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I. Introduction

Machine learning is an inductive methodology that automatically extracts input-output
relationships from a huge number of input-output samples given a predetermined
model. This calculation paradigm enables us to capture extremely complicated
input-output relationships and to resolve difficult tasks such as image processing. This
advantage promotes the implementation of machine learning systems (i.e., IT systems
that incorporate machine learning models) into social infrastructures at a rapid pace.
The financial industry has also applied machine learning for their core business, e.g.,
asset management and credit scoring.

Nevertheless, machine learning systems are known to have various vulnerabilities.
A number of them are sources of novel cyber security risks that cannot be effectively
addressed by conventional security methodologies. So far, the overall picture of these
vulnerabilities and relevant security risks has not been clarified, and there is no consen-
sus about their taxonomy. Although the impacts of security risks differ among machine
learning services reflecting their purposes and actual usages, those risks would cause
serious incidents in a number of cases such as defeating a face recognition system or a
malfunction in an autonomous driving system.

Recently, CERT Coordination Center1 has issued a vulnerability note2 that warned
of the vulnerability in a certain class of machine learning systems. It has drawn much
attention because it was the first alert regarding machine learning that is expected to
be implemented more widely and deeply into IT systems in the future. The alert was
novel in a sense that the vulnerability pointed out was not of an individual and existing
IT system but of a certain class of machine learning systems including ones that do not
exist yet. We need to be aware of known vulnerabilities of machine learning systems
when we utilize them.

In this paper, Section II explains the paradigm and features of machine learning.
Section III points out the cyber security risks specific to machine learning systems. It
also clarifies the source of difficulties in machine learning security and finds usefulness
of the taxonomy of security risks based on the failure mode approach proposed by
Kumar et al. (2019). Referring to this literature, Sections IV, V, and VI introduce known
vulnerabilities of machine learning systems. Kumar et al. (2019) collected research
results on ‘failures’ of machine learning systems, classified them by failure modes,
and suggested a comprehensive taxonomy on the basis of the failure mode approach.
Their paper is cited by the aforementioned vulnerability note from CERT Coordination
Center.

................................
1. CERT Coordination Center is a non-profit organization centered at Carnegie Mellon University in the United

States. It conducts research on cyber security, collects information on vulnerabilities mainly in existing cyber
systems, and shares them with software vendors and incident responders. Through these networking activities,
it warns of cyber security risks and promotes to resolve them.

2. Vulnerability Note VU#425163, March 19, 2020 (https://www.kb.cert.org/vuls/id/425163).
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Figure 1 Comparison of Ordinary IT System and Machine Learning System

II. Paradigm and Features of Machine Learning

A. Comparison between Ordinary IT Systems and Machine Learning Systems
1. Ordinary IT systems
In an ordinary IT system (i.e., an IT system that does not incorporate machine learning),
the input-output relationship ( f ) is predetermined as its specification (see the top of
Figure 1). System developers implement the information processing rules of the system
in accordance with this specification. By construction, those rules do not depend on any
data. Thus, the ordinary system is deductive because it derives output data from input
data in accordance with predetermined information processing rules.
2. Machine learning systems
In a machine learning system (see the bottom of Figure 1), a machine learning model
automatically extracts the input-output relationship (˜f ) from training data {u, f (u)},
which consists of input-output samples.3 This process is called ‘training’ or ‘learn-

................................
3. Figure 1 shows the paradigm of supervised learning in which machine learning models are trained using

samples of input-output pairs {u, f (u)}. In general, there are three machine learning paradigms: supervised
learning, unsupervised learning, and reinforcement learning. All share a common property in which the in-
formation processing rules depend on (training) data.

In unsupervised learning, the training data does not contain samples of correct output f (u). Its typical ap-
plications are clustering, which automatically classifies unknown data, and anomaly detection, which finds
outliers in data.

In reinforcement learning, machine learning models produce data for training by themselves given an en-
vironment. Reinforcement learning consists of agents, rewards, and an environment. The agent repeatedly
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ing.’ The extracted relationship (˜f ) approximates the genuine and unobservable one
( f ), which appears only in the training data, and also represents the information pro-
cessing rules of the system. This means that preparing the training data is equivalent
to formulating the specification in the case of an ordinary IT system. System devel-
opers cannot directly affect the rules because they depend only on training data and
plain machine learning models.4 Thus, a machine learning system is inductive because
it derives information processing rules from individual data.

To realize and implement the learning mechanism, machine learning methodology
requires an approach of preparing flexible models5 that are suitable for general pur-
poses. These models can express various and complicated input-output relationships
flexibly by modifying their parameters. Model training corresponds to determining the
values of these parameters from training data by running a learning algorithm. This
stage of information processing is called the ‘training phase.’ The more expressive the
model needs to be, the more parameters (degrees of freedom) the model needs to con-
tain. The trained model possesses the information processing rules in the form of the
determined values. The stage in which the trained model incorporated into the system
provides a service is called the ‘operational phase.’

B. Features of Machine Learning
Machine learning enables us to obtain plausible output from a huge amount of training
data, even if the desirable input-output relationship is unknown or too complicated to
be expressed as information processing rules suitable for coding. In contrast, machine
learning has the following disadvantages that lead to difficulties in cyber security and
software quality management.
1. Unclear requirements for machine learning systems
Machine learning systems are expected to resolve tasks where input data comes di-
rectly from natural or real-world environments. Since the range of input data is vague
and open, the properties that the input-output relationship of the system should satisfy
are also vague. In other words, we cannot accurately define requirements for machine
learning systems. For example, an automatic driving system that uses image process-
ing is expected to output appropriate operations of a vehicle for any situations a driver
may encounter. In this case, the input data will vary indefinitely, reflecting real-world
factors such as road traffic conditions, weather, and human behavior. It is impossible
to enumerate all of them, and thus impossible to define the range of input data needed
to determine the behavior of the system. This also indicates that it is infeasible to com-
pletely validate all input-output relationships in the system.
..........................................................................................................................................

selects and takes an action, and receives a ‘reward’ or ‘gain’ from the environment, which are fed back into
the agent. Through trial and error, the agent learns a better strategy of selecting actions. This methodology is
distinguished from other paradigms due to its characteristics that it does not necessarily need a huge amount
of (training) data. For instance, reinforcement learning is applied to artificial intelligent software for playing
Go, a board game, and for autonomous walking robots.

4. System developers can indirectly affect the information processing rules of a machine learning system through
the construction of training data and the choice of learning algorithms and plain models.

5. Various models have been proposed that can be applied to typical tasks in machine learning: regression,
prediction, classification, and anomaly detection. Frequently-used examples include the multilayer percep-
tron (MLP), which is the simplest version of deep learning, and the random forest model, which bundles a
multitude of decision trees for a single output.
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2. Unclear features of trained models
Expressive machine learning models are typically required to resolve difficult tasks
of which requirements are unclear. Since information processing rules are stored in a
model as a huge number of parameters in this case, the machine learning system has
the following three features regarding explainability, predictability and confidentiality,
respectively.6 First, it is difficult for humans to interpret model parameters as meaning-
ful information processing rules, making it difficult to justify a model’s performance.
Second, it is difficult to predict in advance how the model will perform for input data
that do not appear in the training data. Third, the model-training process conveys in-
formation from training data into model parameters, but information conserved by this
conveyance is unclear. As discussed later, this feature poses a risk of information leak-
age.

III. Security Risks Specific to Machine Learning Systems

A. Vulnerabilities Inherent in Information Processing Rules
A number of vulnerabilities in machine learning systems can be inherent in information
processing rules (a set of parameters in a machine learning model).7 In fact, many stud-
ies have discovered feasible attacks that exploit these types of vulnerabilities (Kumar
et al. [2019]).

For example, Sharif et al. (2017) suggested an attack against a machine learning
system that identifies a person from a face image captured by a camera. When a user (an
attacker) wears accessories such as glasses whose surface is maliciously designed, the
system cannot correctly recognize the attacker as the genuine person due to changes in
the input image caused by the glasses. This attack invalidates the identification by ex-
ploiting a deficiency in the information processing rules acquired by the model through
its training phase.

In this example, even though the attacker can only exercise the privileges permis-
sible to them (and this privileges must remain permissible from the perspective of the
system design) and there are no conventional software bugs, the attack is considered
successful. This is a novel security risk brought about by machine learning. It is difficult
to effectively resolve this risk with only conventional security countermeasures such as
fixing software bugs, controlling access, and managing user privileges appropriately.

B. Source of Difficulties in Machine Learning Security
Resolving vulnerabilities inherent in information processing rules of machine learning
is not easy due to the following three difficulties.
1. Identifying vulnerabilities comprehensively
The first difficulty lies in comprehensively identifying vulnerabilities of machine learn-
ing systems. This is because, as mentioned in Section II. B.1, system requirements are
unclear and it is difficult to exhaustively take into account all possible input data and
................................

6. It is also unclear how these features relate to each other.
7. There are also vulnerabilities common to machine learning systems and ordinary IT systems. For example,

the inappropriate assignment of user privileges or programming errors (software bugs). For most of them,
however, the countermeasures have already been established.
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their corresponding plausible output data. Although research has been conducted ac-
tively on the vulnerabilities and associated security risks, an overall picture of them has
not been clarified and there is no consensus about their taxonomy. For system develop-
ers, it is also costly in terms of time and human resources to follow the latest research
trends timely and thoroughly.
2. Modifying information processing rules
The second difficulty lies in modifying the information processing rules (i.e., retraining
a model), predicting potential impacts of the modification on the performance of the
model, and validating the modification. Due to the poor explainability and predictabil-
ity as mentioned in Section II. B.2, it is difficult to find a way to remove vulnerabilities
inherent in the information processing rules from the model parameters. It is also not
easy to predict impacts of the modification on the system functionalities. Furthermore,
it is difficult to validate that modified rules to satisfy the system requirements because
they are unclear, as discussed. As a result, it is difficult to modify the rules to appro-
priately mitigate or resolve vulnerabilities inherent to them. Thus, there are always
uncertainties in conducting such security measures that change information processing
rules of a model.8

3. Separation of vulnerabilities and functionality
Modifying information processing rules to mitigate vulnerabilities affects the function-
ality of the system. When retraining a model, the overall parameters are changed. Even
if only a part of the parameters is changed, its impact will extend to the functionality of
the entire system since it is materialized by a set of all the parameters. Therefore, the
vulnerabilities inherent in the information processing rules and the functionality can-
not be considered separately. The issue is how to successfully modify the rules while
maintaining the functionality.9

IV. Failure Modes in Machine Learning: Approach of Kumar et al.

A. Failure Mode
Vulnerabilities inherent in the information processing rules of machine learning sys-
tems cannot be addressed without modifying their entire functionality, as discussed in
Section III. Thus, security risks associated with the vulnerabilities can be captured only
by a comprehensive approach for the entire system, rather than a partial approach that
reveals the location of each vulnerability within the system and addresses each of them
locally. Kumar et al. (2019) adopted the comprehensive approach that focused on the
‘failure’ phenomenon of an entire system in which the system loses its characteristics
or attributes to be retained. They collected results related to failures in machine learn-
ing systems and classified them by ‘failure modes’ (see Figure 2). A list of the modes
proposes a taxonomy of vulnerabilities and the associated security risks in machine
................................

8. Imperfection in machine learning security can be viewed as that of the performance of machine learning
systems in the context of software quality management.

9. The difficulty in capturing security risks of machine learning systems is also reflected in the vulnerability note
published by CERT Coordination Center (see Footnote 2). The report states that machine learning models
trained using the gradient descent method can be forced to make arbitrary misclassifications by an attacker
that can influence the items to be classified. The note points out that such vulnerabilities come from learning
algorithms themselves.
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Figure 2 Failure Modes in Machine Learning Systems

Note: Failures can occur without attacks.

Figure 3 Attributes for Classifying Failure Modes

learning.10

B. Classification of Failure Mode
Failure modes listed by Kumar et al. (2019) have the following three attributes that are
helpful to structure them (see Figure 3). Kumar et al. (2019) have already proposed to
attach the first and the third attributes to each failure mode. This paper simply extends
their work in such a way to add the second attribute here.
1. Presence or absence of attacker’s intention
Failure modes in machine learning can be classified into two categories: ‘intentional
failures’ caused by an attacker’s malicious intention and ‘unintentional failures’ that
originate from the innate software design of the system.

Intentional failures consist of three types of attacks: (1) attacks that manipulate a
model and obtain incorrect output data in such a way to perturb input data, (2) attacks
that change the information processing rules in such a way to set a backdoor in a model
by poisoning training data, and (3) attacks that steal information such as detecting
hidden training data or duplicating the model itself with business value.

................................
10. The list of failure modes and research cases shown in Kumar et al. (2019) are still being updated. The list is

useful to understand the latest research trends. This article is based on a report obtained at the time of writing
(end of July 2020).
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Unintentional failures focus on cases where the performance of the model au-
tonomously degrades during the training process without external interference such
as attacks. This category excludes failures due to negligence in the training process or
simple software bugs. Thus, there are many cases of failures in reinforcement learning
in which training data are autonomously generated through the trial and error of agents
within the environment, and it does not need a huge amount of training data from the
outside.
2. Location of vulnerabilities
Failures of machine learning systems can be conventionally classified into the fol-
lowing two types in accordance with the location of vulnerabilities: failures caused
only by vulnerabilities specific to machine learning systems as discussed in Section
III and failures caused by vulnerabilities common to ordinary systems. Recently, Ma-
chine Learning as a Service (MLaaS), which provides a platform for machine learning
development via the Internet, has become commonly used. Since such large-scale ser-
vices are usually provided using open-source software and/or open-access databases,
conventional software bugs or malicious codes can be mixed into the machine learning
model developed on the platform. Though these vulnerabilities are not specific to ma-
chine learning, we cannot ignore them when securely implementing machine learning
systems. In particular, it should be noted that the combination of these conventional
vulnerabilities and those specific to machine learning enables new types of attacks and
associated failure modes.
3. Functional characteristics to be lost
Generally, the security principle of an IT system is to retain confidentiality, integrity,
and availability (CIA). Confidentiality represents a characteristic where operation data
are not disclosed to unauthorized entities. Integrity represents one where an IT system
operates as specified. Availability represents one where an IT system always operates
in response to user requests. A successful attack can violate any of these characteristics.
Therefore, it is natural to categorize failures in accordance with the characteristics to
be lost due to such an attack. This conceptual framework for ordinary IT systems is
applicable to the security analysis of machine learning systems.

V. Diagram of Information Flows in Providing Machine Learning Sys-
tems

As described in Section VI, many failures in machine learning are caused by attacks. To
recognize how these attacks are actually carried out, it is useful to overview the flows of
information, e.g., models, data, and program source codes, regarding the development
of machine learning systems. Figure 4 visualizes such flows.11

The simplest scheme of providing a machine learning system is as follows. In the

................................
11. In this article, we do not individually associate each type of attack seen in Section VI with situations in

which they are executed (locations in the diagram in Figure 4). There are considered to be multiple such
situations. For example, the data poisoning attack (see Section VI. A.1.b.(1)) can be executed in each process
of generating, storing, and distributing training data (A, D, E, F, etc. in Figure 4). Our future work is to
enumerate conditions that enables each attack (premise of attacker’s ability, position of an attacker, situation
where an attack is executed) and clarify security countermeasures under each condition.
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Figure 4 Information Flows among Entities in Machine Learning Systems

training phase, (A) a model developer receives training data from a training data holder
and trains the model. (B) The trained model is deployed in the production environment.
In the operational phase, (C) a system operator provides users with machine learning
services in response to users’ demand. (D) New data, which are generated in the oper-
ation of the services, are stored as new training data.

In terms of model development, (E) the model developer may use an external plat-
form. (F) Typically, a large-scale platform for machine learning is developed using
open-source programs or open-access databases. (G) The model developer may import
a trained model (from other companies), which typically needs large-scale computa-
tional resources for its training, and incorporates it into their own model as a part.12

VI. List of Failure Modes by Kumar et al.

This section introduces a list of failure modes illustrated by Kumar et al. (2019) in a
hierarchized way. They classified failure modes into ‘intentional failures’ (11 modes)
and ‘unintentional failures’ (6 modes). This section further classifies the intentional
failures into attacks that exploit vulnerabilities purely specific to machine learning (7
modes) and attacks that additionally exploit conventional vulnerabilities (4 modes).

................................
12. Transfer learning is included in these cases. It is a technique for applying a trained model that solves one

problem to another related problem. It is attractive because it opens the way to apply a methodology, which
requires a large amount of training data such as deep learning, to problems when only a small amount of
training data is available. For example, a deep learning model for object recognition trained and published
by a company is incorporated into a model fine-tuned by another company for their own purpose. For the
vulnerabilities of transfer learning, see Section VI. A.2.a.(1) (Backdoor attack).
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These two classes are further classified in accordance with security characteristics to
be lost, i.e., integrity, confidentiality, and availability.

Classification of failure modes

A. Intentional failures (11 modes)
1. Attacks exploiting vulnerabilities purely specific to machine learning

(7 modes)
a. Attack on integrity 1 <Changing input data>
b. Attack on integrity 2 <Modifying information processing rules>
c. Attack on confidentiality

2. Attacks exploiting additional common vulnerabilities (4 modes)
a. Attack on integrity
b. Attack on confidentiality
c. Attack on integrity, confidentiality, and availability

B. Unintentional failures (6 modes)

A. Intentional Failures
Most studies on intentional failures aim to prove the existence of vulnerabilities in
machine learning systems and do not necessarily indicate the magnitude of threats or
levels of risks13 that vulnerabilities will be exploited in actual situations. To evaluate
the security risks of a machine learning system in each failure mode, it is also necessary
to consider the system’s purpose, its operating environment, and assumptions14 about
an attacker’s ability depending on the attack method.
1. Attacks exploiting vulnerabilities purely specific to machine learning
There are three types of attacks that exploit vulnerabilities purely specific to machine
learning: (1) those that attempt to manipulate output by changing input data fed into
the trained model without changing the information processing rules (Attack on in-
tegrity 1), (2) those that attempt to modify the rules themselves maliciously (Attack on
integrity 2), and (3) those that attempt to steal information from the machine learning
model (Attack on confidentiality).
a. Attack on integrity 1 <changing input data>
Attacks that attempt to manipulate the output by changing the input data include per-
turbation attacks, making adversarial examples in physical domains. The following
sections summarize each failure mode and its corresponding research cases. This pa-
per also describes ‘attack modes’ that represent the author’s presumption of how an
attacker exploits the vulnerabilities in each failure mode (the same applies hereinafter).

................................
13. Microsoft Corporation’s supplemental content named ‘Bug Bar’ describes each intentional failure mode and

puts ratings of severity for it (https://docs.microsoft.com/en-us/security/engineering/bug-bar-aiml).
14. This paper only describes the situation of each attack and does not detail the premise of the attacker’s ability.

In the case of a white-box attack, the attacker has full knowledge of a target model such as model parameters
and architecture. In the case of a black-box attack, the attacker knows nothing about the internal state of
the model. In general, the premise of the attacker’s ability depends on the attack method. For example,
perturbation attacks (see Section VI. A.1.a.(1)) contain both black-box and white-box attacks.
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(1) Perturbation attack
Failure
mode

The output of a machine learning model is manipulated improp-
erly by modifying the input data.

Attack
mode

An attacker perturbs the input data of a query to the machine
learning system to obtain a desired output.

<Research cases>

• An attacker constructs an adversarial image by adding noise, which is impercep-
tible to human eyes, to an X-ray image of the skin. The crafted adversarial image
is perceptually indistinguishable from the original one but causes the skin lesion
classifier, which is based on a deep learning model, to misclassify. Similarly,
adding noise to MRI images of the whole brain prevents the correct segmenta-
tion maps from being generated (Paschali et al. [2018]).
• An attacker performs advanced editing operations on text translation systems,

which are based on a deep learning model, by slightly modifying the characters
in the input text data. The operations can remove or change a specific word from
the translated text (Ebrahimi, Lowd, and Dou [2018]).
• An attacker constructs adversarial audio examples on automatic speech recogni-

tion systems, which are based on a deep learning model. The adversarial wave-
form is quite similar to the original one, but transcribes into any phrase chosen
by the attacker (Carlini and Wagner [2018]).

(2) Adversarial example in the physical domain

Failure
mode

A machine learning system malfunctions due to input data asso-
ciated with maliciously crafted adversarial objects in the physical
domain.

Attack
mode

An attacker creates an object that deceives the machine learning
system and places it in a specific location.

<Research cases>

• An attacker constructs robust adversarial 3D objects with custom textures. The
image recognition system consistently misidentifies images of turtle-shaped ob-
jects as those of rifles, regardless of viewpoint shifts or other natural transfor-
mations (Athalye et al. [2018]). This attack can confuse the system for detecting
dangerous goods.
• An attacker constructs adversarial sunglasses with custom and inconspicuous

textures that can fool an image recognition system. The system can no longer
identify the person wearing sunglasses correctly (Sharif et al. [2017]). This at-
tack also enables the person to evade manual face recognition by humans.

b. Attack on integrity 2 <modifying information processing rules>
Attacks that attempt to change the information processing rules maliciously include
data poisoning attacks and adversarial reprogramming.
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(1) Data poisoning attack
Failure
mode

Information processing rules are maliciously modified by con-
taminating the training data.

Attack
mode

An attacker injects improper data into the training data managed
by the training data holder. Alternatively, in an online machine
learning system, the attacker generates improper data with user
privileges, which is then joined with the training data.

<Research cases>

• A certain chatbot had adopted an online learning methodology in which conver-
sation logs with users were fed back into the system as training data, enabling the
chatbot to acquire inappropriate expressions through conversations with multi-
ple malicious users (Lee [2016]).
• An attacker introduced malicious samples into the training data with an 8％

poisoning rate for the model that predicts the dosage of an anticoagulant drug.
The prediction of the model based on LASSO regression dramatically changed
by 75％ for half of all patients (Jagielski et al. [2018]).

(2) Adversarial reprogramming

Failure
mode

A model, which is trained to perform original task X, is mali-
ciously used for another task Y chosen by the attacker without
retraining the model.

Attack
mode

Given the trained model designed originally to perform X, an at-
tacker crafts the converter (an adversarial program) f that con-
verts Y’s input so that the model performs Y for the converted
input. In advance of the craft, the attacker defines another con-
verter g that maps the model’s output back to Y’s output.
During the operational phase, the attacker converts Y’s input IY
into the model’s input f(IY) using the adversarial program, and
puts f(IY) into the model. The attacker then maps the model’s
output M ◦f(IY) back to Y’s output OY = g◦M ◦f(IY). Through
this process, the attacker can enable the model to perform Y
different from X.

<Research case>

• Given a pre-trained ImageNet model that classifies images, an attacker crafts an
adversarial program that enables the model to do a counting task. The program
places multiple small rectangles at the center of a specific image. The ImageNet
model then takes the converted image including small rectangles as an input.
The model outputs its ‘classification’ that actually depends on the number of
rectangles centered in the input image. Mapping the ‘classification’ into the cor-
responding number of rectangles, the attacker can enable the model to perform
the counting task as desired (Elsayed, Goodfellow, and Sohl-Dickstein [2018]).15

................................
15. This research aims to explore the potential of attacks against deep neural networks. The severity of the threats

from those attacks in actual situations has not been sufficiently studied. Elsayed, Goodfellow, and Sohl-
Dickstein (2018) reported the risk that computational resources are stolen and reprogrammed for malicious
and unethical usages such as breaking a CAPTCHA (Completely Automated Public Turing test to tell Com-

66 MONETARY AND ECONOMIC STUDIES /NOVEMBER 2021



Security Risks of Machine Learning Systems and Taxonomy Based on the Failure Mode Approach

c. Attack on confidentiality
Attacks that attempt to extract information stealthily from machine learning models
include model inversion, membership inference, and model stealing.

(1) Model inversion

Failure
mode

Secret training data or hidden features used in a machine learn-
ing model are recovered from its output through carefully de-
signed queries.

Attack
mode

An attacker has a part of the training data (such as a user’s name
in the database of a face recognition system) and repeatedly
accesses the model as an ordinary user.

<Research case>

• An attacker reconstructs a private and recognizable face image from a corre-
sponding user’s name and output data from the face recognition model.16 This
attack utilizes the confidence values that are included in the output of the model.
In another example, the attacker infers the individual responses to sensitive ques-
tions such as “Have you ever cheated on your significant other?” with high pre-
cision. This phenomenon occurred in a certain decision tree model that studied
lifestyle surveys (Fredrikson, Jha, and Ristenpart [2015]).

(2) Membership inference attack
Failure
mode

Whether a training dataset contains a given data record or not is
determined.

Attack
mode

An attacker has a candidate for the data record and repeatedly
accesses the machine learning model as an ordinary user.

<Research case>

• A target model is trained using a hospital discharge dataset that contains sensi-
tive attributes regarding a patient such as diagnoses, procedures underwent (e.g.,
surgery), and generic information (e.g., gender, age, hospital id). The attacker
predicts the patient’s procedure on the basis of the attributes with over 70％
accuracy (Shokri et al. [2017]).

(3) Model stealing
Failure
mode An original model and its functionality are recreated.

Attack
mode

An attacker repeatedly sends queries to the target model (i.e.,
the original model) as a user to recreate the new one that per-
forms similarly to the original one.

..........................................................................................................................................
puters and Humans Apart), which distinguishes between machine and humans input.

16. To quantify the efficacy of reconstructing face images, the researchers performed an experiment to determine
whether humans can correctly select a target person out of five images by using the recovered one. As a result,
participants of the experiment selected the correct images at almost 95％ accuracy.
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<Research case>

• An attacker duplicates the functionality of a target machine learning model (i.e.,
steals the model) without prior knowledge of its parameters or training data. For
example, a decision tree model, which was trained using a credit database and
outputs credit scores, was duplicated by the model stealing attack. This attack
was found to be effective for the machine learning services accessible over a
network (Tramèr et al. [2016]).

2. Attacks exploiting additional common vulnerabilities
Attacks that exploit common vulnerabilities include (1) backdoor attacks exploiting the
supply chain of machine learning models (Attack on integrity), (2) recovering training
data (Attack on confidentiality), and (3) exploiting software dependencies (Attack on
integrity, confidentiality, and availability).
a. Attack on integrity

(1) Backdoor attack17

Failure
mode

A pre-trained model with a backdoor is provided by a malicious
third party. The model performs normally in the absence of a
trigger secretly known to an attacker, but behaves maliciously
when the trigger is stamped with the input.

Attack
mode

In a situation in which the training of a model is outsourced18, an
attacker (the third party model provider) provides a backdoored
model to the client (the model developer).

<Research cases>

• Gu, Dolan-Gavitt, and Garg (2019) demonstrated the backdoor attack. An at-
tacker trains an image recognition system with a backdoor for a traffic sign de-
tection task. The trigger is chosen by the attacker to be a small yellow square
attached to the bottom of the traffic sign. The model misclassified more than
90％ of the stop signs with the trigger as speed-limit signs, as aimed by the
attacker. Moreover, the model recognized the clean traffic signs (without the
trigger) with less than a 1％ drop in accuracy compared to the baseline model
without the backdoor. Thus, the backdoored model is mostly indistinguishable
from the normal one for people without prior knowledge of the trigger.

The backdoor can be maintained during transfer learning. The backdoored
model retrained for detecting Swedish traffic signs shows a 25％ drop in accu-
racy on average when the trigger is present.
• Liu et al. (2017)19 suggested another backdoor attack effective in situations

where an attacker has full access to the model but not to the training data. The
attacker generates a small set of training data in accordance with the trigger, and
retrains the model by modifying a part of its parameters. The modified model
malfunctions for the input data stamped with the trigger. When applied to a face

................................
17. Gao et al. (2020) surveyed the backdoor attacks and suggested the taxonomy of them.
18. For example, the training of deep learning models for object recognition requires a huge amount of compu-

tational power. Thus, model developers who lack computational resources have an incentive to outsource the
training procedure to a third party.

19. This article is not cited in Kumar et al. (2019).
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recognition model, it misclassifies an arbitrary person as a specific person for the
input image stamped with a small square (i.e., the trigger). This attack can be
applied to a wide range of models such as a speech recognition or autonomous
driving model.

(2) Attack to the supply chain of machine learning models

Failure
mode

Trained models provided by repositories20 are contaminated.
When such models are invalid, the retrained or reused model
(using transfer learning) performs incorrectly.

Attack
mode

An attacker puts a malicious model into the repository or re-
places an existing model with a tampered one. Alternatively, the
attacker intrudes upon the repository server and enables it to
distribute the malicious model.

<Research case>

• Backdoored models can be distributed from repositories that provide pre-trained
ones (e.g., Caffe Model Zoo), and can also be used in open-source machine
learning frameworks (e.g., TensorFlow, Keras, Core ML, Theano, MXNet) by
utilizing the conversion scripts. By exploiting these supply chains, an attacker
can contaminate a large number of models. In fact, the proclaimed hash value
for a pre-trained model hosted by Caffe Model Zoo does not match that of its
downloaded version in a number of cases (Gu, Dolan-Gavitt, and Garg [2019]).

b. Attack on confidentiality: stealing the training data

Failure
mode

A malicious platform provider recovers private training data from
the output of a customer’s model through queries.

Attack
mode

If a customer develops a model on a platform powered by the
malicious provider, the provider can recover the training data
solely from the output of the model by feeding queries that run a
backdoored algorithm.

c. Attack on integrity, confidentiality, and availability: Exploiting software
dependencies and conventional bugs

Failure
mode

Conventional bugs that exist in a machine learning system cause
it to crash or to be manipulated.

Attack
mode

An attacker finds common software bugs in the basic programs
(e.g., the numerical calculation library) that underlie the system
or embeds bugs into the system intentionally. The bugs are ex-
ploited to achieve its malicious goal (e.g., to crash the system, or
to skip verification operations by the system).

<Research case>

• An attacker can perform a denial-of-service (DoS) attack, which prevents the
................................
20. A repository stores and provides digital content such as software source code or models.
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system to operate a service, by exploiting bugs that cause the system to crash,
enter an infinite loop, or exhaust all memory. The attacker can also perform an
evasion attack, which induces misclassification, by overwriting the output of the
model or hijacking the application control flow (Xiao et al. [2018]).

B. Unintentional Failures
Unintentional failures include (1) reward hacking, (2) side effects, (3) distributional
shifts of input data, (4) natural adversarial examples, (5) common corruption, and (6)
incomplete testing for a realistic environment.

1. Reward hacking

Failure
mode

A reinforcement learning system performs in unintended ways
because of a mismatch between implemented and ideal re-
wards.21

2. Side effects
Failure
mode

A reinforcement learning system has a disruptive effect on an
external environment while achieving its purpose.

<Research case>

• In a certain scenario, a robot knocks over a vase filled with water on the path to
convey an object (Amodei et al. [2016]).

3. Distributional shift in input data

Failure
mode

A machine learning system performs unstably because it cannot
adapt to the changes in the probability distribution of input data
in the test environment from that in the training one.

<Research case>

• Leike et al. (2017) trained two state-of-the-art reinforcement learning agents,
A2C and Rainbow DQN, in a simulation environment to avoid a lava lake while
moving from the start to the goal. The agents avoided the lava successfully in the
training environment, but failed to do so robustly in the test environment where
the distribution of the lava slightly changed. This occurred because the training
data did not contain sufficient variants of the distributional shifts.

4. Natural adversarial examples
Failure
mode

A machine learning model misrecognizes input samples that are
found in the real world.

................................
21. Here is a list of games that incorporate artificial intelligence such as reinforcement learning systems (https:
//docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfy
TiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml).
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<Research case>

• Adversarial examples can be found in the real world (Gilmer et al. [2018]). HEM
(hard example mining) automatically selects hard examples that are difficult for
machine learning models to recognize properly, and trains the models focusing
on those examples to improve accuracy and reduce the cost of training. Models
can be confused by taking the adversarial instances sampled by HEM as input.

5. Common corruption

Failure
mode

The performance of a machine learning model deteriorates due
to common corruptions or perturbations that frequently occur in
natural situations or usages.

<Research case>

• Hendrycks and Dietterich (2019) established benchmarks for image classifier
robustness to common perturbations (brightness, contrast, blur, weather, noise,
etc.) that reduce the accuracy of image classifiers.

6. Incomplete testing in realistic conditions

Failure
mode

A machine learning model is not able to perform well in opera-
tional environments due to insufficient performance tests under
realistic conditions.

<Research case>

• Gilmer et al. (2018) reported that robust machine learning models sometimes
fail to perform well in natural and realistic environments. Examples of misclas-
sifications include “stop” signs blown over in the wind and pedestrians wearing
shirts with traffic signs printed on them, which should be recognized correctly
by the automatic driving system.

VII. Conclusion and Implications for Machine Learning Security

An overall picture of the vulnerabilities and associated security risks of machine learn-
ing systems has not been completely clarified. Thus, organizations that provide services
using machine learning, including financial institutions, should continue to collect in-
formation on the vulnerabilities and evaluate each security risk in light of their own
purposes and environment in order to implement appropriate security countermeasures.
This section presents key points in machine learning security and the usefulness of the
failure mode approach.

A. Follow the Latest Research on Machine Learning Security
Understanding the vulnerabilities is necessary to develop cyber security strategies. In
the case that the information processing rules themselves incorporate vulnerabilities
in a certain machine learning system, enabling users’ unrestricted access to the model
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can lead to integrity or confidentiality violations. Moreover, it is generally difficult to
detect attacks that exploit vulnerabilities specific to machine learning (such as the data
poisoning) after such attacks are executed. Countermeasures for these issues have not
yet been stylized in a comprehensive and organized manner.22 The list of failure modes
will be helpful to learn the characteristics of security risks and to derive insightful
implications for cyber security. As long as the list in Kumar et al. (2019) remains open-
ended and is updated, it will enable cyber security experts to reduce their workload to
follow the latest research by themselves in a timely manner.

B. Security Risk Regarding the Supply Chain
Vulnerabilities could be incorporated into machine learning systems through the supply
chain. It becomes more difficult to develop the whole system in-house due to resource
restrictions of individual institutions. Vulnerabilities coming from network dependen-
cies are not novel, but its combination with vulnerabilities specific to machine learning
could bring novel threats.

In comparison with ordinary IT systems, it is more important to securely develop
machine learning systems in such a way not to incorporate vulnerabilities due to the dif-
ficulty of ex-post detection. When collaborating with other companies during the sys-
tem development, or when using machine learning platforms or open-access databases,
model developers should scrutinize the trustworthiness of partners or the validity of
data sources.

C. Collaboration and Strategy
In the practice of cyber security, system developers should collaborate with cyber secu-
rity experts. Cyber security objectives cannot be accomplished solely by cyber security
experts in the case of a machine learning system. Countermeasures such as modifying
the model parameters affect the performance of the whole system.

Additionally, the planning and implementation of cyber security measures should
be conducted in a strategically-designed way similarly to the case of the ordinary IT
systems.23 Though the security risks have not been captured yet comprehensively, the
experts can perform better cyber security practices by developing a strategy referring
to the taxonomy of the security risks.

D. Risk Communication
For users, lawyers, and policy makers, as well as entities relating to machine learning
services, understanding the security risks specific to machine learning is beneficial to
facilitate risk communication among stakeholders. A machine learning system some-
times performs unexpectedly and could violate security characteristics. In this regard,

................................
22. Cyber security countermeasures have been proposed for some types of attacks. For example, for a perturbation

attack against a machine learning model that performs image recognition, ‘adversarial training’ has been
proposed in which adversarial examples are automatically generated and included in the training data. This
enables simultaneous improvement in accuracy of the model and resistance to adversarial examples (Xie et
al. [2020]).

23. For example, Microsoft Corporation extended their ‘threat model’ approach for enumerating security risks in
the ordinary IT systems to machine learning systems. They utilize it to guarantee the safety of products before
launching new systems (https://docs.microsoft.com/en-us/security/engineering/threat-modeling-aiml).
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as Kumar et al. (2019) points out, failure modes provide common concepts and lan-
guages as a basis for people to understand and discuss the security characteristics.

If machine learning systems would be implemented more deeply into social infras-
tructures, regulations on machine learning could become more desirable. For example,
Kumar et al. (2018) and Calo et al. (2018) explore these policy options.

E. Concluding Remarks
The machine learning approach is inductive in nature, and this calculation paradigm
is different from that of conventional deductive approach. In the future, researchers
are expected to deepen their studies on the vulnerabilities of machine learning systems
and their associated security risks. Their taxonomy should be established reflecting
such research to organize and stylize methodologies to mitigate the discovered security
risks.
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