IMES DISCUSSION PAPER SERIES

LIBORマーケット・モデルのインプリメンテーションについて

いしばまこうたろう
石山幸太郎

IMES
INSTITUTE FOR MONETARY AND ECONOMIC STUDIES
BANK OF JAPAN

日本銀行金融研究所
〒103-8660 日本橋郵便局私書箱 30 号
備考：日本銀行金融研究所ディスカッション・ペーパー・シリーズは、金融研究所スタッフおよび外部研究者による研究成果をとりまとめたもので、学界、研究機関等、関連する方々から幅広くコメントを頂戴することを意図してい る。ただし、論文の内容や意見は、執筆者個人に属し、日本銀行あるいは金融研究所の公式見解を示すものではない。
LIBOR マーケット・モデルのインプリメンテーションについて

いしまこータろう
石山幸太郎

要 旨

本稿では、近年研究が進められているイールド・カーブ・モデルである LIBOR マーケット・モデルのインプリメンテーション方法について、本邦金利派生商品データを用いた具体例を使って検討を行なうと共に、パラメータの推定事例を示す。また、最近の研究事例として、実際の市場で観測されるインフラド・ボラティリティのスマイルを、ジャンプ過程等を含む LIBOR マーケット・モデルで説明する先行研究も適宜紹介する。

キーワード：LIBOR マーケット・モデル、パラメータ推定、ボラティリティ・スマイル、フォワード中立化法

JEL classification: C15, E43, G13

*日本銀行金融研究所研究第 1 課(E-mail: koutarou.ishiyama@boj.or.jp)
目次

1. はじめに... 1
2. LIBOR マーケット・モデル ... 2
 (1) モデルの基本設定.. 3
 (2) 1 期間のフォワード LIBOR を用いるプライシング（キャプレットの場合） 5
 (3) 複数期間のフォワード LIBOR を同時に考える必要がある場合 ... 7
3. モンテカルロ法による複数期間のフォワード LIBOR の取扱い ... 8
 (1) LIBOR マーケット・モデルの離散化の手順 .. 8
 (2) モンテカルロ法によるフォワード LIBOR のバスの発生方法 .. 10
 (3) モンテカルロ法を用いたプライシング ... 12
 (4) モンテカルロ法の計算負荷削減のためのファクター数の削減方法 13
4. スワップ・マーケット・モデル ... 17
 (1) スワップ・マーケット・モデル.. 18
 (2) フォワード LIBOR ベースのスワップ価格の近似 ... 20
5. フォワード LIBOR の対数正規性に関する考察 ... 21
 (1) ヒストリカル・データの統計量 .. 21
 (2) 各 6M フォワード・レートの分布 .. 24
 (3) 前節までの結果の考察 .. 26
6. キャップ、スワップの価格等を用いたモデルのパラメータ推定 ... 27
 (1) キャップのボラティリティを用いるパラメータ推定方法 .. 27
 (2) スワップ・ボラティリティをも考慮するパラメータ推定方法 .. 29
 (3) パラメータ推定結果 .. 33
 (4) パラメータ推定結果の簡単な考察 .. 37
7. ボラティリティ・スマイルとそれに対応した LIBOR マーケット・モデルの拡張 38
 (1) ジャンプ過程の組合わせ（GLASSERMAN AND KOU[2000]のモデル） 39
 (2) CEV モデルの組合わせ（ANDERSEN AND ANDREASEN[2000]のモデル） 42
8. その他の研究成果 ... 43
9. まとめ ... 44

補論 確率測度の変換とフォワード中立法について ... 46
参考文献 ... 50
1. はじめに

LIBOR マーケット・モデルは、実際に市場で取引される LIBOR（London InterBank Offered Rate）を直接モデル化の対象とするイールド・カーブ・モデルで、BGM モデル（Brace, Gάtarek and Musiela[1997]）と呼ばれることもある。従来のイールド・カーブ・モデルの多くは、仮想的な瞬間スポット・レートや瞬間フォワード・レートをモデル化の対象としていたのに対し、LIBOR マーケット・モデルでは、実際に取引されている金利（フォワード LIBOR）をその対象にしている。

実際の市場で金利派生商品の価格算出に主に使用されているブラック・モデル（Black[1976]）は、ブラック・ショールズ・モデル（Black and Scholes[1973]）を先物価格に拡張したモデルであるが、ブラック・ショールズ・モデルと同様に、割引金利を一定と仮定しており、金利の期間構造の存在を指摘している。これに対し、LIBOR マーケット・モデルは、それ自身、ブラック・モデルのフレームワークを内包しているほか、金利の期間構造をモデル化している点で、より包括的なモデルであり、このため実務的に注目されている。また、モデル化の対象とする金利を 1 ヶ月 LIBOR、3 ヶ月 LIBOR などと自由に設定できるため、適用される金利が継続的に変更される（ロールされる）パキシング勘定のリスク管理のベースとなるモデルとしても馴染みやすいというメリットがある。

その一方で、LIBOR マーケット・モデルでは、確率測度のやや複雑な変換が必要であるため、モデルの実装には注意を要する。また、同モデルの問題点として、キャップとスワップションとの間でモデルの整合性が理論的に取れない点や、スマイルやスキューといった現実の市場で観測される現象をうまく説明できない点が挙げられる。

本稿では、実務家が実際に LIBOR マーケット・モデルを活用するために必要なる基本知識を極力平易に解説すると共に、パラメータの具体的な推定方法、およびそのパラメータ推定方法等を本邦の金利派生商品のデータに適用した事例

を示す。

なお、本稿の記述は、数学的な式展開の厳密性を追求するのではなく、むしろ直観的な理解を優先したものとなっている点を予めお断りしておきたい。この点、本稿では必要に応じて数学的な補足説明を脚注等で行なうことにするが、さらに興味のある読者は、本稿で紹介する原論文を直接参照することをお勧めする。

本稿の構成は以下のとおりである。まず2章で、LIBOR マーケット・モデルに関する基本的知識を説明し、3章で、モンテカルロ・シミュレーション手法の説明を通じて、2章の考え方の実装方法の解説を行う。続いて4章では、LIBOR マーケット・モデルをベースにスワップションのプライシングを行う近似式を示し、5章では、ベースとなる LIBOR マーケット・モデルが仮定するフォワード LIBOR の対数正規性が実際のデータで満たされているかどうかを本邦の金利データを用いて分析する。6章では、4章のスワップションの近似式を用いたパラメータ推定方法を説明し、実際の市場データを用いた推定結果を示す。実際の市場で観測されるインプライド・ボラティリティのスマイルやスキーを説明するために、7章では、LIBOR マーケット・モデルの拡張方法として2種類の手法を紹介する。8章では、その他の関連研究に簡単に触れ、最後に9章で、本稿のまとめを記す。

補論では、確率測度の変換と派生商品の価格付けに必要となるフォワード中立化法に関する解説を行なう。

2. LIBOR マーケット・モデル

まず、金利派生商品を扱う場合に、なぜイールド・カーブ・モデル（金利の期間構造モデル）が必要となるのかを簡単に説明しよう。

ある金利派生商品を扱っている場合、市場の厚みが十分でないことなどの理由により、当該商品の価格が市場から入手できないことが少なくない。このため、イールド・カーブ・モデルを用いて、市場で価格を見い出せる他の商品から得られる市場の様々な情報をイールド・カープ・モデルの各パラメータに集約し、そのモデルによって当該商品の価格を推定する（さらには顧客等に価格を提示する）ということが実務的に行われている。
また、リスク評価の対象となる期間が一般的に長いバンキング勘定のリスク計測を行う場合、資産・負債の金利更改（ロール）の影響を勘案したり、非線形な金利リスクを管理するためには、単純な分散共分散法による VaR 計測では不十分な点がある。このため、バンキング勘定のリスク計測には、イールド・カーブが時間と共にどのように変化するかを表すためのイールド・カーブ・モデルが必要となる。

このように、イールド・カーブ・モデルは金利派生商品を扱う場合に実務的には不可欠であるが、LIBOR マーケット・モデルが出現する前のイールド・カーブ・モデルの多くは、瞬間スポット・レートや瞬間フォワード・レートといった実際には取引されていない金利をモデル化の対象としていた。このため、実務家の間には、こうした仮想的な金利を対象とするイールド・カーブ・モデルは必ずしも市場と整合的ではないとの批判があった。

これに対し、1990 年台後半になって考案された LIBOR マーケット・モデルは、実際に取引されている金利（フォワード LIBOR）を直接モデル化の対象とするイールド・カーブ・モデルである。LIBOR マーケット・モデルは、それまでの仮想的金利を対象としたイールド・カーブ・モデルに比べて、市場との整合性や実務的な使い勝手のよさという観点で、イールド・カーブ・モデルを実際に活用する実務家の注目をここ数年集めている。

以下では、LIBOR マーケット・モデルの基本設定を説明した後、同モデルを用いた金利派生商品のプライシングの考え方の概要を整理する。まず、商品の設計上 1 期間のフォワード LIBOR でプライシングされるキャプレットを取上げ、キャプレット価格の解析解を示す。次に複数期間のフォワード LIBOR を同時に扱う必要がある場合を検討し、この場合には金利派生商品の解析解は一般的には存在せず、解を求めるためには数値計算手法の導入が必要であることを示す。

(1) モデルの基本設定

LIBOR ベースの変動金利取引で、次回支払金利が確定する日をレート・リセット日と呼び、将来のレート・リセット日 2 の集合を \(\{ T_i \mid i = 1, \ldots, M \} \) とする。各リセット日間の期間を \(\delta_i = T_{i+1} - T_i, (i = 1, \ldots, M) \) とする。将来支払われる未確定の

2 単純化のため、レート・リセット日と金利支払期間のスタート日は一致するとする。
変動金利をフォワード LIBOR と呼ぶこととし、i 番目のフォワード LIBOR の時刻 t における値を \(L_i(t) \) で表わす。変動金利が 6 ヶ月毎に見直される金利スワップ契約では、\(\delta_i = 0.5 \) 年で、\(L_i(t) \) はイールド・カーブから算出される 6 ヶ月毎のインプライド・フォワード・レートとなる。時刻が \(T_i \) になった時点で、期間 \(\delta_i \) に適用される変動金利 \(L_i(T_i) \) が確定し、時刻 \(T_{i+1} \) には、想定元本 1 に対して利息 \(\delta I_i(T_i) \) が支払われる。

満期が \(T_i \) の割引債の時刻 t での価格を \(D_i(t), (0 \leq t \leq T_i) \) とすると、フォワード LIBOR と割引債価格の関係には \(D_i(t) = (1 + \delta I_i(t))D_{i+1}(t) \) が成り立つ（図 1）ので、

\[
L_i(t) = \frac{D_i(t) - D_{i+1}(t)}{\delta_i D_{i+1}(t)}, \quad t \leq T_i
\]

(2-1)式を \(D_{i+1}(t) \) について解くと、

\[
D_{i+1}(t) = \frac{1}{1 + \delta I_i(t)} D_i(t)
\]

(2-2)となり、この関係を繰返し用いて、割引債価格をフォワード LIBOR で表わすと、

\[
D_{i+1}(t) = \frac{1}{1 + \delta I_i(t)} D_i(t)
\]

\[
= \frac{1}{1 + \delta I_i(t)} \times \frac{1}{1 + \delta_{i-1}D_{i-1}(t)} D_{i-1}(t)
\]

\[
= \vdots
\]

\[
= D_{m(t)}(t) \prod_{j=m(t)}^{i} \frac{1}{1 + \delta_j L_j(t)}
\]

(2-3)が得られる。ここで \(m(t) \) は、時刻 t の次に到来するレート・リセット日で、\(D_{m(t)}(t) \) は時刻 t から次回利払日迄の（通常利払間隔より期間の短い）割引債を表わす。
（2）1期間のフォワードLIBORを用いるプライシング（キャプレットの場合）

まず、商品の設計上1期間のフォワードLIBORで価格が定まるキャプレットを考える。

将来のフォワード・レート$L_t(t)$は、金利に関する不確実性を有する確率変数であるが、同じく金利に関する不確実性を持つ確率変数である割引債を基準に考えることにより、それらの不確実性が互いに打ち消しあうため、派生商品のプライシングが行いやすくなる。ここでは、この割引債を「ニューメレール（基準財）」と呼ぶ。

LIBORマーケット・モデルは、利払いが発生する時刻T_{i+1}を満期とする割引債価格$D_{i+1}(t)$をニューメレールとしたときに、フォワードLIBOR$L_t(t)$が対数正規分布に従うと仮定したモデルである。これを式で表わすと、

$$
\frac{dL_t(t)}{L_t(t)} = \sigma_i(t)dW^{i+1}(t)
$$

となる。ただし、$W^{i+1}(t)$は満期T_{i+1}の割引債価格$D_{i+1}(t)$をニューメレールとしたときのM次元標準ブラウン運動で、ポラティリティ関数$\sigma_i(t)$は有界なM次元ベクトルとする。また、$\sigma_i(t)$はi番目の要素が$\sigma_i(t)$で、残りの要素は0であるベクトルとする。すなわち、i番目のフォワードLIBORは、i番目のブラウン運動によってドライブされていると考えることを意味する。

フォワードLIBORは、対応する期間の割引債をニューメレールとしたときに、(2-4)式のようにドリフト項を持たない単純な式で表されることから、$L_t(t)$を原資産とするキャプレット価格の「公式」を以下のように求めることができる。ここで、行使金利をK、時刻0でのi番目のフォワードLIBORを$L(0)$、キャプレットの価格を$C_i(L(0),K,\gamma_i)$、$N(\cdot)$は標準正規分布の分布関数とする。

3 金利の不確実性が互いに打ち消しあうためには、確率測度を変換する必要がある。このようにして派生商品のプライシングを行なう方法をフォワード中立化法と呼ぶ。確率測度の変換と、フォワード中立化法の関係は、補論で説明する。フォワード中立化によるプライシングの具体例は3章(3)節モンテカルロ法を用いたプライシングの節で示す。

4 このように、ニューメレールが異なるブラウン運動を区別するために、肩に添字を付ける。表記の簡略化のため、ベクトルの転置を表す記号は付けないこととする。

5 キャプレット価格の導出の詳細は、木島[1999]、森本・吉羽[1999]等を参照。
【LIBOR マーケット・モデルのキャプレットの公式】

\[C_i(L_i(0), K, \gamma_i) = \delta_i D_i(0) [L_i(0)N(d_i) - KN(d_2)] \]

\[d_1 = \frac{\log(L_i(0)/K) + \frac{1}{2} \gamma_i^2}{\gamma_i}, \quad d_2 = \frac{\log(L_i(0)/K) - \frac{1}{2} \gamma_i^2}{\gamma_i} \]

\[\gamma_i^2 = \int_T^0 \sigma_i(t)^2 dt \]

この結果は、実際の市場取引の際に用いられることが多い以下のブラック・モデルの公式（ブラック式）と非常によく似た形をしており、モデルの扱いやすさや解釈のしやすさの観点で、LIBOR マーケット・モデルの大きな強みとなっている。

【ブラック・モデルのキャプレットの公式】

\[\hat{C}_i(L_i(0), K, \sigma_i) = \delta_i D_i(0) [L_i(0)N(\hat{d}_i) - KN(\hat{d}_2)] \]

\[\hat{d}_i = \frac{\log(L_i(0)/K) + \frac{1}{2} \sigma_i^2 T_i}{\sigma_i \sqrt{T_i}}, \quad \hat{d}_2 = \frac{\log(L_i(0)/K) - \frac{1}{2} \sigma_i^2 T_i}{\sigma_i \sqrt{T_i}} \]

ここで、ブラック式のキャプレット価格とボラティリティには\(^{\text{^}}\)（ハット）を付けて区別した。式(2-5)式と式(2-6)式の違いは、\(\gamma_i^2\)が\(\sigma_i^2 T_i\)となっている部分だけである。LIBOR マーケット・モデルのボラティリティが、各利払時点間で一定値であるときには、式(2-5)式の中で積分を用いて表わされている\(\gamma_i^2\)は

\[\gamma_i^2 = \delta_i \sigma_i (T_i)^2 + \cdots + \delta_i \sigma_i (T_i)^2 \]

と書ける。

\[\gamma_i = \sqrt{T_i} \hat{\sigma}_i \]

となるように\(\gamma_i\)を定めれば、市場で観測されるブラック式のキャプレット価格と、LIBOR マーケット・モデルによるキャプレット価格を一致させることができる。この点は、後述の 6 章のキャップ、スワップショーンの価格等を用いたモデルのパラメータ推定で計算例を示す。
（3）複数期間のフォワード LIBOR を同時に考える必要がある場合

(2)節のキャプレットの例では、1 期間のフォワード LIBOR のみに着目すればよかったが、スワップション等の複数期間のフォワード LIBOR を対象とする相対的に複雑な商品のプライシングを行なったり、さらには満期の異なる商品からなるポートフォリオのリスクを計測するためには、イールド・カーブ全体の変化、すなわち、複数期間のフォワード LIBOR を同時に考える必要がある。

ニューメレールについては、複数期間のフォワード LIBOR を同時に比較するために、各フォワード LIBOR 共通のニューメレール（ここでは割引債）を 1 つ選ぶ必要がある。

(2-4)式の対数正規過程で表わされるブラウン運動 \(W^{i+1}(t) \) と \(W^i(t) \) の間には、
(2-2)式の関係等を用いて、以下の関係があることが導かれる6。

【ブラウン運動 \(W^{i+1}(t) \) と \(W^i(t) \) の関係】

\[
dW^i(t) = dW^{i+1}(t) - \frac{\delta_i L_i(t)}{1 + \delta_i L_i(t)} \rho_i \sigma_i(t) dt
\]

ただし、\(\rho \) は M 次元ブラウン運動の相関行列とする（相関行列の要素 \(\rho_{ij} \) は \(j \) 番目のブラウン運動と、\(k \) 番目のブラウン運動の相関係数）7。

満期 \(T_i \) の割引債をニューメレールとしたときのブラウン運動の増分 \(dW^i(t) \)
(2-9)式左辺）は、満期 \(T_{i+1} \) の割引債をニューメレールとしたときのブラウン運
動の増分 \(dW^{i+1}(t) \) （同式右辺第 1 項）より、右辺第 2 項の分だけ、増分幅の平均がずれることを意味する。直観的には、満期の長い割引債をニューメレールとした分、増分幅が大きくなってしまうので、\(dt \) の項は平均値を補正するための項であると解釈することができる。

(2-9)式を(2-4)式に代入すると、

\[
\frac{dL_{i+1}(t)}{L_{i+1}(t)} = -\sigma_{i+1}(t) \frac{\delta_i L_i(t)}{1 + \delta_i L_i(t)} \rho_{i+1} \sigma_i(t) dt + \bar{\sigma}_{i+1}(t) dW^{i+1}(t)
\]

(2-10)

6 (2-9)式は、ギルザノフの定理を用いることによって得られる。詳細は Pelsser[2000]等を参照。

7 文献によっては、(2-9)式で \(\rho \) が乗じられていない場合があるが、その場合は各ブラウ
ン運動を独立としているモデルである。ブラウン運動が相関を持つ場合と独立の場合の
関係は、3章（4）節のモンテカルロ法の計算負荷削減のためのファクター数の削減方法
で整理する。
が得られる。(2-10)式は、利払いが \(T_i \) に発生する \(L_{i-1}(t) \) を、 \(T_{i+1} \) が満期の割引債をニューメレルとして見た式である。 \(dt \) 項（ドリフト項）の係数は、時間変化率を表わすが、それには確率変数である \(L_i(t) \) が入っているため、(2-10)式の \(L_{i-1}(t) \) の変化は非常に複雑なものとなり、(2-5)式のキャブレット公式のような解析的な解を求めることはできない。このため、複数期間のフォワード LIBOR を扱う場合には何らかの数値計算手法が必要となる。3章ではモンテカルロ法を用いた複数期間のフォワード LIBOR の取扱いを解説する。

3. モンテカルロ法による複数期間のフォワード LIBOR の取扱い

本章では、LIBOR マーケット・モデルで解析解が求められない場合の数値計算手法の一つとして、モンテカルロ法を用いたブライシングを説明する。

まず始めに、モンテカルロ法を適用する際に行われる LIBOR マーケット・モデルの離散化の具体的な手順を示した後、シミュレーションによる金利パスの発生方法を説明する。次に、発生させた金利パスを用いて金利派生商品を具体的にブライシングする方法を説明する。最後に、シミュレーションの計算負荷を軽減するために、モデルのファクター数を削減する方法を解説する。

(1) LIBOR マーケット・モデルの離散化の手順

フォワード LIBOR \(L_1, \cdots, L_M \) を考えるとき、ニューメレルとして最長満期 \(T_{M+1} \) の割引債価格を用いると \(^8\), (2-9)式を繰返し用いることにより、\(L_i(t) \) は以下のように表わせる。

\[
\frac{dL_i(t)}{L_i(t)} = -\sigma_i(t) \sum_{j=m}^{M} \frac{\delta_j L_j(t)}{1 + \delta_j L_j(t)} \rho_{ij} \sigma_j(t) dt + \sigma_i(t) dW^{M+1}(t), i = 1, \cdots M, t \leq T_i \quad (3-1)
\]

\(i = M \) のときに、(3-1)式は、

\[
\frac{dL_M(t)}{L_M(t)} = \sigma_M(t) dW^{M+1}(t) \quad (3-2)
\]

と対数正規型モデルになる一方、\(i < M \) では、\(dt \) 項が残るため、対数正規型モデ

\(^8\) 最も期先のフォワード LIBOR である \(L_M(t) \) の利払い時点は \(T_{M+1} \) であるため、割引債は \(D_{M+1}(t) \) まで考える。
ルとはならない。

\[i = M \] のとき、\(t \)が\(\Delta t \)だけ変化すると、(3-1)式は以下のように離散化モデルとして近似できる（ただし、\(\Delta t \)の間は\(\sigma_M(t) \)は一定と考える）。

\[
\frac{L_M(t + \Delta t) - L_M(t)}{L_M(t)} = \sigma_M(t)(W^{M+1}(t + \Delta t) - W^{M+1}(t)) \quad (3-3)
\]

\[
L_M(t + \Delta t) = L_M(t) + L_M(t)\sigma_M(t)(W^{M+1}(t + \Delta t) - W^{M+1}(t))
\]

\(W^{M+1}(t) \)の\(\Delta t \)における増分は、\(M \)次元標準正規乱数を用いて

\[
W^{M+1}(t + \Delta t) - W^{M+1}(t) \sim \sqrt{\Delta t} N_M(0, \rho) \quad (3-4)
\]

（ただし\(\rho \)はブラウン運動の相関行列、\(N_M \)は\(M \)次元標準正規分布の分布関数）と表わせるので、多次元標準正規乱数から、\(L_M(t + \Delta t) \)のサンプルを得ることができる。

次に、\(i < M \)の場合を考えると、(3-1)式の離散化モデルは、

\[
L_i(t + \Delta t) = L_i(t) - \sigma_i(t)L_i(t)\sum_{j=i}^{M} \frac{\delta_j L_j(t)}{1 + \delta_j L_j(t)} \rho_{i,j} \sigma_j(t) \Delta t + \sigma_i(t)L_i(t)(W^{M+1}(t + \Delta t) - W^{M+1}(t)) \quad (3-5)
\]

と書ける。（3-3）式と比べると\(\Delta t \)の項が増えている点が異なっているが、
\(\delta_j, \sigma_j(t), L_j(t) \)が既知であれば、(3-4)式の関係を用いて同じに\(L_i(t + \Delta t) \)を求めることができる（ただし、\(t + \Delta t \leq T_i \)）。

対数正規過程を離散化する場合、それによる誤差を抑制するために、\(L_i(t) \)ではなく、\(\log(L_i(t)) \)を離散化する手法がしばしば用いられる。 (3-1)式と伊藤の補題を用いると、

\[
d \log(L_i(t)) = \left[-\sigma_i(t)\sum_{j=i}^{M} \frac{\delta_j L_j(t)}{1 + \delta_j L_j(t)} \rho_{i,j} \sigma_j(t) - \frac{1}{2} \sigma_i(t)^2 \right] dt + \sigma_i(t)dW^{M+1}(t) \quad (3-6)
\]

となることから、(3-3)式、(3-5)式の代わりに、以下の(3-7)式を離散化式として用いることもできる。

9 プラウン運動の次元が1次元である場合、\(\epsilon \)を平均0分散1の標準正規乱数として、

\[
W^{M+1}(t + \Delta t) - W^{M+1}(t) \sim \epsilon \sqrt{\Delta t}
\]

となる。

10 確率微分方程式の数値計算手法は、Kloeden and Platen[1995]に詳しい。
\[
L_i(t + \Delta t) = L_i(t) \exp\left\{ \left(-\sigma_i(t) \sum_{j=1}^{M} \frac{\delta_j L_j(t)}{1 + \delta_j L_j(t)} \rho_{i,j} \sigma_j(t) - \frac{1}{2} \sigma_i(t)^2 \right) \Delta t \right\}
+ \sigma_i(t)(W^{M+1}_i(t + \Delta t) - W^{M+1}_i(t))
\] (3-7)

次節では、この(3-7)式を用いる。

(2) モンテカルロ法によるフォワード LIBOR のパスの発生方法

ここでは、(1)節の離散化モデル (3-7)式を用いて、\(M = 4 \)、ブラウン運動が一次元のケースでフォワード LIBOR のパスの計算例を示す。

\(\Delta t = 0.5 \)、\(\delta_j = 0.5 \)、\(\sigma_j(t) = 0.15 \)で一定、初期時点でのフォワード LIBOR をすべての \(i \) で 5%とする。計算する順序としては、まず、\(t + \Delta t = 0 + 0.5 \)のとき、
(3-4)式より \((W^{M+1}_i(0 + 0.5) - W^{M+1}_i(0)) \)を求める、\(L_i(0) = 5\% \)を用いて
\(L_i(0 + 0.5), i = 1, \ldots, 4 \)を計算する。次に、\(L_1(0.5), L_2(0.5), L_3(0.5), L_4(0.5) \)を用いて、
\(L_2(1.0), L_3(1.0), L_4(1.0) \)を同様に求める。このようにして、コンピュータで実際に4回乱数を発生させて、(3-7)式から求めたフォワード LIBOR は以下の表 1 のとおりとなる。これが、モンテカルロ法を用いた LIBOR マーケット・モデルのフォワード LIBOR の 1 回のパスとなる。

表 1 の \(T_0 \) 行の \(L_0(T_0), \ldots, L_4(T_0) \) は初期時点のフォワード・レートで、以降の対角線上の \(L_1(T_1) \)、\(L_2(T_2) \)、\(L_3(T_3) \)、\(L_4(T_4) \)（表中のグレーに塗った部分）は、各々時刻 \(T_1, \ldots, T_4 \) に満期を迎えるフォワード LIBOR を表わしている。

表 1 : フォワード LIBOR の計算例

<table>
<thead>
<tr>
<th>(T_0)</th>
<th>(L_0(t))</th>
<th>(L_1(t))</th>
<th>(L_2(t))</th>
<th>(L_3(t))</th>
<th>(L_4(t))</th>
<th>(\Delta W^3(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_0)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(T_1)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(T_2)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(T_3)</td>
<td>(\ast)</td>
</tr>
<tr>
<td>(T_4)</td>
<td>(\ast)</td>
</tr>
</tbody>
</table>

また、表 1 の結果より(2-3)式を用いて求めた割引価格は以下のとおりとなる。
表 2 : 割引債価格

<table>
<thead>
<tr>
<th></th>
<th>$D_1(t)$</th>
<th>$D_2(t)$</th>
<th>$D_3(t)$</th>
<th>$D_4(t)$</th>
<th>$D_5(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
<td>T_0</td>
</tr>
<tr>
<td>T_1</td>
<td>T_1</td>
<td>T_1</td>
<td>T_1</td>
<td>T_1</td>
<td>T_1</td>
</tr>
<tr>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
<td>T_2</td>
</tr>
<tr>
<td>T_3</td>
<td>T_3</td>
<td>T_3</td>
<td>T_3</td>
<td>T_3</td>
<td>T_3</td>
</tr>
<tr>
<td>T_4</td>
<td>T_4</td>
<td>T_4</td>
<td>T_4</td>
<td>T_4</td>
<td>T_4</td>
</tr>
</tbody>
</table>

ここで、LIBOR マークット・モデルを扱う際の実務上留意すべき点を 1 つ述べておくたい

この表からわかるように、LIBOR マークット・モデルは、時間の経過に伴い、フォワード LIBOR が順に満期を迎ええて期落ちして行くため、作成し得るイールド・カーブが短くなってしまう。短期・中期の金利派生商品のプライシングは、表 1 程度のデータで対応可能かもしれないが、バンキング勘定の資産・負債のように満期の長い金利感応資産が持つ、ある程度長期のリスク評価期間でのリスクを計測しようとするときには、このフォワード LIBOR の期落ちが問題となる。

初期時点のイールド・カーブの期間が M であったとき、同じ期間のイールド・カーブを引くためには、以下の表 3 でグレーに塗った部分を求める必要があるが、これを求めるためには、□印をつけた部分の初期値と、グレーに塗った部分のパラメータが必要となる。初期時点の M として現実的に想定できる最長の期間は、超長期債の 30 年程度（$M = 60$ 程度）であることを考えると、期間の長いイールド・カーブを将来時点まで計算する必要がある場合には、表 3 の初期値とパラメータに何らかの仮定が必要となる。

表 3 : 期間の長いイールド・カーブを考える場合

<table>
<thead>
<tr>
<th></th>
<th>$L_0(t)$</th>
<th>$L_1(t)$</th>
<th>$L_2(t)$</th>
<th>$L_3(t)$</th>
<th>$L_4(t)$</th>
<th>$L_5(t)$</th>
<th>$L_6(t)$</th>
<th>$L_7(t)$</th>
<th>$L_8(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0</td>
<td>$L_0(T_0)$</td>
<td>$L_1(T_0)$</td>
<td>$L_2(T_0)$</td>
<td>$L_3(T_0)$</td>
<td>$L_4(T_0)$</td>
<td>$L_5(T_0)$</td>
<td>$L_6(T_0)$</td>
<td>$L_7(T_0)$</td>
<td>$L_8(T_0)$</td>
</tr>
<tr>
<td>T_1</td>
<td>$L_1(T_1)$</td>
<td>$L_2(T_1)$</td>
<td>$L_3(T_1)$</td>
<td>$L_4(T_1)$</td>
<td>$L_5(T_1)$</td>
<td>$L_6(T_1)$</td>
<td>$L_7(T_1)$</td>
<td>$L_8(T_1)$</td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td>$L_2(T_2)$</td>
<td>$L_3(T_2)$</td>
<td>$L_4(T_2)$</td>
<td>$L_5(T_2)$</td>
<td>$L_6(T_2)$</td>
<td>$L_7(T_2)$</td>
<td>$L_8(T_2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_3</td>
<td>$L_3(T_3)$</td>
<td>$L_4(T_3)$</td>
<td>$L_5(T_3)$</td>
<td>$L_6(T_3)$</td>
<td>$L_7(T_3)$</td>
<td>$L_8(T_3)$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td>$L_4(T_4)$</td>
<td>$L_5(T_4)$</td>
<td>$L_6(T_4)$</td>
<td>$L_7(T_4)$</td>
<td>$L_8(T_4)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11 ここで触れる留意点は、LIBOR マークット・モデルのみならず、HJM モデルをはじめとするイールド・カーブ・モデルを扱う場合、基本的に共通する留意点である。

12 □印の部分を全て$L_M(T_0)$と等しいと置くことも□の方法であるが、実際には、目的に応じて個々に検討する必要がある。
（3）モンテカルロ法を用いたプライシング

次に、表1、表2で計算したフォワードLIBOR、割引債価格のバスを用いて、プライシングの説明を行なう。まず、行使金利が$K = 5.0\%$、2年後スタート半年物のキャプレットを考える。2年後に支払金利が確定する半年物金利は、表1では$L_4(T_4) = 5.217\%$である。モンテカルロ法を用いてキャプレットの価格を算出する場合、まず、表1のようなバスを何度も発生させ、利払いの行われる時刻T_5でのペイオフ$C(T_5) = \max \{L_4(T_4) - K, 0\}$の平均を求める。次に、ニューメレルとして時刻$T_5$満期の割引債を考えていたので、キャプレットの価格は、ペイオフ平均に時刻T_5満期の割引債を乗じたものとなる。つまり、N本のパスを発生させて得られる時刻T_0におけるキャプレット価格$C_{4\text{CAPLET}}(T_0)$は、j番目のバスでのペイオフを$C_j(T_5)$とすると、以下のようになる。

$$C_{4\text{CAPLET}}(T_0) = \delta D_5(T_0) \frac{1}{N} \sum_{j=1}^{N} C_j(T_5)$$

ただし、δは利払間隔、$D_5(T_0)$は表2で求めた割引債価格である。

次に行使金利が$K = 5.0\%$、半年後スタート期間2年のキャップ（キャップレットの集合）を考える。半年毎に満期を迎えるフォワードLIBOR（表1でグレーに塗った部分）の、各ペイオフ$C(T_{i+1}) = \max \{L_i(T_i) - K, 0\}, i = 1, \ldots, 4$を考える。今、ニューメレルに$D_5(T)$を選んでいるので、時刻$T_5$より手前にあるペイオフでは、以下の調整が必要となる。調整後のペイオフ$C'(T_i)$は、

$$C'(T_2) = C(T_2) / D_5(T_2)$$
$$C'(T_3) = C(T_3) / D_5(T_3)$$
$$C'(T_4) = C(T_4) / D_5(T_4)$$
$$C'(T_5) = C(T_5) / D_5(T_5) = C(T_5)$$

と書ける（割引債の定義より$D_5(T_i) = 1$であることを使った）。これを図示したものが以下の図2である。時点の異なるキャッシュ・フローを、対応する割引債を用いて、同一の時刻T_5における先渡価格に変換している。

13 詳しくは、補論を参照。
14 先渡価格と割引債の関係は、補論を参照。
図 2：ベイオフの割引債による調整

このようにして同じ時点の価値に変換した上で、N 本のパスを発生させて、時刻t_5における外発価格の平均を求める。時刻t_0におけるキャップ価格は、外発価格の平均に $D_5(T_0)$を乗じて時刻t_0での価値に割引したものになる。つまり、N 本発生させるパスのj番目のベイオフを $C_j'(t_i)$とすると、求めるキャップの時刻t_0での価格 $C_{2y'}^\text{CAP}(T_0)$ は

$$C_{2y'}^\text{CAP}(T_0) = \delta D_5(T_0) \frac{1}{N} \sum_{j=1}^{N} [C_j'(T_2) + C_j'(T_3) + C_j'(T_4) + C_j'(T_5)]$$ \hspace{1cm} (3-10)

と求められる。

各時点で発生するキャッシュ・フローに対し、(3-9)式の調整を行うことにより、モンテカルロ法を通じて、様々な商品のプライシングが可能となる。

(4) モンテカルロ法の計算負荷削減のためのファクター数の削減方法

(3) 節までに説明してきた複数期間のフォワード LIBOR は、相関行列 ρ の M 次元標準ブラウン運動によって記述されていた。つまり、このモデルは、不確実性を表す M 個のファクターによりドライプされていることができる。ただ、実際にモンテカルロ法を適用する場合、M が大きくなると、M 次元標準正規乱数発生の計算負荷が重くなるという問題が発生する。

そこで、本節では、フォワード LIBOR を d 次元 $(d \leq M)$ の独立な標準ブラウン運動 $Z(i)$で記述し直す手法（Rebonato[1999a, b]）を解説する。この手法は、

15 T_5 が満期の割引債をニューメールすることとは、先渡価格（時刻t_5 で渡すとしたときの価格）で全ての価格が表示されている世界を想定することである。このモンテカルロ法で発生するフォワード LIBOR は、「先渡価格を基準とする世界の金利」であるので、現実の金利水準とは異なるものであり、プライシングの際にはキャッシュ・フロー(3-9)式、(3-10)式の調整が必要となるのである。
イールド・カーブ・モデルを用いた分析等でよく行われるように、イールド・カーブ変動の主成分分析で、互いに独立な説明変数（ファクター）を抽出し、それらのうち主要な説明変数（ファクター）のみでイールド・カーブ・モデルを構築し直すという考え方に⑥を踏襲している。この手法により、ベクトルの各要素が互いに独立である d 次元正規ベクトルを用いた相対的に計算負荷の軽いシミュレーションが可能となる。

まず、d 次元ベクトルを M 次元ベクトルに変換する $M \times d$ の行列 B を考える。満期 T_{M+1} の割引債 $D_{M+1}(t)$ ニューメーレルとした M 次元ブラウン運動の相関行列を ρ とすると、

$$dW^{M+1}(t)(dW^{M+1}(i)) = \rho dt$$
(3-11)

が成り立つ。また（行列 B の転置を B' と書くと）、

$$BdZ(t)(BdZ(t))' = BdZ(t)(dZ(t))B'$$
(3-12)

となるので、

$$\rho^B = BB'$$
(3-13)

となるように行列 B を選べば、独立な d 次元の標準ブラウン運動 $Z(t)$ を用いて、相関行列 ρ を持つ M 次元ベクトルを発生させることができる⑦。

d 個の M 次元ベクトル $\theta^{(q)}$, $q = 1, \cdots, d$ を用いて、行列 B の i 行 q 列の要素 b_{iq} を、次式のように置く。

$$b_{iq} = \begin{cases}
\cos \theta_i^{(q)} \prod_{j=1}^{q-1} \sin \theta_j^{(i)}, & q = 1, \cdots, d-1 \\
\prod_{j=1}^{q-1} \sin \theta_j^{(i)}, & q = d
\end{cases}$$
(3-14)

具体的に書き下すと、$d = 2$ のとき、(3-14)式は

⑥ 主成分分析をイールド・カーブ変動に適用した実証分析から、水準、勾配、曲率を表すと解釈し得る 3 主成分によって、イールド・カーブ変動の 9 割程度を説明できることが知られている（ハル [2001]等を参照）。
⑦ ここでは表記の簡略化のため、$Z(t)$ にニューメーレルを表す添え字は付けない（$W^{M+1}(t)$ と同様に $T_{M+1}^{(i)}$ を満期とする割引債 $D_{M+1}(t)$ をニューメーレルとしている）。
\[
B = \begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 \vdots & \vdots & \vdots \\
 b_{M1} & b_{M2} & b_{M3}
\end{pmatrix}
= \begin{pmatrix}
 \cos \theta_1^{(1)} & \sin \theta_1^{(1)} \\
 \cos \theta_2^{(1)} & \sin \theta_2^{(1)} \\
 \vdots & \vdots \\
 \cos \theta_M^{(1)} & \sin \theta_M^{(1)}
\end{pmatrix}
\tag{3-15}
\]

となり、\(d = 3\)のときは、
\[
B = \begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 \vdots & \vdots & \vdots \\
 b_{M1} & b_{M2} & b_{M3}
\end{pmatrix}
= \begin{pmatrix}
 \cos \theta_1^{(1)} & \cos \theta_1^{(2)} \sin \theta_1^{(1)} & \sin \theta_1^{(1)} \sin \theta_1^{(2)} \\
 \cos \theta_1^{(2)} & \cos \theta_1^{(2)} \sin \theta_1^{(2)} & \sin \theta_1^{(2)} \sin \theta_1^{(2)} \\
 \vdots & \vdots & \vdots \\
 \cos \theta_M^{(1)} & \cos \theta_M^{(2)} \sin \theta_M^{(1)} & \sin \theta_M^{(1)} \sin \theta_M^{(2)}
\end{pmatrix}
\tag{3-16}
\]

と表わされる。このとき、行列 \(BB'\)は対角成分が1の対称行列となることが容易に示される。

さて、市場で観測されるポラティリティ構造を用いて行列 \(B\)が求められたとき、(3-7)式を独立な\(d\)次元のブラウン運動で表現した式は以下のとおりとなる。

\[
L_i(t + \Delta t) = L_i(t)\exp\{-\sum_{j=1}^{M} \frac{\delta_j L_j(t) \sum_{q=1}^{d} \sigma_j^{(q)}(t) \sigma_i^{(q)}(t)}{1 + \delta_j L_j(t)} - \frac{1}{2} \sum_{q=1}^{d} \sigma_i^{(q)}(t)^2 \Delta t \\
+ \sum_{q=1}^{d} \sigma_i^{(q)}(t) (Z_q(t + \Delta t) - Z_q(t))\}
\tag{3-17}
\]

ただし、\(\sigma_i^{(q)}(t) = \sigma_i(t)b_{iq}(t), i = 1, \ldots, M, q = 1, \ldots, d\)で、\(Z_q(t)\)は\(Z(t)\)の\(q\)番目の要素とする。

このようにして、満期\(T_{M+n}\)の割引値\(D_{M+n}(t)\)をニューメールとした\(d\)個の独立した標準正規乱数と(3-7)式によって、モンテカルロ・シミュレーションを行なうことができる。

(3-1)式と(3-17)式の関係を以下に整理しよう。\(\sigma_i^{(q)}(t)\)を要素とする\(d\)次元ベクトルを\(\bar{\sigma}_i^{(q)}(t)\)と書くと、(3-17)式に対応する確率微分方程式は以下のとおりとなる。

\[
\frac{dL_i(t)}{L_i(t)} = -\overline{\sigma}_i^{(B)}(t) \sum_{j=1}^{M} \frac{\delta_j L_j(t)}{1 + \delta_j L_j(t)} \bar{\sigma}_j^{(B)}(t) dt + \overline{\sigma}_i^{(B)}(t) dZ(t)
\tag{3-18}
\]

(3-18)式に\(\sigma_i^{(q)}(t) = \sigma_i(t)b_{iq}(t), BB' = \rho\)、および(3-11)～(3-12)式の関係を用いると、
\[
\frac{dL_j(t)}{L_j(t)} = -\left(\bar{\sigma}_i(t)B\right) \delta_j \delta_j(t) + \left(\bar{\sigma}_j(t)B\right) dt + (\bar{\sigma}_i(t)B) dZ(t)
\] (3-19)

\[
= -\bar{\sigma}_i(t) \delta_j \delta_j(t) (BB') \sigma_j(t) dt + \left(\bar{\sigma}_i(t)B\right) dW^{M+1}(t)
\]

となる。式のドリフト項のベクトルと行列の積を要素で表現したものである、
(3-1)式であるので、(3-18)式は(3-1)式の近似式であることが改めてわかる。なお、
文献によっては、独立なブラウン運動でモデルを記述した(3-18)式を LIBOR マーク
ケット・モデルと呼んでいるものも少なくない点には、混乱を避ける意味で注
意が必要である。

次に \(\rho^B\) の推定例を示そう。まず、各フォワード LIBOR のブラウン運動
\(W^{M+1}(t)\) の相関行列 \(\rho\) の要素が、現実に市場で観測されるポラティリティ構造に
包むブラウン運動の相関は 1 に近く、離れるほど相関が小さくなる傾向を基
に、

\[
\rho_{i,j} = \alpha \exp\{ (\beta_i - \beta_j) \max(T_i, T_j) \cdot |T_i - T_j|\}
\] (3-20)

ただし、\(\alpha = 0.3, \beta_i = -0.12, \beta_j = 0.005\)

という関係で表されると仮定する（図 3 左）。次に、(3-18)式で求められる \(\rho^B\) と
(3-20)式の各要素の 2 乗誤差の和が最小になるように実際に行列 \(B\) を推定する。

\(d = 3\) のケースの結果が図 3 右である。

図 3 : ブラウン運動の相関行列 \(\rho\) (左)と推定した相関行列 \(\rho^B\) (右)

\footnote{脚注 16 で挙げた実証分析の結果を前提に、ここでは \(d = 3\) とした。}
これらを見ると、推定した行列 \(\rho^B \)（図3右）が行列 \(\rho \)（図3左）の特徴を概ねとらえていることがわかる。

また、行列 \(\rho^B \) と同時に推定される \(\theta_i^{(1)}, \theta_i^{(2)} \) より計算される行列 \(B \)の列ベクトルは以下のとおりとなる。

図 4：行列 \(B \)の列ベクトル \((B(i), i = 1, 2, 3) \)

ここで推定されたベクトルの形状は、一般的なイールド・カーブ変動の主成分分析で得られる結果と同様である。すなわち、3つのベクトルは各々水準 \(B(1) \)、勾配 \(B(2) \)、曲率 \(B(3) \)を表わしていると解釈できる。

4. スワップションのプライシング

次に、キャップと並んで、金利派生商品市場で取引の活発なスワップションのプライシングを考える。フォワード LIBOR をモデル化の対象とする LIBOR マーケット・モデルに対し、フォワード・スワップをその対象とするのが、スワップ・マーケット・モデルである（Jamshidian[1997]）。スワップ・マーケット・モデルは、市場で取引されているブラック・モデルをベースとするスワップション価格を再現できるという特徴を有する一方で、後で見るように、LIBOR マーケット・モデルとは理論的整合性がないという問題点がある。

本章では、まず始めにスワップ・マーケット・モデルを説明した後、上記のような特徴と問題点を整理する。次に、Rebonato[1999b]が示したスワップションの近似式を紹介する。この近似式を用いることによって、これまで説明してきた LIBOR マーケット・モデルをベースにスワップション価格を考えることができる。
（1）スワップ・マーケット・モデル
将来時刻 T_i にスタートし、時刻 T_n に満期を迎えるスワップの時刻tにおける固定サイドの支払金利を $S_{i,n}(t)$ とする。固定・変動各々の金利キャッシュ・フローの時刻tでの価値は等しくなるため、フォワード LIBOR と $S_{i,n}(t)$ の間には次の関係が成立つ（図 5 参照）。

$$S_{i,n}(t) \sum_{j=1}^{n} \delta_j D_{j+1}(t) = \sum_{j=1}^{n} \delta_j L_j(t) D_{j+1}(t) \quad (4-1)$$

図 5：フォワード・スワップとフォワード LIBOR のキャッシュ・フロー

これに、(2-1)式を代入して、次の関係を得る。

$$S_{i,n}(t) \sum_{j=1}^{n} \delta_j D_{j+1}(t) = \sum_{j=1}^{n} \delta_j \frac{D_j(t) - D_{j+1}(t)}{\delta_j D_{j+1}(t)} D_{j+1}(t)$$
$$= D_i(t) - D_{n+1}(t) \quad (4-2)$$

よって、$S_{i,n}(t)$ は以下のように表わせる。

$$S_{i,n}(t) = \frac{D_i(t) - D_{n+1}(t)}{\sum_{j=1}^{n} \delta_j D_{j+1}(t)} \quad (4-3)$$

ここではニューメレルとして、

$$P_{i,n}(t) = \sum_{j=1}^{n} \delta_j D_{j+1}(t) \quad (4-4)$$

を考える。$P_{i,n}(t)$ は、スワップ固定金利の単位変化が現在値に与えられる影響を表す感応度と解釈できる。

スワップ・マーケット・モデルは、LIBOR マーケット・モデルと同様に、この$P_{i,n}(t)$ をニューメレルとするとき、フォワード・スワップ $S_{i,n}(t)$ が以下のように対数正規過程に従うと仮定したモデルである。
\[
\frac{dS_{i,n}(t)}{S_{i,n}(t)} = \sigma_{i,n}(t)dW^{i,n}(t)
\] (4-5)

ただし \(\sigma_{i,n}(t)\) は、時刻 \(T_i\) スタート、期間 \(T_n - T_i\) のスワップ金利 \(S_{i,n}(t)\) のポラティリティ、\(W^{i,n}(t)\) は、\(P_{i,n}(t)\) をニューメールとした標準ブラウン運動である。

このとき、フォワード・スワップ \(S_{i,n}(t)\) を原資産とする、行使金利 \(K\) のベイヤーズ・スワップションの時刻 \(0\) での価格 \(PS_{i,n}(0)\) は以下のように表わせる。

\[
PS_{i,n}(S_{i,n}(0), K, \Gamma_{i,n}) = P_{i,n}(t)[S_{i,n}(0)N(d_1) - KN(d_2)]
\] (4-6)

\[
d_1 = \frac{\log(S_{i,n}(0)/K) + \frac{1}{2}\Gamma_{i,n}^2}{\Gamma_{i,n}}, \quad d_2 = \frac{\log(S_{i,n}(0)/K) - \frac{1}{2}\Gamma_{i,n}^2}{\Gamma_{i,n}}
\]

ただし、\(\Gamma_{i,n}^2 = \int_0^T \sigma_{i,n}^2(t) dt\) は \(\log S_{i,n}(t)\) の分散

\(\text{LIBOR}\) マーケット・モデルのキャップ公式のときと同様に、スワップ・マーケット・モデルでもブラック式とよく似た式が導かれる。市場で取引されるオプション期間 \(T_i\)、原資産となるスワップ期間 \(T_n - T_i\) のブラック・モデルをベースとするスワップション・ポラティリティを \(\sigma_{i,n}\) とすると、現時点での \(\Gamma_{i,n}\) を、

\[
\Gamma_{i,n} = \sqrt{T_i} \sigma_{i,n}
\] (4-7)

とすれば、市場で取引されるスワップション価格を再現できる。

しかし、このスワップ・マーケット・モデルと \(\text{LIBOR}\) マーケット・モデルの間には理論的な整合性がないという問題点がある。というのは、これらのモデルでは、フォワード \(\text{LIBOR}\) とフォワード・スワップが各々対数正規過程に従うと仮定しているが、対数正規過程の和は対数正規過程とならないため(4-1)式の関係が成り立たないからである。仮に、これらのモデルに理論的な整合性が得られているのであれば、市場で取引されているキャップとスワップションの価格の両方にフィットするように、\(\text{LIBOR}\) マーケット・モデルのパラメータを定めれば、それによってキャップとスワップションの価格を整合的に評価できることになる。しかしこ、両者のモデルに理論的な整合性がないとすれば、そのギャップを埋める

19 ポラティリティ関数 \(\sigma_{i,n}(t)\) は有界な関数とする。

20 より厳密には、一方の測度の下で他方を表現したとき、ドリフトの項が残ってしまい、対数正規にならないことにより確認できる。詳しくは Brigo and Mercurio [2001] 等を参照。
たるの何らかの操作が必要となる。次節では、そのギャップを埋めるための例として、スワップシャン価格の近似式を解説する。

（2）フォワード LIBOR ベースのスワップショナ価格の近似

フォワード・スワップが対数正規過程に従うスワップ・マーケット・モデルの仮定は、前節で見たように、フォワード LIBOR が対数正規過程に従う LIBOR マーケット・モデルの仮定と理論的に相容れなかった。これに対し、フォワード LIBOR が対数正規過程に従うという前提のも下で、スワップショナ価格の近似式が幾つか提案されている。以下では、このうち、Rebonato[1999b]が示したスワップショナの近似式を示す21。

市場で観測されるスタート \(T_j \)、スワップ期間 \(T_k - T_j \) のスワップショナに対する、ブラック・モデルをベースとするスワップショナ・ボラティリティを \(\sigma_{i,j} \) とすると、LIBOR マーケット・モデルのパラメータと \(\sigma_{i,j} \) の間には以下の近似式が成り立つことが示される。

【Rebonato[1999b]のスワップショナ近似式】

\[
(\sigma_{i,j})^2 \approx \frac{1}{T_j(S_{i,j}(0))^2} \sum_{j=i+1}^{n} \sum_{k=i+1}^{n} \left\{ w^{(j)}_{i,n}(0)w^{(k)}_{i,n}(0)L_j(0)\sigma_j(t)\sigma_k(t) \right\}
\]

(4-8)

\[
w^{(j)}_{i,n}(0) = \frac{\delta_j D_{j+1}(0)}{\sum_{k=1}^{n} \delta_k D_{k+1}(0)}
\]

(4-9)

ただし、\(\rho_{j,k} \) は \(j \) 番目と \(k \) 番目のブラウン運動の相関係数（ \(t \) に関して一定と仮定）、\(D_j(t) \) は(2-3)式で表わされる割引債とする。

上記の近似式を用いて、市場で取引されるキャップのボラティリティとスワップショナのボラティリティの両方にフィットするように、LIBOR マーケット・モデルのボラティリティ \(\sigma_j(t) \) および相関係数 \(\rho_{j,k} \) を定めれば、フォワード LIBOR をベースにスワップショナもプライシングできることになる。さらに、モ

テカルホ法を用いて、より複雑な金利派生商品の価格を、市場で取引されるキャップやスワップの価格と整合的に求めることができることになる。また、キャップやスワップ価格と整合的であるということは、キャップやスワップ等でポジションをヘッジした場合の金利リスクをより正確に把握できることを意味している。これらのパラメータの推定は、6章のキャップ、スワップの価格等を用いたモデルのパラメータ推定で具体的に説明する。

5. フォワード LIBOR の対数正規性に関する考察

さて、これまで、フォワード LIBOR が対数正規過程に従うことを前提に主に理論面の解説を行なってきた。次章以降で、具体的なモデルのパラメータ推定を行なうのに、本章では、フォワード LIBOR の対数正規性の仮定の妥当性をヒストリカル・データを用いて検証し、その検証の結果がプライシングやリスク計測に与える含意を検討する。

（1）ヒストリカル・データの統計量

LIBOR マーケット・モデルは、これまで見てきたように、該当する期間の割引債をニューメレルとしたときのフォワード LIBOR が、対数正規分布に従うと仮定したモデルである。この際の確率測度の変換は、平均をシフトさせるが、分布の形状は変化させない。そこで、以下では、実際のフォワード・レートがどの程度対数正規分布に近い分布をしているのかを見るために、各種の統計量を算出し、ヒストリカル・データの性質を調べる。

使用したデータは、1999 年 8 月～2001 年 7 月の LIBOR スワップの 1～10Y の日次データである。これ用いて、0.5Y、1.0Y、・・・、9.5Y の各時刻で先行き 6 ヶ月間のインプライド・フォワード・レート（6M フォワード・レート）を求めた。このうち、0.5Y、3Y、5Y、7Y、10Y の 6M フォワード・レートのグラフを図 6 に示す（ここで、nY の 6M フォワード・レートとは、(n−0.5)Y 時点で見た先行

22 補論参照。
23 変動金利を LIBOR とするスワップ。このほか TIBOR スワップもあるが、市場の流動性の厚さから、ここでは LIBOR スワップを使用することにした。
き6ヶ月間のインプライド・フォワード・レートのことを指す）

図6: 6Mインプライド・フォワード・レートの推移

6Mフォワード・レートの日次対数変化率の統計量を求めるものが表4である。

なお、0.5Yの6Mフォワード・レートは6M LIBOR（キャッシュ）のことである。

日次対数変化率log\left(\frac{L_i(t + \Delta t)}{L_i(t)} \right) は、

$$\log\left(\frac{L_i(t + \Delta t)}{L_i(t)} \right) = \frac{L_i(t + \Delta t)}{L_i(t)} - 1 = \frac{L_i(t + \Delta t) - L_i(t)}{L_i(t)}$$

の近似が\(\frac{L_i(t + \Delta t)}{L_i(t)} = 1 \)の近辺で成り立つので、日次対数変化率が正規分布に従うかを調べることによって、\(\frac{L_i(t + \Delta t) - L_i(t)}{L_i(t)} \)が正規分布に従うかも、すなわち(2-4)式が成り立っているかどうかを調べることができる。

データを\(x_1, \ldots, x_N \)、平均\(\bar{x} \)とするとき、歪度\(S \)と尖度\(K \)を以下で定義する。

\[
S = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{\sqrt{(N-1)/N}} \right)^3
\]

\[
K = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i - \bar{x}}{\sqrt{(N-1)/N}} \right)^4
\]
表 4：6M フォワード・レートの日次対数変化率の統計量

<table>
<thead>
<tr>
<th></th>
<th>平均</th>
<th>分散</th>
<th>周度</th>
<th>厚度</th>
<th>最小</th>
<th>最大</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>分散</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>周度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>厚度</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最小</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

正規分布の尖度は3であるので、ある分布が正規分布に近いか否かは尖度が1つの目安となる。表 4中の尖度をグラフにしたもののが以下の図7（左）である。尖度が突出しているのは6 M LIBOR (54.38)で、他は4.0強～10.0弱のレンジにあるが、いずれの尖度も正規分布のそれ（3.00）より大きく、分布の裾が厚いわゆるファット・テールな分布であるといえる。

図7（右）は、尖度が著しく大きい6 M LIBORの対数変化率の時系列推移である。これを見ると、1999年末のいわゆるY2K問題の際に、6 M LIBORの変動が大きく出ており、この急激な変動が統計量（特に尖度）の水準に影響を与えていると考えられる。

図7：尖度（左）と6 M LIBOR 対数変化率（右）
（2） 各6M フォワード・レートの分布

1Y、3Y、5Y、7Y の6M フォワード・レートのヒストグラムを以下の図8に作成した。比較のため、分布と同じ平均と分散を持つ正規分布も図示した。

図8：フォワード・レートの分布

いずれの分布も、比較的正規分布に近いが、正規分布と比較して、分布の中央部分が高く、裾の厚いファット・テール性を有する分布の形状をしている。この裾に該当するサンプルは、期末等の特定日付近のサンプルが中心であった。プライシングやリスク評価を行う際には、商品やポジションのレート・リセット日が、こうした特定日に当たるかどうかに注意する必要があることになる。

また、スワップ取引は期限等により、取引の厚みに大きな差がある。このため、スワップ金利には、こうした流動性による影響等が含まれていると考えられる。このようなスワップ金利から求めるフォワード・レートの解釈や扱いには注意が必要である。

次に、図9に、ある分布の正規分布との相違度合いを見るためにしばしば用いられるQ・Q プロットを示した。図の横軸は標準正規分布の値を表し、図の直

27 Q・Q(Quantile-Quantile)プロットとは、データ数n個のk番目のデータをx_k,nとす
線からの乖離が正規分布からのずれを示す。この図からは、分布の裾での乖離が大きいことがわかる。

図 9 : Q - Q プロット

いずれのグラフを見ても、両端が正規分布を表す直線から乖離していることがわかる。乖離している方向を見ると、正規分布で想定している変化率より、プラスの部分では大きい方に、マイナスの部分では小さい方に分布している、いわゆるファット・テール性を持つ分布であることがこの Q - Q プロットからもわかる。

このように、実際のヒストリカル・データによるフォワード LIBOR の分布を調べると、LIBOR マーケット・モデルが想定する対数正規分布より、実際の分布はファット・テール性を有する分布であることがわかった。

実際の分布がいわゆるファット・テールな分布となることは、現実の市場でスマイルが観測される 1 つの原因であると考えられている。スマイルやスキーを考慮した LIBOR マーケット・モデルの拡張は、7 章で説明する。

るとき、2 次元平面に、\((\pi_{ij}, N^{-1}((n-k+1)/(n+1)))\) をプロットしたものである（ただし \(N^{-1}\) は標準正規分布の分布関数の逆関数）。
（3）前節までの結果の考察

(2)節までの市場データを用いた検証により、LIBOR マーケット・モデルが前提とする各フォワード LIBOR の対数正規性の仮定が、市場では必ずしも成立していない可能性が判明した。ここでは、今回の検証の結果が持つ含意を検討する。

LIBOR マーケット・モデルは、従来の多くのイールド・カーブ・モデル同様、金利変動の不確実性（リスク・ファクター）に（対数）正規過程を仮定している。モデルの構築の際にある程度扱いやすい仮定を置くことは、通常致命方針であることであり、この点で、LIBOR マーケット・モデルを含めたイールド・カーブ・モデルの有用性を真っ向から否定する必要はない。この意味で、実務的には、モデルの限界を念頭におきつつ、モデルの活用を図ることが重要であると思われるが、この「モデルの限界」という観点では、金利派生商品のプライシングとリスク計測では今回の検証の結果が与える意味合いは明らかに異なる。

まず、プライシングの場合、最終的な価格は期待値演算によって求められるが、その際にはリスク・ファクターの確率分布の全体が用いられるので、期待値演算で、分布の中心部分での演算がドミナントな役割を果すような場合（例えば、アット・ザ・マネーのオプションのプライシング）には、分布の正規分布からの乖離の影響は限定的となる。一方、リスク計測の場合、例えば VaR（分位点）は、確率分布の1点に過ぎないことから、実際の分布の形状からのずれから相対的に大きな影響を受ける。

(2)節で示した Q・Q プロットを見る限りでは、分布の中心部分は相対的に正規分布に近いが、裾部分は正規分布から乖離していることがわかる。この観点からは、LIBOR マーケット・モデルは、金利派生商品のプライシングに用いる場合は、期待値演算で、分布の中心部分の演算がドミナントな役割を果す範囲では、ある程度受容できると判断できるよう（逆に、例えばファー・アウト・オプション・マネーのオプションでは、プライシングが分布の裾部分の影響を相対的に強く受けることから、裾部分での分布のずれの有無が重要となる）。その一方で、同モデルをリスク計測に用いる際には、分布のずれの影響が直接出やすいだけに、細心の注意が必要であると考えられる。
6. キャップ、スワップションの価格等を用いたモデルのパラメータ推定

4章までに、LIBOR マーケット・モデルとそれを利用したキャップ価格の表現、およびスワップション近似式の理論的な解説を行なった。本章では、これらを利用して、市場で観測されるキャップ、スワップション価格から LIBOR マーケット・モデルのパラメータの推定を済みます。

以下では、まず、市場で観測されるキャップのポラティリティを用いてパラメータ推定を行う方法と、スワップションのポラティリティを加えてパラメータ推定を行う方法を解説する。次に、具体的にパラメータを推定して、その結果を簡単に検討する。

(1) キャップのポラティリティを用いるパラメータ推定方法

本節では、市場で観測されるキャップのインプライド・ポラティリティから LIBOR マーケット・モデルのパラメータの推定を行なう。表5は、2001年10月31日の円金利のキャップのポラティリティ（MID）と行使金利を半年間隔で補間により求めたものである。

表5：キャップ・ポラティリティ

<table>
<thead>
<tr>
<th>ポラティリティ</th>
<th>行使金利</th>
<th>ポラティリティ</th>
<th>行使金利</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΩϟοϓɺεϫϓγϣϯՁ֨౳Λ༻͍ͨϞσϧͱͦΕΛ༻͍ΩϟοϓՁ֨ͷදݱɺͳͬͨɻΣΑͰ͸ɺ౳ΛղઆΛߦͳͬͨɻຊষͰ͸ɺΕΒΛ༻͍ɺࢢ৔Ͱ؍昶͞ΕΔΩϟοϓͷϘϥςΟϦςΟΛ٭υϥϝʔλਪఆΛߦͳ͏ɻදLIBORϚʔέοτŋϞσϧͷύϥϝʔλ.wpఆΛߦͳ͏ɻද52001೥1031०3MϑΥϫʔυŋϨʔτʢMIDʣͱTelerate58376ը໘ͷBIDͱASKͷฏۉͰ͋Δɻิؒ͸ઢܗิؒͰߦǐ́</td>
<td>ΩϟοϓͷϘϥςΟϦςΟʢMIDʣͱִؒ̍YͷΩϟοϓͰ͸ɺ࢈ࢿݪ3MͷεϫοϓŋϨʔτͱͯ͠</td>
<td>ΩϟοϓͷϘϥςΟϦςΟʢMIDʣͱִؒ̍YͷΩϟοϓͰ͸ɺ࢈ࢿݪ3MͷεϫοϓŋϨʔτͱͯ͠</td>
<td></td>
</tr>
</tbody>
</table>

また、半年毎の 6M フォワード・レート（MID）は以下のとおりである。

表6：フォワード LIBOR(2001/10/31)

<table>
<thead>
<tr>
<th>ポラティリティ</th>
<th>行使金利</th>
<th>ポラティリティ</th>
<th>行使金利</th>
</tr>
</thead>
</table>
| ΩϟοϓɺεϫϓγϣϯՁ֨౳Λ༻͍ͨϞσϧͱͦΕΛ༻͍ΩϟοϓՁ֨ͷදݱɺͳͬͨɻΣΑͰ͸ɺ౳ΛղઆΛߦͳͬͨɻ_student5}

MID とは、Telerate58376 画面の BID と ASK の平均である。補間は線形補間で行なった。なお、同画面では、1Y のキャップでは、原資産が 3M のスワップ・レートとなっているが、他社のクォートしている水準も考慮に、ここでは他と同じ 6M のスワップ・レートとして計算した。
一般に、市場でクォートされるキャップのボラティリティは、現時点からキャップの満期までの間の、半年毎の各キャプレットに一律適用されるボラティリティとして表示されている（これをシングル・ボラティリティと呼ぶ）。

シングル・ボラティリティ σ_i^{CAP} とキャプレットのボラティリティ σ_j^{CAPLET} の間には以下のような関係が成り立つ（ただし \hat{C} は(2-6)式のブラック・モデルによるキャプレット公式を表す）。

$$
\sum_{j=1}^{i} \delta_j D_j(0) \hat{C}(L_j(0), K_j, \sigma_i^{\text{CAP}}) = \sum_{j=1}^{i} \delta_j D_j(0) \hat{C}(L_j(0), K_j, \sigma_j^{\text{CAPLET}})
$$

(6-1)

$i=1$ のとき、(6-1)式は、

$$
\delta_1 D_1(0) \hat{C}(L_1(0), K_1, \sigma_1^{\text{CAP}}) = \delta_1 D_1(0) \hat{C}(L_1(0), K_1, \sigma_1^{\text{CAPLET}})
$$

(6-2)

となるので、$\sigma_1^{\text{CAP}} = \sigma_1^{\text{CAPLET}}$ となる。同様に $i=2$ のときには、

$$
\delta_2 D_1(0) \hat{C}(L_1(0), K_1, \sigma_2^{\text{CAP}}) + \delta_2 D_2(0) \hat{C}(L_2(0), K_2, \sigma_2^{\text{CAPLET}}) = \delta_2 D_1(0) \hat{C}(L_1(0), K_1, \sigma_1^{\text{CAPLET}}) + \delta_2 D_2(0) \hat{C}(L_2(0), K_2, \sigma_2^{\text{CAPLET}})
$$

(6-3)

となり、σ_1^{CAPLET} は既知なので、この式を満たすインプライド・ボラティリティ σ_2^{CAPLET} が求められる。順次求めたキャプレット・ボラティリティと元のシングル・ボラティリティをグラフにしたもののが以下の図 10である。ここで横軸は、シングル・ボラティリティではキャップ期間を、キャプレット・ボラティリティではオプション期間を表す。

図 10：シングル・ボラティリティとキャプレット・ボラティリティ

上で求めたキャプレットのボラティリティを用いて、(2-8)式より γ_i を、

$$
\gamma_i = \sqrt{T_i \sigma_i^{\text{CAPLET}}}
$$

(6-4)
と定めれば、このγᵢと(2-5)式から求められるフォワードLIBORのキャプレット値は、ブラック・モデルのキャプレット価格と一致する。

個々のフォワードLIBORのボラティリティσᵢ(ᵢ)を離散的に考えるとき、(2-1)式で見るように、γᵢ² = δᵢσᵢ²(Tᵢ) + ⋯ + δᵢσᵢ²(Tᵢ)という関係がある。しかし、この右辺の1つ1つのσᵢを求めなくても、γᵢが求められていれば、キャプレットの価格の算出が可能となる。

（2）スワップショントラディションをも考慮するパラメータ推定方法

次にここでは、市場で取引されるスワップショントラディションのデータを用いて、フォワードLIBORのボラティリティσᵢ(ᵢ)およびブラウン運動間の相関係数ρᵢₖを推定する方法を考える。

各フォワードLIBORのボラティリティσᵢ(ᵢ)と各ブラウン運動間の相関係数ρᵢₖが求められれば、3章のLIBORマーケット・モデルの離散化の手順の項で説明した手法を用いて、市場のキャップ・スワップショントラディション価格と整合性を保ったまま、より複雑な商品のプライシングが可能となる。

以下では、4章で説明したスワップショントラディションの近似式（(4-8)〜(4-9)式）を用いて、スワップショントラディションを考慮するパラメータ推定を考える。(4-8)〜(4-9)式で、初期のフォワードLIBORLᵢ₀,…,Lₘ₀₀を用いて、Dᵢ₀(₀)は(2-3)式から、Sᵢₙ₀₀は(4-3)式から各々求められるので、前節でキャプレットのボラティリティから求めた関係γᵢ² = δᵢσᵢ²(Tᵢ) + ⋯ + δᵢσᵢ²(Tᵢ)を満たすように、フォワードLIBORの相関係数ρᵢₖ：j,k = 1,…,Mとσᵢ(Tᵢ),…,σᵢ(Tᵢ),i = 1,…,Mを求めればよいことになる。

各利払時点の間はパラメータが一定であるとすると、求めるボラティリティは以下の表7のようになる。推定するパラメータ数は、σᵢ(ᵢ)：M(M+1)/2個となる。
表 7：フォワード LIBOR のポラティリティ

<table>
<thead>
<tr>
<th></th>
<th>$L_1(t)$</th>
<th>$L_2(t)$</th>
<th>$L_3(t)$</th>
<th>⋯</th>
<th>$L_M(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq t_1 \leq T_1$</td>
<td>$\sigma_1(t_1)$</td>
<td>$\sigma_2(t_1)$</td>
<td>$\sigma_3(t_1)$</td>
<td>⋯</td>
<td>$\sigma_M(t_1)$</td>
</tr>
<tr>
<td>$T_1 < t_2 \leq T_2$</td>
<td>$\sigma_2(t_2)$</td>
<td>$\sigma_3(t_2)$</td>
<td>⋯</td>
<td>$\sigma_M(t_2)$</td>
<td></td>
</tr>
<tr>
<td>$T_2 < t_3 \leq T_3$</td>
<td>$\sigma_3(t_3)$</td>
<td>⋯</td>
<td>$\sigma_M(t_3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⋮</td>
</tr>
<tr>
<td>$T_{M-1} < t_M \leq T_M$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$\sigma_M(t_M)$</td>
</tr>
</tbody>
</table>

Brigo and Mercurio [2001] では、表 7 のように表わされるフォワード LIBOR のポラティリティ構造を様々な形でモデル化し、推定が必要なパラメータ数の削減を試みている。その中から特に良好なフィッティングとなった計算例として、以下では、各期間・各フォワード LIBOR に該当するポラティリティを表す関数を各各々定数とする場合と、連続関数を表現する場合について、パラメータ推定のための考え方と具体的な推定結果を説明する。

各期間の各フォワード LIBOR のポラティリティ関数を定数とする場合

このケースでは、表 8 のように満期までの期間に共通するファクター σ_i と i 番目のフォワード LIBOR に共通するファクター v_i の積としてポラティリティ構造をモデル化する。

表 8：ポラティリティ期間構造モデル（離散）

<table>
<thead>
<tr>
<th></th>
<th>$L_1(t)$</th>
<th>$L_2(t)$</th>
<th>$L_3(t)$</th>
<th>⋯</th>
<th>$L_M(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0 \leq t \leq T_1$</td>
<td>$v_1 \sigma_1$</td>
<td>$v_2 \sigma_2$</td>
<td>$v_3 \sigma_3$</td>
<td>⋯</td>
<td>$v_M \sigma_M$</td>
</tr>
<tr>
<td>$T_1 < t \leq T_2$</td>
<td>$v_2 \sigma_1$</td>
<td>$v_3 \sigma_2$</td>
<td>⋯</td>
<td>$v_M \sigma_{M-1}$</td>
<td></td>
</tr>
<tr>
<td>$T_2 < t \leq T_3$</td>
<td>$v_3 \sigma_1$</td>
<td>⋯</td>
<td>$v_M \sigma_{M-2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>⋮</td>
</tr>
<tr>
<td>$T_{M-1} < t \leq T_M$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$v_M \sigma_1$</td>
</tr>
</tbody>
</table>

フォワード LIBOR に関する先行研究では、しばしば上記の σ_i のみでポラティリティの期間構造をモデル化している（全ての v_i を 1 とするケース）。このようにポラティリティが求められると仮定すると、3 章(2)節でフォワード LIBOR の期落ちの問題を考えた表 3 において、グレーに塗った部分のパラメータには $\sigma_1 \sim \sigma_M$ をそのまま適用できることになる。

しかし、表 8 で全ての v_i を 1 とするという仮定をおくと、結果として、実際
の市場データからパラメータを実数値で求めることができないことが往々にして発生する。例えば、最近の本邦の金利派生商品市場のデータ29では、特に短期のキャプレットで相対的に大きなポラティリティが観測されるため、全てのνᵢを1とするという仮定は適用できなくなってしまう。この点を簡単に説明しよう。
オプション期間Tᵢのブラック・モデルによるキャプレット価格のポラティリティ（図10のキャプレット・ポラティリティ）σᵢ^CAPLETとLIBORマーケット・モデルのポラティリティσᵢの間には(2-7)〜(2-8)式より、
\[
T₁(σ₁^CAPLET)^2 = δ₁σ₁^2
\]
\[
T₂(σ₂^CAPLET)^2 = δ₁σ₂^2 + δ₂σ₁^2
\]
\[
\vdots
\]
\[
Tₙ(σₙ^CAPLET)^2 = δ₁σₙ^2 + δ₂σₙ₋₁^2 + \cdots + δₙσ₁^2
\]
という関係がある。しかし、図10の円金利のキャプレット・ポラティリティを用いて、(6-5)式を上から順に解いて、右辺のσᵢを求めようすると、1Y、2Yのキャプレット・ポラティリティが3Yのそれに比べて相対的に高いことから、途中から右辺のσᵢが実数では求められなくなるからである。
一方、表8のようにνᵢを導入したモデルでは、(2-7)〜(2-8)式の関係は、
\[
T₁(σ₁^CAPLET)^2 = v₁^2(δ₁σ₁^2)
\]
\[
T₂(σ₂^CAPLET)^2 = v₂^2(δ₁σ₂^2 + δ₂σ₁^2)
\]
\[
\vdots
\]
\[
Tₙ(σₙ^CAPLET)^2 = vₙ^2(δ₁σₙ^2 + δ₂σₙ₋₁^2 + \cdots + δₙσ₁^2)
\]
となり、上述の1Y、2Yの高いポラティリティの影響をv₁,v₂で調整できるため、パラメータを実数値として求めることが可能となる。後述の計算例では、表8の仮定の下でパラメータの推定を行なう。

■ 各期間の各フォワードLIBORのポラティリティ関数を連続関数とする場合
次に、連続的なポラティリティ関数として、実際に市場で観測されるポラティリティ構造を前提に、以下の(6-7)式を仮定した30。この関数も、現時刻tからi

29 ここでの分析では2001年10月31日のデータを使用している。
30 (6-7)式は、キャプレット・ポラティリティの形状として市場で観測されることが多い「期間が短いうちは一旦上昇した後、期間が長くなるに連れて緩やかに減少する」という形状も表現可能で、ポラティリティのモデル化によく用いられる関数である。
番目のフォワード LIBOR の満期 \(T_1 \) までの差で表わされている点は、上述の \(\tilde{\sigma} \) のモデルの \(\sigma_i \) と共通している。

\[
\tilde{\sigma}(T_1 - t) = (a(T_1 - t) + d)e^{-b(T_1 - t)} + c \quad (ただし、a, b, c, d は定数。)
\] (6-7)

\(\tilde{\sigma} \) と同様に、(6-7) 式に各フォワード LIBOR 固有の係数 \(v_i \) を乗じて、表 9 のようにモデル化する。

<table>
<thead>
<tr>
<th>(0 \leq t \leq T_1)</th>
<th>(T_1 < t \leq T_2)</th>
<th>(T_2 < t \leq T_3)</th>
<th>(\vdots)</th>
<th>(T_{M-1} < t \leq T_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_1 \tilde{\sigma}(T_1 - t))</td>
<td>(v_2 \tilde{\sigma}(T_2 - t))</td>
<td>(v_3 \tilde{\sigma}(T_3 - t))</td>
<td>(\cdots)</td>
<td>(v_M \tilde{\sigma}(T_M - t))</td>
</tr>
<tr>
<td>(v_2 \tilde{\sigma}(T_2 - t))</td>
<td>(v_3 \tilde{\sigma}(T_3 - t))</td>
<td>(\cdots)</td>
<td>(v_M \tilde{\sigma}(T_M - t))</td>
<td></td>
</tr>
<tr>
<td>(v_3 \tilde{\sigma}(T_3 - t))</td>
<td>(\cdots)</td>
<td>(\vdots)</td>
<td>(v_M \tilde{\sigma}(T_M - t))</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

スタート時点 \(t = 0 \) で、(6-7) 式が図 10 のキャブレット・ボラティリティにフィットするようにパラメータを求めると \(a = -0.00000717 \), \(b = 0.446 \), \(c = 0.270 \), \(d = 1.248 \) となる（図 11）。

図 11：連続なボラティリティ関数

(4-7) 式のスワップショーン・ボラティリティの近似式は、\(\sigma_i(t) \) の連続関数のときは以下で表わされる。

\[
(\sigma_{i,a})^2 = \frac{1}{T_i (S_{i,a}(0))^2} \sum_{j=i+1}^{n} \sum_{k=i+1}^{n} \left\{ w_j(0)w_k(0)L_j(0)L_k(0)\rho_{j,k} \int_0^T \sigma_j(t)\sigma_k(t) dt \right\} \] (6-8)

(4-7) 式では和の形で表わされていた部分が積分となっているが、実際にパラメータを推定する場合には、以下のように、この積分項を十分大きな正の定数 \(N \) 個までの和で近似することが普通である。
\[
\int_0^T \sigma_j(t) \sigma_k(t) \, dt = \sum_{i=1}^N \frac{T}{N} \sigma_j \left(\frac{T}{N} i \right) \sigma_k \left(\frac{T}{N} i \right)
\] \hspace{1cm} (6-9)

(3) パラメータ推定結果

次に、前節までの結果を基に、具体的な計算例を示す。使用したデータは、表5のキャップ・ボラティリティ、表6の初期フォワード LIBOR に加えて、以下の表11のスワップショング・ボラティリティである31。ここでは、10年までの金利データとキャップ・ボラティリティを使って計算を行なうため、オプション期間と原資産となるスワップ期間の和が10年以内となる部分（表11の網掛けの部分）のみを用いた。

<table>
<thead>
<tr>
<th>表 10 : スワップショング・ボラティリティ・マトリックス</th>
</tr>
</thead>
<tbody>
<tr>
<td>原資産となるスワップの期間</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>オプション期間</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
\[y_i^2 = \delta_i \sigma_i (T_i)^2 + \cdots + \delta_i \sigma_i (T_i)^2 \]
\[= v_i^2 (\delta_i \sigma_i^2 + \cdots + \delta_i \sigma_i^2) \]
\[= T_i (\hat{\sigma}_i^{\text{CAPLET}})^2 \]

となり、\(v_i \)は以下のように求められる。
\[
v_i = \sqrt{\frac{T_i}{\delta_i \sigma_i^2 + \cdots + \delta_i \sigma_i^2}} \hat{\sigma}_i^{\text{CAPLET}}
\]

(6-11)式を満たしつつ、(4-8)～(4-9)式のスワップショングリットリティの近似式の値と表10のボラティリティ（網掛けの部分）の2乗誤差が最小になるように\(\sigma_i, \ldots, \sigma_{20}, \theta_1^{(1)}, \ldots, \theta_{20}^{(1)}, \theta_1^{(2)}, \ldots, \theta_{20}^{(2)} \)を求めたものが以下である（ただし、
\(\sigma_i, \ldots, \sigma_{20} \)の初期値は表5のキャップ・ボラティリティ、\(\theta_1^{(1)}, \ldots, \theta_{20}^{(1)}, \theta_1^{(2)}, \ldots, \theta_{20}^{(2)} \)の初期値は\(\pi/2 \)とし、\(v_i \leq 1 \)の制約を置いて\(^{32} \)）。

図12：推定結果（方のケース、左：\(\sigma_i, v_i \)、右：1年毎の\(\sigma_i(t) \)）

図12左のグラフを見ると、\(v_i \)は0.5Yが最大で、ほぼ単調に減少していることがわかる。図12右のグラフでは、表8の各行を個1のグラフにしたものである（1年間隔で表示してある）。\(v_i \)が減少していく効果で、時間の経過に従って、\(\sigma_i(t) \)が全般的に減少していけることがわかる。

スワップショングリットリティの近似値と市場での観測値の格差を見るために、相対誤差（（推定値 - 観測値）/（観測値））を求め、原資産となるスワップ期間ごとに散布図にしたもののが図13（左）のグラフである。また、相関行列は図13（右）のグラフのようになる。

\[^{32} v_i \leq 1 \]としたのは、この制約がないと推定される解が不安定となることがあるためである。
スワップション・ボラティリティの近似は、原資産となるスワップ期間が1年のところでフィッティングが悪くなっているが、それ以外の相対誤差は-10%程度の範囲に収まっている。相関行列は、図3で想定していたような滑らかに変化する相関関係とは異なり、隣り合うフォワードLIBORの相関がマイナスになっているところも多く見られる。この相関行列を生成する行列Bの列ベクトルは図14のとおりである。図4で見たような、主成分として理解できるような形状にはなっていないことがわかる。

図14：相関行列を生成するベクトル

各期間の各フォワードLIBORのボラティリティ関数を連続関数とする場合
次に、連続関数の場合を考える。このとき(6-10)〜(6-11)式は以下のとおりとなる。
\[γ_i^2 = \int_0^{T_i} \sigma_i(t)^2 \, dt \]
\[= \int_0^{T_i} v_i^2 \tilde{\sigma}(T_i - t)^2 \, dt \]
\[= T_i (\hat{\sigma}_i^{\text{CAPLET}})^2 \]

よって、\(v_i \) は以下のように求められる。

\[v_i = \sqrt{\frac{T_i}{\int_0^{T_i} \tilde{\sigma}(T_i - t)^2 \, dt}} \hat{\sigma}_i^{\text{CAPLET}} \]

ただし、積分項は(6-9)式で近似し、ここでは \(N = 100 \) とした。

帯のときと同様に、(6-13)式を満たしつつ、(6-8)〜(6-9)式のスワップショーン・ボラティリティの近似式の値と表 10 のボラティリティの 2 次誤差が最小になるように(6-7)式のパラメータ \(a, b, c, d \) と、\(\theta_1^{(1)} \), \cdots, \(\theta_{20}^{(1)} \), \(\theta_1^{(2)} \), \cdots, \(\theta_{20}^{(2)} \) を推定した \(^{33}\) （ただし、\(\tilde{\sigma} \) の初期値は図 11 の \(a, b, c, d \) で、\(\theta_1^{(1)} \), \cdots, \(\theta_{20}^{(1)} \), \(\theta_1^{(2)} \), \cdots, \(\theta_{20}^{(2)} \) の初期値は \(\pi / 2 \) とし、制約として、\(v_i \leq 1 \) と置いた）。

図 15：推定結果（帯のケース、左：\(\sigma_i, v_i \）、右：1年毎の \(\sigma_i(t) \)）

この結果でも、\(v_i \) は期先のフォワード LIBOR ほど、概ね小さくなっている。
\(\sigma(T_i - t) \) の関数型が帯のケースより単調な形状をしているため、図 15左の \(\sigma(T_i - t) \) は、図 12左の \(\sigma_i \) のようなジグザグの形状にはならず、図 15右側の \(\sigma_i(t) \) のグラフも、相対的に滑らかである。

このときの相対誤差と相関行列は以下のとおりとなった。

\(^{33}\) (6-7)式で \(T_i - t \) が小さい部分では、\(a, b \) の相対的な水準の影響を受けやすいが、スワップショーンのデータが1年からしかクウォートされていないため、この影響により解が不安定になる。これを防ぐため、0.5Y 部分のみ線形に補間したボラティリティにフィットさせ、後は市場で観測される1年毎のスワップショーン・ボラティリティにフィットさせた。
まず、相対誤差を見ると、先ほどの離散の場合（図13左）よりも、全体的に増加して、30%程度の範囲に広がっている。また、相関行列の形状も、離散の場合（図13右）に比べればなんだらかであるが、隣り合うフォワードLIBORの相関がマイナスになるような点がやはり生じている。

この相関行列を生成する行列Bの列ベクトルは以下のとおりである。ここでも、主成分分析に見られるような成分は現れていない。

（4）パラメータ推定結果の簡単な考察

ここでは、(3)節で行なったパラメータ推定の結果を簡単に考察する。

まず、推定された相関行列の形状は、いずれのケースでも、隣合うフォワードLIBORの相関がマイナスになるところが散見され、市場で観測されるような形状（図3）とは異なっている。また、相関行列を生成するベクトル（図14、
図 17）もまた4で見たような形状はしておらず、市場で観測されるイールド・カーブ変動の主成分として解釈することは非常に難しい。

このように、実際の市場で観測される特徴をモデルが捉え切れていない背景の1つとして考えられるのは、リスクのあるケースにおいても、サンプル数に比べて推定するパラメータの数が相対的に多く、このためパラメータ推定の安定性が必ずしも確保できないことである。

この点、上記のパラメータ推定に制約条件を付けることによって、推定の安定性を上げようとする提案が複数なされている34。しかし、現状では、決定打となるような手法は未だ提案されていないのが実態である。今後さらに、ヒストリカル・データを用いたヘッジ効率の分析、バックテスト、パラメータ推定時の制約の付加等を行なうことにより、パラメータ推定の安定性を改善させることができるものと考えられる。

7. ポラティリティ・スマイルとそれに対応した LIBOR マーケット・モデルの拡張

これまで解説してきた LIBOR マーケット・モデルが説明できない現象として、実際の市場で観測されるインプライド・ポラティリティのスマイルやスキー（以下、スマイル）がある。スマイルとは、インプライド・ポラティリティがキャップやスワップの行使金利に依存する現象である。したがって、仮にスマイルが説明できないモデルをプライシングに用いると、金利派生商品価格を過小（過大）評価してしまう可能性があることになる。

LIBOR マーケット・モデルがスマイルを説明できない理由として、多くの実務家や研究者が指摘するのは、同モデルが前提とするフォワード LIBOR の対数正規性の仮定が必ずしも現実の世界にマッチしていない可能性である。つまり、5 章で示したように、実際のフォワード LIBOR の分布は正規分布に比べより幅

34 Brigo and Mercurio[2001]は、パラメータ推定の際、θ の取り得る範囲を制限して相関行列の急激な変化を緩和したり、\(\nu_i = 1 \pm 0.1 \)という条件を加えたり、相関行列にヒストリカル・データから推定した値を用いることを提案しているが、パラメータに制約を付加すれば、データへのフィッティングは低下するという問題が発生する。また、Rebonato[1999b]は、プライシングに関係するペイオフの発生時点でのポラティリティへのフィッティング精度を上げるため、パラメータ推定の際に適当なウェイト付けをすることも考えられるとしている（具体的な方法に関する記述はない）。
の厚いファット・テールな分布となっているが、LIBOR マーケット・モデルがこの現実を拾象していることがスマイルを表現し得ない問題の根幹であるという指摘である。すなわち、5 章(3)節で指摘したように、オプションのブラインジングでは、アウト・オブ・マネー近辺ではリスク・ファクターの確率分布の中心付近が重要となるが、例えばアウト・オブ・ザ・マネーでは分布の裾の影響が相対的に強くなる。したがって、アウト・オブ・ザ・マネーのような場合には、実際分布（ファット・テールな分布）想定する分布（正規分布）との差がブラインジングに相対的に大きな影響を与えることになる。

こうした問題意識から、Glasserman and Kou[2000]は、LIBOR マーケット・モデルにジャンプ過程を組合わせることによって、分布のファット・テール性を導き出し、スマイルの表現を試みたモデルを提案している。また、Andersen and Andreasen[2000]は、LIBOR マーケット・モデルのボラティリティを CEV モデル36で表出したモデルを考案している。このモデルは、LIBOR マーケット・モデルのボラティリティがフォワード LIBOR 水準に直接依存する形となるため、その依存の仕方を調整することで、スマイルを表現することを企図したモデルである。

（１）ジャンプ過程の組合わせ（Glasserman and Kou[2000]のモデル）

Glasserman and Kou[2000]は、LIBOR マーケット・モデルにジャンプ変動を考慮した場合のキャップ・フロア、スワップの価格を求めると共に、それらの価格が市場で観測されるスマイルとスキーを表現できることを示した36,37。

35 CEV（Constant Elasticity of Variance）モデル。
36 ここでは、キャプレットの評価式のみ説明する。Glasserman and Kou[2000]では、4 章で説明したスワップ・マーケット・モデルに関しても同様に、ジャンプ過程を含めたスワップ価格式を定式化している。
37 Glasserman and Neremer[2001]は、キャップ・フロア、スワップ以外のより複雑な金利派生商品のブラインジングを行うため、Glasserman and Kou[2000]のモデルを離散化した上で、ジャンプ過程の取扱いに数学的なテクニックを適用することにより、モンテカルロ・シミュレーションを行なえる枠組みを提案している。
i番目のフォワードLIBORに発生するジャンプの時間間隔が、平均1/λiの指数分布38に従い、ジャンプ幅が平均mi、分散si²の対数正規分布に従うとき、キャプレットの価格式は以下のとおりとなる39。

【ジャンプを考慮したキャップの評価式】

\[
C_{\text{JUMP}}^j(0) = \delta_j \sum_{j=0}^{\infty} e^{-\lambda_i t_j} \frac{(\lambda_i (T_j - t_j))^j}{j!} \hat{C}_j(L_i^{(j)}(0), K, p_j), \quad (7-1)
\]

ただし、\(L_i^{(j)}(0) = (1 + m_i)^j \cdot L_i(0)e^{-\lambda_i m_i T_i} \)、\(\mathbb{P}^2_j = \frac{1}{T_i} \left(\int_{t_i}^{T_j} \left\| \sigma_j(t) \right\|^2 dt + j s_i^2 \right) \)

\(\hat{C} \)は(2-6)式のブラック・モデルのキャプレット式である。なお、ジャンプ変動を考慮したキャプレット価格の分散を区別するために、ここでは(バー)を付けた。\(\mathbb{P}^2_j \)の中の積分は、離散型のモデルならば(2-7)式を用いて求められし、連続型のモデルならば(6-9)式で見たように近似的に数値計算すればよい。

ただし、複数のキャプレットを同時に考える場合には、\(s_i, m_i, \lambda_i \)は以下の条件を満たすように定めなければならない（なお、ここで\(z \)は、平均\(m_i \)、分散\(s_i^2 \)の対数正規分布に従う任意の値である）。

\[
\log \left(\frac{s_{i+1}}{s_i} \right) = \frac{1}{2} z^2 \left(\frac{1}{s_i^2} - \frac{1}{s_{i+1}^2} \right) + z \left(\frac{m_i}{s_i^2} - \frac{m_{i+1}}{s_{i+1}^2} \right) - \frac{1}{2} \left(\frac{m_i^2}{s_i^2} - \frac{m_{i+1}^2}{s_{i+1}^2} \right) \quad (7-2)
\]

\(> \log \left(\frac{\lambda_{i+1}}{\lambda_i} \right) + \max(0, z) \)

以下は、(7-1)式が、ボラティリティ・スマイルを表現できることを示す具体的な数値計算例である。ボラティリティ・スマイル形状に最も影響を与えるジャンプ幅の平均\(m \)を-0.3から0.3までの5通りとし、その他のパラメータの値は以下のとおりとした。

38 発生時間間隔が独立な指数分布に従うとき、時刻と仮に事象が起きる回数の分布はポアソン分布に従う。ポアソン分布は、離散的に発生する事象をモデル化する際に用いられて分布である。指数分布やポアソン分布は、伏見[1987]等を参照。

39 ベクトル\(\sigma_i(t) \)の要素を\(\sigma_i^{(1)}(t), \cdots, \sigma_i^{(M)}(t) \)と書くとき、\(\left\| \sigma_i(t) \right\|^2 \)の定義は、\(\left\| \sigma_i(t) \right\|^2 = (\sigma_i^{(1)}(t))^2 + \cdots + (\sigma_i^{(M)}(t))^2 \)で与えられるものとする。
表11 数値計算に使用したパラメータ

<table>
<thead>
<tr>
<th>(T)</th>
<th>2年</th>
</tr>
</thead>
<tbody>
<tr>
<td>(δ)</td>
<td>0.5年</td>
</tr>
<tr>
<td>フォワード・レート (一定)</td>
<td>6.0%</td>
</tr>
<tr>
<td>ポラティリティ (γ：定数)</td>
<td>0.05</td>
</tr>
<tr>
<td>生起率 (λ)</td>
<td>1.0</td>
</tr>
<tr>
<td>ジャンプ幅平均 (m)</td>
<td>-0.30, -0.20, 0, 0.20, 0.30</td>
</tr>
<tr>
<td>ジャンプ幅標準偏差 (s)</td>
<td>0.45</td>
</tr>
</tbody>
</table>

表11のパラメータを用いて、(7-1)式のジャンプLIBORモデルのキャプレット理論価格を算出し、そこからブラック・モデル式 (2-6式) によってインプライド・ポラティリティを求めた。その結果をプロットしたものが以下の図18である。

図18 ポラティリティ・スマイル計算例

$m=0$、つまりジャンプ幅の平均が0であるジャンプを仮定しているときに、スマイルの形状が表れている。

また、$m < 0 (m > 0)$ のとき、つまりジャンプが平均的に金利下落（上昇）方向に起こると仮定する場合には、右上がり（左がり）のスキー形状（行使金利が低い＜高い＞方が、ポラティリティが高い）がみられる。

このように、Glasserman and Kou[2000]のモデルはスマイルを表現できる点で、モデルの表現力は高いと言えるが、実際にパラメータの推定を行なうには、各キャプレットに対し、ブラック式による複数の行使金利のインプライド・ポラティリティが必要となる。また、ポラティリティとジャンプ・パラメータの両方を推定すると、パラメータ数が多い分、推定は不安定になりやすく、安定的に
(2) CEVモデルの組合せ（Andersen and Andreasen[2000]のモデル）

Andersen and Andreasen[2000]は、LIBOR マーケット・モデルに CEV モデルを組合せえて、キャプレット、スワップションの解析解を導出し40、インプライド・ボラティリティのスキーを表わせることを示した41。LIBOR マーケット・モデルの CEV モデルを用いた拡張は、(2-4)式で、ある正の定数 \(\alpha \) を用いて、

\[
dL_i(t) = L_i(t)^{\alpha} \sigma_i(t) dW_i^+(t)
\]

(7-3)

とすることで表現される。\(\alpha \) により、ボラティリティがフォワード LIBOR 依存する度合いを調節することが可能となる。このとき、以下のキャプレットの解析解が得られる。

【CEV モデルを用いたキャプレット公式】

\[
a = \frac{K^{2(1-\alpha)}}{(1-\alpha)^2 \gamma_i^2}, \quad b = \frac{1}{1-\alpha}, \quad c = \frac{L_i(t)^{2(1-\alpha)}}{(1-\alpha)^2 \gamma_i^2},
\]

\[
\log \left(\frac{L_i(t)}{K} \right) + \frac{1}{2} \gamma_i^2 d_i, \quad d_2 = \log \left(\frac{L_i(t)}{K} \right) - \frac{1}{2} \gamma_i^2, \quad \gamma_i^2 = \int_0^t \| \sigma_i(t) \|^2 dt
\]

と書き、フォワード LIBOR が(7-3)式に従うとき、以下が成り立つ。

a) \(0 < \alpha < 1 \) で、\(L_i(t) = 0 \) が吸収壁である42とき、

\[
C_i^{CEV}(L_i(0), K, \gamma_i) = \delta_i D_i(0) [L_i(0)(1 - \chi^2(a, b + 2, c)) - K \chi^2(c, b, a)]
\]

b) \(\alpha = 1 \) のとき、

\[
C_i^{CEV}(L_i(0), K, \gamma_i) = \delta_i D_i(0) [L_i(0)N(d_1) - KN(d_2)]
\]

c) \(\alpha > 1 \) のとき、

\[
C_i^{CEV}(L_i(0), K, \gamma_i) = \delta_i D_i(0) [L_i(0)(1 - \chi^2(c, -b, a)) - K \chi^2(a, 2 - b, c)]
\]

ただし、\(N(\cdot) \) は標準正規分布の分布関数、\(\chi^2(\cdot, D, \lambda) \) は非心率 \(\lambda \)、自由度 \(D \) の非心カイ二乗分布に従う分布関数とする43。

40 ここでは、キャプレットの結果のみを紹介する。
41 インプライド・ボラティリティのスキーは表わせるが、スアイルは表現できない。
42 \(L_i(t) = 0 \) となった以降の \(L_i(t) \) は \(t \) によらず \(0 \) となることを表す。
43 非心カイ二乗分布の分布関数は非心度 \(\delta / 2 \) の強度を持つポアソン分布の密度関数をウェイトとしたカイ二乗分布 \(v \) の加重平均（下式）で表される。
このモデルでは、\(\alpha < 1 \) のときに、原点が到達可能な吸収壁であることが問題となる。\(^{44}\)

この問題点を克服するために、Andersen and Andreasen[2000]は、Limited CEV モデルと呼ぶ以下のモデルを提案している。

\[
dL_\alpha(t) = \varphi(L_\alpha(t)) \sigma_\alpha(t) dW^{\text{st}}(t)
\]

\[
\varphi(x) = x \cdot \min(\varepsilon^{-a}, x^{a-1}), \quad \varepsilon > 0
\]

ただし \(\varepsilon \) は \(\alpha < 1 \) のときは小さな定数、\(\alpha > 1 \) のときは大きな定数。

この問題では、フォワード・レートが \(\varepsilon \) を超えると、Limited CEV 過程が、相対的に大きなポラティリティを持つ幾何ブラウン運動にスイッチすると解釈できる。この Limited CEV モデルでは解析解が得られないが、Andersen and Andreasen [2000]は、モンテカルロ法を用いて数値実験を行ない、(7-4)式が Limited CEV モデルの精度の高い近似解であると主張している。

8. その他の研究成果

ここでは、LIBOR マーケット・モデルを用いたその他の研究成果を簡単に紹介する。

LIBOR マーケット・モデルに残された課題の 1 つに、アメリカン・オプションやパミーダ・オプションのプライシングがある。LIBOR マーケット・モデルは HJM モデル同様、マルコフ性の無いモデルで、再結合する格子上でモデル化するのに向かないモデルである。これに対して、Andersen[2000]は、最小二乗モンテカルロ法で、LIBOR マーケット・モデルの枠組みで、パミーダ・スワップショ ンのプライシングを提案し、ファクター数が最適行使戦略に与える影響も比較している。

Hunt, Kennedy and Pelsser[2000]は、マルコフ性を持ったシングル・ファクター

\[
\chi^2(x,d,\delta) = e^{-\frac{\delta}{2}} \sum_{k=0}^{\infty} \frac{(\delta/2)^k}{k!} \nu(x,d + 2k)
\]

数値計算では、十分な精度が得られるまで和計算を行なう方法のほか、Ding[1992]のアルゴリズムがある。

\(^{44}\) 正の確率でフォワード・レートが 0 に吸収されてしまうことは、金利が上昇したときにベイオフが発生するキャップの場合であれば、さほど問題にならないかもしれないが、よりエキゾチックな商品のプライシングには大きな問題になり得る。
ターのマーケット・モデルを提唱し、市場の価格を（スマイルを含めて）表現可能であることを示している。モデルがマルコフ性を持っていることから、アメリカン・オプション等の評価に適したモデルと言えるが、マルチ・ファクターへの拡張は今後の課題となっている。

また、スマイルを取扱う他の手法としては、ブラウン運動の係数の項が確率的に変動するSV（ストキャスティック・ボラティリティ）モデルを組合わせたモデルが挙げられる。Joshi and Rebonato(2001), Rebonato(2001)では、LIBORマーケット・モデルに、SVモデルを組合わせたモデルを提案し、英国の市場データによる実証分析を行なっている。

9. まとめ

本稿では、まず、LIBORマーケット・モデルの基本的な解説と実際にモンテカルロ・シミュレーションでプライシングを行なう場合の手続きを、本邦の金利派生商品のデータを用いた具体例により説明した。

次に、Rebonato(1999a,b)によるスワップション・ボラティリティ近似式を用いて、キャップとスワップションのボラティリティを共に反映させたLIBORマーケット・モデルのパラメータ推定を、市場データを用いて行なった。求められたパラメータは、市場で取引されるキャップとスワップション価格を概ね表現できるものであるが、推定されたパラメータ（特にブラウン運動の相関）は必ずしも市場で観測される形をうまく表すことはできなかった。今後さらに、ヒストリカル・データを用いたヘッジ効率の分析、バックテスト、パラメータ推定時の制約の付加等を行なうことにより、パラメータ推定の安定性を改善させることができるものと考えられる。

次に、LIBORマーケット・モデルにおいて、ボラティリティのスマイルを取り扱うアプローチとして、Glasserman and Kou(2000)のジャンプを取入れたモデルと、Andersen and Andreasen(2000)のCEVモデルを取入れた2つの手法を紹介した。このうち、ジャンプを取入れたモデルは、市場で観測されるインプライド・ボラティリティのスマイルを表現できることを数値例で示した。

このように、LIBORマーケット・モデルは、ボラティリティのモデル化に関する自由度が高く、市場データの説明力も比較的高いことから、実務への応用
が期待されているモデルである。ただし、本稿の具体例からもわかるように、スマイルを考慮しないブレーンなモデルであってもパラメータの推定方法にはなお改善の必要がある。

今後の課題としては、本稿で行なったパラメータ推定手法を改善させつつ、さらにジャンプ・モデルや CEV モデル、SV モデルを取込んだ発展型の LIBOR マーケット・モデルの実務での活用を検討することが挙げられる。

以上
補論 確率測度の変換とフォワード中立化法について

LIBOR マーケット・モデルでは、確率測度のやや複雑な変換が行なわれるため、測度変換に関する正しい理解が重要となる。以下では確率測度の変換と、フォワード中立化法によるプライシングを極力直観的に説明する。

ネフツィ [2001] は確率測度の変換を次のくじの例で説明している。

「3分の1ずつの確率で 10, -3, -1 が出るくじを考えるとき、このくじの平均を 0 にする方法は 2 つある。1つ目は、各数字からそれらの平均値を引くというものである。このくじの平均値は 2 なので、各数字から 2 ずつ引いて、8, -5, -3 が3分の1ずつの確率で出るくじに変更する方法である。2つ目は、平均が 0 になるように確率を導入する方法である。 平均が0 となり、分散が不変で、確率の合計が 1 との条件で、新しい確率を求めると、各々 122/429, 242/429, 65/429 が得られる。このように、新しい確率を導入（確率測度の変換）することにより、元の分布形状を変えることなく平均をシフトさせることができる。」

現実には、考える原資産の将来の平均値を知ることは基本的に不可能であるので、上記の1つ目の方法はプライシングに利用できない。そこで、上記の2つ目の方法で平均値をシフトさせて、プライシングを行うことになる。以下、確率測度の変換とプライシングの関係を説明する。

フォワード LIBOR $L_i(t)$ を原資産とする派生商品のプライシングを考える。時刻 t でのこの派生商品の価格を $C_i(t)$ と書く。例えばキャプランのときには、

$$C_i(T_{i+1}) = \max(L_i(T_i) - K, 0)$$

というベイオフを考えればよい。本論中では、割引債をニューメールとしているが、それは「先渡価格」で考えていることになる。つまり、派生商品の価格 $C_i(t)$ を割引値 $D_{i+1}(t)$ で除した $C_i(t) / D_{i+1}(t)$ は、 $C_i(t)$ の将来時刻 T_{i+1} での価値を表している。

次に、上記のくじの例のように、新しい確率を導入することを考える。今度は、将来時刻 T_{i+1} での先渡価格の期待価が、現在の先渡価格に等しくなるように確率を選ぶ。これを式で書くと、次のようなになる。

$$\frac{C_i(t)}{D_{i+1}(t)} = E^{T_{i+1}} \left[\frac{C_i(T_{i+1})}{D_{i+1}(T_{i+1})} \right]$$

ただし、$E^{T_{i+1}}$ は、T_{i+1} での先渡価格の期待値が、時刻 t での先渡価格と一致す
ような確率で期待値を取る操作を表わしている。このように、将来の期待値と現在の値が等しい状態をマルチンゲールであるという。また、このように先渡価格がマルチンゲールとなる確率を「フォワード中立確率」と呼ぶ。また、ここでの割引債を「ニューメレール（基準財）」と呼ぶ。

満期での割引債価格は \(D_{i+1}(T_{i+1}) = 1 \) なので、(A-1)式は以下のように書ける。

\[
C_i(t) = D_{i+1}(t)E^{T_i}[C_i(T_{i+1})]
\]

(A-2)

この式は、時刻 \(t \) での価格 \(C_i(t) \) は、フォワード中立確率の下での満期のベイオフの期待値に、満期 \(T_{i+1} \) の割引債価格を乗じたものとなることを意味している。つまり、期待値演算が行わない易い（確率微分方程式が単純になる）確率で期待値を求めて、現実の世界の価値に直すために、最後にニューメレールで補正するのである。このようにしてプライシングすることを「フォワード中立化法によるプライシング」と呼ぶ。なお、本論3章のモンテカルロ・シミュレーションで行なったことは、多数のパスによるこの期待値演算の近似であった。

実確率の下で、フォワード LIBOR の変化率のパスと分布が、以下のグラフで表されるとする。

図 19：フォワード LIBOR 変化率のパスと分布（実確率下）

ただし、\(L_i(t) \) は、時刻 \(T_i \) に支払金利が確定し、その利払日は \(T_{i+1} \) である。

45より正確には、この期待値は時刻 \(T_{i+1} \) での条件付期待値で、確率変数の可測性や可積分性に関する条件が必要となる。この点は森村・木島[1991]等を参照。
LIBOR マーケット・モデルは、フォワード LIBOR \(L_i(t) \) が、満期 \(T_{i+1} \) の割引値 \(D_{i+1}(t) \) をニューメールとするときに、対数正規過程に従う（本文中の(2-4)式）と仮定した。これを、上述のくじの例と同様に、フォワード中立確率を用いて、分布の形状を変えずその平均が \(0 \) となるようにシフトさせると、以下の図 20 のようになる。

図 20 ：フォワード LIBOR 変化率と分布（フォワード中立確率）

この図は、ニューメールに各々 \(D_i(t) \) と \(D_{i+1}(t) \) を選んだとき、分布の平均が \(0 \) となるように、分布の形状を変えずに確率過程をシフトさせていることを表している。

LIBOR マーケット・モデルの以下の(A-3)式は、フォワード中立確率下では、
\(\sigma_i(t)W^{i+1}(t) \) は平均 \(0 \)、分散 \(\sigma_i(t)^2 \) のブラウン運動であるので、\(L_i(t) \) の増減（左辺）の平均は \(0 \) であるということを表している。

\[
dL_i(t) = L_i(t)\sigma_i(t)dW^{i+1}(t)
\] (A-3)

(A-2)式を用いて、フォワード中立化法でプライシングを行なう場合には、(A-3)式の確率過程に従う変数によって決まるベイオフの期待値を求めることになる。この計算は確率変数の積分が47となるが、\(\sigma_i(t) \) が確率積分可能な条件を満たすなら

46 フォワード中立確率の下では、考えている確率過程はマルチンゲールとなるので、同じ拡散係数を持つ標準ブラウン運動で記述できる（分布を変えずに平均をずらせる）ことをギルザノフの定理から導くことができる（拡散係数の不変性）、証明は田畑[1993]等を参照。

47 ここでは、伊藤積分を指す。
ならば解析的な解を求めることができる。
次に、割引債 \(D_{i+1}(t) \) をニューメレールとした共通のフォワード中立確率で、
\(L_i(t) \) と \(L_{i-1}(t) \) を同時に見たときの図が以下の図 21である。

図 21 : \(D_{i+1}(t) \) をニューメレールとしたときの \(L_i(t) \) と \(L_{i-1}(t) \) の変化率

\[dW^i(t) = dW^{i+1}(t) - \frac{\delta_i L_i(t)}{1 + \delta_i L_i(t)} \rho \sigma_i(t) dt \]

\(D_{i+1}(t) \) をニューメレールとしたときには、\(L_{i-1}(t) \) の平均がずれ過ぎてしまい、マイナスのドリフトが発生している。このずれの補正幅を表す式が、本論中の(2-9)式である。

3章（3）節のモンテカルロ法を用いたプライシングでは、最長満期のフォワード LIBOR が対数正規過程に従うようにニューメレールを定め、標準正規乱数から、順次手前のフォワード LIBOR を求めていった48。(3-9)～(3-10)式で行なっている調整は、以下のように考えることができる。(3-9)式で、将来の異なる時点での発生するベイオフを、時刻 \(T_i \) での価格に変換する。これにより、異なる時点での発生するキャッシュ・フローに関する、時刻 \(T_i \) での同じ確率の下での期待値を、(3-10)式で計算することができる。

48 このように、最も長い満期の割引債をニューメレールとしたとき、この測度をターミナル・メジャーと呼ぶ。
參考文献

木鳥正明、『期間構造モデルと金利デリバティブ』、朝倉書店、1999 年。

田畑吉雄、『経済の情報と数理Ⅲ - 数理ファイナンス論』、牧野書店、1993 年。

伏見正則、『確率と確率過程』、講談社、1987 年。

ネフツィ、S. N.、『ファイナンスへの数学（第二版）』、朝倉書店、2001 年。

ハル、J. 、(東京三菱銀行金融商品開発部訳) 、『ファイナンシャル エンジニアリング（第 4 版）デリバティブ商品開発とリスク管理の総体系』、金融財政事情研究会、2001 年。

森村英典・木鳥正明、『ファイナンスための確率過程』、日科技連、1991 年。

Ding, C. G., “Algorithm AS275: Computing the Non-Central χ² Distribution

Rebonato, R., *Volatility and Correlation -In the Pricing of Equity, FX and Interest-Rate*, John Wiley & Sons, LTD, 1999b.