j = 1,...,M)$ 指数分布 ( $\lambda = 1$ ) 500 1.38  $e_j = 1/(1-5\times10^{-5} - (j-1)/M)^{\alpha} \ (j=1,...,M)$ べき乗分布( $\alpha=1$ ) 15.00 500

表1.与信額分布表





注)不均一極端分布は、大口先が一先のみであるため、均一分布 のグラフと殆ど重なっている。

上図の CRD は、全国中小企業の財務データ等を収集したデータベースから、34万社の借入金残高を抽出したものである $^{16}$ 。図 1 からは、CRD の借入金分布がべき

\_

<sup>&</sup>lt;sup>16</sup> 詳細は日本銀行[2006]の Box8 を参照。

乗分布と近いことがわかる。肥後[2006]は、日本銀行金融機構局が保有する各金融機関の与信額データから同様なグラフを作成しているが、やはりべき乗分布に近いと推測される分布形を得ている。なお、企業規模や家計の所得分布がべき乗分布に従うことは、Zipf の法則や Pareto の法則として古くから知られている。

表 1 の 指数分布と べき乗分布を頻度分布で表してみると、べき乗分布では最 も小口の先が指数分布以上に突出して多い一方、極端に与信額が大きい先がごくわ ずかながら存在していることがわかる<sup>17</sup>。

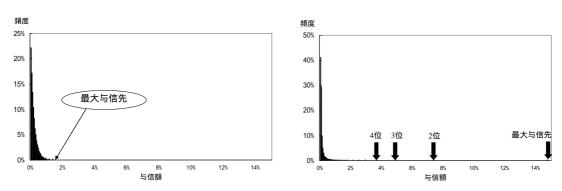


図2.指数分布とべき乗分布

注)総額100%に対し刻み幅0.05%ごとに頻度をヒストグラムで表示している。

集中度の大きさを測る一般的な指標として、シェアの 2 乗和として定義されるハーフィンダール指数が知られている。ハーフィンダール指数が大きな値をとるほど、そのポートフォリオは与信集中度が高いといえる(なお、与信大口集中の分析において、ハーフィンダール指数の逆数は有効分散社数と呼ばれている)。サンプル・ポートフォリオ ~ のハーフィンダール指数と有効分散社数を示すと表 2 のようになる。

おり、現実のポートフォリオと比べて大口先を強調しすぎている面がある。

<sup>&</sup>lt;sup>17</sup> 現実の金融機関の与信額分布はべき乗分布に近い形状となっていることを本文中で指摘したが、分布の右端(大口先)ではべき乗分布が示すほど巨大な大口先が存在するわけではない。これは、べき乗分布に近い形状を示す自然界での頻度分布でもしばしば観察される特徴である。サンプル・ポートフォリオ の与信額分布では、大口先部分もべき乗分布にしたがうよう設定して

表 2. 与信集中度

|         | ハーフィンダール指数 | 有効分散社数 | 債務者数 <i>M</i> |
|---------|------------|--------|---------------|
| 均一分布    | 0.0010     | 1000   | 1000          |
| 不均一極端分布 | 0.0011     | 926    | 1000          |
| 一樣分布    | 0.0013     | 750    | 1000          |
| 指数分布    | 0.0040     | 251    | 500           |
| べき乗分布   | 0.0357     | 28     | 500           |

次に、各サンプル・ポートフォリオの債務者について、デフォルト率 $p_j$ と資産相関 $\rho_j$ を表3のように与えた。デフォルトの定義により信用リスクモデルにおけるデフォルト率の水準は大きく変化する。このため幅を持って設定している。また、資産相関の適正な水準も与信ポートフォリオの特性やデフォルト率の水準によって変わりうるため、複数の値を検証している。その設定においては、Chernih et al. [2006]の実証研究を参考にした。なお、すべての債務者j について共通のデフォルト率p と資産相関p を仮定している。これは、サンプル・ポートフォリオが与信額分布の相違やデフォルト率、資産相関の相違で既に多様になっており、分析の焦点をこれ以上増やさないためである。

表3.パラメータ組合せ

| 資産相関           |          | デフォルト率   |         |
|----------------|----------|----------|---------|
|                | i) 0.05% | ii) 0.5% | iii) 5% |
| a) 0.01        | a-i      | a-ii     | a-iii   |
| b) 0.05        | b-i      | b-ii     | b-iii   |
| c) 0.1         | c-i      | c-ii     | c-iii   |
| <i>d</i> ) 0.2 | d- $i$   | d-ii     | d-iii   |

#### (2) VaR の近似精度

VaR の近似精度を乖離率として表  $4\sim8$  に示した $^{18}$ 。ここで、乖離率は、(近似 VaR

 $^{18}$  解析評価法を用いることによる VaR 計測の高速化について簡単に触れておく。与信額分布が均一な c-iii のサンプル・ポートフォリオの信頼水準 99.9%の VaR の計測時間は、CSP[0]を 1 とすると、モンテカルロ・シミュレーションは 107.6 となった。なお、当該サンプル・ポートフォリオ

- モンテカルロ VaR ) ÷ (モンテカルロ VaR) × 100 % と定義している。

#### ■ 均一分布

表4は、与信額が均一なポートフォリオの乖離率を示している。CPS[i]の列に示した条件付鞍点法の乖離率は、概ね3%以内に収まっているが、無限分散ポートフォリオを前提としたグラニュラリティ調整法に比べるとやや大きくなっている。これは、均一分布という特性下ではグラニュラリティ調整法の近似精度が高いことを示している。しかし、低デフォルト率 - 低相関という組合せ (a-i) では、グラニュラリティ調整法の精度が極端に悪化する一方で、条件付鞍点法は小幅の悪化に止まっている。

また、条件付鞍点法の近似次数を上げると精度が改善する傾向にあるが、その程度は然程大きいわけではなく、まれに悪化するケースもあることが判明した。この点は他のサンプルポートフォリオでも同様であり、条件付鞍点法では低次の近似で十分なことを示している。

このほか、無条件鞍点法 UPS[0]は精度の水準が悪いだけでなく、安定性にも難点があることが確認された。いずれのサンプルポートフォリオでも同様であったため、以下、無条件鞍点法については言及しない。

#### ■ 不均一極端分布

表 5 では、条件付鞍点法、グラニュラリティ調整法ともに、大口先が1つ入るだけで低デフォルト率 - 低相関 (*a-i*、*b-i*) の近似精度が急激に悪化することが確認された。大口先の存在が、低デフォルト率の場合に VaR の近似精度を悪化させる理由については、損失分布全体の近似状況を検証する次の小節で考察する。なお、*a-i*、*b-i* を除くと条件付鞍点法の精度の高さと安定性は引き続き保たれている。また、グラニュラリティ調整法についても、*a-i*、*b-i*、*c-i* を除くと同様であった。

で起こりうる全ての損失額について、CSP[0]でその分布関数を計算するのに要した時間は35.5である。

#### ■ 一様分布

一様分布では、大口先も小口先も一様な割合で存在するため、集中度が高くなる (図1、表2参照)。それにもかかわらず、条件付鞍点法は低デフォルト率 - 低相関 を含む全ての組み合わせで、近似精度が高く、より安定的になっている(表6)。これは、大口先がべき乗分布のように離散的でなく、ある程度連続的に存在すること に関連していると考えられる(この点は後述する)。これに対し、グラニュラリティ調整法は低デフォルト率 - 低相関のほか、中デフォルト率 - 低相関(a-ii)で近似 精度が悪くなっている。

#### ■ 指数分布

サンプルポートフォリオでは一様分布より更に集中度が高まるよう指数分布の次数 ( $\lambda=1$ )を設定している (表 1·2、図 2)。表 7 からは、一様分布に比べると、低デフォルト率のケース (a-i ~ d-i) で、条件付鞍点法、グラニュラリティ調整法ともに精度が幾分悪化していることが確認される。条件付鞍点法は、その他の組み合わせでは引き続き高い精度を維持しているが、グラニュラリティ調整法は、低相関 (a-i ~ a-iii) で精度が悪くなる傾向が強まっている。

#### ■ べき乗分布

規模が突出して大きい与信先が不連続的に存在しているサンプルポートフォリオでは、低デフォルト率 (*a-i* ~ *d-i*) の精度が大きく悪化している (表 8)。その程度は、グラニュラリティ調整より条件付鞍点法のほうが大きい。ただし、低デフォルト率以外のケースでは、こうした極端な分布でも条件付鞍点法の精度は 1% 前後と高い水準を維持している。

もっとも、こうした精度の高さは、たまたま信頼水準 99.9%で実現したに過ぎないことが、損失分布全体の近似精度検証で判明する。

以上をまとめると、条件付鞍点法による VaR の近似は、べき乗分布を除くポート フォリオで近似精度が良好であることが確認された。無条件鞍点法やグラニュラリ ティ調整法といった他のモデルと比較しても、条件付鞍点法は、大半のサンプル・ポ ートフォリオで良い近似精度を示した。ただし、低デフォルト率・低相関の場合には、 精度が大きく悪化する傾向がみられている。。

表 4. VaR 乖離率: 均一分布

(%)

|       |        |        |        |        |        | ( /0 )     |
|-------|--------|--------|--------|--------|--------|------------|
|       | CSP[0] | CSP[1] | CSP[2] | CSP[3] | USP[0] | グラニュラリティ調整 |
| a-i   | 4.45   | 3.71   | 3.55   | 3.58   | 4.51   | 50.10      |
| b-i   | -1.37  | -2.42  | -2.51  | -2.14  | 25.43  | 0.51       |
| c-i   | 0.44   | -0.55  | -0.58  | -0.54  | 91.32  | -0.19      |
| d-i   | -2.65  | -3.26  | -3.26  | -3.26  | 198.23 | -2.30      |
| a-ii  | 0.69   | 0.38   | 0.36   | 0.36   | 1.14   | 6.84       |
| b-ii  | 1.24   | 0.92   | 0.92   | 0.92   | 14.61  | 1.15       |
| c-ii  | -0.13  | -0.34  | -0.35  | -0.35  | 32.63  | 0.05       |
| d-ii  | -2.51  | -2.62  | -2.62  | -2.62  | 53.09  | 0.51       |
| a-iii | -0.04  | -0.11  | -0.11  | -0.11  | 0.36   | 0.40       |
| b-iii | 0.20   | 0.16   | 0.15   | 0.15   | 2.29   | 0.33       |
| c-iii | 0.74   | 0.72   | 0.72   | 0.72   | 5.89   | 1.87       |
| d-iii | -1.72  | -1.73  | -1.73  | -1.73  | 2.57   | 0.87       |

注)CSP[i]はi次のテイラー展開による条件付鞍点法、USP[0]は無条件鞍点法によるVaRの近似を示す。以下の表も同じ。

表 5. VaR 乖離率: 不均一極端分布

(%)

|        | CSP[0] | CSP[1] | CSP[2] | CSP[3] | USP[0] | グラニュラリティ調整 |
|--------|--------|--------|--------|--------|--------|------------|
| a-i    | 91.45  | 93.12  | 86.41  | 85.62  | 91.69  | 60.75      |
| b- $i$ | 18.02  | 18.23  | 14.55  | 14.13  | 22.39  | -10.55     |
| c-i    | 2.52   | 1.46   | -0.26  | -0.90  | 76.34  | -8.08      |
| d-i    | -0.01  | -1.73  | -1.67  | -2.04  | 201.65 | -0.91      |
| a-ii   | 1.60   | 1.63   | 0.98   | 1.10   | 1.39   | -1.62      |
| b-ii   | 0.71   | 0.06   | -0.03  | -0.11  | 12.87  | -0.60      |
| c-ii   | 1.44   | 0.96   | 0.96   | 0.91   | 34.20  | 1.29       |
| d-ii   | -1.27  | -1.49  | -1.49  | -1.50  | 54.60  | 1.55       |
| a-iii  | 0.73   | 0.62   | 0.60   | 0.59   | 0.77   | 0.90       |
| b-iii  | 0.75   | 0.67   | 0.67   | 0.66   | 2.77   | 0.81       |
| c-iii  | -1.45  | -1.49  | -1.49  | -1.49  | 3.69   | -0.46      |
| d-iii  | -2.23  | -2.24  | -2.24  | -2.24  | 1.96   | 0.24       |

表 6. VaR 乖離率:一樣分布

(%)

|        | CSP[0] | CSP[1] | CSP[2] | CSP[3] | USP[0] | グラニュラリティ調整 |
|--------|--------|--------|--------|--------|--------|------------|
| a-i    | 0.67   | -0.17  | -0.42  | -0.39  | 0.84   | 50.13      |
| b- $i$ | 1.49   | 0.26   | 0.14   | 0.17   | 25.86  | 3.15       |
| c-i    | 2.06   | 1.24   | 1.19   | 1.20   | 88.62  | 0.81       |
| d-i    | -0.24  | -1.07  | -1.08  | -1.08  | 199.58 | -0.65      |
| a-ii   | 0.39   | 0.01   | -0.02  | -0.02  | 0.73   | 8.64       |
| b-ii   | 0.83   | 0.55   | 0.54   | 0.54   | 13.36  | 0.66       |
| c-ii   | 0.09   | -0.19  | -0.20  | -0.20  | 31.98  | -0.03      |
| d-ii   | -2.70  | -2.86  | -2.86  | -2.86  | 51.27  | -0.44      |
| a-iii  | 0.16   | 0.07   | 0.07   | 0.07   | 0.42   | 0.85       |
| b-iii  | -0.09  | -0.15  | -0.15  | -0.15  | 1.84   | -0.07      |
| c-iii  | -0.92  | -0.95  | -0.95  | -0.95  | 2.61   | -0.17      |
| d-iii  | -2.65  | -2.66  | -2.66  | -2.66  | 1.23   | -0.45      |

表 7. VaR 乖離率:指数分布

(%)

|        |        |        |        |        |        | (70)       |
|--------|--------|--------|--------|--------|--------|------------|
|        | CSP[0] | CSP[1] | CSP[2] | CSP[3] | USP[0] | グラニュラリティ調整 |
| a-i    | 1.95   | 0.87   | -0.36  | -0.09  | 2.63   | 64.65      |
| b- $i$ | -2.41  | -3.79  | -4.78  | -4.59  | 3.30   | -6.72      |
| c-i    | 4.10   | 2.02   | 1.09   | 2.43   | 58.67  | -5.15      |
| d-i    | 2.22   | -0.11  | -0.58  | 1.03   | 169.39 | -2.58      |
| a-ii   | 0.58   | -0.06  | -0.35  | -0.32  | 0.96   | 21.42      |
| b-ii   | 1.12   | 0.15   | 0.03   | 0.03   | 8.38   | -0.30      |
| c-ii   | 1.05   | 0.15   | 0.11   | 0.10   | 27.81  | -0.29      |
| d-ii   | -1.04  | -1.58  | -1.60  | -1.60  | 47.36  | -1.30      |
| a-iii  | -0.07  | -0.26  | -0.29  | -0.29  | 0.22   | 3.52       |
| b-iii  | 0.49   | 0.30   | 0.29   | 0.29   | 2.02   | 0.41       |
| c-iii  | -0.34  | -0.46  | -0.46  | -0.46  | 1.17   | -0.41      |
| d-iii  | -0.20  | -0.23  | -0.23  | -0.23  | 2.15   | 0.50       |

表 8. VaR 乖離率:べき乗分布

(%)

|       | CSP[0] | CSP[1] | CSP[2] | CSP[3] | USP[0] | グラニュラリティ調整 |
|-------|--------|--------|--------|--------|--------|------------|
| a-i   | 37.83  | 39.44  | 34.16  | 33.44  | 38.06  | 126.65     |
| b-i   | 37.23  | 38.88  | 33.42  | 32.98  | 38.42  | 12.15      |
| c-i   | 36.69  | 38.16  | 32.71  | 32.37  | 94.15  | -12.17     |
| d-i   | 36.03  | 37.21  | 31.95  | 31.30  | 44.37  | -21.62     |
| a-ii  | -1.39  | 0.52   | 0.81   | 3.44   | -1.47  | 41.27      |
| b-ii  | -1.31  | 0.46   | 0.80   | 2.83   | -1.67  | -19.64     |
| c-ii  | -0.86  | 0.65   | 0.92   | 2.22   | -1.37  | -25.98     |
| d-ii  | 0.71   | 1.57   | 1.31   | 1.88   | 9.43   | -17.97     |
| a-iii | -0.08  | 0.40   | 0.60   | 0.52   | 0.03   | 35.09      |
| b-iii | -0.75  | -0.08  | -0.02  | 0.10   | -0.21  | -1.55      |
| c-iii | -0.10  | 0.64   | 0.56   | 0.74   | 0.99   | -1.92      |
| d-iii | -0.38  | 0.43   | 0.36   | 0.53   | 0.74   | -0.40      |

#### (3)条件付鞍点法の分布全体の近似精度

ここまでは、99.9%の信頼水準 1 点に対応する VaR について近似精度をみてきたが、解析評価法の計算速度の速さを活かして損失分布全体の精度を検証することも容易にできる。また、その分布形状を検証することは、与信額の分布型やデフォルト率の高低によって VaR の近似精度が異なる理由を考察するうえで重要な情報を提供する。

検証には条件付鞍点法の CSP[0]を用い、各サンプルポートフォリオについて、資産相関を 0.05 とし、デフォルト率については 0.05% と 0.5% の 2 通りを想定した (表 3 の b-i、b-ii に相当 )。

#### ■ 均一分布

図3 は均一分布について、モンテカルロ法と条件付鞍点法で求めた損失分布を各々表示している。横軸は、損失額を総与信額 100% に対する割合で表示している。また、縦軸は、分布関数の値 P(L>u) を常用対数に変換して表示している。すなわち、信

頼水準 90%が縦軸目盛の 1 に、99%が 2 に、99.9%が 3 に相当する。例えば 99.9%の場合、 $-\log_{10}(1-0.999)=3$  となる。なお、損失分布の信頼水準 50%の点は、縦軸の 0.30 にあたる。また、信頼水準 80、70、60% は、各々0.70、0.52、0.40 にあたり、損失分布の右端のみならず中央部にかけての近似精度についても、縦軸  $0 \sim 1$  に相当する部分で大まかに観察できる。

まず、デフォルト率 0.5%のケースを図 3(1)でみると、損失分布全体において近似精度が良好であることがわかる。表 4 の乖離率は両グラフの横軸方向の乖離を比率で示したものであり、b-ii のケースで確認された 99.9% VaR の高い近似精度は、99%や 90% といった他の信頼水準でも保たれていることがわかる。

一方、デフォルト率が 0.05%の場合には、真の損失分布とみなしているモンテカルロ法による損失分布が階段状になっていることがみてとれる(図 3(2))。これは、債務者数が 1,000 程度の少なさで、かつデフォルト率が低いと、損失が稀にしか生じないため、損失分布も不連続的になることを意味している。例えば、縦軸の 0.3 (P(L>u) 50% を表す点)では損失額はゼロとなっている。これは、約 50%の確率でデフォルトの発生件数が 0 となることを意味している。損失分布の信頼水準を上げていくと 1 件目のデフォルトが観察されるようになり、信頼水準 90%では 2 件目と階段状に増加していく。均一分布であるため、損失額の増加分も等額となっている。デフォルト率を高める、もしくは債務者数を増加させると損失分布関数の階段が密となり、図 3(1)の 0.5%のケースのように滑らかな分布関数となる19。

デフォルト率 0.05%の場合、条件付鞍点法による損失分布近似は滑らかな関数となっており、かつ、モンテカル口法による階段状の損失分布の中央を通っていることがわかる。債務者数が少なくデフォルト率が低いような与信ポートフォリオのモンテカル口法では損失分布が不連続となり、VaR の信頼水準の設定の僅かな差でVaR の値が大きく異なってくることがあり得る。近似関数を用いると、こうした不

32

-

<sup>19</sup> 階段関数はポートフォリオの性質に起因するものであり、モンテカルロ法のシミュレーション回数を増やしても滑らかにはならない。シミュレーション回数は、信頼水準のどの位置で x 件目のデフォルトが含まれるようになるか、その正確さに関連している。

自然さを回避することができる。

図 3(1). 損失分布関数 (与信分布:均一、資産相関 0.05、デフォルト率 0.5%)

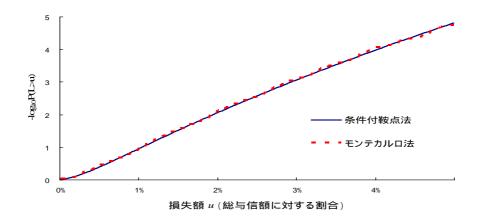
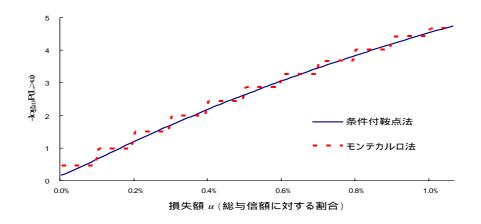


図 3(2). 損失分布関数 (与信分布:均一、資産相関 0.05、デフォルト率 0.05%)



### ■ 不均一極端分布

デフォルト率 0.5%のケースでは、モンテカルロ法による損失分布をほぼ正確に近似している(図 4(1))。一方、デフォルト率が低いケースでは、信頼水準 99.9%までは損失額を過大に評価する傾向があることがわかる(図 4(2))。90%のような然程高くない信頼水準においては大口先の損失の寄与は本来小さい(もしくは寄与はゼロ<sup>20</sup>)にもかかわらず、条件付鞍点法では、大口先のデフォルトの寄与を相応に反映さ

\_

<sup>&</sup>lt;sup>20</sup> 仮に信頼水準 90%相当の損失額が 0.2% (与信総額対比)で、大口先の与信構成比が 0.2%より 大きい場合、同損失額を考えるときの大口先の寄与はゼロでなければならない。

せてしまうことによるものと考えられる。特に、1 先のみ存在する大口先のデフォルト率が 0.05%のように非常に低い場合には、条件付鞍点法は大口先の寄与を必要以上に反映させてしまうものと考えられる。信頼水準を高くとる、すなわち高額の損失発生を考える場合、大口先の損失寄与は増大するため、条件付鞍点法とモンテカル口法による損失分布が概ね一致するようになる<sup>21</sup>。

デフォルト率が低くとも大口先が数多く存在する場合は、それほど高くない信頼 水準であっても、大口先のいずれかがデフォルトする可能性が高くなるため、上記 の近似誤差は小さくなると考えられる。この点は、次の一様分布で確認される。

図 4(1). 損失分布関数 (与信分布:不均一極端、資産相関 0.05、デフォルト率 0.5%)

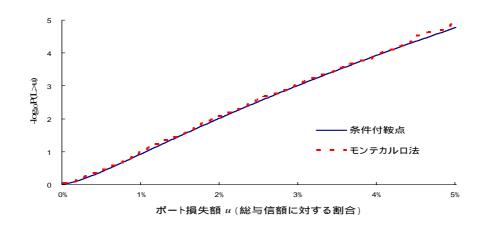
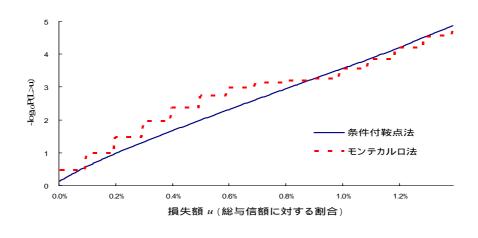


図 4(2). 損失分布関数 (与信分布: 不均一極端、資産相関 0.05、デフォルト率 0.05%)



<sup>21</sup> 損失分布が階段状となっているのは前述の均一分布と同じ理由によるものである。

### ■ 一様分布

デフォルト率 0.5%の近似精度は損失分布の中央部 (縦軸 0.5 近辺)を除いて良好である。また、0.05%の場合でも大口先が数多く存在するため、不均一極端分布で問題となった損失額の過大評価がかなり解消している(図 5)。ただし、信頼水準 90%に近づくと大きな乖離が観察されるようになる。

図 5(1). 損失分布関数 (与信分布:一様、資産相関 0.05、デフォルト率 0.5%)

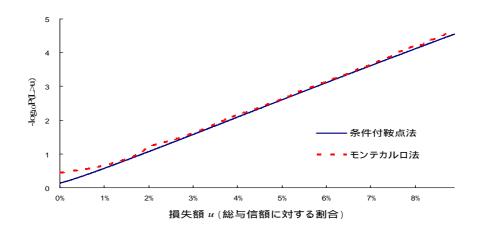
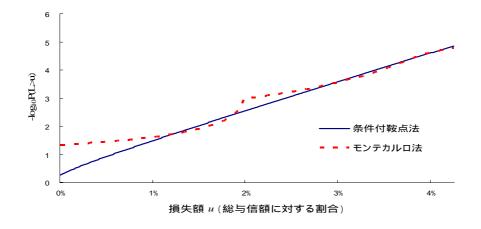


図 5(2). 損失分布関数 (与信分布:一様、資産相関 0.05、デフォルト率 0.05%)



### ■ 指数分布

一様分布に比べて、最大大口先の与信額が大きく、かつ大口先の数がより少なくなっている(図 1、表 2)。デフォルト率 0.5%のケースでは、損失分布全体に乖離はほとんどみられない。一方、0.05%のケースでは、信頼水準が低いとやはり多少過大評価する傾向がうかがわれている。

図 6(1). 損失分布関数 (与信分布:指数、資産相関 0.05、デフォルト率 0.5%)

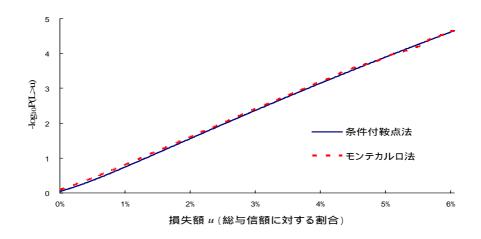
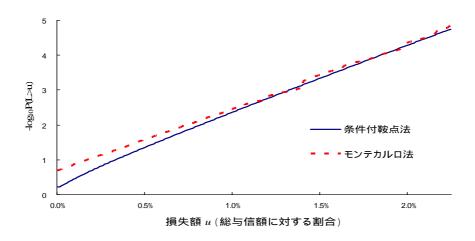


図 6(2). 損失分布関数 (与信分布:指数、資産相関 0.05、デフォルト率 0.05%)



### ■ べき乗分布

ごく少数の先の与信額が極端に大きくかつ離散的に分布しているべき乗分布(図2)では、モンテカルロ法の損失分布が 0.5%のデフォルト率でも歪な形状となっていることが確認される(図7)。デフォルト率が 0.05%のケースでは、モンテカルロ法の損失分布関数がより歪になる分、条件付鞍点法との乖離が更に拡大している。図7(1)・(2)の点線のいずれにおいても、原点近くから出ている最初のカーブでは、大口先の寄与が無いため滑らかな形状となっているが、信頼水準が上がるにつれ、損失額が不連続的に上昇するポイントが現れる。この不連続的な損失額上昇は、信頼水準が高くなるにつれ繰り返し現れている。

これは、大口先の与信額が離散的に分布している場合、高い損失額を実現する債務者のデフォルトの組み合わせが部分的に存在しなくなることに起因している。この点は、図7(1)を通常の確率密度関数として表示することで確認できる(図8)。図7(1)の分布関数の平らな部分では、急激に損失額が上昇している。確率密度関数は、この箇所でほぼゼロ近くまでいったん減少しているが、損失額がさらに高い部分をみると再び小さいピークが繰り返し(あるいは重なり合って)現れている。このように、ある損失額の範囲は債務者のデフォルトをどのように組み合わせても実現しにくくなることがあり、その結果、確率密度関数としてみた損失分布は右裾に小さいピークを複数持つことになる。

このような損失分布では、信頼水準のわずかな相違が VaR の不連続的な変化をもたらすことがありうる。与信額分布の大口先の離散度合が高い場合は、VaR 計測値の信頼水準に対する不安定性を、損失分布全体を描くことによって事前に確認しておくことが必要になると考えられる。

デフォルト率 0.05%の場合、モンテカルロ法の損失分布がさらに歪になる分、乖離率は拡大している。逆にデフォルト率が高いケースではこの乖離率は縮小すると考えられる。また、債務者数が増加することによっても、大口先の寄与が比較的低い信頼水準で現れだすこと、大口先与信額の離散度合が徐々に密になってくることから、両者の乖離は縮小すると考えられる。しかし、これらの改善の程度は分布が

連続的な指数分布などに比べて小さいと予想される。

図 7(1). 損失分布関数 (与信分布:べき乗、資産相関 0.05、デフォルト率 0.5%)

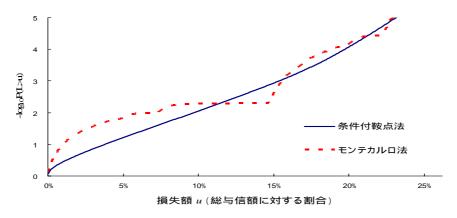


図 7(2). 損失分布関数 (与信分布:べき乗、資産相関 0.05、デフォルト率 0.05%)

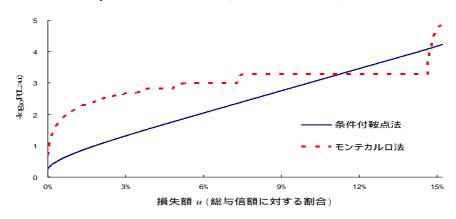
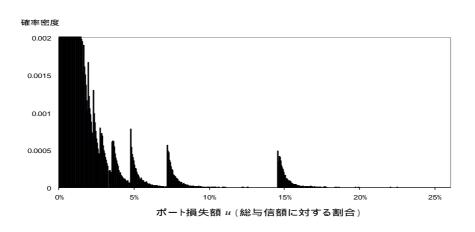


図8.損失額の確率密度関数(図7(1)の損失分布の新表現)



注)右裾野分布を拡大表示するため、縦軸の確率密度は0.002を最大値とした。

### (4)分割型条件付鞍点法による VaR と分布全体の近似

大口集中度が高い与信ポートフォリオでは与信額の分布が離散的になるため、損失額の確率密度関数に複数のピークが現れうる。このような分布は、少数の大口先の組み合わせで作成した損失額の離散分布と、大口先を除くポートフォリオに生じる損失の単峰分布という2つ分布の混合分布によって表現することができる<sup>22</sup>。

そこで、4 節(4)で説明した分割型条件付鞍点法を前述のべき乗分布に適用して、その近似精度を検証した。パラメータの組み合わせは、モンテカルロ法による損失分布がより歪な形状となった図 7(2) (b-i: 資産相関 0.05、デフォルト率 0.05%)を選択した。分割型条件付鞍点法の適用のためのポートフォリオ分割の方法は次のとおりとする。

最大大口先とその他の債務者

与信額上位2先とその他の債務者

与信額上位3先とその他の債務者

与信額上位4先とその他の債務者

分割型条件付鞍点法によって計算した信頼水準 99.9%の VaR とモンテカルロ法による VaR との乖離率を以下に示した。あわせて、大口先を取り除いた後のポートフォリオの与信集中度をみるために、ハーフィンダール指数と有効分散社数を示している。

表 9. 分割型条件付鞍点法の近似精度

|           | 乖離率(%) | ハーフィンダール指数 | 有効分散社数 |
|-----------|--------|------------|--------|
| 元のポートフォリオ | 37.23  | 0.0357     | 28     |
| 分割法       | -21.60 | 0.0192     | 52     |
| 分割法       | 0.00   | 0.0140     | 71     |
| 分割法       | 0.00   | 0.0115     | 87     |
| 分割法       | 0.00   | 0.0099     | 101    |

<sup>22</sup> ファクター型信用リスクモデルでは、共通ファクターを所与とすると各債務者のデフォルト事象が独立に発生するので、複数の分布の混合分布として表すことが可能となる。

39

与信額上位 2 先を分割すると乖離率が急にゼロとなった。その理由は、損失分布全体の近似精度を検証することで判明する。図 9 は、モンテカルロ法と条件付鞍点法(図 7(2)の再掲)の損失分布に分割法 ~ による分布を加えたものである。大口先数を増やすにつれ、モンテカルロ法の損失分布に混合分布が近づいていることが確認される。上記の乖離率ゼロは、偶々99.9%の分位点で実現されたものであり、その前後では誤差が若干残存していることがわかる。また、分位点 99%では依然大きい誤差が残っている。ただし、パラメータ組み合わせ b-i のような近似が難しい条件でない、あるいは債務者数がもっと多いポートフォリオであれば、誤差はかなり縮小してくる。

総じてみれば、分割型条件付鞍点法は、大口集中度が高く、かつ離散的に大口先が分布しているようなポートフォリオについて、損失分布や VaR の良い近似値を与えると評価できる。

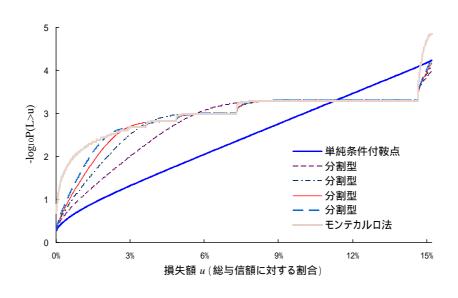


図9. 分割型条件付鞍点法による損失分布の近似

## 6.まとめと今後の研究課題

本研究では、条件付鞍点法による VaR の近似表現を導出し、その近似精度の検証を行った。 VaR の近似精度の比較検証の結果、 グラニュラリティ調整法や無条件鞍点法より条付鞍点法が優れていること、 比較的低次の条件付鞍点法で高い精度が得られること、 一部の大口先へ与信の集中がみられるような場合、 VaR の信頼水準の設定次第で VaR 計測値が不連続的に大きく変わりうること、 このとき、真の損失分布は歪な形状となっており、条件付鞍点法ではこうした分布の近似が困難になることがわかった。特に、 の現象は既存の研究では指摘されてこなかった点であり、99%や 99.9%といったある一つの信頼水準で VaR を計測することの危険性を示唆している。また、 の問題に対しては、ポートフォリオを大口上位とその他に分割して、前者にはツリー法、後者には条件付鞍点法の組み合わせで対応した「分割型条件付鞍点法」を用いると、単純な条件付鞍点法による VaR の近似と比べて、近似精度が大幅に改善することが確認された。

本稿では、一般的なファクター型信用リスクモデルの枠組みで、条件付鞍点法による VaR の近似表現を導出した。菊池[2007]では、同手法を応用し、個別与信先の寄与度を求めることで大口集中リスクを計測したり、デフォルト率の変化に対する VaR の感応度分析を行っている。

なお、本稿の数値検証では 1 ファクター・マートン・モデルを用いたが、他のより一般的なファクター型信用リスクモデルにおける検証は、今後の課題として残されている。また、本稿のデフォルト時損失率は確定的であると仮定したが、Giese[2006]は、デフォルト率とデフォルト時損失率に相関があるケースを想定し、無条件鞍点法による VaR の近似表現の導出とその精度の検証を行っている。これを条件付鞍点法に拡張した研究も今後の発展方向として挙げられるだろう。

## 補論1.ファクター型信用リスクモデルの例

ここでは、ファクター型信用リスクモデルの例として、スチューデントのtモデル、正規逆ガウシアン・モデル、ランダム・ファクター・ローディング・モデルの解説を行う。

## (1) スチューデントの *t* モデル

スチューデントの t モデルは Andersen et al.[2003]、Schloegl and O'Kane [2005]等の既存研究がある。このモデルは、共通ファクターと固有ファクターが標準正規分布に従い、それぞれのファクター・ローディングが標準正規分布に従う共通の確率変数W の関数として表されているのが特徴である。債務者j の企業価値 $X_j$  は、具体的に以下のように表される(下記では、共通ファクター $\mathbf Z$  の成分数が $\mathbf 1$  つであるモデルを示している)。

$$X_{j} = \sqrt{\frac{v}{W}\rho_{j}}Z + \sqrt{\frac{v}{W}(1-\rho_{j})}\varepsilon_{j}. \tag{A-1}$$

ここで、Z、 $\varepsilon_j$  は標準正規分布に従い、 $\rho_j$  は定数パラメータ、W はZ, $\varepsilon_j$  (j=1,...,M) と独立な自由度v (v>2)の $\chi^2$ 分布に従う確率変数である。(A-1)式から、 $X_j$  は自由度vのスチューデントのt分布に従う。これより、

$$p_{j} = P(X_{j} < C_{j}) = t_{v}(C_{j}),$$
 (A-2)

が成り立つ。ここで、 $t_v(\cdot)$ は、自由度vのスチューデントのt分布の分布関数を表す。 また、(Z,W)=(z,w)を条件とする債務者jの条件付デフォルト率 $p_j(z,w)$ は、

$$p_{j}(z, w) = \Phi\left(\frac{\sqrt{\frac{w}{v}}C_{j} - \sqrt{\rho_{j}}z}{\sqrt{1 - \rho_{j}}}\right) = \Phi\left(\frac{\sqrt{\frac{w}{v}}t_{v}^{-1}(p_{j}) - \sqrt{\rho_{j}}z}{\sqrt{1 - \rho_{j}}}\right), \quad (A-3)$$

となる。

### (2)正規逆ガウシアン・モデル

正規逆ガウシアン・モデルは、信用リスクの分野では主にシンセティック CDO の

プライシングモデルの文脈で論じられてきた(例えば、Kalemanova, Schmid and Werner[2007]等)。正規逆ガウシアン分布は再帰性を有し、計算上扱いやすいという特徴がある。債務者jの企業価値 $X_j$ は、確定的なファクター・ローディング $\rho_j$ を用いて以下のように表される。

$$\begin{split} X_{j} &= \sqrt{\rho_{j}}Z + \sqrt{1-\rho_{j}}\varepsilon_{j} \\ Z &\sim NIG\left(\alpha,\beta,-\frac{\alpha\beta}{\sqrt{\alpha^{2}-\beta^{2}}},\alpha\right) \\ \varepsilon_{j} &\sim NIG\left(\frac{\sqrt{1-\rho}}{\sqrt{\rho}}\alpha,\frac{\sqrt{1-\rho}}{\sqrt{\rho}}\beta,-\frac{\sqrt{1-\rho}}{\sqrt{\rho}}\frac{\alpha\beta}{\sqrt{\alpha^{2}-\beta^{2}}},\frac{\alpha}{\sqrt{\rho}}\right) \end{split} \tag{A-4}$$

ここで、 $X \sim NIG(\alpha, \beta, \mu, \delta)$  とは、

$$X \mid Y = y \sim N(\mu + \beta y, y)$$
 
$$Y \sim IG(\delta\sqrt{\alpha^2 - \beta^2}, \alpha^2 - \beta^2) \ (0 \le |\beta| < \alpha, \delta > 0)$$
 ここで、 $N(\mu + \beta y, y)$ は、平均 $\mu + \beta y$ 、分散 $y$ の正規分布 を表わし、 $IG(\delta\sqrt{\alpha^2 - \beta^2}, \alpha^2 - \beta^2)$ は、パラメータ $\delta\sqrt{\alpha^2 - \beta^2}, \alpha^2 - \beta^2$  の逆ガウス分布を表わす。

このとき、X は正規逆ガウシアン分布に従うという。正規逆ガウシアン分布の再帰性の性質を用いると、

$$X_{j} \sim NIG\left(\frac{\alpha}{\sqrt{\rho}}, \frac{\beta}{\sqrt{\rho}}, -\frac{1}{\sqrt{\rho}} \frac{\alpha\beta}{\sqrt{\alpha^{2} - \beta^{2}}}, \frac{\alpha}{\sqrt{\rho}}\right)$$
 (A-5)

すなわち、 $X_i$ は正規逆ガウシアン分布に従う。これより、

$$p_j = P(X_j < C_j) = F_{1/\sqrt{\rho}}(C_j),$$
 (A-6)

が成り立つ。ここで、 $F_{_{1/\sqrt{
ho}}}(\cdot)$ は $X_{_{j}}$ が従う正規逆ガウシアン分布の分布関数を表し

ている。また、Z=z を条件とする債務者 j の条件付デフォルト率  $p_j(z)$  は、

$$p_{j}(z) = F_{\sqrt{1-\rho/\rho}} \left( \frac{C_{j} - \sqrt{\rho_{j}} z}{\sqrt{1-\rho_{j}}} \right) = F_{\sqrt{1-\rho/\rho}} \left( \frac{F_{1/\sqrt{\rho}}^{-1}(p_{j}) - \sqrt{\rho_{j}} z}{\sqrt{1-\rho_{j}}} \right). \tag{A-7}$$

ここで、
$$F_{\sqrt{1-\rho/\rho}}(\cdot)$$
は、 $NIG\left(\frac{\sqrt{1-\rho}\alpha}{\sqrt{\rho}}, \frac{\sqrt{1-\rho}\beta}{\sqrt{\rho}}, -\frac{\sqrt{1-\rho}}{\sqrt{\rho}}, \frac{\alpha\beta}{\sqrt{\alpha^2-\beta^2}}, \frac{\sqrt{1-\rho}\alpha}{\sqrt{\rho}}\right)$ の分布

関数である。このモデルは、正規逆ガウシアン分布の分布関数の逆関数を用いて閾値 $C_i$ を数値的に求めなければならないため、モデルの実装における難しさを伴う。

## (3) ランダム・ファクター・ローディング・モデル

ランダム・ファクター・ローディング・モデルは、正規逆ガウシアン・モデルと同様、シンセティック CDO のプライシングモデルの文脈での既存研究が多い (Andersen and Sidenius[2005]、Butschell *et al.*[2007])。当モデルは、ファクター・ローディングが共通ファクターと依存性を持つ。具体的には、債務者jの企業価値 $X_j$ は、具体的に以下のように表される。

$$X_{j} = m + (l \cdot 1_{Z \le e} + h \cdot 1_{Z \ge e})Z + v\varepsilon_{j}$$
(A-8)

ここで、Z、 $\varepsilon_i$  は標準正規分布に従い、l,h,e は定数パラメータ、m,v は

$$E[X_j] = 0, Var[X_j] = 1$$
 (A-9)

を満たすように定める。若干の計算を経ると、 $m, \nu$  は標準正規分布の確率密度関数  $\phi(\cdot)$  を用いて次のように定まる。

$$m = \phi(e)(l-h)$$

$$v = (1+m^2 - l^2(\Phi(e) - e\phi(e)) - h^2(e\phi(e) + 1 - \Phi(e)))^{1/2}$$
(A-10)

(A-8)式からわかるように、企業価値のファクター・ローディングの水準が共通ファクターの値に応じてレジーム・スイッチするのが、当モデルの特徴である。また、債務者jの (無条件) デフォルト率 $p_j$  は次のように計算される。

$$\begin{split} p_{j} &= P(X_{j} < C_{j}) = E \Bigg[ P \Bigg( \varepsilon_{j} < \frac{C_{j} - (l \cdot 1_{V < e} + h \cdot 1_{V \ge e})Z - m}{V} \mid Z = z \Bigg) \Bigg] \\ &= \int_{-\infty}^{e} \Phi \Bigg( \frac{C_{j} - l \cdot z - m}{V} \Bigg) f(z) dz + \int_{e}^{\infty} \Phi \Bigg( \frac{C_{j} - h \cdot z - m}{V} \Bigg) f(z) dz \\ &= \Phi_{2} \Bigg[ \frac{C_{j} - m}{\sqrt{V^{2} + l^{2}}}, C_{j}, \frac{l}{\sqrt{V^{2} + l^{2}}} \Bigg] + \Phi \Bigg( \frac{C_{j} - m}{\sqrt{V^{2} + h^{2}}} \Bigg) - \Phi_{2} \Bigg[ \frac{C_{j} - m}{\sqrt{V^{2} + h^{2}}}, C_{j}, \frac{h}{\sqrt{V^{2} + h^{2}}} \Bigg] \end{split}$$
(A-11)

ここで、 $\Phi_2(x,y,\rho)$  は、2 次元標準正規分布 $(x,y)\sim N_2(0,0,1,1,\rho)$  の分布関数を表している。また、(A-11)式の 3 行目の等号は、

$$\int_{-\infty}^{\infty} \Phi(ax+b)\phi(x)dx = \Phi\left(\frac{b}{\sqrt{1+a^2}}\right)$$

$$\int_{-\infty}^{c} \Phi(ax+b)\phi(x)dx = \Phi_2\left[\frac{b}{\sqrt{1+a^2}}, c, \frac{-a}{\sqrt{1+a^2}}\right]$$
(A-12)

という関係式を用いている。

さらに、Z=z を条件とする債務者 j の条件付デフォルト率  $p_j(z)$  は次のようになる。

$$p_{j}(z) = \begin{cases} \Phi\left(\frac{C_{j} - l \cdot z - m}{v}\right) & \dots & z < e \\ \Phi\left(\frac{C_{j} - h \cdot z - m}{v}\right) & \dots & z \ge e \end{cases}$$
(A-13)

補論 2 .  $G_{\mathbf{z}}(\alpha) := P(L \le \alpha \mid \mathbf{Z} = \mathbf{z})$  のラプラス変換が $M_{L\mid \mathbf{z}}(-s)/s$  となることの証明

本論 3 節で、条件付分布関数の積分表現(14)式の導出に、 $G_{\mathbf{z}}(\alpha)\coloneqq P(L\leq\alpha\mid\mathbf{Z}=\mathbf{z})$ のラプラス変換が $M_{L|\mathbf{z}}(-s)/s$  となる事実を用いた。本補論ではこの事実を証明する。

証明方法は、本論(11)式と同様である。次式が成立する。

$$M_{L|\mathbf{z}}(-s) = \int_{-\infty}^{\infty} f_{L|\mathbf{z}}(\alpha) e^{-s\alpha} d\alpha$$
 
$$= \int_{-\infty}^{\infty} \frac{dG_{\mathbf{z}}}{d\alpha} e^{-s\alpha} d\alpha = \left[ G_{\mathbf{z}}(\alpha) e^{-s\alpha} \right]_{-\infty}^{\infty} + s \int_{-\infty}^{\infty} G_{\mathbf{z}}(\alpha) e^{-s\alpha} d\alpha$$
 
$$= s \int_{-\infty}^{\infty} G_{\mathbf{z}}(\alpha) e^{-s\alpha} d\alpha \quad (ここで、slted) 生意の実数)$$

1 行目の等号成立はモーメント母関数の定義から、2 行目の最初の等号成立は $F_{\mathbf{z}}(\alpha)$ の定義から、2 行目 2 番目の等号成立は部分積分から説明される。3 行目の等号成立は、 $\alpha$  が十分小さいところでは $G_{\mathbf{z}}(\alpha)=0$  であるので、 $G_{\mathbf{z}}(\alpha)e^{-s\alpha}\to 0$   $(\alpha\to-\infty)$  が成り立つことと、s>0 から  $G_{\mathbf{z}}(\alpha)e^{-s\alpha}\to 0$   $(\alpha\to\infty)$  が成り立つことによる。

上で示した式変形から、 $G_{\mathbf{z}}(\alpha) \coloneqq P(L \le \alpha \mid \mathbf{Z} = \mathbf{z})$  のラプラス変換はM(-s)/s、すなわち、L $\{P(L \le \alpha \mid \mathbf{Z} = \mathbf{z})\} = M_{L|\mathbf{z}}(-s)/s$  となることが証明された。

## 補論3.エッシャー関数の計算方法

この補論では、本論4節(2)で導出した VaR の条件付鞍点法による近似表現で使用されている関数であるエッシャー関数の具体的な計算方法を示す。エッシャー関数についての詳細は Jensen[1995]を参照のこと。

エッシャー関数の定義は

$$B_k(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}s^2} \frac{(is)^k}{1 + is/\lambda} ds \quad \lambda > 0 ,$$

であるが、具体的に計算するためには次の補題が役に立つ。

補題 
$$B_k(\lambda) = (-1)^k \frac{d^k}{dx^k} \left( \lambda e^{\lambda^2/2 + \lambda x} \left( 1 - \Phi(\lambda + x) \right) \right) \Big|_{x=0}.$$

この補題を用いて、0~9次までのエッシャー関数を計算すると、以下のようになる。

$$B_0(\lambda) = \lambda \exp\left(\frac{\lambda^2}{2}\right) (1 - \Phi(\lambda)) \tag{A-14}$$

$$B_{1}(\lambda) = -\lambda (B_{0}(\lambda) - (2\pi)^{-1/2})$$
(A-15)

$$B_2(\lambda) = \lambda^2 (B_0(\lambda) - (2\pi)^{-1/2})$$
 (A-16)

$$B_3(\lambda) = -(\lambda^3 B_0(\lambda) - (\lambda^3 - \lambda)(2\pi)^{-1/2})$$
 (A-17)

$$B_4(\lambda) = \lambda^4 B_0(\lambda) - (\lambda^4 - \lambda^2)(2\pi)^{-1/2}$$
 (A-18)

$$B_5(\lambda) = -(\lambda^5 B_0(\lambda) - (\lambda^5 - \lambda^3 + 3\lambda)(2\pi)^{-1/2})$$
 (A-19)

$$B_6(\lambda) = \lambda^6 B_0(\lambda) - (\lambda^6 - \lambda^4 + 3\lambda^2)(2\pi)^{-1/2}$$
 (A-20)

$$B_7(\lambda) = -(\lambda^7 B_0(\lambda) - (\lambda^7 - \lambda^5 + 3\lambda^3 - 15\lambda)(2\pi)^{-1/2})$$
 (A-21)

$$B_8(\lambda) = \lambda^8 B_0(\lambda) - (\lambda^8 - \lambda^6 + 3\lambda^4 - 15\lambda^2)(2\pi)^{-1/2}$$
(A-22)

$$B_9(\lambda) = -(\lambda^9 B_0(\lambda) - (\lambda^9 - \lambda^7 + 3\lambda^5 - 15\lambda^3 - 105\lambda)(2\pi)^{-1/2})$$
 (A-23)

# 補論4.条件付分布関数(31)式の計算

この補論では(31)式の4行目の等号成立、すなわち、

$$\frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},u)) - \hat{s}(\mathbf{z},u)u)}{2\pi i} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))y^{2}}}{\hat{s}(\mathbf{z},u) + iy} dy$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},u)) - \hat{s}(\mathbf{z},u)u)}{\hat{s}(\mathbf{z},u)\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))}} B_{0}\left(\hat{s}(\mathbf{z},u)\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))}\right) \tag{A-24}$$

の証明を行う。

(A-24)式の左辺の積分変数を $s = \hat{s}(\mathbf{z}) + iy$ と置換し、計算を進めると、

$$\frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},u)) - \hat{s}(\mathbf{z},u)qu)}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))y^{2}}}{\hat{s}(\mathbf{z},u) + iy} dy$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},u)) - \hat{s}(\mathbf{z},u)qu)}{2\pi\hat{s}(\mathbf{z},u)} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))y^{2}}}{1 + iy/\hat{s}(\mathbf{z},u)} dy$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},u)) - \hat{s}(\mathbf{z},u)qu)}{2\pi\hat{s}(\mathbf{z},u)\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}V^{2}}}{1 + \frac{iv}{\sqrt{\hat{s}(\mathbf{z},u)}\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))}}} dv$$

$$= \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z})) - \hat{s}(\mathbf{z})q_{\alpha})}{\hat{s}(\mathbf{z})\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}))}} B_{0}(\hat{s}(\mathbf{z})\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z}))})$$
(A-25)

を得る。(A-25)式の式変形の 3 行目では、 $v=\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s}(\mathbf{z},u))}y$  という置換積分を行っている。また、4 行目の等号では、補論 3 で説明したエッシャー関数の定義である下式を利用した。

$$B_{k}(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}s^{2}} \frac{(is)^{k}}{1 + is/\lambda} ds \quad \lambda > 0$$
 (A-26)

# 補論 5 . 高次の展開を用いた条件付鞍点法による VaR の近似表現

この補論では、条件付鞍点法において、高次のテイラー展開を用いた場合の VaR の近似表現の導出を行う。

本論 4 では、(12)式の被積分関数の一部である  $\exp(K_{L|\mathbf{z}}(s)-su)$  に $u=q_{\alpha}$  を代入した  $\exp(K_{L|\mathbf{z}}(s)-sq_{\alpha})$  を条件付鞍点  $\hat{s}(\mathbf{z},q_{\alpha})$  のまわりでテイラー展開し積分した。ここでも同様の方法をとる。与信ポートフォリオの債務者数 M を使って  $\tilde{K}(s):=K_{L|\mathbf{z}}(s)/M$  と置き  $\hat{s}(\mathbf{z},q_{\alpha})=\exp(M\tilde{K}(s)-sq_{\alpha})$  を条件付鞍点  $\hat{s}$  (簡単のために以下では条件付鞍点  $\hat{s}(\mathbf{z},q_{\alpha})$  を $\hat{s}$  とかく)のまわりで展開する。展開方法は、以下に示すとおり債務者数 M の次数に関係する。

与信ポートフォリオの分布関数の表現(12)式に $u=q_{\alpha}$ を代入した式は、 $iy=(s-\hat{s})\sqrt{M\tilde{K}^{(II)}(\hat{s})}$ とおくと次のように計算可能である。

上記 3 行目の被積分関数は、 $1/\sqrt{M}$  の次数に関して項をまとめている。被積分関数の $1/\sqrt{M}$  に関するn 次以下の項をまとめた関数を $A^{(n)}(y)$  とおくと、 $A^{(0)}(y)$  ,

<sup>&</sup>lt;sup>23</sup> 均質なポートフォリオであれば $\widetilde{K}(s)$  は各与信の条件付損失分布のキュムラント  $\log(1-p(z)+p(z)e^{sel})$  を表す((13)式を参照)。

 $A^{(1)}(y)$ ,  $A^{(2)}(y)$ ,  $A^{(3)}(y)$  は以下の(A-28)~(A-31)式のようになる。

$$\alpha_r := \frac{K_{L|\mathbf{z}}^{(r)}(\hat{s})}{\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{s})}^r} = \widetilde{\alpha}_r M^{1-r/2}$$

ここで、 $K_{Llz}^{(r)}(\cdot)$ は、 $K_{Llz}(\cdot)$ のr階導関数を表している

$$A^{(0)}(y) = \frac{e^{-\frac{1}{2}y^2}}{\hat{s} + iy/\sqrt{M\tilde{K}^{(II)}(\hat{s})}} = \frac{e^{-\frac{1}{2}y^2}}{\hat{s} + iy/\sqrt{K_{L|z}^{(II)}(\hat{s})}}$$
(A-28)

$$A^{(1)}(y) = A^{(0)}(y) + A^{(0)}(y)\frac{\tilde{\alpha}_3(iy)^3}{6} \frac{1}{\sqrt{M}} = A^{(0)}(y) + A^{(0)}(y)\frac{\alpha_3(iy)^3}{6}$$
(A-29)

$$A^{(2)}(y) = A^{(1)}(y) + A^{(0)}(y) \left( \frac{\tilde{\alpha}_4(iy)^4}{24} + \frac{\tilde{\alpha}_3^2(iy)^6}{72} \right) \left( \frac{1}{\sqrt{M}} \right)^2$$

$$= A^{(1)}(y) + A^{(0)}(y) \left( \frac{\alpha_4(iy)^4}{24} + \frac{\alpha_3^2(iy)^6}{72} \right)$$
(A-30)

$$A^{(3)}(y) = A^{(2)}(y) + A^{(0)}(y) \left( \frac{\tilde{\alpha}_{5}(iy)^{5}}{120} + \frac{\tilde{\alpha}_{3}\tilde{\alpha}_{4}(iy)^{7}}{144} + \frac{\tilde{\alpha}_{3}^{3}(iy)^{9}}{1296} \right) \left( \frac{1}{\sqrt{M}} \right)^{3}$$

$$= A^{(2)}(y) + A^{(0)}(y) \left( \frac{\alpha_{5}(iy)^{5}}{120} + \frac{\alpha_{3}\alpha_{4}(iy)^{7}}{144} + \frac{\alpha_{3}^{3}(iy)^{9}}{1296} \right)$$
(A-31)

ここで、 $\alpha_3 \sim \alpha_5$ の計算には、条件付キュムラント母関数 $K_{L|z}(s)$ の 3、4、5 階の導関数である $K_{L|z}^{(III)}(\cdot)$ 、 $K_{L|z}^{(IV)}(\cdot)$ 、 $K_{L|z}^{(V)}(\cdot)$  を計算する必要がある。また、以下でみるように VaR の計算には、(A-28)式に現れる条件付キュムラント母関数の 2 階導関数 $K^{(II)}(\cdot)$  を計算する必要がある。 $K_{L|z}(s)$  の 2、3、4、5 階の導関数の具体的な計算方法は補論 6 を参照。

 $A^{(0)}(s,\mathbf{z}),A^{(1)}(s,\mathbf{z}),A^{(2)}(s,\mathbf{z}),A^{(3)}(s,\mathbf{z})$  から近似される信頼水準 $\alpha$  の  $\mathrm{VaR}$  を  $q_{\alpha}^{(0)}$ 、 $q_{\alpha}^{(1)}$ 、 $q_{\alpha}^{(2)}$ 、 $q_{\alpha}^{(3)}$  とし、 $A^{(0)}(s,\mathbf{z}),A^{(1)}(s,\mathbf{z}),A^{(2)}(s,\mathbf{z}),A^{(3)}(s,\mathbf{z})$  を(A-27)式に代入してこれらの近似表現を導出する。具体的には、 $A^{(0)}(s,\mathbf{z}),A^{(1)}(s,\mathbf{z}),A^{(2)}(s,\mathbf{z}),A^{(3)}(s,\mathbf{z})$  を(A-27)式に代入し、(A-26)式を用いて積分計算することにより近似表現を導出する( $\lambda(\mathbf{z},q_{\alpha})\coloneqq\hat{\mathbf{s}}(\mathbf{z},q_{\alpha})\sqrt{K_{L|\mathbf{z}}^{(II)}(\hat{\mathbf{s}}(\mathbf{z},q_{\alpha}))}$  とおいている)。以下では簡単のため、 $E[L|\mathbf{Z}=\mathbf{z}]< q_{\alpha}$  の時の表現のみを記す。

$$P(L > q_{\alpha}^{(0)} \mid \mathbf{Z} = \mathbf{z}) = \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, q_{\alpha}^{(0)})) - (\hat{s}(\mathbf{z}, q_{\alpha}^{(0)}))q_{\alpha}^{(0)})}{\lambda(\mathbf{z}, q_{\alpha}^{(0)})} B_{0}(\lambda(\mathbf{z}, q_{\alpha}^{(0)})) \equiv Q^{(0)}(\mathbf{z}, q_{\alpha}^{(0)})$$

$$P(L > q_{\alpha}^{(1)} \mid \mathbf{Z} = \mathbf{z}) = Q^{(0)}(\mathbf{z}, q_{\alpha}^{(1)}) + \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, q_{\alpha}^{(1)})) - (\hat{s}(\mathbf{z}, q_{\alpha}^{(1)}))q_{\alpha}^{(1)})}{6\lambda(\mathbf{z}, q_{\alpha})} \alpha_{3}B_{3}(\lambda(\mathbf{z}, q_{\alpha}^{(1)}))$$

$$\equiv Q^{(1)}(\mathbf{z}, q_{\alpha}^{(1)})$$

$$P(L > q_{\alpha}^{(2)} | \mathbf{Z} = \mathbf{z}) = Q^{(1)}(\mathbf{z}, q_{\alpha}^{(2)})$$

$$+\frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z},q_{\alpha}^{(2)})) - (\hat{s}(\mathbf{z},q_{\alpha}^{(2)}))q_{\alpha}^{(2)})}{\lambda(\mathbf{z},q_{\alpha})} \begin{bmatrix} \frac{\alpha_{4}}{24} B_{4}(\lambda(\mathbf{z},q_{\alpha}^{(2)})) \\ +\frac{\alpha_{3}^{2}}{72} B_{6}(\lambda(\mathbf{z},q_{\alpha}^{(2)})) \end{bmatrix} \equiv Q^{(2)}(\mathbf{z},q_{\alpha}^{(2)})$$

 $P(L > q_{\alpha}^{(3)} | \mathbf{Z} = \mathbf{z}) = Q^{(2)}(\mathbf{z}, q_{\alpha}^{(3)})$ 

$$\frac{1}{2} = Q^{(3)}(\mathbf{z}, q_{\alpha}^{(3)}) + \frac{\exp(K_{L|\mathbf{z}}(\hat{s}(\mathbf{z}, q_{\alpha}^{(3)})) - (\hat{s}(\mathbf{z}, q_{\alpha}^{(3)}))q_{\alpha}^{(3)})}{\lambda(\mathbf{z}, q_{\alpha})} + \frac{\alpha_{3}\alpha_{4}}{144} B_{7}(\lambda(\mathbf{z}, q_{\alpha}^{(3)})) \\
+ \frac{\alpha_{3}\alpha_{4}}{144} B_{7}(\lambda(\mathbf{z}, q_{\alpha}^{(3)})) \\
+ \frac{\alpha_{3}^{3}}{1296} B_{9}(\lambda(\mathbf{z}, q_{\alpha}^{(3)}))$$

ここで、条件付分布関数 $Q^{(0)}(\mathbf{z},q_{\alpha}),Q^{(1)}(\mathbf{z},q_{\alpha}),Q^{(2)}(\mathbf{z},q_{\alpha}),Q^{(3)}(\mathbf{z},q_{\alpha})$ を共通ファクターについて期待値をとると、

$$1 - \alpha = P(L > q_{\alpha}^{(1)}) = E[Q^{(0)}(\mathbf{z}, q_{\alpha}^{(1)})]$$
(A-32)

$$1 - \alpha = P(L > q_{\alpha}^{(1)}) = E[Q^{(1)}(\mathbf{z}, q_{\alpha}^{(1)})]$$
(A-33)

$$1 - \alpha = P(L > q_{\alpha}^{(2)}) = E[Q^{(2)}(\mathbf{z}, q_{\alpha}^{(2)})]$$
(A-34)

$$1 - \alpha = P(L > q_{\alpha}^{(3)}) = E[Q^{(3)}(\mathbf{z}, q_{\alpha}^{(3)})]$$
(A-35)

となり、(A-32)式~(A-35)式の近似表現を VaR の 0~3 次近似表現と呼ぶ。

本論 5 節では、VaR の i 次近似表現を CSP[i] ( i=0,1,2,3 ) とし、これらによる VaR の近似精度を検証している。

## 補論6.キュムラント母関数およびその導関数の計算式

本補論では、VaR、および、リスク寄与度の計算に必要な与信ポートフォリオの 損失分布のキュムラント母関数、および、その微分関数の計算方法を示す。

キュムラント母関数、および、その導関数を計算するために、以下の記号を用意 しておく。

$$\begin{split} A_{j}^{(0)}(\mathbf{z}) &= 1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}} \\ A_{j}^{(1)}(\mathbf{z}) &= p_{j}(\mathbf{z})e_{j}l_{j}e^{se_{j}l_{j}} \\ A_{j}^{(2)}(\mathbf{z}) &= p_{j}(\mathbf{z})(e_{j}l_{j})^{2}e^{se_{j}l_{j}} \\ A_{j}^{(3)}(\mathbf{z}) &= p_{j}(\mathbf{z})(e_{j}l_{j})^{3}e^{se_{j}l_{j}} \\ A_{j}^{(4)}(\mathbf{z}) &= p_{j}(\mathbf{z})(e_{j}l_{j})^{4}e^{se_{j}l_{j}} \\ A_{j}^{(5)}(\mathbf{z}) &= p_{j}(\mathbf{z})(e_{j}l_{j})^{5}e^{se_{j}l_{j}} \\ C(\mathbf{z}) &= \prod_{j=1}^{M} (1 - p_{j}(\mathbf{z}) + p_{j}(\mathbf{z})e^{se_{j}l_{j}}) \end{split}$$

上記の記号を用いると、キュムラント母関数、および、その微分関数は次のよう に書ける。

$$K_{L|\mathbf{z}}(s) = \log C(\mathbf{z}) = \sum_{j=1}^{M} \log(1 - p_j(\mathbf{z}) + p_j(\mathbf{z})e^{se_j l_j})$$
 (A-36)

$$K_{L|\mathbf{z}}^{(I)}(s) = \sum_{j=1}^{M} \frac{A_j^{(1)}(\mathbf{z})}{A_i^{(0)}(\mathbf{z})}$$
(A-37)

$$K_{L|z}^{(II)}(s) = \sum_{j=1}^{M} \left( \frac{A_j^{(2)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} - \left( \frac{A_j^{(1)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} \right)^2 \right)$$
(A-38)

$$K_{L|\mathbf{z}}^{(III)}(s) = \sum_{j=1}^{M} \left( \frac{A_j^{(3)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} - 3 \frac{A_j^{(2)}(\mathbf{z}) A_j^{(1)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})^2} + 2 \left( \frac{A_j^{(1)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} \right)^3 \right)$$
(A-39)

$$K_{L|\mathbf{z}}^{(IV)}(s) = \sum_{j=1}^{M} \begin{pmatrix} A_j^{(4)}(\mathbf{z}) - 4 \frac{A_j^{(3)}(\mathbf{z}) A_j^{(1)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})^2} + 12 \frac{A_j^{(2)}(\mathbf{z}) A_j^{(1)}(\mathbf{z})^2}{A_j^{(0)}(\mathbf{z})^3} \\ -3 \left( \frac{A_j^{(2)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} \right)^2 - 6 \left( \frac{A_j^{(1)}(\mathbf{z})}{A_j^{(0)}(\mathbf{z})} \right)^4 \end{pmatrix}$$
(A-40)

$$K_{L|\mathbf{z}}^{(V)}(s) = \sum_{j=1}^{M} \begin{pmatrix} A_{j}^{(5)}(\mathbf{z}) - 5\frac{A_{j}^{(4)}(\mathbf{z})A_{j}^{(1)}(\mathbf{z})}{A_{j}^{(0)}(\mathbf{z})^{2}} + 20\frac{A_{j}^{(3)}(\mathbf{z})A_{j}^{(1)}(\mathbf{z})^{2}}{A_{j}^{(0)}(\mathbf{z})^{3}} \\ -10\frac{A_{j}^{(3)}(\mathbf{z})A_{j}^{(2)}(\mathbf{z})}{A_{j}^{(0)}(\mathbf{z})^{2}} - 60\frac{A_{j}^{(2)}(\mathbf{z})A_{j}^{(1)}(\mathbf{z})^{3}}{A_{j}^{(0)}(\mathbf{z})^{4}} \\ +30\frac{A_{j}^{(2)}(\mathbf{z})^{2}A_{j}^{(1)}(\mathbf{z})}{A_{j}^{(0)}(\mathbf{z})^{3}} + 24\frac{A_{j}^{(1)}(\mathbf{z})^{5}}{A_{j}^{(0)}(\mathbf{z})^{5}} \end{pmatrix}$$
(A-41)

補論7.ガウス=エルミート積分の概説

ガウス = エルミート積分とは、

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{-x^2/2} dx \approx \sum_{i=1}^{N} w_i g(x_i)$$

という左辺の形式の積分を、適当な分点 $x_i$ と重み $w_i$ により右辺のように近似する公式である。N の大きさに応じて、分点と重みは数表の形で与えられる(インターネットサイト efunda < <a href="http://www.efunda.com">http://www.efunda.com</a> では、ガウス = エルミート積分の分点と重みをN の値に応じて算出できるシステムがある)。

1ファクター・マートン・モデルでは、共通ファクターが従う分布は標準正規分布であり、共通ファクターに関して期待値をとるときに上記式の左辺の形式の積分が登場する。そこで、本論 5 節の数値計算では、共通ファクターに関して期待値をとる操作を、ガウス=エルミート積分を使って上式の右辺のように計算している。

本論の数値計算では、N=21 として計算を行った。参考として、 N=21 の場合の分点  $x_i$  と重み  $w_i$  の数表を以下に掲載する。

| 分点       | 重み       |  |
|----------|----------|--|
| -5.55035 | 7.26E-08 |  |
| -4.77399 | 3.13E-06 |  |
| -4.122   | 5.02E-05 |  |
| -3.53197 | 0.000443 |  |
| -2.97999 | 0.00253  |  |
| -2.45355 | 0.010157 |  |
| -1.94496 | 0.030185 |  |
| -1.44893 | 0.068587 |  |
| -0.9615  | 0.121684 |  |
| -0.47945 | 0.17081  |  |
| 0        | 0.191103 |  |
| 0.479451 | 0.17081  |  |
| 0.9615   | 0.121684 |  |
| 1.448934 | 0.068587 |  |
| 1.944963 | 0.030185 |  |
| 2.453552 | 0.010157 |  |
| 2.979991 | 0.00253  |  |
| 3.531973 | 0.000443 |  |
| 4.121996 | 5.02E-05 |  |
| 4.773992 | 3.13E-06 |  |
| 5.550352 | 7.26E-08 |  |

# 参考文献

- Andersen, L., J. Sidenius and S. Basu, "All your Hedges in One Basket" *Risk*, **12**(11), 2003, pp. 67-72.
- Andersen, L. and J. Sidenius, "Extensions of the Gaussian copula" *Journal of Credit Risk*, **1**(1), 2005, pp. 29-70.
- Annaert, J., C. Batista, J. Lamoot and G. Lanine, "Don't Fall from the Saddle: the Importance of Higher Moments of Credit Loss Distributions," Ghent University, 2006, available at www.feb.ugent.be/fac/research/WP/Papers/wp\_06\_367.pdf.
- Butschell, X., J. Gregory and J-P. Laurent, "Beyond the Gaussian Copula: Stochastic and Local Correlation," *Journal of Credit Risk*, **1**(3), 2007, pp.31-62.
- Chernih, A., S. Vanduffel and L. Henrard., "Asset Correlations: A Literature Review and Analysis of the Impact of Dependent Loss Given Defaults," Katholieke University Leuven, 2006.
- Giese, G., "A saddle for complex credit portfolio models," *Risk*, **19**(7), 2006, pp. 84-89.
- Glasserman, P., "Tail Approximations for Portfolio Credit Risk," *Journal of Derivatives*, **12**(2), 2004, pp. 24-42.
- Glasserman, P. and J. Li, "Importance sampling for portfolio credit risk," *Management Science*, **51**, 2005, pp. 1643-1656.
- Gordy, M., "Saddlepoint Approximation of CreditRisk+," *Journal of Banking and Finance*, **26**(7), 2002.
- Gordy, M., "A risk-factor model foundation for ratings-based bank capital rules," *Journal of Financial Intermediation*, **12**(3), 2003, pp. 199-232.
- Gupton, G., C. Finger and M. Bhatia, "CreditMetrics Technical document," J. P. Morgan, New York, 1997, available at www.riskmetrics.com
- Huang, X., C. Oosterlee and M. Mesters, "Computation of VaR and VaR Contribution in the Vasicek Portfolio Credit Loss Model: a Comparative Study," Delft University of Technology, 2007, available at www.defaultrisk.com.
- Jensen, J., Saddlepoint Approximations, Oxford University Press, 1995.

- Kalemanova, A., B. Schmid and R. Werner, "The Normal Inverse Gaussian Distribution for Synthetic CDO pricing," *Journal of Derivatives*, **14**(3), 2007, pp. 80-93.
- Martin, R., K. Thompson and C. Browne, "Taking to the saddle," *Risk*, **14**(6), 2001, pp. 91-94.
- Martin, R. and R. Ordovás, "An indirect view form the saddle," *Risk*, **19**(10), 2006, pp. 94-99.
- Muromachi, Y., "A conditional independence approach for portfolio risk evaluation" *The Journal of Risk*, **7**(1), 2004, pp. 27-53.
- Schloegl, L. and D. O'Kane "A note on the large homogeneous portfolio approximation with the Student-t copula," *Finance and Stochastics*, **9**(4), 2005, pp. 577-584.
- Wilde, T., "Probing granularity," *Risk*, **14**(8), 2001, pp. 103-106.
- 有馬朗人、神部勉、『物理のための数学入門 複素関数論』、共立出版、1991年
- 安藤美孝、「与信ポートフォリオの信用リスクの解析的な評価法:損失極限分布 およびグラニュラリティ調整を軸に」、『金融研究』第 24 巻別冊第 1 号、日 本銀行金融研究所、39~120 頁、2005 年
- 江沢洋、『漸近解析』、岩波書店、1995年
- 菊池健太郎、「信用 VaR の個社分解とパラメータ感応度:条件付鞍点法による VaR 解析表現法の応用」、日本銀行金融研究所ディスカッションペーパーシ リーズ、2007 年、forthcoming
- 木村英紀、『Fourier-Laplace 解析』、岩波書店、1993年
- 日本銀行、「金融システムレポート」、2006年7月
- 肥後秀明、「不均一な与信ポートフォリオのリスク計量におけるモンテカルロ・シミュレーションの効率化」、日本銀行ワーキングペーパーシリーズ、06-J-18、2006 年
- 室町幸雄、「デフォルト相関を考慮したポートフォリオの信用リスク計測モデル」、京都大学大学院博士学位申請論文、2005年
- 森正武、室田一雄、杉原正顕、『数値計算の基礎』、岩波書店、1993年
- 与信ポートフォリオマネジメントに関する勉強会、「わが国の金融機関における 与信ポートフォリオマネジメントの現状と課題」、2007年(日本銀行ホーム

ページ <u>http://www.boj.or.jp</u>から入手可能)