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In the dynamic factor model, a single unobserved factor common to some
macroeconomic variables is defined as a composite index to measure business
cycles. This model has recently been developed by combining with the regime
switching model so that the mean growth of the index may shift depending
on whether the economy is in a boom regime or in a recession regime. An
advantage of this dynamic Markov switching factor model is that estimating
the model by a Bayesian method produces the posterior probabilities that the
economy is in the recession regime, which can be used to date the business
cycle turning points. This article estimates the dynamic Markov switching
factor model using some macroeconomic variables in Japan. The model 
comparison using the Bayes factor does not provide strong evidence that 
the mean growth of the index shifts, but the dynamic Markov switching 
factor model is found to produce the estimates of turning points close to the
reference dates of the Economic and Social Research Institute in the Cabinet
Office, unless only weakly correlated variables are used.

Keywords: Business cycles; Factor model; Gibbs sampling; Marginal 
likelihood; Markov switching; Particle filter

JEL Classification: C11, C32, E32



I. Introduction

How should we measure business cycles? This problem has long attracted the attention
of many macroeconomists and econometricians, and several methods have been 
proposed. A well-known method is the one based on dynamic factor models proposed
by Stock and Watson (1989, 1991). They define the composite index of coincident 
economic indicators to measure the state of overall economic activity as a single 
unobserved factor common to several macroeconomic variables using a dynamic factor
model. Because their model can be estimated by the maximum likelihood method 
via the Kalman filter, their composite index can be estimated by running the Kalman
filter or smoother given the maximum likelihood estimates of the parameters.

Kim and Nelson (1998) extend the dynamic factor model of Stock and Watson
(1989, 1991) so that the mean growth rate of the composite index may vary depend-
ing on whether the economy is in a recession regime or in a boom regime. They 
specify the mean growth rate of the index using the regime-switching model of
Hamilton (1989). One advantage of their model is that it produces not only the
composite index but also the probabilities that the economy is in the recession
regime, which can be utilized to date the business cycle turning points. It is difficult,
however, to evaluate the likelihood in their model, so that they apply a Bayesian
method via the Gibbs sampler. Specifically, the model parameters, the latent factor,
and the regime are sampled from their posterior distribution using the Gibbs 
sampler, and simulated draws are used for Bayesian posterior analysis.

This article applies the Kim and Nelson (1998) model to macroeconomic data in
Japan. While several researchers such as Ohkusa (1992), Mori et al. (1993), Kanoh
and Saito (1994), and Fukuda and Onodera (2001) have already applied the Stock
and Watson (1989, 1991) model to the analysis of business cycles in Japan, there are
few who have applied the Kim and Nelson (1998) model. The only exception is
Kaufman (2000), who applies the Kim and Nelson (1998) model to eight countries,
including Japan.1 While she uses the quarterly data for real GDP, consumption, and
investment, we use the monthly data selected from 10 macroeconomic variables 
(see Table 1) used by the Economic Planning Agency (EPA), which was reorganized
as the Economic and Social Research Institute (ESRI) in the Cabinet Office after
January 2001, to construct its composite index.

Following Kim and Nelson (1998), we estimate the composite index and the
probabilities that the economy is in recession as well as the model parameters using a
Bayesian method via the Gibbs sampler. We also analyze whether the regime-shift
occurs in the mean growth rate of the composite index by comparing the Kim and
Nelson (1998) model with the Stock and Watson (1989, 1991) model. Classical 
test statistics such as the likelihood ratio statistics are not directly applicable to this
analysis (see Hansen [1992] and Garcia [1998]). In a Bayesian framework, model
comparisons are conducted based on the posterior odds—that is, the ratio of the
marginal likelihood—which does not cause any problem in analyzing whether the
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1. Kasuya and Shinki (2001) have applied the Kim and Nelson (1998) model to forecasting the turning points of the
consumer price index in Japan.



regime-shift occurs or not. We adopt this method and calculate the marginal 
likelihood following the method proposed by Chib (1995). A diagnostic checking 
is also conducted.

The model comparison using the Bayes factor does not provide strong evidence
that the Kim and Nelson (1998) model is favored over the Stock and Watson (1989,
1991) model. In addition, no major differences between the composite indices 
produced by the two models are found. On the other hand, the Kim and Nelson
(1998) model produces the estimates of turning points close to the reference dates 
of the ESRI in the Cabinet Office unless only weakly correlated variables are used.

The rest of this article is organized as follows. Section II explains the Kim and
Nelson (1998) model and a Bayesian method for analyzing this model. Section III
fits the model to macroeconomic data in Japan and summarizes the results.
Conclusions are given in Section IV.

II. Econometric Methodology

A. Dynamic Factor Models
Since our analysis is based on the dynamic factor models proposed by Stock and
Watson (1988, 1991) and developed by Kim and Nelson (1998), we start with a brief
review of these models.

Suppose that we have data on n macroeconomic variables from period 0 to T. Let
�Yit(i = 1, . . . , n ; t = 1, . . . , T ) denote the growth rate of the i -th macroeconomic
variable defined as the first difference of the log of the i -th variable at time t. In the
simplest version of the dynamic factor models, �Yit is specified as follows.

�Yit = Di + �i �Ct + eit,
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Table 1  Variables Used by the Economic and Social 
Research Institute to Construct Its Composite Index

Definition of Variables

1 IIP95M Index of raw materials consumption, mfg.

2 IIP95O Index of operating rate, mfg.

3 HWINMF Index of non-scheduled hours worked, mfg.

4 ESRAO Ratio of job offers to applicants

5 SDS Sales of department stores

6 CELL9 Electric power consumption of large users

7 IIP95S Index of producers’ shipments, investment goods

8 SCI95 Index of wholesale sales

9 SMSALE Sales of small and medium-sized companies

10 IIP95P Index of industrial production, mining and mfg.

11 ZBOAS Business profit, all industries

Note: ZBOAS is quarterly data, and the others are monthly data.



where Di and �i are constants, �Ct is the component common to all variables, which
is interpreted as the first difference of the composite index of coincident economic
indicators Ct , and eit is the idiosyncratic component of the i -th variable.

�Yit may depend on not only the current value of �Ct but also the past values. 
To allow for this possibility, we use the following specification.

�Yit = Di + �i 0�Ct + �i 1�Ct –1 + . . . + �iri �Ct –r i + eit . (1)

The idiosyncratic component eit is assumed to follow an autoregressive (AR) process
with mean zero, i.e.,

eit = �i ,1ei,t –1 + . . . + �i,qiei,t –qi + �it,  �it ∼ i.i.d. N (0, � 2
i ), (2)

where error term �it is assumed to follow a serially independent normal distribution.
The difference between the Stock and Watson (1989, 1991) and the Kim and

Nelson (1998) models is the specification of the common factor �Ct . While Stock and
Watson (1989, 1991) specify �Ct as a simple AR process, Kim and Nelson (1998)
extend it so that the mean growth of the composite index may shift depending on
whether the economy is in a recession or in a boom as follows.

�Ct = � + �st + 	1(�Ct –1 – � – �st –1) + . . .

+ 	p(�Ct –p – � – �st –p ) + 
t ,  
t ∼ i.i.d. N (0, 1), 
(3)

where � is the long-run growth of the composite index, which is constant, and �st is
the deviation from that long-run growth, which may shift depending on whether 
the economy is in a recession or in a boom. Error term 
t is assumed to follow a 
serially independent normal distribution. The variance of 
t is normalized to unity
for identification of the model. Error terms 
t and �i s are assumed to be mutually
independent for all i, t, s.

Using the variable St , which takes zero when the economy is in the recession
regime and one when the economy is in the boom regime, Kim and Nelson (1998)
specify �st as follows.

�st = �0 + �1St ,  �0 < 0, �1 > 0. (4)

The reason to assume that �1 > 0 is that the mean growth of the composite index will
be greater in a boom regime (St = 1) than that in a recession regime (St = 0). Although
Kim and Nelson (1998) do not assume that �0 < 0, we assume it because, otherwise,
the average of �st , which is the deviation from the long-run growth, would be positive.
They assume that St follows a Markov process with transition probabilities

P (St = 1St–1 = 1) = �11, P (St = 0St–1 = 1) = 1 – �11, 
(5)

P (St = 0St–1 = 0) = �00,  P (St = 1St–1 = 0) = 1 – �00. 
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Equations (1)–(5) constitute the Kim and Nelson (1998) model, which collapses
to the Stock and Watson (1989, 1991) model if �st = 0 in equation (3). If �Ct is an
observed macroeconomic variable instead of the growth of the composite index,
equations (3)–(5) constitute the regime switching model proposed by Hamilton
(1989). Therefore, the Kim and Nelson (1998) model is a synthesis of the Stock and
Watson (1989, 1991) and the Hamilton (1989) models. The Stock and Watson
(1989, 1991) model produces the estimates of the composite index Ct but does not
produce the probabilities of a recession (St = 0). The regime switching model of
Hamilton (1989) produces the probability of a recession, which can be used to date
the business cycle turning points, but does not produce the estimates of the com-
posite index. An advantage of the Kim and Nelson (1998) model is that it produces
both the estimates of the composite index and probabilities of a recession.

Di in equation (1) and � in equation (3) are usually removed because they are not
identified. To do so, define

�ct = �Ct – E (�Ct) = �Ct – �, 

�yit = �Yit – E (�Yit) = �Yit – Di – (�i 0 + . . . + �i ri)�. 

Then, equations (1) and (3) can be written as

�yit = �i 0�ct + �i 1�ct –1 + . . . + �iri �ct–ri + eit, (1′ )

�ct = �st + 	1(�ct –1 – �st –1) + . . .

+ 	p(�ct –p – �st –p) + 
t ,  
t ∼ i.i.d. N (0, 1).
(3′ )

The demeaned growth rate �Yit – �Yi
—–

, where �Yi
—–

is the sample average of �Yi1, . . . ,
�YiT, is used for �yit. In what follows, we consider the model that consists of 
equations (1′ ), (2), (3′ ), (4), and (5) as the Kim and Nelson (1998) model.

B. Bayesian Estimation via the Gibbs Sampler
The Stock and Watson (1989, 1991) model can be represented by a linear Gaussian
state space model. The likelihood of the linear Gaussian state space model can be
evaluated by executing the Kalman filter. The likelihood of the Hamilton (1989)
model can also be evaluated by executing the filter proposed by Hamilton (1989).
Hence, the parameters in these models can be estimated using the conventional 
maximum likelihood method. The likelihood of the Kim and Nelson (1998) model
cannot, however, be evaluated analytically, so that the parameters cannot be estimated
using the maximum likelihood method. The estimation of the Kim and Nelson
(1998) model requires other estimation methods. Kim and Nelson (1998) apply a
Bayesian method via the Gibbs sampler.

Let � denote the set of the unknown parameters. The conventional Bayesian
method proceeds as follows.

1. Set the prior distribution f (�), which is the distribution the researcher has in
mind before observing the data.
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2. Convert the prior distribution to the posterior distribution f (�data), which is
the distribution conditional on the data, using the Bayes theorem 

f (data� )f (�)    f (�data) = ————————. (6)
∫ f (data� )f (� )d�

3. Estimate the parameters � using the posterior distribution.
Notice that f (data� ) on the right-hand side of the Bayes theorem (6) is the likeli-
hood. Therefore, the conventional Bayesian method cannot be applied to the models
such as the Kim and Nelson (1998) model whose likelihood cannot be obtained 
analytically. In such models, steps 2 and 3 above are replaced by

2′ Sample � from the posterior distribution f (�data).
3′ Estimate the parameters � using the draws sampled in 2′.

Some readers may think it impossible to sample from the posterior distribution that
cannot be obtained analytically. It is the Gibbs sampler that makes it possible.

The Gibbs sampler is a Monte Carlo method for sampling from a joint distribu-
tion using conditional distributions. Suppose that it is impossible to obtain the joint
posterior distribution f (�data) analytically using the Bayes theorem, but � can be
divided into k partitions (�1, . . . , �k) where �i may be a scalar or a vector, such that,
for all i = 1, 2, . . . , k , it is possible to obtain conditional distribution f (�i{�j}j ≠i,
data) analytically and sample �i from it by some methods. The Gibbs sampler is used
in such cases and works as follows. Starting from an arbitrary set of initial value 
(�2

(0), . . . , �k
(0)), we draw �1

(1) from f (�1�2
(0), �3

(0), . . . , �k
(0), data), �2

(1) from f (�2�1
(1),

�3
(0), . . . , � k

(0), data), and so on up to �k
(1) from f (�k�1

(1), �2
(1), . . . , �k –1

(1) , data). Let us
call this procedure one iteration. After l such iterations, we obtain (�1

(l ), �2
(l ), . . . ,

�k
(l )). Under mild conditions, it converges in distribution to be a set of random 

variables from f (�1, �2, . . . , �kdata) as l → . Therefore, for a sufficiently large M, 
(�1

(l ), �2
(l ), . . . , �k

(l ))(l = M + 1, M + 2, . . . , M + N ) can approximately be regarded 
as a sample from the joint posterior distribution f (�1, �2, . . . , �kdata). Hence, 
the first M draws, called “burn-in,” are discarded and the last N draws are used for
parameter estimation. For instance, the expectation of a function of the parameters,
g (�1, �2, . . . , �k), is estimated by the sample average

1 M+N

E [g (�1, �2, . . . , �k)] ≈ — � g (�1
(l ), �2

(l ), . . . , �k
(l )). (7)

N l =M+1

The unknown parameters in the Kim and Nelson (1998) model that consist of
equations (1′), (2), (3′), (4), and (5) are �i = [�i 0, . . . , �iri](i = 1, . . . , n ), �i = [�i 1,
. . . , �iqi](i = 1, . . . , n ), � 2

i (i = 1, . . . , n ), 	 = [	1, . . . , 	p], � = (�0, �1), � = (�00,
�11). As well as these parameters, latent variables �cT = [�c1, . . . , �cT ] and ST = 
[S1, . . . , ST ] are also treated as if they were unknown parameters. Then, all we have
to do to sample from the joint posterior distribution using the Gibbs sampler is to
sample from the following conditional distributions.
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f (�i�/�i, �cT , ST , �yT ),  i = 1, . . . , n , (8)

f (�i�/�i, �cT , ST , �yT ),  i = 1, . . . , n , (9)

f (� 2
i�/�2

i
, �cT , ST , �yT ),  i = 1, . . . , n , (10)

f (	�/	, �cT , ST , �yT ), (11)

f (��/�, �cT , ST , �yT ), (12)

f (��/�, �cT , ST , �yT ), (13)

f (ST�, �cT , �yT ), (14)

f (�cT�, ST , �yT ), (15)

where �/� represents the set of all parameters except �, which does not include latent
variables, �yiT = [�yi1, . . . , �yiT ], and �yT = [�y1T, . . . , �ynT ].

As for the prior distributions of the unknown parameters, we may use any 
distributions but it is convenient to assume the following distributions.

�1 ∼ N(M�1
(0), ��1

(0))I [�10 > 0], (16)

�i ∼ N(M�i
(0), ��i

(0)),  i = 2, . . . , n , (17)

�i ∼ N(M�i
(0), ��i

(0))IS (�i ),  i = 1, . . . , n , (18)

	 ∼ N(M 	
(0), �	

(0))IS (	), (19)

� ∼ N(M�
(0), ��

(0))I [�0 < 0, �1 > 0], (20)

� 2
i ∼ IG (
 (0)/2, � (0)/2),  i = 1, . . . , n , (21)

�11 ∼ beta (u11
(0), u10

(0)),  �00 ∼ beta (u 00
(0), u 01

(0)), (22)

where I [•] is the indicator function that takes one if the condition in the parentheses
is satisfied and zero otherwise, and IS (�i ) (or IS (	)) is the indicator function that takes
one if the roots of the polynomial 1 – �i1L – . . . – �iqiL

qi = 0 (or 1 – 	1L – . . . – 	pL p

= 0) lie outside the unit circle and zero otherwise. At least, one parameter among
�ij (i = 1, . . . , n ; j = 1, . . . , n) is assumed to be positive for identification of the
model. Here, we assume that �10 > 0. Hence, the prior of �1 is set to be the truncated
normal whose density is zero unless �10 > 0, and that of �i (i = 2, . . . , n ) is set to be
the normal. Under the assumption that equations (2) and (3) are stationary, the 
priors of �i , 	 are set to be the truncated normal whose density is zero outside the
stationary region. The prior of � is the truncated normal whose density is zero unless
�0 < 0 and �1 > 0. The prior of � 2

i is set to be the inverted gamma, which means
that 1/� 2

i follows the gamma distribution. The priors of �11 and �00 are set to be 
beta distributions.

Under these priors, it is straightforward to obtain the conditional distributions
(8)–(13), which have the same forms as the priors (16)–(22), and sample from those
distributions (see Appendix 1).

The condition of (14) includes �cT. Given �cT, equations (3′), (4), and (5) 
constitute the regime switching model proposed by Hamilton (1989). Thus, 
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sampling ST from (14) can be conducted using the Hamilton (1989) filter. Applying
the Hamilton (1989) filter to the model that consists of equations (3′), (4), and 
(5) produces p (St�ct) and p (St�c t –1) for t = 1, . . . , T. Then, starting with ST

sampled from p (ST�cT), we can proceed backwards in time. Specifically, given St+1, 
St is generated using the probability

p (St +1St )p (St�ct )    p (St�c t, St +1) = ———————–,   
p (St +1�ct )  

where p (St +1St ) is the transition probability given by (5), and p (St�ct) and p (St +1�ct)
are obtained from the Hamilton (1989) filter.

The condition of (15) includes ST. Once ST are given, the Kim and Nelson
(1998) model can be represented by a linear Gaussian state space model. Suppose
that n = 5, p = 3, and ri = qi = 1(i = 1, . . . , n ). Let �y*it = �yit – �i1�yi , t –1 (i = 1, . . . ,
n ) and �y*t = [�y*1t , . . . , �y*nt]. Then, the Kim and Nelson (1998) model may be 
represented as

�y*t = �zt + �t ,  �t ∼ i.i.d. N (0, ��), (23)

zt = Mst + �zt –1 + vt ,  vt ∼ i.i.d. N (0, �v). (24)

Then, zt, �, Mst , �, ��
, and �v are given by

zt = [�ct , �ct –1, �ct –2], 

 �10 –�10�11 + �11 –�11�11 
 �20 –�20�21 + �21 –�21�21 

� =  �30 –�30�31 + �31 –�31�31  ,
 �40 –�40�41 + �41 –�41�41 
 �50 –�50�51 + �51 –�51�51 

 	1 	2 	3 
� =  1   0   0  ,

 0   1   0 

Mst = [	(L )�St, 0, 0],  

vt = [
t , 0, 0], 

 � 2
1 0  0  0 0 

 0   � 2
2 0  0 0 

��
=  0   0   � 2

3 0 0  ,
 0   0  0   � 2

4 0 
 0   0  0 0 � 2

5 

42 MONETARY AND ECONOMIC STUDIES/FEBRUARY 2003



 1  0   0 
�v =  0   0   0  ,

 0  0  0 

where 	(L )�st = �St – 	1�St –1 – 	2�S t –2 – 	3�St –3.
Since equations (23) and (24) constitute the linear Gaussian state space model, 

it is straightforward to sample �cT from (15) using the Kalman filter and smoother.
Once �cT is obtained, it can be transformed into the composite index CT = [C1,
. . . , CT ] as

Ct = �ct + Ct –1 + �, 

where � is the long-run growth of the composite index, which can be estimated using
the steady-state Kalman gain (see Kim and Nelson [1998, 1999]).

C. Model Comparison
1. Marginal likelihood
It is important to examine whether the mean growth of the composite index shifts
depending on whether the economy is in the boom regime or the recession regime by
comparing the Kim and Nelson (1998) model with the Stock and Watson (1989,
1991) model. Kaufman (2000) proposes a method for comparing these two models.
As is a usual practice in Bayesian model comparison, his method is based on the 
posterior odds ratio. The posterior odds ratio between model i, Mi , and model j , Mj ,
is given by

f (Mi �yT)     f (�yT Mi )  f (Mi ) POR = ————– = ————– ——— , 
f (Mj �yT)    f (�yT M j ) f (M j )  

where f (�yT Mi )/f (�yT Mj ) and f (Mi )/f (Mj ) are called the Bayes factor and the
prior odds ratio, respectively. If POR is greater than one, Mi is favored over Mj .

The prior odds ratio is usually set to be one, so that the posterior odds ratio is
equal to the Bayes factor. To evaluate the Bayes factor, we must calculate f (�yT Mi )
and f (�yT Mj ), called marginal likelihoods. The log of the marginal likelihood of
model Mi can be written as

ln f (�yT Mi ) = ln f (�yTMi , �i ) + ln f (�iMi )

– ln f (�i Mi , �yT), 
(25)

where �i is the set of unknown parameters for model Mi , f (�yT Mi , �i ) is the 
likelihood, f (�i Mi ) is the prior density, and f (�i Mi , �yT ) is the posterior density.
The above identity holds for any value of �i , but Chib (1995) proposes to set �i

equal to its posterior mean �̂i calculated using the Gibbs draws. In what follows, 
subscript i and Mi are omitted.

The Kim and Nelson (1998) model is more general than the Stock and Watson
(1989, 1991) model in the sense that setting �st = 0 in the former model leads to the
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latter model. Hence, the likelihood that the former model cannot be smaller than
that of the latter model. Notice, however, that the marginal likelihood of the Kim
and Nelson (1998) model may be smaller than that of the Stock and Watson (1989,
1991) model.
2. Prior density
If prior distributions are given by (16)–(22) where �i (i = 1, . . . , n ), �i (i = 1, . . . ,
n ), � 2

i (i = 1, . . . , n ), 	, �, � are mutually independent, we have

f (�̂ ) = f (�̂1) × . . . × f (�̂n) × f (�̂ 1) × . . . × f (�̂n) × f (�̂ 2
1) × . . .

× f (�̂ 2
n ) × f (	̂ ) × f (�̂) × f (�̂). 

(26)

It is straightforward to evaluate f (�̂ i ) (i = 2, . . . , n ), f (�̂), and f (�̂). It may 
be difficult to evaluate the other terms in (26) analytically, because truncation may
make it difficult to calculate the normalizing constant. Even in such cases, there are
some numerical methods available to evaluate the normalizing constant (see Chen 
et al. [2000]).
3. Posterior density
Kaufman (2000) uses the method proposed by Chib (1995) to evaluate the posterior
density. The posterior density is written as

f (�̂ �yT ) = f (�̂ �yT ) × f (�̂1, . . . , �̂n �̂, �yT ) × . . .

× f (�̂ �̂/�, �yT ),  
(27)

and evaluates each term separately using the Gibbs sampler.
The first term can be written as

f (�̂ �yT ) = ∫ f (�̂ST , �yT ) f (ST �yT )dST. (28)

The Gibbs sampler explained above produces draws from f (ST �yT ). All we have to
do is to sample from the conditional distributions (8)–(15) sequentially. Given M
draws (ST

(1), . . . , ST
(M ) ) from f (ST �yT ), equation (28) can be estimated by

1 
M

f (�̂ �yT ) ≈ — � f (�̂ST
(m), �yT ). (29)

M m=1

This is not true for the other terms, because some parameters included in the 
conditions are fixed at their posterior means. For example, the second term can be
written as

f (�̂1, . . . , �̂n�̂, �yT )

= ∫ f (�̂1, . . . , �̂n�̂, � 2
1, . . . , �n

2, �cT , �yT )    (30)

× f (� 2
1, . . . , � 2

n , �cT�̂, �yT )d� 2
1
. . . d� 2

nd�cT . 
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To sample from f (� 2
1 , . . . , � 2

n , �cT �̂, �yT ) using the Gibbs sampler, we must 
sample from the following conditional distributions.

f (�i�̂, �/(�i ,� ), �cT , ST , �yT ), i = 1, . . . , n ,   

f (�i�̂, �/(�i ,� ), �cT , ST , �yT ), i = 1, . . . , n ,   

f (� 2
i�̂, �/(�2

i ,� ), �cT , ST , �yT ), i = 1, . . . , n ,   

f (	�̂, �/(	 ,� ), �cT , ST , �yT ), 

f (��̂, �/(�,� ), �cT , ST , �yT ),

f (ST�̂, �/�, �c̃T , �ỹT ),

f (�cT�̂, �/�, ST , �yT ).

Given M draws from f (� 2
1, . . . , � 2

n, �cT�̂, �yT), equation (30) can be estimated by

f (�̂1, . . . , �̂n �̂, �yT ) 

1   
M

≈ — � f (�̂1, . . . , �̂n�̂, � 2
i

(m ), . . . , � 2
n

(m ), �cT
(m ), �yT ). 

M m=1

The other terms in equation (27) can be evaluated similarly.
4. Likelihood
Kaufman (2000) uses a particle filter to evaluate the likelihood. A particle filter is the
algorithm to sample from the filtering density f (zt , St �y t , �) sequentially starting
from t = 0 (see Pitt and Shephard [1999]), where zt is the state variable that appears
in equations (23) and (24).

Suppose that we have M draws {z (m)
t –1, S (m)

t –1}(m = 1, . . . , M ) sampled from the 
density f (zt –1, St –1 �y t –1, �). Then, we can sample {z (m)

t , S (m)
t } from the density f (zt , 

St �y t , �) as follows (see Appendix 2 for details).

Step 1. Select a (St , m ) from 2 × M combinations (St = 0, 1; m = 1, . . . , M ) with
probability proportional to

1 �St , m = F –1/2exp (– ––e′t F –1et )p (St S (m)
t –1 ), 

2 

where

et = �yt – �(MSt + �z (m)
t –1), 

F = ��v �′ + ��
. 

Step 2. Using the (St , m ) selected in Step 1, sample from N (�t t
(m ), �t t

(m )), where

�t t
(m ) = MSt + �z (m)

t –1 + �v�′F –1et , 

�t t

(m ) = �v – �v�′F –1��v. 
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The likelihood can be expressed as

T

L = � f (�yt+1 �y t , � ),  
t =1

where

f (�yt +1 �y t , � )

= ∫ f (�yt +1 zt +1, � ) f (zt+1 zt , St+1, � )   

× p (St +1 St , � ) f (zt , St �y t , � )dStdztdSt +1dzt +1.   (31)

Given M draws {z (m)
t , S (m)

t }(m = 1, . . . , M ) from the density f (zt , St �y t , � )
using the above particle filter, we can evaluate f (�yt +1 �y t , � ) as follows.

Step 3. Sample S (m)
t +1 using the transition probability p (S (m)

t+1St ).

Step 4. Using S (m)
t +1 sampled in Step 3, sample z (m)

t +1 from 

z (m)
t +1 z t

(m), S (m)
t +1 ∼ N (MSt + �z t

(m), �v). 

Based on M draws on St +1 and zt +1 sampled in Steps 3 and 4, f (�yt +1 �y t , � )
can be estimated by

1  
M

f (�yt +1 �y t , � ) ≈ — � f (�yt +1 z (m)
t+1, S (m)

t+1, � ). 
M m=1

D. Diagnostics
Draws on St+1 and zt+1 sampled in Steps 3 and 4 can be used also for a diagnostic test.
The probability that �yi ,t +1 will be less than the observed value y o

i ,t +1 conditional on 
�y t and � can be written as

P (�yi ,t+1 ≤ �y o
i ,t +1 �y t , � ) 

= ∫P (�yi , t+1 ≤ �y o
i ,t +1 z t +1, St+1, �y t , � ) f (zt +1, St+1 �y t , � )dzt+1St +1

1   
M

≈ — � P (�yi ,t +1 ≤ �y o
i ,t +1 z (m)

t +1, S (m)
t +1, � ). 

M m=1

Let u M
i,t +1 = 1/M �

M

m =1
P (�yi ,t+1 ≤ �y o

i ,t +1 z (m)
t+1, S (m)

t +1 , � ). Under the null of a correctly 
specified model, u M

i,t converges in distribution to independently and identically 
distributed uniform random variables as M →  (Rosenblatt [1952]). This provides a
valid basis for diagnostic checking. These variables can be mapped into the normal 
distribution, by using the inverse of the normal distribution function n M

i,t = F –1(u M
i,t ) to

give a standard sequence of independent and identically distributed normal variables.
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III. Application to Macroeconomic Data in Japan

A. Data Description
The ESRI uses 11 macroeconomic variables to construct its Coincident Index (see
Table 1 for definitions of these 11 variables). Among them, “Business Profit”
(ZBOAS) is quarterly data and the other 10 variables are monthly data. We obtained
the raw data for these 10 variables from January 1975 to December 2000 and trans-
formed them into seasonally adjusted ones by the Census-X11 method. The use of all
10 variables to estimate the Stock and Watson (1989, 1991) and the Kim and Nelson
(1998) model is, however, computationally costly. Hence, our analysis is based on the
following two datasets, both of which consist of five variables selected by Fukuda and
Onodera (2001).

Dataset 1: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF (5) CELL9

Dataset 2: (1) IIP95P (2) SMSALE (3) HWINMF (4) IIP95O (5) IIP95M

Both the datasets were selected based on the principle of using variables related not only
to production but also to trade sales and labor market. On one hand, dataset 1 includes
“Index of Wholesale Sales” (SCI95) as a trade sales variable and “Ratio of Job Offers to
Applicants” (ESRAO) and “Index of Non-Scheduled Hours Worked” (HWINMF) as
labor market variables. On the other hand, dataset 2 includes “Sales of Small and
Medium-Sized Companies” (SMSALE) as a trade sales variable and HWINMF as a
labor market variable. These two datasets, however, differ in the sense that dataset 1
includes variables which are less correlated with each other, while all variables except
HWINMF in dataset 2 are highly correlated with each other. Table 2 [1] reports the 
contemporaneous correlations of the growth rate of the 10 variables, showing that
“Index of Industrial Production” (IIP95P), “Index of Raw Materials Consumption”
(IIP95M), “Index of Operating Rate” (IIP95O), and “Sales of Small and Medium-
Sized Companies” (SMSALE) have large positive correlations with each other. Dataset
2 includes all these variables. The correlations between variables in dataset 1 are less
than 0.5 except the ones between IIP95P and “Electric Power Consumption of Large
Users” (CELL9) and between IIP95P and SCI95. In addition, Table 2 [2] shows 
the serial correlations of the growth rate of the 10 variables, indicating that two labor
market variables HWINMF and ESRAO have positive serial correlations and the other
variables have negative serial correlations. Dataset 1 includes both of these variables,
while dataset 2 includes only HWINMF.

The shifts of the mean growth of the composite index create a correlation between
macroeconomic variables. Hence, we can expect that such shifts may be observed
only in dataset 2, in which variables are highly correlated with each other.
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[2] Serial Correlations

Variables IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
Correlation –0.3492 –0.4002 0.4176 0.5574 –0.5628 –0.2286 –0.4604 –0.3561 –0.3550 –0.4227

B. Estimation Details
Following Fukuda and Onodera (2001), we set p = 3 and qi = 1(i = 1, . . . , 5) for both
the datasets. While Fukuda and Onodera (2001) assume ri = 0, we set it equal to one.

For parameter estimation, we conduct the Gibbs sampler with 12,000 iterations for
each model. The first 2,000 draws are discarded and then the next 10,000 are recorded.
Using these 10,000 draws for each of the parameters, we calculate the posterior means,
the standard errors of the posterior means, the 95 percent intervals, and the conver-
gence diagnostic (CD) statistics proposed by Geweke (1992). The posterior means are
computed by averaging the simulated draws. The standard errors of the posterior means
are computed using a Parzen window with a bandwidth of 1,000. The 95 percent 
intervals are calculated using the 2.5-th and 97.5-th percentiles of the simulated draws.
The convergence of the Gibbs sampler can be assessed using the method proposed 
by Geweke (1992). He suggests comparing values early in the sequence with those late
in the sequence. Let � (i ) be the i -th draw of a parameter in the recorded 10,000 draws,
and let �̄A = 1/nA�

nA

i =1�
(i ) and �̄B = 1/nB �10,000

i =10,001–nB
� (i ). Using these values, Geweke

(1992) proposes the following statistic called convergence diagnostics (CD).

�̄A – �̄BCD = ——————–,  (32)—————–
√�̂ 2

A /nA + �̂ 2
B /nB

where √
—
�̂ 2

A

—
/nA

—
and √

—
�̂ 2

B

—
/nB

—
are standard errors of �̄A and �̄B. If the sequence of � (i ) is

stationary, it converges in distribution to the standard normal. We set nA = 1,000 and
nB = 5,000 and compute �̂ 2

A and �̂ 2
B using Parzen windows with bandwidths of 100

and 500, respectively.
In calculating the marginal likelihood, we set the number of iterations to evaluate

both the posterior densities and the likelihood equal to 2,000.

[1] Contemporaneous Correlations

IIP95M IIP95O HWINMF ESRAO SDS CELL9 IIP95S SCI95 SMSALE IIP95P
IIP95M 1.0000
IIP95O 0.8820 1.0000
HWINMF 0.3321 0.3152 1.0000
ESRAO 0.2401 0.2429 0.4157 1.0000
SDS –0.0671 –0.0943 –0.0656 –0.0054 1.0000
CELL9 0.6507 0.6196 0.2549 0.2059 –0.0467 1.0000
IIP95S 0.5250 0.5810 0.2088 0.1738 0.0298 0.4408 1.0000
SCI95 0.5038 0.5059 0.1158 0.0974 0.3845 0.4562 0.4444 1.0000
SMSALE 0.6843 0.6632 0.2728 0.2288 0.0348 0.5221 0.6334 0.6070 1.0000
IIP95P 0.8673 0.8872 0.2524 0.2364 –0.0727 0.6822 0.6624 0.6096 0.7756 1.0000

Table 2  Contemporaneous and Serial Correlations of the Growth Rate of the 
10 Variables
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C. Estimation Results
Table 3 shows the estimation results for dataset 1. Table 3 [1] and [2] are the results for
the Kim and Nelson (1998) model and the Stock and Watson (1989, 1991) model,
respectively. According to the CD values, the null hypothesis that the sequence 
of 10,000 draws is stationary is accepted at the 5 percent significance level for all 
parameters in both the models. The log marginal likelihood of the Kim and Nelson
(1998) model of –2,714.16 is smaller than that of the Stock and Watson (1989, 1991)
model of –2,713.31, indicating that the latter model compares favorably with the 
former model, although the difference of log marginal likelihoods is small.

Table 3 [3] shows the results of diagnostic checking based on variables ni ,t
M explained

in Section II. The table shows the mean, standard deviation, skewness, kurtosis, and
Ljung-Box statistics to test the null hypothesis of no serial correlation up to the sixth
lag, where the numbers in parentheses show the standard errors. If the model is 
correctly specified, the asymptotic distribution of ni ,t

M is the standard normal. For
SCI95, ESRAO, and HWINMF, the null hypothesis of no serial correlation is rejected
at the 1 percent level. For all variables, the kurtosis is significantly larger than three.

Figure 1 [1] depicts the composite indices (CIs) estimated by the Kim and Nelson
(1998) model and the Stock and Watson (1989, 1991) model jointly with that of the
ESRI. The shaded areas represent the periods of ESRI recessions (from peak to
trough). There is no major difference between the CIs estimated by both the models,
which is consistent with the result that the difference of log marginal likelihoods 
is small. Figure 1 [2] depicts the posterior probability that the economy is in the
recession state in each month as inferred from the Kim and Nelson (1998) model.
These probabilities can be calculated simply by averaging 10,000 draws of the state 
St sampled from its posterior distribution.

Table 4 shows the results for dataset 2. According to the CD values, the null
hypothesis that the sequence of 10,000 draws is stationary is accepted at any standard
level for all parameters in both the models. The log marginal likelihood of the Kim
and Nelson (1998) model of –2,202.10 is slightly larger than that of the Stock and
Watson (1989, 1991) model of –2,203.91, providing evidence, although weak, that
the mean growth rate shifts depending on whether the economy is in a recession or
in a boom.

Table 4 [3] shows the results of diagnostic checking. Except for HWINMF, the
null hypothesis of no serial correlation is rejected at the 1 percent level. The kurtosis
is still significantly larger than three for all variables.

Figure 2 [1] depicts the CIs estimated by the Kim and Nelson (1998) model and
the Stock and Watson (1989, 1991) model jointly with that of the ESRI. No major
difference between the CIs estimated by both the models is found again. Figure 2 [2]
depicts the posterior probability that the economy is in the recession state in each
month as inferred from the Kim and Nelson (1998) model. In contrast to the 
probabilities based on dataset 1, they move in a wider range between 0 percent and
100 percent, compared to Figure 1 [2].

We further estimate the Kim and Nelson (1998) model by using the following dataset.

Dataset 3: (1) IIP95P (2) SCI95 (3) ESRAO (4) HWINMF
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Table 3  Estimation Results for Dataset 1

[1] Kim and Nelson Model

Marginal likelihood = –2,714.16

Parameter Mean Standard error 95 percent interval CD

�Ct

�00 0.9045 0.0023 [–0.7578, –0.9807] 0.64
�11 0.9108 0.0038 [–0.7648, –0.9815] –0.89
	1 –0.0489 0.0164 [–0.3711, –0.2305] 1.05
	2 0.1034 0.0080 [–0.1170, –0.2604] 0.87
	3 0.3572 0.0056 [–0.1795, –0.4989] 1.60
�0 –0.3460 0.0246 [–0.9584, –0.0144] 1.55
�1 0.5424 0.0405 [–0.0156, –1.4138] –1.59

y1t

�10 1.0739 0.0026 [–0.9301, –1.2141] 1.50

�11 –0.4708 0.0059 [–0.6210, –0.3100] –0.77
�1 –0.3803 0.0030 [–0.5192, –0.2328] –0.89
� 2

1 0.5208 0.0066 [–0.3256, –0.7779] –0.36
y2t

�20 0.9507 0.0028 [–0.7782, –1.1313] 1.11

�21 –0.4521 0.0055 [–0.6406, –0.2628] –1.24
� 2 –0.3075 0.0010 [–0.4232, –0.1922] –0.98
� 2

2 2.0372 0.0031 [–1.6911, –2.4346] –0.98
y3t

�30 0.4653 0.0031 [–0.2540, –0.6779] 1.11

�31 0.3589 0.0013 [–0.1601, –0.5556] 0.69
� 3 0.4102 0.0013 [–0.2863, –0.5319] –0.82
� 2

3 3.1206 0.0054 [–2.6375, –3.6731] –1.20
y4t

�40 0.5369 0.0022 [–0.3850, –0.6914] 1.22

�41 0.4272 0.0025 [–0.2679, –0.5886] 0.92
�4 0.1370 0.0025 [–0.0049, –0.2846] –1.02
� 2

4 1.6903 0.0051 [–1.4014, –2.0190] –0.66
y5t

�50 0.7666 0.0014 [–0.6472, –0.8872] 0.86

�51 –0.2366 0.0060 [–0.3932, –0.0800] –1.06
�5 –0.2060 0.0013 [–0.3359, –0.0773] –0.15
� 2

5 0.7474 0.0042 [–0.6030, –0.9132] 0.85

Notes: 1. y1t, y2t, y3t, y4t, and y5t represent IIP95P, SCI95, ESRAO, HWINMF, and CELL9, respectively. 
The first 2,000 draws are discarded and then the next 10,000 are used for calculating the 
posterior means, the standard errors of the posterior means, 95 percent interval, and the 
convergence diagnostic (CD) statistics proposed by Geweke (1992). The posterior means 
are computed by averaging the simulated draws. The standard errors of the posterior means 
are computed using a Parzen window with a bandwidth of 1,000. The 95 percent intervals
are calculated using the 2.5-th and 97.5-th percentiles of the simulated draws. The CD is
computed using equation (32), where we set nA = 1,000 and nB = 5,000 and compute �̂ 2

A and
�̂ 2

B using a Parzen window with bandwidths of 100 and 500, respectively.
2. Numbers in parentheses are standard errors. LB(6) is the Ljung-Box statistic including 

six lags. The critical values for LB(6) are 10.64 (10 percent), 12.59 (5 percent), and 16.81 
(1 percent).



51

Measuring Business Cycle Turning Points in Japan with a Dynamic Markov Switching Factor Model

Table 3 (continued)

[2] Stock and Watson Model

Marginal likelihood = –2,713.31

Parameter Mean Standard error 95 percent interval CD

�Ct

	1 0.0164 0.0044 [–0.1725, –0.2087] –0.93
	2 0.1526 0.0008 [–0.0362, –0.2683] –0.28
	3 0.3904 0.0006 [–0.2716, –0.5026] 0.46

y1t

�10 1.304 0.0035 [–0.9832, –1.2702] 1.65

�11 –0.5063 0.0026 [–0.6642, –0.3023] 0.93
�1 –0.3893 0.0019 [–0.5293, –0.2335] 0.80
� 2

1 0.4775 0.0057 [–0.2632, –0.7090] –1.28
y2t

�20 0.9936 0.0013 [–0.8220, –1.1708] 0.90

�21 –0.4840 0.0028 [–0.4776, –0.9502] 0.75
�2 –0.3025 0.0007 [–0.4179, –0.1868] 1.05
� 2

2 2.0207 0.0025 [–1.6806, –2.4113] –0.73
y3t

�30 0.4735 0.0015 [–0.2629, –0.6904] –0.23

�31 0.3372 0.0010 [–0.1386, –0.5358] 0.85
�3 0.4481 0.0013 [–0.3224, –0.5679] 0.81
� 2

3 3.0486 0.0030 [–2.5843, –3.5953] 1.43
y4t

�40 0.5615 0.0014 [–0.4061, –0.7167] 1.21

�41 0.4258 0.0023 [–0.2692, –0.5835] 1.10
�4 0.1391 0.0009 [–0.0027, –0.2802] –0.12
� 2

4 1.6958 0.0030 [–1.4137, –2.0224] 1.43
y5t

�50 0.8001 0.0015 [–0.6848, –0.9222] 0.47

�51 –0.2616 0.0030 [–0.4082, –0.1138] 1.03
�5 –0.1975 0.0010 [–0.3266, –0.0666] 1.19
� 2

5 0.7397 0.0028 [–0.5969, –0.9018] 1.55

[3] Diagnostic Check for the Kim and Nelson Model

IIP95P SCI95 ESRAO HWINMF CELL9

Mean 0.0304 0.0178 0.0230 0.0356 0.0287
(0.0581) (0.0565) (0.0570) (0.0558) (0.0584)

St. dev. 1.0223 0.9950 1.0027 0.9829 1.0274

Skewness –0.2690 –0.1454 –0.1355 0.3565 0.1320
(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)

Kurtosis 4.0703 7.9968 5.7695 5.0004 4.8018
(0.2782) (0.2782) (0.2782) (0.2782) (0.2782)

LB(6) 8.31 18.17 44.17 61.14 13.43
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Figure 1  Dataset 1
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Figures 2 to 7.

[1] Composite Indices

[2] Posterior Probability of a Recession
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Table 4  Estimation Results for Dataset 2

[1] Kim and Nelson Model

Marginal likelihood = –2,202.10

Parameter Mean Standard error 95 percent interval CD

�Ct

�00 0.9178 0.0010 [–0.8334, –0.9698] –0.42
�11 0.9368 0.0018 [–0.8401, –0.9779] 0.96
	1 –0.2761 0.0057 [–0.4595, –0.0597] –0.00
	2 0.0008 0.0049 [–0.1641, –0.2059] –0.31
	3 0.2657 0.0033 [–0.1236, –0.4273] –0.29
�0 –0.6341 0.0149 [–0.9535, –0.0767] –0.80
�1 1.0687 0.0242 [–0.1435, –1.5009] 0.97

y1t

�10 1.0930 0.0041 [–0.9875, –1.2135] –0.79

�11 –0.4251 0.0042 [–0.5467, –0.2959] –1.33
�1 –0.4006 0.0010 [–0.5269, –0.2681] 0.34
� 2

1 0.2649 0.0010 [–0.1997, –0.3434] –1.32
y2t

�20 0.8629 0.0035 [–0.7463, –0.9936] –0.76

�21 –0.2101 0.0031 [–0.3285, –0.0920] –1.39
�2 –0.3417 0.0006 [–0.4509, –0.2308] –0.44
� 2

2 0.9226 0.0009 [–0.7738, –1.0903] –0.78
y3t

�30 0.5736 0.0021 [–0.4377, –0.7180] –1.05

�31 0.4670 0.0022 [–0.3356, –0.6070] –0.89
�3 0.0848 0.0017 [–0.0478, –0.2173] –0.38
� 2

3 1.6668 0.0032 [–1.4080, –1.9668] –1.01
y4t

�40 1.1547 0.0045 [–1.0146, –1.2890] –0.85

�41 –0.4274 0.0045 [–0.5554, –0.2921] –1.28
�4 –0.4088 0.0014 [–0.5588, –0.2520] –0.86
� 2

4 0.3516 0.0008 [–0.2717, –0.4494] –0.41
y5t

�50 1.1268 0.0043 [–1.0180, –1.2518] –1.21

�51 –0.3209 0.0044 [–0.4478, –0.1810] –1.39
�5 –0.2604 0.0013 [–0.3971, –0.1215] –1.09
� 2

5 0.3233 0.0008 [–0.2504, –0.4097] 1.26

Notes: 1. y1t, y2t, y3t, y4t, and y5t represent IIP95P, SMSALE, HWINMF, IIP95O, and IIP95P, respec-
tively. The first 2,000 draws are discarded and then the next 10,000 are used for calculating
the posterior means, the standard errors of the posterior means, 95 percent interval, and the 
convergence diagnostic (CD) statistics proposed by Geweke (1992). The posterior means
are computed by averaging the simulated draws. The standard errors of the posterior means
are computed using a Parzen window with a bandwidth of 1,000. The 95 percent intervals
are calculated using the 2.5-th and 97.5-th percentiles of the simulated draws. The CD is
computed using equation (32), where we set nA = 1,000 and nB = 5,000 and compute �̂ 2

A

and �̂ 2
B using a Parzen window with bandwidths of 100 and 500, respectively.

2. Numbers in parentheses are standard errors. LB(6) is the Ljung-Box statistic including 
six lags. The critical values for LB(6) are 10.64 (10 percent), 12.59 (5 percent), and 16.81 
(1 percent).

(Continued on next page)
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Table 4 (continued)

[2] Stock and Watson Model

Marginal likelihood = –2,203.91

Parameter Mean Standard error 95 percent interval CD

�Ct

	1 –0.0869 0.0028 [–0.2229, –0.0499] 1.23
	2 0.1715 0.0012 [–0.0627, –0.2783] 0.71
	3 0.3785 0.0007 [–0.2728, –0.4830] –0.91

y1t

�10 1.2304 0.0028 [–1.1229, –1.3471] 0.01

�11 –0.4982 0.0031 [–0.6302, –0.3704] –1.24
�1 –0.3874 0.0009 [–0.5164, –0.2544] –0.16
� 2

1 0.2329 0.0007 [–0.1743, –0.3009] 0.00
y2t

�20 0.9695 0.0021 [–0.8475, –1.0997] –0.08

�21 –0.2596 0.0025 [–0.3910, –0.1335] –1.21
�2 –0.3395 0.0007 [–0.4512, –0.2278] –1.05
� 2

2 0.9042 0.0009 [–0.7572, –1.0738] –1.40
y3t

�30 0.6409 0.0014 [–0.4902, –0.7936] –0.37

�31 0.5017 0.0018 [–0.3556, –0.6511] –0.49
�3 0.0814 0.0013 [–0.0476, –0.2171] –1.01
� 2

3 1.6608 0.0026 [–1.4044, –1.9578] –1.00
y4t

�40 1.3007 0.0030 [–1.1849, –1.4245] –0.06

�41 –0.5049 0.0033 [–0.6453, –0.3658] –1.16
�4 –0.3640 0.0008 [–0.4894, –0.2363] –0.78
� 2

4 0.3063 0.0007 [–0.2389, –0.3831] 0.07
y5t

�50 1.2589 0.0030 [–1.1434, –1.3777] –0.01

�51 –0.3726 0.0010 [–0.5166, –0.2282] –1.24
�5 –0.2816 0.0013 [–0.4095, –0.1515] –1.42
� 2

5 0.3159 0.0009 [–0.2479, –0.3945] 0.58

[3] Diagnostic Check for the Kim and Nelson Model

IIP95P SMSALE HWINMF IIP95O IIP95P

Mean 0.0129 0.0107 0.0263 0.0210 0.0160
(0.0590) (0.0571) (0.0559) (0.0591) (0.0586)

St. dev. 1.0384 1.0051 0.9843 1.0406 1.0318

Skewness –0.3275 0.0174 0.3323 –0.2062 –0.2058
(0.1391) (0.1391) (0.1391) (0.1391) (0.1391)

Kurtosis 4.2933 4.4246 4.7422 3.5241 3.6938
(0.2782) (0.2782) (0.2782) (0.2787) (0.2787)

LB(6) 4.93 11.92 69.36 10.82 4.94
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Figure 2  Dataset 2

[1] Composite Indices

[2] Posterior Probability of a Recession
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Figure 3  Posterior Probability of a Recession: Dataset 3
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Dataset 3 is the one in which CELL9 is excluded from dataset 1. These four variables
are used to construct the Nikkei Business Index. This index is the CI constructed by 
the Nihon Keizai Shimbun, Inc. using the Stock and Watson (1989, 1991) model. 
These four variables correspond to the four variables used by the U.S. Department 
of Commerce (DOC) to construct its CI: “industrial production,” “total personal
income less transfer payments in 1987 dollars,” “employees on nonagricultural payrolls,”
and “total manufacturing and trade sales in 1987 dollars.” We only report the posterior
probabilities of a recession, which is depicted in Figure 3. Unlike datasets 1 and 2, the
posterior probability moves in a very narrow range around 50 percent, so that it cannot
be used to date the business cycle turning points. This may be attributed to the fact that
the four variables in dataset 3 are weakly correlated with each other.

In dataset 2, the null hypothesis of no serial correlation in the diagnostic statistic
is rejected for HWINMF. This may be attributed to the fact that HWINMF has a
positive serial correlation while all other variables in dataset 2 have a negative serial 
correlation and that HWINMF is weakly correlated with other variables. Hence, we
also analyze dataset 2 without HWINMF:

Dataset 4: (1) IIP95P (2) SMSALE (3) IIP95O (4) IIP95M

The posterior probability of a recession calculated by fitting the Kim and Nelson
(1998) model to dataset 4 is depicted in Figure 4. Figure 2 [2] and Figure 4 look
alike, demonstrating that HWINMF does not play an important role in dataset 2.
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Following Kaufman (2000), we date the turning points by defining period t as 
a peak if the posterior probability P (St = 1�ỹT) > 0.5 and P (St +1 = 1�ỹT) < 0.5  and
a trough if P (St = 1�ỹT) < 0.5 and P (St +1 = 1�ỹT) > 0.5. As mentioned, the 
posterior probabilities estimated using dataset 3 move in a very narrow range around
50 percent, so that they cannot be used to date the business cycle turning points.
Therefore, we estimate the turning points using datasets 1, 2, and 4. The estimated
turning points are shown in Table 5 jointly with the reference date of the ESRI. The
difference of the turning points among the three datasets is at most one month
except the peak and trough in 1981, which are detected only by datasets 1 and 4, and
the peak in 2000, which are detected only by datasets 2 and 4. The difference of the
turning points estimated by the Kim and Nelson (1998) model from the reference
date of the ESRI is larger, but at most three months except the trough in 1997, the
peak and trough in 1981, and the peak in 2000.

Thus far, beta (18, 2) is used as a prior distribution for the transition probabilities
�00 and �11. It is tight because the mean and standard deviation of beta (18, 2) are 0.9
and 0.065, respectively. To examine how the results are sensitive to the prior distribu-
tion of �00 and �11, we estimate the Kim and Nelson (1998) model using datasets 1, 2,
and 4 under the diffuse prior beta (1, 1), which corresponds to a uniform distribution
in [–1, 1]. The estimated posterior probabilities of a recession are depicted in Figures 5
(dataset 1), 6 (dataset 2), and 7 (dataset 4). Figure 5 shows that the posterior probabili-
ties estimated using dataset 1 move in a very narrow range around 30 to 40 percent,
indicating that dataset 1, in which five variables are weakly correlated with each other,
requires a tight prior for the transition probabilities �00 and �11 to date the business
cycle turning points. Figures 6 and 7 show that this is not true for datasets 2 and 4, 

Figure 4  Posterior Probability of a Recession: Dataset 4
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Table 5  Estimates of Business Cycle Turning Points Based on the Kim and 
Nelson Model

ESRI
KN

Dataset 1 Dataset 2 Dataset 4

P Jan. 1977 Mar. 1977 Jan. 1977 Jan. 1977

T Oct. 1977 Apr. 1977 Mar. 1977 Mar. 1977

P Feb. 1980 Feb. 1980 Feb. 1980 Feb. 1980

T Mar. 1981 June 1981

P Oct. 1981 Oct. 1981

T Feb. 1983 Dec. 1982 Dec. 1982 Dec. 1982

P June 1985 May 1985 May 1985 May 1985

T Nov. 1986 Nov. 1986 Nov. 1986 Nov. 1986

P Feb. 1991 Dec. 1990 Dec. 1990 Jan. 1991

T Oct. 1993 Jan. 1994 Jan. 1994 Jan. 1994

P Mar. 1995 Apr. 1995 Apr. 1995

T Sep. 1995 Sep. 1995 Sep. 1995

P Mar. 1997 Mar. 1997 May 1997 May 1997

T Apr. 1999 Feb. 1999 Jan. 1999 Jan. 1999

P Aug. 2000 Aug. 2000

Note: “P” (peak) indicates the date when the posterior probability P (St = 1|y T ) > 0.5 and P (St +1 = 1|y T )
< 0.5. “T” (trough) indicates the date when the posterior probability P (St = 1|y T ) < 0.5 and 
P (St +1 = 1|y T ) > 0.5. The column “KN” is the estimates of turning points based on the Kim and
Nelson (1998) model. “ESRI” is the reference date of the Economic and Social Research
Institute in the Cabinet Office.

Figure 5  Posterior Probability of a Recession (Diffuse Prior for the Transition
Probabilities): Dataset 1
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Figure 6  Posterior Probability of a Recession (Diffuse Prior for the Transition
Probabilities): Dataset 2
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Figure 7  Posterior Probability of a Recession (Diffuse Prior for the Transition
Probabilities): Dataset 4
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Table 6  Estimates of Business Cycle Turning
Points Based on the Kim and Nelson
Model (Diffuse Prior for Transition
Probabilities �00 and �11)

Note: “P” (peak) indicates the date when the posterior
probability P (St = 1|y T ) > 0.5 and P (St +1 = 1|y T ) 
< 0.5. “T” (trough) indicates the date when the 
posterior probability P (St = 1|y T ) < 0.5 and 
P (St +1 = 1|y T ) > 0.5.

KN

Dataset 2 Dataset 4

P Jan. 1977

T Mar. 1977

P Feb. 1980 Feb. 1980

T Mar. 1981 May 1981

P Nov. 1981 Oct. 1981

T Nov. 1982 Dec. 1982

P May 1985 May 1985

T Nov. 1986 Nov. 1986

P Jan. 1991 Jan. 1991

T Dec. 1993 Jan. 1994

P Apr. 1995 Apr. 1995

T July 1995 Sep. 1995

P May 1997 May 1997

T Dec. 1998 Jan. 1999

P Aug. 2000 Aug. 2000

T Oct. 2000 Nov. 2000

in which the correlations of variables are not so weak. The turning points estimated
using datasets 2 and 4 with the diffuse prior for �00 and �11 are shown in Table 6. The
effects of a prior for �00 and �11 on the estimated turning points are small, especially for
dataset 4. When dataset 4 is used, the turning points estimated with the diffuse prior
are the same as those with the tight prior except the trough in 2000, which is not
detected when the tight prior is used, and the trough in 1985, whose difference is only
one month. The conclusion must be that the estimation results of the Kim and Nelson
(1998) model are insensitive to the prior distribution when highly correlated variables
are used, but it is not true when weakly correlated variables are used.

The ESRI announces the date of a turning point one year and a few months after
the date of the turning point and may revise the date a few months after the first
announcement. For example, the ESRI announced the peak in 1997 as March 1997 in
June 1998, and revised it as May 1997 in December 2001. The trough in 1999 was
first announced as April 1994 in June 2000 and revised as April 1999 in December
2001. The peak in 2000 was announced as October 2001 in December 2001 and may
be revised in the future. We examine how quickly the Kim and Nelson (1998) model
can detect the date of a turning point. Specifically, we examine when the peaks in 1997
and 2000 and the trough in 1999 are first detected by estimating the Kim and Nelson



(1998) model using dataset 4 up to one to three months after those turning points.
Surprisingly enough, all three turning points are detected only two months after the
dates of turning points, and the detected dates are the same as those estimated using
the data up to the three months after the turning points and those using the full sample.

We find that the Kim and Nelson (1998) model performs well when dataset 4 
(or 2) is used. All variables except SMSALE in dataset 4 are production-related 
variables. Hence, the Kim and Nelson (1998) model using only IIP95P, which is 
representative of production-related variables, may also perform well. To examine
whether this is true, we estimate the Kim and Nelson (1998) model using only IIP95P.
The estimated posterior probabilities of a recession move in a narrow range around 
50 percent. This result indicates that the Kim and Nelson (1998) does not perform
well when only IIP95P is used and requires other production-related variables.

IV. Conclusions

This article fits the Markov switching dynamic factor model proposed by Kim and
Nelson (1998) to some macroeconomic variables in Japan. We do not find strong
evidence that the Kim and Nelson (1998) model is favored over the Stock and
Watson (1989, 1991) model, nor major differences between the composite indices
estimated by the two models. The Kim and Nelson (1998) model, however, produces
the estimates of turning points close to the reference dates of the ESRI in the Cabinet
Office unless only weakly correlated variables are used. 

In this article, we focus on the in-sample fit of the models. Needless to say, it is
worthwhile examining the out-of-sample forecasting ability.
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APPENDIX 1: SAMPLING FROM CONDITIONAL DISTRIBUTIONS
(8)–(13)

Conditional distributions (8)–(12) can be derived based on the following theorem,
which is well known in Bayesian econometrics.

THEOREM. Consider the linear regression model

Y = X� + u,  u ∼ N (0, � 2IT ), (A.1) 

where Y is the T × 1 vector of the dependent variable, X is the T × k matrix of indepen-
dent variables, � is the k × 1 vector of regression coefficients, u is the T × 1 vector of the
error term that follows the independent normal distribution with variance � 2, and IT is
the T × T identity matrix.

Under the prior distributions

� ∼ N (M (0), �
(0)),  � 2 ∼ IG (
 (0)/2, � (0)/2),    

the conditional distributions f (�� 2, X , Y ) and f (� 2�, X , Y ) are given by

�� 2, Y ∼ N (M (1), �
(1)), (A.2)

where

M (1) = (�(0) –1 + � –2X ′X )–1 (�(0) –1M (0) + � –2X ′Y ), 

�
(1) = (�(0) –1 + � –2X ′X )–1, 

and

� 2�, Y ∼ IG (
 (1)/2, � (1)/2), (A.3)

where


1 = 
0 + T ,  
�1 = �0 + (Y – X�)′ (Y – X�). 

Proof.

f (�� 2, Y ) 

� f (Y �, � 2) f (�)  

1                                                 1 � exp [– —— (Y – X�)′ (Y – X�)] exp [– —(� – M (0))′ �0

–1(� – M (0))]2� 2 2 

1 � exp [– —(� – M (1))′ �
(1)–1(� – M (1))].  

2 

62 MONETARY AND ECONOMIC STUDIES/FEBRUARY 2003



63

Measuring Business Cycle Turning Points in Japan with a Dynamic Markov Switching Factor Model

1  f (—–�, Y )� 2

1 � f (Y �, � 2) f (—–)� 2

1   (T /2) 1                                        1   
0/2–1 �0� (—–) exp [– —— (Y – X�)′ (Y – X�)](—–) exp [– ——]� 2 2� 2 � 2 2� 2

1   
1/2–1 �1� (—–) exp [– ——]. 
� 2 2� 2

A. Conditional Distribution (8)
The condition of (8) includes �i, �yT , and �cT. Given them, we can calculate

�y*it = �yit – �i1�yi , t –1 – . . . – �iqi �yi , t –qi , 
�c*t = �ct – �i1�ct –1 – . . . – �iqi �ct–qi . 

Using them, define

Y = [�y*i ,qi +ri , . . . , �y*iT ], 

�c*qi +ri
. . . �c*qi 

X =  ..
. . . . ..

.  , 

 �c*T . . . �c*T–ri 
� = �i, 

u = [�i ,qi+ri , . . . , �i ,T ], 

� 2 = � 2
i . 

Then, equation (1′ ) will be the linear regression model (A.1) in the above theorem,
so that the conditional distribution (8) is given by equation (A.2). Specifically,

�1 . ∼ N (M�1
(1), �

(1)
�i
)I [�10 > 0], (A.4)

�i . ∼ N (M�i
(1), �

(1)
�i
),  i = 2, . . . , n, (A.5)

where

M�i
(1) = (��i

(0)–1 + � i
–2X ′X )–1(��i

(0)–1M�i
(0) + �i

–2X ′Y ),

�(1)
�i

= (��i

(0)–1 + � i
–2X ′X )–1.

It is straightforward to sample from the normal distribution (A.5). We can sample
from the truncated normal distribution (A.4) by sampling from the normal 
distribution N (M�1

(1), ��i

(1)) and accepting it only if it is positive.



B. Conditional Distributions (9) and (10)
The conditions of (9) and (10) include �i , �yT , and �cT. Given them, we can calculate

eit = �yit – �i 0�ct – �i1�ct–1 – . . . – �iri �ct–ri ,  t = ri + 1, . . . , T. 

Define

Y = [ei ,ri +qi +1, . . . , ei ,T ], 

ei ,ri +qi
. . . ei ,ri +1 

X =  ..
. . . . ..

.  , 

 ei ,T–1
. . . ei ,T–qi 

� = �i, 

u = [�i ,ri +qi +2, . . . , �i ,T ], 

� 2 = � 2
i . 

Then, equation (2) will be the linear regression model (A.1), so that the conditional
distributions (9) and (10) are given by equations (A.2) and (A.3). Specifically,

�i . ∼ N (M�i
(1), ��i

(1))IS (�i ),  i = 1, . . . , n, (A.6)

� 2
i . ∼ IG (
 (1)/2, � (1)/2),  i = 1, . . . , n, (A.7)

where

M�i
(1) = (��i

(0)–1 + �i
–2X ′X )–1(��i

(0)–1M�i
(0) + �i

–2X ′Y ),    

��i

(1) = (��i

(0)–1 + �i
–2X ′X )–1.  

We can sample from the truncated normal distribution (A.6) by sampling from the
normal distribution N (M�i

(1), ��i

(1)) and accepting it only if it is in the stationary
region. It is straightforward to sample from the gamma distribution (see Ripley
[1987]). Thus, we can sample � 2

i from the inverted gamma distribution (A.7) by
sampling 1/� 2

i from the gamma distribution and taking its reciprocal.

C. Conditional Distribution (11)
The condition of (11) includes �ct and ST. Given them, we can calculate

Y = [(�cp+1 – �sp+1), . . . , (�cT – �sT)], 

 (�cp – �sp)       . . . (�c1 – �s1)  
X =  ..

. . . . ..
.  , 

(�cT–1 – �sT –1
)   . . . (�cT–p – �sT–p )

64 MONETARY AND ECONOMIC STUDIES/FEBRUARY 2003



65

Measuring Business Cycle Turning Points in Japan with a Dynamic Markov Switching Factor Model

If we further define

� = 	,  u = [
p+1, . . . , 
T ],  � 2 = 1, 

equation (3′ ) will be the linear regression model (A.1). Hence, conditional distribution
(11) is given by

	 . ∼ N (M	
(1), �	

(1))IS (	), 

where

M	
(1) = (�	

(0)–1+ X ′X )–1(�	

(0)–1M	
(0) + X ′Y ),

�	

(1) = (�	

(0)–1+ X ′X )–1.

D. Conditional Distribution (12)
The condition of (12) includes 	, �cT, and ST. Given them, we can calculate

 �cp +1 – 	1�cp – . . . – 	p �c1 
Y =  ..

.  , 

�cT – 	1�cT–1 – . . . – 	p�cT–p

1 – 	1 – . . . – 	p Sp +1 – 	1Sp – . . . – 	pS1 
X =  ..

.
..
.  . 

1 – 	1 – . . . – 	p ST – 	1ST–1 – . . . – 	pST–p

If we further define

� = �,  u = [
p+1, . . . , 
T],  � 2 = 1,  

equation (3′ ) will be the linear regression model (A.1). Hence, the conditional 
distribution (12) is given by

�′ . ∼ N (M	
(1), �	

(1))I [�0 < 0, �1 > 0], 

where

M�
(1) = (��

(0)–1 + X ′X )–1(��

(0)–1M�
(0) + X ′Y ), 

��

(1) = (��

(0)–1 + X ′X )–1. 



E. Conditional Distribution (13)
Conditional distribution (13) can be written as

f (�00, �11 .) ∝ f (ST �00, �11)f (�00, �11), 

where

f (�00, �11) ∝ �00
u00(1 – �00)u01�11

u11(1 – �11)u10. 

Once ST are given, we can obtain the number of transitions from St –1 = i to St = j ,
which is denoted by nij . Then,

f (ST �00, �11) � �00
n 00(1 – �00)n 01�11

n11(1 – �11)n10. 

Hence,

�00 . ∼ beta (u 00 + n 00, u 01 + n 01), 

�11 . ∼ beta (u11 + n 11, u10 + n 10). 

We can sample from beta (�1, �2) as the ratio x 1/(x 1 + x 2), where x 1 and x 2 are draws
sampled from gamma (�1, 1) and gamma (�2, 1), respectively.

APPENDIX 2: PARTICLE FILTER
The filter density f (zt , St �y t ), where � in the condition is omitted, can be written as

f (zt , St �y t ) 

� f (�yt zt ) f (zt , St �y t–1) (A.8)

=  f (�yt zt ) ∫ f (zt , St zt –1, St –1) f (zt –1, St –1 �y t –1)dzt–1dSt –1.  

Suppose that we have M draws {z (m)
t –1, S (m)

t –1} (m = 1, . . . , M ) sampled from the density
f (zt –1, St –1 �y t–1). Using these draws, the integral in (A.8) can be estimated as follows.

∫ f (zt , St zt –1, St –1) f (zt –1, St –1 �y t –1)dzt –1dSt –1

1 M

≈ —� f (zt , St z (m)
t –1, S (m)

t –1). 
(A.9)

M m =1

Substituting (A.9) into (A.8) yields

1 M

f (zt , St �y t ) ≈ —� f (�yt zt ) f (zt , St z (m)
t –1, S (m)

t –1), (A.10)
M m =1
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where f (�yt zt ) f (zt , St z (m)
t –1, S (m)

t –1) on the right-hand side can be written as

f (�yt zt ) f (zt , St z (m)
t –1, S (m)

t –1) 

= f (�yt zt ) f (ztSt , z (m)
t –1)p (St S (m)

t –1) 

= f (�yt , ztSt , z (m)
t –1)p (StS (m)

t –1) (A.11)

= f (ztSt , z (m)
t –1, �yt) f (�ytSt , z (m)

t –1)p (St S (m)
t –1) 

= �St ,m f (zt St , z (m)
t –1, �yt), 

where

�St ,m = f (�yt St , z (m)
t –1)p (St S (m)

t –1) 

1 � F –1/2exp(– —e ′t F –1et)p (St S (m)
t –1), 2 

and where

et = �yt – �(MSt + �z (m)
t –1), 

F = ��v�′ + ��
. 

Substituting (A.11) into (A.10) yields

1  
M

f (zt , St �y t) ≈ — ��St ,mf (zt St , z (m)
t –1, �yt) (A.12)

M m =1

We can sample from this mixture distribution by first selecting the indices (St , m )
with probability proportional to �St ,m and then sampling from f (ztSt , z (m)

t –1, �yt),
which is the normal whose mean and variance are given by

�t t
(m ) = Mst + �z (m)

t –1 + �v�′F –1et , 

�tt

(m ) = �v – �v�′F –1��v . 
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