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In the 1990s, measured productivity growth decelerated dramatically in
Japan. However, the standard Solow residuals may reflect factors other
than changes in the rate of technological progress. This paper attempts to
construct a measure of “true” aggregate technical change for the Japanese
economy over the years 1973–98, controlling for increasing returns,
imperfect competition, cyclical utilization of capital and labor, and 
reallocation effects. We find little or no evidence of a decline in the pace 
of technological change during the 1990s. Both cyclical utilization 
and reallocations of inputs have played an important role in lowering
measured productivity growth relative to true technology growth. Our
results thus cast doubt on the explanation of Japan’s “lost decade” that
attributes the prolonged slump to the observed productivity slowdown.
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1. For example, Blanchard (2003) has stated, “Japanese economic policy bashing is also a popular sport, and it strikes
me also as largely unwarranted. Japanese policy was not that crazy for most of the 1990s. Interest rates were
decreased, in retrospect a bit too slowly. Expansionary fiscal policy was used, admittedly with the ebbs and flows,
but who would not be scared about running such large deficits for so long? . . . How many of the current critics 
predicted this outcome in the early 1990s? A major question is why this fiscal cum money expansion was insufficient
to avoid getting to the trap. I do not know the answer.”

2. They also argue that an exogenous decline in the workweek, which occurred from 1988 to 1993, played an important
role in the anemic performance of the Japanese economy over the 1990s.

3. They conjecture that the low TFP growth stems from an inappropriate policy that subsidizes inefficient firms and
declining industries. Preliminary work by Caballero, Hoshi, and Kashyap (2003) attempts to attribute the low
productivity to the “misallocation of bank credit.”

I. Introduction

Japan’s economic performance over the last decade has been miserable. The average
growth rate of Japanese real GDP was a mere 1 percent in the 1990s, compared to
around 4 percent in the previous two decades. Following the collapse of the “asset
price bubble” in early 1990, Japanese growth rates steadily deteriorated through the
first half of the decade, rebounded briefly at mid-decade, but has been generally weak
since then. Despite repeated fiscal cum monetary stimuli, the Japanese economy has
remained in a deep recession. Why has the economy stagnated for so long? What is
the fundamental cause of the protracted slump? These are puzzling questions not just
for policymakers, but also for academic economists.1

Recent work by Hayashi and Prescott (2002) provides a clear-cut but provocative
account of Japan’s “lost decade.” They first note that the measured total-factor-
productivity (TFP) growth decelerated substantially in the 1990s, interpreting such
movements in TFP as the result of exogenous technology shocks (or to a small
extent, measurement errors). They then develop a quantitative real-business-cycle
model of the Japanese economy and examine the predictions of the model economy
in response to the exogenous productivity slowdown.2 Their main finding is that a
calibrated version of their model can explain quite well the behavior of the Japanese
economy in the 1990s. They thus conclude that “the only puzzle is why the TFP
growth was so low subsequent to 1991” (Hayashi and Prescott [2002, p. 207]).3

Indeed, Japan’s productivity slowdown in the 1990s appears to be a stylized fact.
Table 1 shows different sets of estimates of the Solow residuals for the Japanese 
economy over various periods, including the estimates by Hayashi and Prescott
(2002). The result—that TFP growth declined markedly in the 1990s—appears 
to be qualitatively robust, although the magnitude of that decline depends on the
estimates. For example, the average annual growth rate of TFP over 1990–98 based
on the Japan Industry Productivity (JIP) database was just 0.5 percent, compared
with 1.6 percent in the 1980s. Figure 1 also plots the levels of TFP from the selected
estimates. We can detect a clear break in these series around 1990: there is a steadily
upward trend in TFP until about 1990, when the trend flattened (except for a blip
over 1995–97). Thus, to the extent that the Solow residuals are a valid measure 
of changes in the available production technology, Japan’s lost decade is likely to be
better understood as a period of low technology growth.
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Table 1  Aggregate Solow Residuals

Percent per year

1960–70 1970–80 1980–90 1990–2000

JIP database (54 industries)

Without labor quality adjustment n.a. 1.21 1.6 0.52

With labor quality adjustment n.a. 0.31 0.9 0.32

Gust and Marquez (2000) n.a. n.a. 2.03 1.04

Hayashi and Prescott (2002) 4.8 0.8 1.9 0.3

Ministry of International Trade and Industry 3.7 0.7 1.0 0.0White Paper (cited in Yoshikawa [2000])

Notes: 1. 1973–80.
2. 1990–98.
3. 1980–89.
4. 1989–98.
5. Section II describes the method for calculating the Solow residuals based on the Japan

Industry Productivity (JIP) database. See Fukao et al. (2003, 2004) for details of the JIP 
database. The estimates of Gust and Marquez (2000) are taken from table 4 presented 
in their paper. The estimates of Hayashi and Prescott (2002) are taken from the Excel 
file they provide at http://www.e.u-tokyo.ac.jp/~hayashi/hp (file: rbc, sheet: growth 
accounting, column: C).

Figure 1  Levels of Total Factor Productivity
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Note: Levels of the series are normalized to equal one in 1990. See Section II for a
detailed description of the method for calculating the aggregate Solow residuals
based on the JIP database. See also Section III and Fukao et al. (2003, 2004) for
details of the JIP database. The estimates of Hayashi and Prescott (2002) are
taken from the Excel file they provide at http://www.e.u-tokyo.ac.jp/~hayashi/hp
(file: rbc, sheet: growth accounting, column: C).



However, these Solow residuals need not be interpreted as exogenous technology
shocks. Figure 2 presents the Solow residual and percent change in annual output for the
private-sector Japanese economy over 1973–98. Clearly, we can confirm the widespread
observation that measured productivity is highly procyclical.4 In every year in which
output fell, TFP also fell. Indeed, if one accepts the Solow residuals as a measure of
year-to-year changes in technology as would an advocate of real-business-cycle theory,
it seems very easy to explain all major recessions over the sample period including the
lost decade! There is, however, significant evidence that the Solow residuals reflect
factors other than changes in the pace of technological innovation. Researchers point
out several reasons that fluctuations in output arising from sources other than 
technology shocks can make measured Solow residuals procyclical. The leading 
possibilities are (1) increasing returns to scale, (2) varying utilization of capital and
labor, and (3) the cyclical reallocation of inputs across different sectors.5

From this standpoint, the present paper attempts to construct a measure of “true”
aggregate technical change for the Japanese economy during the years 1973–98, 
controlling for increasing returns, imperfect competition, cyclical utilization of capital
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Figure 2  Solow Residuals and Output Growth
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4. Hall (1987) writes, “Hardly any fact about the United States economy is better established than the procyclical
behavior of productivity.”

5. The evidence based on the U.S. data suggests that cyclical utilization matters, and provides less support for 
increasing returns. Relatively less work has been done on reallocation. See Shapiro (1993, 1996), Basu (1996), 
Basu and Kimball (1997), and Burnside, Eichenbaum, and Rebelo (1996a, b) for the importance of variable 
utilization in cyclical productivity. Basu and Fernald (1997, 2002) stress the reallocation of inputs across industries
with different returns to scale.



and labor, and reallocation effects. In particular, we first estimate technical change 
at a disaggregated (54-industry) level, allowing for non-constant returns to scale and
variations in the utilization of capital and labor. We then aggregate sectoral technical
change into an economy-wide index in an appropriate manner. By doing so, we hope
to assess the plausibility of the productivity slowdown hypothesis for the decade-long
Japanese slowdown.

Our method for constructing aggregate technical change primarily draws on Basu,
Fernald, and Kimball (2002), who in turn build on their own previous studies 
such as Basu and Kimball (1997) and Basu and Fernald (1997, 2002). Basu and
Kimball (1997) propose simple model-based proxies for unobserved fluctuations in
the utilization of capital and labor. In correcting for cyclical utilization, we follow
their basic insight that firms will push on each utilization margin—hours of workers,
labor effort, and workweek of capital—to equalize the cost of using each margin, 
and hence an observed margin of adjustment can be used as a proxy for other
unobserved margins. Basu and Fernald (1997, 2002) emphasize the importance of
reallocations in cyclical productivity. Following their framework, we consider how
shifts in the composition of input growth across industries with different returns to
scale create a wedge between measured productivity and true technology in the
Japanese economy.

The main findings in this paper can be summarized as follows:
(1) Most importantly, according to our measures of true aggregate technical

change, there is little or no evidence of a decline in the pace of technological
progress during Japan’s lost decade. We thus conclude that fluctuations in the
Solow residuals are a poor measure of exogenous technology shocks, and that
the slowdown in measured productivity in the 1990s is not indicative of a
decline in the rate of technological progress. Moreover, we find a considerably
larger gap between measured productivity and true technology in the 1990s
than in the previous two decades.

(2) Durable manufacturing shows slow growth in technology in the 1990s relative
to its good performance over the previous two decades. By contrast, nondurable
manufacturing and non-manufacturing show relatively strong growth in tech-
nology in the 1990s. Because non-manufacturing constitutes most of GDP,
technology improvements in non-manufacturing contributed significantly to
maintaining the pace of aggregate technological progress in the 1990s.

(3) Estimated returns to scale vary greatly across sectors. Durable manufacturing
appears to have increasing returns, whereas nondurable manufacturing and
non-manufacturing appear to have decreasing returns. 

(4) Not surprisingly, variations in the utilization of capital and labor are highly
procyclical. In particular, cyclical utilization played the most important role in
lowering measured productivity growth relative to true technology growth in
the first half of the 1990s. 

(5) Reallocation effects appear to be countercyclical for the Japanese economy,
contrasting sharply with the evidence for the United States provided by Basu
and Fernald (2001). In Japan, industries with low returns to scale expand 
disproportionately in booms and contract disproportionately in recessions, 
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so that reallocations make aggregate productivity less procyclical. Such 
reallocation effects significantly lowered measured productivity growth during
the (short-lived) recovery years of 1995–97.

(6) Our main conclusion—that there was little or no deceleration in the rate of
aggregate technology growth in the 1990s—appears robust to the estimates of
the returns to scale and the quality adjustment of labor-input data.6

These results cast doubt on the productivity slowdown hypothesis discussed
above. Indeed, if one accepts our results, the “low TFP growth puzzle” that Hayashi
and Prescott (2002) emphasize in explaining Japan’s lost decade is not a puzzle, but a
figment of cyclical errors in measuring productivity: after correcting the aggregate
Solow residuals for imperfect competition, varying utilization, and reallocations, we
find little or no evidence of a decline in the pace of technological progress in the
1990s. Our results thus provide a strong motivation for moving beyond a simple 
real-business-cycle explanation that ultimately attributes the prolonged slump to 
the observed productivity slowdown.7 Even if this strong conclusion is not accepted,
our findings suggest that there is substantial room for factors other than negative
technology shocks as causal elements in the decade-long Japanese slowdown.8

The paper is structured as follows. Section II discusses our method for identifying
sectoral and aggregate technical change. Section III describes the data and estimation
methods, and Section IV presents baseline results. Section V checks the robustness of
the results, and Section VI briefly discusses investment-specific technology change.
Finally, Section VII offers a conclusion. 

II. Theoretical Framework

This section describes our basic method for identifying aggregate technical change,
following Basu and Kimball (1997), Basu and Fernald (2001, 2002), Basu, Fernald,
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6. Besides the major results regarding the “neutral” technological progress, we briefly explore the implications of
another notion of technology change: “investment-specific technology change,” as originally proposed by Solow
(1960) and recently revived by Greenwood, Hercowitz, and Krusell (1997, 2000). Specifically, we follow these
studies by interpreting the secular decline in the real price of investment goods as being the result of investment-
specific, not neutral, technology change. We then find no evidence that the pace of such technology growth has
slowed in the 1990s.

7. Our results are surely not irrelevant to the “liquidity trap” hypothesis regarding the current Japanese slump.
Krugman (1998) originally proposes this hypothesis using a two-period sticky-price model, which has recently
been elaborated into an infinite-horizon model by Eggertsson and Woodford (2003). In these models, economies
fall into the liquidity trap when the “natural rate of interest” (i.e., the full employment level of the real interest rate
holding with flexible price) is negative, and emerge from the trap when this rate turns positive again. Because those
models do not incorporate endogenous capital, the natural rate of interest is determined solely by the expected
growth rate of exogenous technology according to a consumption Euler equation (some researchers call this Euler
equation a “new IS” equation), given the expected growth rate of government expenditures. Hence, the natural
rate becomes negative for a period of negative technology growth, holding constant fiscal policy. However, if 
one accepts the results in this paper, it would be difficult to identify which factors caused the natural rate to be
negative during Japan’s lost decade.

8. The results in this paper may also have some implications for the celebrated “missing productivity growth” 
puzzle (see Basu et al. [2004], among others). In the United States, TFP growth accelerated in the 1990s, probably
reflecting the diffusion of information and communications technology (ICT). By contrast, as many researchers (e.g.,
Gust and Marquez [2000]) document, TFP growth decelerated in the European Union overall and in Japan in the
same decade, although these countries should also have enjoyed advances in ICT. Our results indicate, however, that
once one purifies the Solow residuals, the missing productivity growth puzzle disappears, at least for Japan.



and Shapiro (2001), and Basu, Fernald, and Kimball (2002). Section II.A discusses
how to estimate technical change at a disaggregated (industry) level, allowing for
non-constant returns to scale and variations in the utilization of capital and labor.
Section II.B presents our method of aggregating sectoral technical change into an
economy-wide index. 

A. Measuring Sectoral Technical Change
We assume that the representative firm in each industry has a production function
for gross output:

Yi = F i(SiKi, EiHiNi, Mi, Zi ).

The firm produces gross output Yi using the capital stock Ki , employees Ni, and
intermediate inputs Mi. To have a coherent model of variable factor utilization, we
assume that the capital stock and number of employees are quasi-fixed, so that
changing their levels involves adjustment costs.9 Yet the firm may vary the intensity
with which it uses these quasi-fixed inputs: Hi is hours worked per employee; Ei

is  the effort of each worker; and Si is the capital utilization rate (i.e., the workweek 
of capital). Total labor input Li is the product EiHiNi. The firm’s production function
F i is assumed to be (locally) homogeneous of arbitrary degree �i in total inputs. 
Zi indexes gross output-augmenting technology. We adopt the gross output rather
than the value-added production function because the former is desirable for 
estimating technical change in an economy with increasing returns to scale and
imperfect competition.10

Following Solow (1957) and Hall (1988, 1990), we define technical change as 
the fraction of output growth that cannot be attributed to the growth rate of 
inputs, via a first-order (log-linear) approximation. For any variable J, we define dj
as its logarithmic growth rate (≡ d log J ), and J * as its steady-state value. The log-
linearization of the production function and the standard first-order conditions 
from cost minimization imply

F1SK * F2EHN * F3M *

dyi = (–––––) (dsi + dki) + (–––––––) (dei + dhi + dni) + (––––) dmi + dzi
F    i F      i F    i

= �i [c *
Ki (dsi + dki) + c *

Li(dei + dhi + dni) + c *
Midmi ] + dzi

= �i (dxi + dui) + dzi , (1)
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9. See Basu, Fernald, and Kimball (2002) for this point.
10. According to equation (A.16) in Appendix 2, the growth rate of value-added dvi depends on materials intensity

dmi − dyi in addition to primary input growth dxi
V, utilization variation dui

V, and technological progress dz i
V (note

that with increasing returns and imperfect competition, the coefficient multiplying dmi − dyi is not zero). Thus,
there is an “omitted variable” in the estimating equation that uses value added as the output measure. See Basu
and Fernald (1995, 1997) for the details.



where dxi is the cost-share-weighted average of observed input growth:

dxi ≡ c *
Kidki + c *

Li(dhi + dni) + c *
Midmi,

dui is the weighted average of unobserved variation in capital utilization and labor effort:

dui ≡ c *
Kids + c *

Lide,

and cJi is the share of input J in total cost, so cKi + cLi + cMi = 1. The first-order approx-
imation requires us to treat the output elasticity of each input �ic *

Ji as constant. In
practice, we assume that returns to scale �i do not vary over time, and use the sample
average of the annual cost shares as a proxy for c *

Ji.11

Lack of an observable counterpart to utilization growth dui is the barrier to 
estimating equation (1).12 However, Basu and Kimball (1997) propose a simple
model-based method of relating dui to observable variables. Their basic idea is that a
cost-minimizing firm operates on all margins simultaneously, so the firm’s first-order
conditions imply a relationship between observed and unobserved variables.
Specifically, Basu and Kimball (1997) show that if the sole cost of changing the 
workweek of capital is a “shift premium”—firms need to pay higher wages to 
compensate employees for working at night, or at other undesirable times—then
changes in hours per worker can proxy appropriately for unobserved changes in both
labor effort and capital utilization. The important point to note is that Basu and
Kimball’s (1997) model uses only the cost minimization problem and the assumption
that firms are price takers in factor markets; it does not require any assumptions about
the firms’ price-setting behavior in output markets. Based on their model, Appendix 1
shows that

�idui = (c *
Ki –– + c *

Li�i)dhi , (2)
�i

where �i is the rate at which the elasticity of labor costs with respect to hours
increases, �i is the rate at which the elasticity of labor costs with respect to capital 
utilization increases, and �i is the elasticity of effort with respect to hours per worker.
The reason why hours per worker proxies for capital utilization as well as labor effort
is that the shift premium creates a link between the workweek of capital and labor
costs. See Appendix 1 for the detailed derivation.
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11. By contrast, a second-order Törnqvist approximation to the production function tries to estimate the “time-
varying” elasticity by using the high-frequency variations in observed shares. However, this procedure would be
valid only if the observed cyclical fluctuations in factor prices were allocative (i.e., actual factor prices always equaled
shadow prices). See Basu and Fernald (2001) for the problems with such a higher-order approximation approach.

12. In Japan, the Ministry of Economy, Trade, and Industry (METI) publishes an index of “capacity utilization” for
manufacturing and mining industries. Note, however, that this is not necessarily an economically meaningful
measure of “capital utilization.” Indeed, METI’s capacity utilization measures actual output relative to potential
output rather than capital’s workweek. See Shapiro (1989) for the crucial difference between capital utilization
and capacity utilization.



Finally, combining (1) and (2) gives us the following estimating equation:

�idyi = �idxi + �i (c *
Ki –– + c *

Li�i)dhi + dzi�i

= �idxi + �idhi + dzi, (3)

where �i ≡ �i (c *
Ki (�i /�i ) + c *

Li�i ). This specification controls for both labor effort and
capital utilization, as well as non-constant returns to scale and imperfect competition.
Since we treat cost shares and other structural parameters as constants, we can simply
estimate �i as well as �i . We interpret the resulting residual dzi as representing “true”
technical change for each industry.

B. Aggregate Technical Change
We now aggregate sectoral technical change dzi into an economy-wide index.
Following Basu, Fernald, and Kimball (2002), we define aggregate technical change
as the increase in aggregate output, holding fixed not only aggregate primary inputs,
but also their distribution across industries and the materials-gross output ratio for
each industry. In particular, this measure of aggregate technical change equals

dzidzV ≡ �widzi
V ≡ �wi –––––––, (4)

i i 1 − �i c *
Mi

where wi is the industry’s share in aggregate real value added:13

Yi − Mi Viwi ≡ ––––––––– ≡ ––.
�(Yi − Mi)   V

i

(Henceforth, we use a superscript V to denote the value-added version of variables 
previously defined in a gross-output context.) Conceptually, this measure first converts
the sectoral, gross output-augmenting technology shocks to a value-added basis by
dividing through by 1 − �i c *

Mi (note that gross output-augmenting technology shocks
translate to larger value-added augmenting technology shocks). These value-added
technology shocks are then weighted by the industry’s share in aggregate real value
added. The key aspect of this definition is that aggregate technology changes only if
industry-level technology changes.

It is useful to relate our definition of aggregate technical change to the aggregate
Solow residual. First, we define the aggregate Solow residual dp as

dp ≡ dv − dxV, (5)
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13. We use the “double deflation” method to define real value-added Vi . See the discussion in Appendix 2.



where dv is the aggregate real value-added growth:

dv ≡ �widvi,
i

and dxV is the share-weighted average of sectoral primary-input growth dxi
V:

c *
Ki c *

LidxV ≡ �widxi
V ≡ �wi ––––– dki + ––––– (dhi + dni ) .

i i 1 − c *
Mi 1 − c *

Mi 

Note that we use the shares of capital and labor in value-added-based total cost to
compute dxi

V. Next we define the value-added returns to scale as14

�i(1 − c *
Mi)�i

V ≡ ––––––––. (6)
1 − �i c *

Mi

This formula implies that since value added is only a fraction of gross output,
increasing returns in the production of gross output translates to larger increasing
returns in the production of value added.

Following the steps described in Basu and Fernald (2001, 2002), Appendix 2
shows that taking a weighted sum of equation (1) over the entire economy and 
substituting definitions (4), (5), and (6) yields the following decomposition for
aggregate productivity:

dp = (�–V − 1)dxV +R� +RM +duV +dzV, (7)

where

�–V ≡ �wi�i
V, (8)

i

R� ≡ �wi(�i
V − �–V )dxi

V, (9)
i

 c *
Mi sMi RM ≡ �wi �i

V(––––––) − –––––– (dmi − dyi), (10)
i  1 − c *

Mi 1 − sMi 

c *
Ki c *

LiduV ≡ �wi �i
Vdui

V ≡ �wi �i
V (––––––dsi + ––––––dei), (11)

i i 1 − c *
Mi 1 − c *

Mi

with sMi ≡ Mi/Yi . 
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14. See Appendix 2 for the derivation.



Equation (7) shows the difference between aggregate productivity and aggregate
technology. First, the (�–V − 1)dxV term captures the average scale effect: if the average
value-added returns to scale are increasing, fluctuations in aggregate primary inputs
cause procyclical fluctuations in aggregate productivity. Second, the R� term repre-
sents the effect of reallocation of inputs across industries with different returns to
scale: if returns to scale vary across industries, productivity growth receives an extra
boost when industries with above-average increasing returns also experience above-
average input growth. Third, the RM term corrects for mismeasurements in value
added: value added is computed using sMi as a measure of the output elasticity of
materials, but with non-constant returns the output elasticity differs from materials’
revenue share. Finally, the duV term captures the effect on aggregate productivity of a
change in value-added-based utilization.

Note that if all firms are perfectly competitive and do not vary utilization, then 
all four terms discussed above disappear: if all firms are perfectly competitive with 
a constant returns production function, �i

V = 1 and c *
Mi = s*

Mi for all i. Hence, the first 
three terms in equation (7) always equal zero. Furthermore, if there is no utilization
variation, it is obvious that the last term also equals zero. Then aggregate Solow 
residual dp equals aggregate technology change dzV. However, with imperfect competition
(non-constant returns) and cyclical variations in utilization, productivity and technology
are generally not equivalent.

III. Data and Estimation Method

A. The Data
We use the JIP database compiled by Fukao et al. (2003) on industry-level inputs 
and outputs. This database is part of the research project at the Economic and 
Social Research Institute (ESRI), Cabinet Office, Government of Japan, aimed at 
measuring TFP growth at the industry level. The data consist of a panel of 84 indus-
tries covering the entire Japanese economy for the years 1973–98.15 In each sectoral
account, output is measured as gross output, and inputs are separated into capital,
labor, and materials. Labor input data are available both with and without a quality
adjustment. For a complete description of the database, see Fukao et al. (2003; 2004,
appendix A).16
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15. Fukao et al. (2003, chapter 1) do not report the data on gross output and materials in 1971 and 1972, because there
is no extended table of the Input-Output Table for both these years. Thus, our sample period runs from 1973.

16. These data are available in Excel file format (in Japanese) at the ESRI’s website, http://www.esri.go.jp/jp/archive/
bun/bun170/170index.html.



Among the 84 industries in the JIP database, our analysis focuses on 54 industries
belonging to the “non-farm, non-mining private economy” that is our primary 
interest.17 These 54 industries constitute about 70 percent of GDP for the sample
period. For the list of industries used in the estimation, see Table 2. For labor input,
we use the non-quality-adjusted data in our benchmark estimation. In Section V, 
we assess the robustness of our benchmark results using the quality-adjusted data.

To construct the cost shares cJi, one generally needs to calculate required payments
to capital. Fukao et al. (2003) estimate the user cost of capital and compute the series
of factor cost shares for each industry. To calculate the steady-state value c *

Ji, we take
the time average of the cost shares over the sample period.

For the dhi term in the utilization adjustment, we use the annual growth rate of
industry’s “nonscheduled hours” per worker, which is taken from the establishment
survey conducted by the Government of Japan’s Ministry of Health, Labour and
Welfare (the survey is entitled “Maitsuki Kinro Tokei Chosa”). In this survey, the
total number of hours per worker is divided into “scheduled” working hours and
“nonscheduled” working hours. Scheduled hours are defined as the number of hours
worked between the starting and ending time that are determined by the work regu-
lations of the establishment, whereas nonscheduled hours are defined as the number
of hours for which employees work early in the morning, overtime in the evening, 
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Table 2  Industry Classification

Durable manufacturing Nondurable manufacturing 
(14 industries, share: 14 percent) (17 industries, share: 9 percent)

JIP code Industry JIP code Industry

21 Lumber & wood 11 Livestock products

22 Furniture 12 Processed marine products

32 Stone, clay & glass 14 Other foods

35 Nonferrous metal 15 Beverages

36 Metal products 16 Tobacco

37 General machinery 18 Spinning

38 Electrical machinery 19 Other textile products

39 Electrical machinery for households 20 Apparel

40 Other electrical machinery 23 Paper

41 Motor vehicles 24 Publishing & printing

42 Ships 25 Leather

43 Other transportation equipment 26 Rubber products

44 Instruments 27 Basic chemicals

45 Miscellaneous manufacturing 28 Chemical fibers

29 Other chemicals

30 Petroleum products

31 Coal products

17. Although these industries are interpreted as belonging to the non-farm, non-mining private sector, we exclude
the following four industries with serious data problems: rice polishing & flour milling (JIP code 13); silk (17);
iron & steel (33); and other iron & steel (34). We also exclude the real estate (57) industry from our analysis,
taking into account the possibility that it might be incomplete to subtract imputed housing rents from this 
industry’s output. See Fukao et al. (2003, chapter 1) for details of these data problems.



on emergency call-up, and on a day off. Reflecting declines in scheduled working
hours, most of which are enforced by government fiat, total working hours have a
low-frequency downward trend unrelated to cyclical utilization. (See Figure 3.) Since
our utilization measure is the cyclical change in hours per worker, we take the growth
rate of nonscheduled working hours as the dhi term in the benchmark estimation. 

B. The Estimation Method
Following Basu, Fernald, and Shapiro (2001) and Basu, Fernald, and Kimball 
(2002), we group all 54 industries into three broad sectors: (1) durable manufacturing
(14 industries); (2) nondurable manufacturing (17 industries); and (3) non-
manufacturing (23 industries). (See Table 2 for our classification of industries.) 
We allow the returns to scale parameter �i and the utilization parameter �i to vary 
across these broad sectors. Yet we constrain these coefficients to be equal within 
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Table 2  (continued)

Non-manufacturing (23 industries, share: 47 percent) Excluded (30 industries, share: 30 percent)

JIP code Industry JIP code Industry

46 Construction 1 Rice & wheat

47 Civil engineering 2 Other farms

48 Electric utilities 3 Stockbreeding & sericulture

49 Gas utilities 4 Veterinary & agricultural services

53 Wholesale trade 5 Forestry

54 Retail trade 6 Fishing

55 Finance 7 Coal mining

56 Insurance 8 Metal mining

59 Railroad transportation 9 Oil & gas extraction

60 Trucking 10 Other mining

61 Water transportation 13 Rice polishing & flour milling

62 Transportation by air 17 Silk

63 Other transportation services 33 Iron & steel

64 Telephone & telegraph 34 Other iron & steel

70 Advertising 50 Waterworks

71 Rental of office equipment 51 Water services for industrial sector

72 Other business services 52 Waste disposal

73 Amusement & recreation services 57 Real estate

74 Radio & television 58 Housing services (imputed rent)

75 Restaurants 65 Postal services

76 Hotels & other lodging places 66 Educational services (private, nonprofit)

77 Laundry, barber, & public bath 67 Research

78 Other personal services 68 Medical services (private)

69 Other social services

79 Educational services (government)

80 Medical services (government)

81 Other services (government)

82 Medical services (nonprofit)

83 Other services (nonprofit)

84 Statistical discrepancy



sectors.18,19 The estimated equations also include industry-level constants to allow 
for differences in growth rates across industries, i.e., the estimated equations have
industry-level fixed effects. These constants are added back in to our estimates of
growth in technology.
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Figure 3  Number of Hours Worked
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Note: All industries. Data are from the establishment survey conducted by the Ministry
of Health, Labour and Welfare.

18. In principle, we could allow for more heterogeneity across industries. Some experimentation suggested, however,
that coefficients in several industries are often estimated rather imprecisely. To mitigate this problem, we opt to
restrict the parameters to be constant within sectors.

19. Note that although the gross-output returns to scale parameters are restricted to be equal within sectors, we
(implicitly) allow for industry heterogeneity in the value-added returns to scale defined by equation (6), reflecting
differences in materials cost share.



Owing to the simultaneous determination of inputs and technology, we estimate
each system by instrumental variables. Valid instruments need to be uncorrelated 
with technology shocks and correlated with the inputs and hours growth on the 
right-hand side of the equation. Good instruments are of course hard to find. Here 
we use the following variables as instruments: (1) the growth rate of the price of 
oil deflated by the GDP deflator;20 (2) annual versions of the Romer dates for
Japanese monetary policy that are identified by the author (a dummy variable that is
one in 1973, 1980, and 1990 when there was a pronounced monetary contraction
induced by the BOJ and zero otherwise);21 and (3) a “banking crisis shock” variable 
(a dummy variable that is one in 1997 when several major financial institutions in
Japan collapsed and zero otherwise).

Since the disturbances are somewhat correlated across industries, there are effi-
ciency gains from re-estimating a system of equations with an estimated covariance
matrix. We thus estimate the system by three-stage least squares, using the instruments
noted above. 

IV. Baseline Results

A. Parameter Estimates
Table 3 gives the estimates of the returns to scale and utilization parameters from 
equation (3). The returns to scale parameters �i are precisely estimated for all sectors.
For the durable manufacturing sector, the estimated returns to scale is 1.06, 
indicating statistically significant evidence of increasing returns. For nondurable 
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20. Oil prices (customs clearance basis; yen) are taken from the Bank of Japan Financial and Economic Data 
CD-ROM. Data on the GDP deflator are from the Japanese National Accounts. 

21. Kawamoto (2002) finds that these indicators of pronounced monetary tightness have the strong contractionary
effects on real variables such as Romer and Romer (1989, 1994) find for the U.S. economy.

Table 3  Parameter Estimates: Baseline Case

dyi = �i dxi + �idhi + dzi

Durable Nondurable 
Non-manufacturingmanufacturing manufacturing

Returns to scale, �i 1.06 0.81 0.65
(0.03) (0.04) (0.02)

Utilization, �i 0.063 0.034 0.190
(0.012) (0.024) (0.015)

Without utilization adjustment
Returns to scale, �i 1.14 0.84 0.67

(0.03) (0.03) (0.01)

Note: Estimation by three-stage least squares pooling across industries within sectors. Sample 
period is 1973–98. Data are from the JIP database and the establishment survey conducted 
by the Ministry of Health, Labour and Welfare. Non-quality-adjusted data on labor input are
used. Instruments are (1) the contemporaneous and lagged value of the growth rate of the 
real oil price, (2) the contemporaneous and lagged value of the Romer date for Japan, and 
(3) a lagged “banking crisis” variable. Sectoral estimates include industry fixed effects 
(not reported). Standard errors are in parentheses.



manufacturing and non-manufacturing, the estimates are 0.81 and 0.65, respectively,
both displaying decreasing returns.22 (Omitting the utilization correction term, the
estimates rise slightly to 0.84 and 0.67 for nondurable manufacturing and non-
manufacturing, respectively. Thus, the two sectors exhibit decreasing returns even
without utilization correction.) Given these estimates, the returns to scale across 
sectors appear to demonstrate significant heterogeneity.

For comparison, Table 4 presents the estimates of the returns to scale for U.S. indus-
tries that are reported by Basu, Fernald, and Kimball (2002) and Basu, Fernald, and
Shapiro (2001). Comparing Tables 3 and 4, we see that our estimates of the returns to
scale are broadly similar to the U.S. estimates, although Japanese non-manufacturing
exhibits much smaller returns to scale than U.S. non-manufacturing.

Our estimated returns to scale are also consistent with previous studies using
Japanese data. For example, estimating translog production functions with data for
Japanese manufacturing industries over the years 1955–90, Beason and Weinstein
(1996) find that durable manufacturing industries have slightly increasing returns,
while nondurable manufacturing industries have decreasing returns (see table 3 in
their paper).

We now turn to the estimates of utilization-correction parameter �i. In durable
manufacturing and non-manufacturing, the estimates are positive and strongly 
statistically significant, both indicating the importance of the utilization adjustment.
The estimate for nondurable manufacturing is estimated the least precisely. However,
the share of nondurable manufacturing in GDP is relatively small (9 percent), so the 
statistical insignificance of �i in this sector does not seem to be a major problem. 
Our empirical results are also not driven by any single industry: for example, 
omitting industries that look like “outliers” has little effect on our series of aggregate
technology change presented below.

B. Estimated Growth in Technology
Table 5 shows the annual average growth rates of the estimates of technology over 
various periods. Focusing first on the entire private-sector economy that is our primary
interest, the average growth rate of technology over 1990–98 was 2.1 percent, 
compared to 3.0 percent for 1973–80 and 2.3 percent for 1980–90. Omitting 
1998 (in which a severe recession hit the economy) yields the average growth rate of
2.6 percent over the 1990s. Thus, we find little evidence of a significant decline in the
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22. In Section V, we explore the implications of decreasing returns in the two sectors at length.

Table 4  Estimates of the Returns to Scale for U.S. Industries

Durable Nondurable 
Non-manufacturingmanufacturing manufacturing

Basu, Fernald, and Kimball (2002) 1.05 0.87 0.89

Basu, Fernald, and Shapiro (2001) 1.03 0.78 1.00

Note: See Basu, Fernald, and Kimball (2002, table 1) and Basu, Fernald, and Shapiro (2001, table 1).
Since the former allow the returns to scale parameters to differ across industries within sectors,
the estimates listed above are the value-added weighted averages. By contrast, the latter 
constrain the returns to scale parameters to be equal within sectors as in the present paper.



pace of technological progress in the 1990s. Figure 4 underscores this point; the figure
plots the levels of estimated aggregate technology as well as TFP. Both series are 
normalized to equal one in 1990, with the growth rates cumulated before and after.
Both estimated aggregate technology and TFP grew steadily until about 1990.
However, TFP slowed suddenly after 1990 as discussed in the introduction, whereas
estimated aggregate technology continued to grow steadily through most of the decade.

We now turn to the sectoral results. Non-manufacturing showed a modest pickup
in technology growth from 2.0 percent in the 1980s to 2.1 percent in the 1990s.
Because non-manufacturing accounts for around 70 percent of private-sector GDP,
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Table 5  Estimated Growth in Technology: Baseline Case

Percent per year

1973–98 1973–80 1980–90 1990–98

Private sector 2.4 3.0 2.3 2.1

Durable manufacturing 3.6 5.6 3.5 2.1

Nondurable manufacturing 2.3 3.1 2.0 2.1

Non-manufacturing 2.1 2.3 2.0 2.1

Note: Estimates of technological change are based on the theoretical framework described in Section
II and the parameter estimates given in Table 3.

Figure 4  Levels of Estimated Aggregate Technology
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the technology non-deceleration in this sector contributed significantly to maintain-
ing the pace of aggregate technological progress in the 1990s. Growth in nondurable
manufacturing technology also increased slightly, from 2.0 percent in the 1980s to
2.1 percent in the 1990s. The exception to this pattern is durable manufacturing, in
which the average growth rate of technology in the 1990s was 2.1 percent, a decrease
of 1.4 percentage points relative to the 1980s and of 3.5 percentage points compared
to the 1970s. This technology deceleration for durable manufacturing is somewhat
puzzling, because information and communication production technology improved 
at a rapid rate during the 1990s, and Basu, Fernald, and Shapiro (2001) and many
others naturally find substantial technology acceleration in the U.S. durable 
manufacturing sector.23

Summing up, our results indicate that the slowdown in measured productivity 
in the 1990s is not indicative of a decline in the rate of technological change: once
the Solow residuals are purified by correcting for imperfect competition, cyclical 
utilization, and reallocations, there turns out to be little evidence of deceleration in
the rate of technical progress in the lost decade. This conclusion naturally casts doubt
on the Hayashi and Prescott (2002) hypothesis discussed in Section I. The question
we must consider next is what factors explain such a large difference between 
measured productivity and true technology.

C. Difference between Aggregate Productivity and Aggregate Technology
Based upon equations (7)–(11), Table 6 decomposes the difference between measured
aggregate productivity and true aggregate technology into various correction terms. 
In addition, focusing on the 1990s, our primary interest, Figure 5 shows the levels
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23. There are two possible explanations for this puzzling fact. First, our data may underestimate real output growth in
durable manufacturing due to an increasing upward bias of price indexes for durable goods. Second, Japanese
durable manufacturing industries significantly increased foreign direct investment during the 1990s (probably
because of the continuing yen appreciation), and hence a large amount of ICT production has shifted outward.
Further investigation of this issue would be particularly interesting, but is beyond the scope of this paper. 

Table 6  Difference between Aggregate Productivity and Aggregate Technology

dp = dv − dxV

= (�–V− 1)dxV + R� + RM + du + dzV

Percent per year

1973–98 1973–80 1980–90 1990–98

Value-added growth dv 3.3 3.8 4.6 1.4

− Input growth dxV 2.2 2.5 3.0 0.9

= Solow residual dp 1.1 1.2 1.6 0.5

− Average scale effect (�–V− 1)dxV –0.8 –0.9 –1.0 –0.3

− Reallocations R� + RM –0.2 –0.4 0.0 –0.3

− Utilization du –0.3 –0.4 0.3 –1.0

= Technology growth dzV 2.4 3.0 2.3 2.1

Note: Decomposition of the difference between measured productivity growth and estimated 
technology growth (see equations [7]–[11] in the text). Estimates are based on the parameter
estimates given in Table 3.



of (1) productivity, (2) the scale-corrected measure, (3) the utilization-corrected measure,
(4) the reallocations-corrected measure, and (5) (all-corrected) true technology. (The
levels of all five series are normalized to equal one in 1990, with the estimated growth
rates cumulated thereafter. Thus, for example, the difference between productivity 
and the utilization-corrected measure in this figure represents the cumulative effects of
the utilization correction.) Several interesting results emerge.

First, cyclical utilization of capital and labor has played the most prominent 
role in lowering measured productivity growth relative to true technology growth 
in the 1990s. Utilization correction has caused the Solow residual to understate 
technological change by an average annual rate of 1.0 percent over 1990–98, as
shown in Table 6. A glance at Figure 5 also reveals that utilization correction
accounts for most of the differences between productivity and technology in the first
half of the 1990s. To see the cyclical properties of utilization, Figure 6 shows our 
estimated utilization series, plotted against real value-added growth. Not surprisingly,
utilization is highly procyclical: the correlation of utilization with real value added is
strongly positive at 0.69. We thus confirm that “true” inputs are more cyclical than
measured inputs, so that measured productivity is spuriously procyclical. In this light,
the enormous gaps between measured productivity and true technology—especially
in the first half of the 1990s—can be interpreted as reflecting the unprecedented
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Figure 5  Aggregate Productivity and Aggregate Technology in the 1990s
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various corrected measures are based on the theoretical framework described
in Section II and the parameter estimates given in Table 3.



severity of the contemporaneous recession: since the 1991–93 recession following the
collapse of the “asset price bubble” (this recession is called the “first Heisei recession”)
was so deep, the cyclical measurement error of input quantities in this period was 
significantly larger than in typical business cycles.

Second, reallocations—the sum of R� (reallocations of primary inputs across indus-
tries with different returns-to-scale estimates) and RM (reallocation of materials)—
are also important in creating the wedge between measured productivity and true 
technology. We estimate that reallocation correction is –0.3 percent per year on 
average over the 1990s (Table 6). It is worth noting that such effects are concentrated
during the short-lived recovery years of 1995–97 as shown in Figure 5. This implies
that the industries having below-average returns to scale (i.e., the non-manufacturing
sector) experienced above-average input growth over the mid-decade recovery, leading 
to lower productivity growth than technology growth. As in the case of utilization,
Figure 7 shows our estimated reallocation series, plotted against real value-added
growth. Somewhat surprisingly, reallocation effects appear to be countercyclical for
Japan, contrasting sharply with the U.S. industry-level evidence provided by Basu 
and Fernald (2001) (the correlation of reallocations with real value-added growth is
negative at –0.31). This implies that, in Japan, industries with low returns to scale
expand disproportionately in booms and contract disproportionately in recessions, 
so that reallocations make aggregate productivity less procyclical. This pattern is not
prima facie absurd. For example, if the income elasticity of goods produced by 
industries with low returns to scale is higher than that of goods by industries with high
returns to scale, reallocations tend to be countercyclical. Another possibility is that
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Figure 6  Cyclicality of Utilization
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increases in government spending driving business cycles were directed disproportion-
ately toward industries with low returns to scale in the 1970s and 1990s, which led to
negative reallocation effects in these periods.24 Further investigation of this issue would
be particularly useful, but is beyond the scope of this paper. 

Finally, the average scale effect is strongly negative over all periods. This reflects 
our previous empirical result that a typical industry in Japan appears to have 
significantly decreasing returns to scale. However, widespread decreasing returns are 
internally inconsistent with any form of imperfect competition as discussed in the
next section, so it appears to be too early to evaluate the quantitative importance 
of the scale effect. 

In short, cyclical utilization accounts for most of the differences between measured
productivity and true technology in the first half of the 1990s. After the mid-1990s,
reallocation effects were important in lowering productivity growth relative to 
technology growth.
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Figure 7  Cyclicality of Reallocations
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–0.54 in the 1990s.



V. Robustness Checks

In this section, we check the robustness of the results presented above in regard to two
considerations. First, we impose constant returns to scale on nondurable manufactur-
ing and non-manufacturing, for both of which we find decreasing returns in the 
baseline estimation. Second, we use labor-input data with a quality adjustment.

A. Imposing Constant Returns on Nondurable Manufacturing and 
Non-Manufacturing

Our estimates of the returns to scale in nondurable manufacturing and non-
manufacturing were smaller than one (see Table 3). Note, however, that significant
decreasing returns to scale are inconsistent with any form of imperfect competition,
as long as free entry and exit are guaranteed (see the discussion in Basu and Fernald
[1995, 1997]). To clarify this point, we consider the following well-known identity
linking the returns to scale and the markup:

AC         P     AC� = –––– = (––––) (––––) = �(1 − s	), (12)
MC MC P

where � ≡ P/MC is the markup of price over marginal cost and s	 is the share of 
economic profit in total (gross) revenue. Given that the economic profit rate should
be small under free entry and exit, equation (12) shows that strongly decreasing
returns (� much less than one) imply that firms consistently price output below 
marginal cost (� less than one). Since this is not a sensible result, we naturally expect
that firm-level returns to scale must be either constant or increasing. Hence, the
apparent decreasing returns in nondurable manufacturing and non-manufacturing
give a caution to the previous baseline results.25

Motivated by this sort of consideration, we assess the sensitivity of our findings 
to the decreasing returns in nondurable manufacturing and non-manufacturing. In
particular, we ask whether constraining the returns to scale parameters to be constant
in the two sectors affects our basic conclusion that there is little or no evidence of a
decline in the rate of technological progress in the 1990s.

Table 7 presents the utilization parameter estimates obtained when we impose
constant returns upon nondurable manufacturing and non-manufacturing. The
point estimates are, for the most part, little changed. The estimate of �i for non-
manufacturing remains statistically significant, although the size of the parameter
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25. Note that such a “decreasing returns puzzle” is not a phenomenon specific to the Japanese industry data. For 
example, using data on (roughly) two-digit industries in the United States, Basu, Fernald, and Kimball (2002)
report that the weighted averages of the estimated returns to scale are 0.87 and 0.89 for nondurable manufacturing
and non-manufacturing, respectively (see Table 4). Using quarterly data on value added for three-digit manufac-
turing industries in the United States, Burnside, Eichenbaum, and Rebelo (1996a) also report that the estimated
value-added returns to scale range from 0.8 to 0.9. One possible explanation for this puzzle is that “countercyclical
within-industry reallocations” will tend to appear as decreasing returns, because aggregated data on industries 
are used in estimation. Investigating this sort of possibility would be of considerable interest, but is beyond the 
scope of this paper.



becomes somewhat smaller than in Table 3. Thus, the decreasing returns and statisti-
cal significance of the utilization parameter for this sector do not seem to arise from a
multicollinearity problem, where the inputs and hours growth are correlated. This
result is particularly important, because it suggests that utilization correction is still
necessary for the non-manufacturing sector, which accounts for most of private-
sector GDP. Turning to the nondurable manufacturing sector, we find the estimate of
�i to be statistically insignificant. This is also similar to the baseline results in Table 3.

Table 8 and Figure 8 give estimated growth in technology based on the parameter
estimates given in Table 7 (for durable manufacturing, we continue to use the 
parameter estimates given in Table 3). Overall, our basic conclusion is intact: the 
lost decade is not a period of low technology growth. The results for the entire 
private-sector economy show a pickup in technology from 1.2 percent in the 1980s
to 1.8 percent in the 1990s: taken at face value, the Japanese economy experienced 
a 0.6 percentage point acceleration in technology growth in the lost decade ! This
acceleration comes mostly from the acceleration in technology growth for the 
non-manufacturing sector. Growth in non-manufacturing technology increased 
0.9 percentage point, from 0.3 percent in the 1980s to 1.2 percent in the 1990s.
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Table 7  Parameter Estimates: Imposing Constant Returns to Scale on Nondurable
Manufacturing and Non-Manufacturing

dyi − dxi = �idhi + dzi

Nondurable manufacturing Non-manufacturing

Utilization, �i –0.014 0.122
(0.017) (0.017)

Note: Estimation by three-stage least squares pooling across industries within sectors. Sample 
period is 1973–98. Data are from the JIP database and the establishment survey conducted 
by the Ministry of Health, Labour and Welfare. Non-quality-adjusted data on labor input are
used. Instruments are (1) the contemporaneous and lagged value of the growth rate of the 
real oil price, (2) the contemporaneous and lagged value of the Romer date for Japan, and 
(3) a lagged “banking crisis” variable. Sectoral estimates include industry fixed effects 
(not reported). Standard errors are in parentheses.

Table 8  Estimated Growth in Technology: Imposing Constant Returns to Scale 
on Nondurable Manufacturing and Non-Manufacturing

Percent per year

1973–98 1973–80 1980–90 1990–98

Private sector 1.6 1.8 1.2 1.8

Durable manufacturing 3.6 5.6 3.5 2.1

Nondurable manufacturing 3.6 3.7 2.6 4.8

Non-manufacturing 0.6 0.5 0.3 1.2

Note: Estimates of technological change are based on the parameter estimates given in Table 3 
for durable manufacturing and the parameter estimates given in Table 7 for nondurable 
manufacturing and non-manufacturing.



To examine which factors account for the difference between measured productivity
and true technology, Figure 9 shows the levels of (1) productivity, (2) the scale-
corrected measure, (3) the utilization-corrected measure, (4) the reallocations-corrected
measure, and (5) (all-corrected) true technology when imposing constant returns 
on nondurable manufacturing and non-manufacturing. The results are strikingly 
similar to the pattern of the baseline case: cyclical utilization explains most of the 
gaps between productivity and technology in the first half of the 1990s. After the 
mid-1990s, reallocation effects played an important role in lowering productivity
growth relative to technology growth.

B. Quality Adjustment to Labor Input
Thus far, we have continued to use “non-quality-adjusted” data on labor input.
Without a quality adjustment, the measure of labor input in the JIP database is
essentially standard hours worked, i.e., the product of the number of workers and 
the average annual hours per worker. From the perspective of a firm, however, the 
relevant measure of labor input might not be merely hours worked. It seems likely
that the firm also cares about the relative productivity of different workers. From this
standpoint, this subsection checks the robustness of our previous results by using
quality-adjusted labor-input data.
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Figure 8  Levels of Estimated Aggregate Technology: Imposing Constant Returns 
to Scale on Nondurable Manufacturing and Non-Manufacturing
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To construct data on labor with a quality adjustment, Fukao et al. (2003, 2004)
take into account differences in sex, age, and educational background as labor 
“quality,” assuming that observed wage differences reflect differences in relative 
marginal products. They then calculate quality-adjusted labor input by weighting 
the hours worked by different types of workers by relative wage rates. Hence, labor
input can increase either because the number of hours worked increases, or because
the quality of those hours increases.26

In Table 9, we show the same regressions as in Table 3, but using the quality-
adjusted data on labor input. The estimation results are strikingly similar to those
without the quality adjustment. We confirm that the estimated parameters are not
altered by the quality adjustment.
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26. See Fukao et al. (2003, chapter 2; 2004, appendix A.2) for a complete description of the quality adjustment. 

Figure 9  Aggregate Productivity and Aggregate Technology in the 1990s: 
Imposing Constant Returns to Scale on Nondurable Manufacturing 
and Non-Manufacturing
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Note: Levels of the series are normalized to equal one in 1990, with the estimated
growth rates cumulated thereafter. Estimates of technological change and 
various corrected measures are based on the theoretical framework described
in Section II and the parameter estimates given in Tables 3 and 7.



Table 10 shows the annual growth rates of estimated technology based on the
parameter estimates given in Table 9. The results are qualitatively similar to the base-
line case in Table 5, although making the quality adjustment lowers the growth rates
of estimated technology for the overall period. The most important point to note is
that we still find no evidence of a decline in the pace of technological change in the
1990s. Moreover, comparing Table 10 to Table 5, we see that the upward bias of
technology growth, which arises from not accounting for quality changes in labor
input, is much smaller in the 1990s than in other decades. This reflects the fact that
the 1990s witnessed no substantial change in labor composition. We thus confirm
that none of our main results are affected by the quality adjustment.

We conclude this section by noting that our basic conclusion appears quite robust
to the estimates of the returns to scale and the quality adjustment. Different methods
certainly generate different estimates of aggregate technical change. Nevertheless, we
emphasize that these differences do not affect our qualitative conclusion that there is
little or no evidence of a deceleration in the rate of technological progress in the
1990s. If one accepts these results, the 1990s in Japan were far from being a lost
decade in terms of technological progress.
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Table 9  Parameter Estimates: Quality Adjustment to Labor Input

dyi = �i dxi + �idhi + dzi

Durable Nondurable 
Non-manufacturingmanufacturing manufacturing

Returns to scale, �i 1.07 0.81 0.65
(0.03) (0.04) (0.01)

Utilization, �i 0.063 0.032 0.181
(0.012) (0.024) (0.010)

Note: Estimation by three-stage least squares pooling across industries within sectors. Sample 
period is 1973–98. Data are from the JIP database and the establishment survey conducted 
by the Ministry of Health, Labour and Welfare. The data used for labor input are quality-adjusted.
Instruments are (1) the contemporaneous and lagged value of the growth rate of the real oil
price, (2) the contemporaneous and lagged value of the Romer date for Japan, and (3) a lagged
“banking crisis” variable. Sectoral estimates include industry fixed effects (not reported).
Standard errors are in parentheses.

Table 10  Estimated Growth in Technology: Quality Adjustment to Labor Input

Percent per year

1973–98 1973–80 1980–90 1990–98

Private sector 2.0 2.4 1.9 1.9

Durable manufacturing 2.9 4.6 2.8 1.4

Nondurable manufacturing 2.0 2.7 1.7 1.9

Non-manufacturing 1.8 1.9 1.6 2.1

Note: Estimates of technological change are based on the theoretical framework described in Section II
and the parameter estimates given in Table 9.



VI. Another Look at Technology Change: Investment-Specific
Technology Change

Up to this point, we have focused on “neutral” technology change that affects the
production of all goods homogenously. This section briefly explores the implications
of an alternative notion of technology change: “investment-specific technology
change,” originally proposed by Solow (1960) and recently revived by Greenwood,
Hercowitz, and Krusell (1997, 2000). These authors emphasize the importance of
technological progress embodied in the form of new capital goods.27

For simplicity and to focus on the essential aspects of the models of investment-
specific technology change, we assume that (value-added) output is produced according
to the constant-returns-to-scale aggregate production function:

V = G (K, L ).

Note that there is no neutral technological progress, unlike the model presented in
Section II. We assume that output can be used as usual for both consumption and
investment. However, capital accumulation equation takes a form that differs from
the standard one:

K
.

= IA − 
K, 

where I is gross investment and d is the depreciation rate. Here, A represents the 
current state of the technology for producing new capital goods: as A rises, more 
new capital goods can be produced for a unit of forgone output or consumption.
This form of technical change is specific to the investment goods sector of the 
economy; hence, an increase in A is called investment-specific technology change. 
As Greenwood and Jovanovic (2001) emphasize, there must be investment in the
economy to realize the gains from this form of technology change. 

In a competitive equilibrium, the relative price of new capital goods, PI , will be
given by

PI = 1/A.

This equation shows how much in consumption goods must be given up to accumulate
one unit of capital. Note that we can easily identify investment-specific technology
change by calculating changes in the actual relative price of new capital goods.

Table 11 and Figure 10 show the estimates of investment-specific technology change
for the Japanese economy. Clearly, there is no evidence that investment-specific 
technology growth slowed in the 1990s. Hence, even if one allows for embodied 
technology change in addition to neutral technology change, explaining Japan’s lost
decade as a period of low technology growth remains implausible.
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27. Greenwood and Jovanovic (2001) survey various growth models of investment-specific technical change. Fisher
(2002) stresses the shock to investment-specific technology as the underlying driving force of business cycles.



VII. Conclusion

In this paper, we measured aggregate technology change for the Japanese economy 
by correcting the aggregate Solow residuals for increasing returns, imperfect com-
petition, varying utilization of capital and labor, and reallocation effects. We reached
a robust conclusion: the productivity slowdown observed in the 1990s is not a 
slowdown in the rate of technological progress. Our results thus call into question a
real-business-cycle explanation of Japan’s lost decade.

Future research should refine our estimates of aggregate technical change for the
Japanese economy. Owing to our primary interest in economy-wide aggregates, we
used the industry-level data covering the entire Japanese economy. In principle, our
exercise could be repeated for the manufacturing sector with a large firm-level data
set, such as the Development Bank of Japan (DBJ) database. Such projects are likely
to shed new light on the source and nature of the decade-long Japanese slowdown.28
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Table 11  Investment-Specific Technology Change

Percent per year

1960s 1970s 1980s 1990s

Investment-specific technology change 3.7 2.1 1.8 2.2

Note: Investment-specific technology change is measured as the inflation rate of the consumption
deflator minus the inflation rate of the investment deflator. Data on deflators are from the
Japanese National Accounts.

Figure 10  Investment-Specific Technological Progress

1.3
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1970 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 2000

Note: Investment-specific technological progress is measured as the inverse of the real
price of investment goods (i.e., consumption deflator/investment deflator). Levels
of the series are normalized to equal one in 1990. Data on deflators are from the
Japanese National Accounts.

28. For example, the firm-level data set would allow one to investigate the implications of “within-industry” reallocations
that we do not deal with here.



APPENDIX 1: DERIVATION OF THE UTILIZATION PROXY 
IN BASU AND KIMBALL’S (1997) MODEL

This appendix describes the derivation of the utilization proxy, following Basu and
Kimball (1997, appendix A) and Basu, Fernald, and Kimball (2002, section I.B).

We assume the firm faces adjustment costs in both investment and hiring, so that
both the amount of capital, K, and employment, N, are quasi-fixed. Basu, Fernald, 
and Kimball (2002) provide a convincing argument for the necessity of quasi-fixity 
for a meaningful model of variable factor utilization. We assume that the number of
hours per week for each worker, H, can vary freely with no adjustment cost (through
changes in nonscheduled hours in the context of the Japanese economy). In 
addition, both capital and labor have freely variable utilization rates. For both capital
and labor, the benefit of higher utilization is its multiplication of effective inputs. 
Basu and Kimball (1997) argue that there are two kinds of costs for increasing 
capital utilization, S : (1) firms must pay a “shift premium” (a higher base wage) to 
compensate employees for working at night, or at other undesirable times; and 
(2) higher capital utilization leads to quicker depreciation through extra “wear and tear”
on the capital. For simplicity, here we consider only the shift premium, which is 
supported by many empirical studies (see, for example, Shapiro [1996]). The cost of
higher labor utilization, E, is modeled as a higher disutility on the part of workers 
that must be compensated with a higher wage.

We consider the following dynamic cost minimization problem for the firm:

min  ∫0

�
e −∫0

t
rd�[WNG (H, E )V (S ) + PMM +WN 
(A/N ) + PIKJ (I/K )]dt ,           

A,E,H,I,M,S

subject to

Y
––

= F (SK, EHN, M, Z ),

K
.

= I − 
K,

N
.

= A. (A.1)

At a point in time, the firm’s costs are total payments for labor and materials, and the
costs associated with undertaking gross investment I and hiring net of separations A.
WG(H, E )V (S ) is total compensation per worker. W is the base wage; the function G
specifies how the hourly wage depends on the length of the working hours H and
effort E ; and V (S ) is the shift premium. PM is the price of materials. WN 
(A/N ) is
the total cost of changing the number of employees; PIKJ (I/K ) is the total cost of
investment. d is the depreciation rate of capital. We assume that 
 and J are convex.
Defining the function F as logG (H, E ) = �(log H, log E ), we assume the convexity 
of F to guarantee a global optimum. Moreover, we assume the normality of F, i.e.,
�11 > �12 and �22 > �12, for optimal H and E to move together. We omit time 
subscripts for clarity.
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The first-order conditions relevant for our derivation are intra-temporal ones with
respect to choices of S, H, and E :

WNG (H, E )V ′(S ) = �F1K, (A.2)

WNGH (H, E )V (S ) = �F2EN, (A.3)

WNGE (H, E )V (S ) = �F2HN. (A.4)

Here, � is the Lagrange multiplier on the constraint (A.1), which can be interpreted
as marginal cost. Combining (A.3) and (A.4) yields

HGH (H, E ) EGE (H, E )––––––––– = –––––––––. (A.5)
G (H, E ) G (H, E )

That is, the elasticity of labor costs with respect to H and E must be equal. Given the
assumptions onG, (A.5) implies a unique, upward-sloping E -H path, so that we obtain

E = E (H ),   E ′(H ) > 0. (A.6)

Equation (A.6) expresses unobserved labor effort E as a function of the observed
number of hours per worker H. Thus, defining � ≡ H *E ′(H *)/E (H *) as the elasticity
of effort with respect to hours, evaluated at the steady state, we obtain a proxy for the
growth rate of labor utilization:

de = �dh. (A.7)

Next, to find a proxy for capital utilization S, we combine (A.2) and (A.3):

 G (H, E )  SV ′(S ) F1SK /F cK––––––––– –––––– = –––––––– = ––. (A.8)
HGH (H, E )  V (S )  F2EHN/F cL

Note that the right-hand side of (A.8) is a ratio of factor cost shares. We define g (H )
as the elasticity of labor cost G with respect to hours H, and �(S ) as the elasticity of
the shift premium V with respect to capital utilization S:

HGH (H, E )g (H ) ≡ –––––––––,
G (H, E )

SV ′(S )�(S ) ≡ ––––––.       
V (S )

With these definitions, we can rewrite (A.8) as
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cK�(S ) = ––g (H ). (A.9)
cL

g (H ) is positive and increasing by the assumptions on G. �(S ) is also positive as long
as there is a positive shift premium. We assume that the shift premium increases rapidly
enough with S to make �(S ) increasing in S. Moreover, we assume that cK/cL is constant,
which requires that the production function F be a generalized Cobb-Douglas in K
and L, i.e.,

Y = F (SK, EHN, M, Z ) = Z �[(SK )c
K(EHN )c

L, M ],

where G is a monotonically increasing function.
Under these assumptions, log-linearizing (A.9) gives us

�
ds = ––dh, (A.10)

�

where � is the elasticity of g with respect to H and � is the elasticity of v with respect to S.
Putting (A.7) and (A.10) together, equation (3) in the text can be expressed as

du = c *
Kds + c *

Lde

�= (c *
K –– + c *

L�)dh. (A.11)
�

APPENDIX 2: METHOD OF AGGREGATION
In this appendix, we present our method of aggregation in detail, following the steps
described in Basu and Fernald (2001, 2002).

The JIP database we employ uses the “double deflation” method to define real
value added. That is, it normalizes the base-year (1990) prices of gross output 
and intermediate inputs to one, and defines double-deflated estimate of real value
added, Vi, as

Vi ≡ Yi −Mi . (A.12)

Let sMi equal Mi /Yi , the share of gross output going to materials in base-year prices.29

Differentiating equation (A.12) and rearranging, we find that the growth rate of real
value added is given by30
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29. Note that the revenue share of materials sMi is not generally equal to the cost share cMi.
30. Basu and Fernald (2001, 2002) use the “Divisia” definition of value-added growth. The difference between the

double-deflated index and the Divisia index is the weights used to subtract materials growth from gross output
growth. The double-deflated index calculates the weights using constant base-year prices, whereas the Divisia
index calculates the weights using current prices. See Basu and Fernald (1995, appendix) for details.



sMidvi = dyi − ––––– (dmi − dyi). (A.13)
1 − sMi

In Section II.A, we obtained the following equation for gross-output growth:

dyi = �i [c *
Ki (dsi + dki ) + c *

Li (dei + dhi + dni) + c *
Midmi ] + dzi.

This equation can be rewritten as

 c *
Ki c *

Li dyi = �i (1 − c *
Mi) ––––––dki + –––––– (dhi + dni)

1 − c *
Mi 1 − c *

Mi 

c *
Ki c *

Li+ �i (1 − c *
Mi)(––––––dsi + ––––––dei) + �i c *

Midmi + dzi
1 − c *

Mi 1 − c *
Mi

= �i (1 − c *
Mi)(dxi

V + dui
V ) + �i c *

Midmi + dzi, (A.14)

where

c *
Ki c *

Lidxi
V ≡ ––––––dki + ––––––(dhi + dni),

1 − c *
Mi 1 − c *

Mi

c *
Ki c *

Lidui
V ≡ ––––––dsi + ––––––dei .

1 − c *
Mi 1 − c *

Mi

Subtracting �i c *
Midyi from both sides of equation (A.14) and dividing through by 

1 − �i c *
Mi , we obtain

�i (1 − c *
Mi)  �i c *

Mi  dzidyi = –––––––– (dxi
V + dui

V ) + ––––––– (dmi −dyi) + –––––––. (A.15)
 1 − �i c *

Mi  1 − �i c *
Mi  1 − �i c *

Mi

We now substitute (A.15) into the definition of value-added growth, (A.13):

�i (1 − c *
Mi) �i (1 − c *

Mi) c *
Mi sMi dvi = –––––––– (dxi

V + dui
V ) + –––––––– –––––– − –––––– (dmi − dyi) 

 1 − �i c *
Mi   1 − �i c *

Mi 1 − c *
Mi 1 − sMi 

dzi+ –––––––
1 − �i c *

Mi

 c *
Mi sMi = �i

V(dxi
V + dui

V ) + �i
V –––––– − –––––– (dmi − dyi) + dzi

V, (A.16)
 1 − c *

Mi 1 − sMi 
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where �i
V is the “value-added returns to scale”:

�i (1 − c *
Mi)

�i
V ≡ ––––––––, (A.17)

1 − �i c *
Mi

and dzi
V is the “value-added augmenting technology change”:

dzidzi
V ≡ –––––––. (A.18)

1 − �i c *
Mi

The JIP database defines aggregate real value added, V, as the sum of industry-
level real value added, Vi, evaluated at base-year prices:

V = �Vi.
i

Thus, aggregate value-added growth dv is a share-weighted average of industry-level
value-added growth,

dv = �widvi , (A.19)
i

where wi = Vi /V.
Similarly, we define aggregate primary input growth as

dxV = �widxi
V.

i

Substituting (A.16) into (A.19) yields

dv =

 c *
Mi sMi  �wi�i

Vdxi
V + �wi�i

Vdui
V + �wi �i

V(––––––) − –––––– (dmi − dyi) + �widzi
V.

i i i  1 − c *
Mi 1 − sMi                       i

(A.20)

We define

duV ≡ �wi�i
Vdui

V,
i

 c *
Mi sMi  RM ≡ �wi �i

V(––––––) − –––––– (dmi − dyi),
i  1 − c *

Mi 1 − sMi 

and

dzidzV ≡ �widzi
V = �wi ––––––––.

i i 1 − �i c *
Mi
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dzV is the aggregate technical change defined in Section II.B. With these definitions,
we rewrite equation (A.20) as

dv = �wi�i
Vdxi

V + duV + RM + dzV. (A.21)
i

Furthermore, we decompose the first term of (A.21) into the “average scale” effect
and the effect of “reallocation” of inputs across industries with different returns to
scale. That is, rearranging (A.21) gives us

dv = �–V �widxi
V + �wi (�i

V − �–V )dxi
V + duV + RM + dzV

i i

= �–VdxV + R� + RM + duV + dzV,

where

�–V ≡ �wi�i
V,

i

and 

R� ≡ �wi (�i
V − �–V )dxi

V.
i

Thus, the aggregate Solow residual, dp, can be expressed as

dp = dv − dxV

= (�–V − 1)dxV + R� + RM + duV + dzV. (A.22)
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