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This paper considers the problem of endogenous sampling in the
duration model. This is an important problem in the duration
analysis of bank failures and loan defaults because it is common 
for the researchers in these areas to use only the default sample or
non-default sample or both at a certain ratio, rather than using a
random sample. The properties of endogenous sampling have been
considered in various models, notably in qualitative response models,
but not in duration models as far as I am aware. In this paper, 
I obtain the asymptotic distribution of the endogenous sampling
maximum likelihood estimator and compare it with that of the 
random sampling maximum likelihood estimator and indicate 
when efficiency gain may result. I also show that the random 
sampling maximum likelihood estimator is inconsistent if the data
are collected by endogenous sampling.
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I. Introduction

Endogenous sampling in the duration model occurs when the statistician uses only
the default (non-right-censored) sample or only the non-default (right-censored)
sample or both at a certain predetermined ratio. This is an important problem in the
duration analysis of banks and loans because it is quite common for the researchers in
these areas to use only the default sample or non-default sample or both at a certain
ratio. For example, Lee and Urrutia (1996) use both kinds of data in an equal 
proportion in the analysis of insurer insolvencies. See other references cited there.

The properties of endogenous sampling have been considered in various models,
most notably in qualitative response models (see Amemiya [1985]), but not in 
duration models as far as I am aware. Kim et al. (1995), in their study of insurer
insolvencies, recognize the problem and cite Manski and Lerman (1977), who
addressed the problem of endogenous sampling in the qualitative response model,
but do not correctly deal with it. In fact, endogenous sampling in the duration model
is so basically different from that in the qualitative response model that the results in
one model cannot be readily applied to the other.

The order of the presentation is as follows: In Section II, I consider the asymp-
totic properties of the endogenous sampling maximum likelihood estimator
(ESMLE) in the model where defaults and non-defaults are sampled in a certain 
proportion. I show that the random sample maximum likelihood estimator
(RSMLE) is inconsistent under this scheme. Next, I compare ESMLE and RSMLE
under their respective favorable conditions. A problem with ESMLE is its necessity to
estimate a starting time distribution. In Section III, I propose a conditional ESMLE
that alleviates this problem. In Section IV, I consider estimating the starting time 
distribution from a separate sample. In Sections V and VI, I consider ESMLE and
Conditional ESMLE in the models with left censoring. Generalizations to the case of
heterogeneous samples are given in Section VII.

II. Sampling Defaults and Non-Defaults in a Certain Proportion

A. Asymptotic Properties of ESMLE
The duration data are generated according to the following scheme: a spell starts in
an interval (a , b ), and the starting time X is distributed according to density h (x )
and distribution function H (x ). The duration T of the spell is distributed according
to density f (t ) and distribution function F (t ). We assume that X and T are indepen-
dent. A spell is a default if it ends before b (D = 1) and a non-default if it continues 
to b (D = 0). Thus,

D = 1 ⇔ t < b – x ≡ A 1

D = 0 ⇔ t ≥ b – x ≡ A 0.
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The above is diagrammatically represented in Figure 1.

We assume that the statistician samples defaults with probability λ 1 and non-
defaults with probability λ 0 (= 1 – λ 1). In order to write the likelihood function of
the model, we first note

f (x, t | D = 1) = h (x )f (t )/P1,

where P1 = P (T < b – X ) = ∫
b

a
F (b – x )h (x )dx and

f (x | D = 0) = h (x )[1 – F (b – x )]/P0,

where P0 = ∫
b

a
h (x )[1 – F (b – x )]dx.

Therefore, the likelihood function is

L = P1
–N1Πh (xi)f (ti ).λ 1

N1.P 0
–N 0Πh (xi)[1 – F (b – xi )].λ 0

N 0, (1)
1                                                  0

where Π and Π mean taking the product over the default and non-default samples,
1                   0

respectively, and N1 and N0 are the numbers of the default and non-default samples. 
Note that N1 is a random variable distributed as binomial (N , λ 1). Assume that the
parameter β characterizes f but not h . (For simplicity of the notation, I will assume
that β is a scalar, but all the subsequent formulas can be easily generalized to the 
vector case.) Ignoring the terms that do not depend on β, we have
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Figure 1  Partition of the x-t Plane
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logL = N1logP1 + ∑log f (ti ) – N0logP0 + ∑log[1 – F (b – xi)]. (2)
1                                                              0

To show the consistency of the ESMLE of β, consider

1  ∂ logL N1 1 ∂P1 1  1   ∂f
—— ——— = – —— — —— + —— ∑D — ——
N ∂β N P1 ∂β N f ∂β

N0 1 ∂P0 1  1     ∂ (1 – F )
– —— — —— + —— ∑ (1 – D ) ——— ————, (3)

N P0 ∂β N 1 – F ∂β

where ∑ means the summation over the whole sample and D, f , and F depend
implicitly on i . The consistency of ESMLE is essentially equivalent to the condition
that the expression in equation (3) converges to zero in probability. In order to verify
this condition, note

1           1   ∂f            1  ∂f              1  ∂f    
plim — ∑D — —— = ED — —— = λ 1E (— —— |D = 1)N f ∂β           f ∂β            f ∂β                 

λ 1 1   ∂f               λ 1 ∂P1= — ∫ — —— hfdtdx = — ——, (4)
P1    

A1 f ∂β                P1 ∂β

1    ∂ (1 – F )                1    ∂ (1 – F )
E (1 – D )——— ———— = λ 0E (——— ———— |D = 0)1 – F ∂β                 1 – F ∂β

λ 0 1    ∂ (1 – F )
= — ∫

b

a
——— ————h (1 – F )dx

P0 1 – F ∂β

λ 0 ∂P0= — ——. (5)
P0 ∂β

Thus, the consistency follows from equations (3), (4), and (5). From the above
results, we see that both ESMLE using only the default sample (λ 1 = 1) and the
ESMLE using only the non-default sample (λ 0 = 1) are consistent.

Next, we will derive the asymptotic variance using the well-known formula (see
Amemiya [1985, p. 121]):

1   ∂ logL  2 –1 1 ∂ 2logL   –1

AV [√
—
N (β̂ – β)] = [E — (———) ] = [–E — ——— ] . (6)

N ∂β                  N ∂β2

Rearranging the terms of the right-hand side (RHS) of equation (3) and multiplying
them by √

—
N ,
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1   ∂ logL 1            1   ∂f 1  ∂P1—— ——— = —— ∑D (— —— – — ——)√
—
N ∂β      √

—
N f  ∂β    P1 ∂β      

1 1    ∂ (1 – F )     1 ∂P0+ —— ∑(1 – D )(——— ———— – — ——). (7)
√
—
N 1 – F ∂β        P0  ∂β

Since

1   ∂f 1  ∂P1 1       1   ∂f 1  ∂P1E [(— —— – — ——)2

|D = 1] = — ∫A1(— —— – — ——)2

hfdtdx
f  ∂β    P1 ∂β                    P1 f  ∂β    P1 ∂β

1      1 ∂f 1  ∂P1 2   ∂f 1 ∂P1= —∫A1[—(——)2

+ —(——)2

– — —— — ——]hfdtdx
P1 f 2 ∂β       P 1

2 ∂β       f ∂β  P1 ∂β

1      h ∂f 1  ∂P1= — [∫A1

—(——)2

dtdx – —(——)2], (8)
P1 f ∂β              P1 ∂β

we have

1   ∂f 1  ∂P1 λ 1 h   ∂f 1   ∂P1ED (— —— – — ——)2

= —[∫A1

—(——)2

dtdx – —(——)2]. (9)
f ∂β     P1 ∂β      P1 f ∂β             P1 ∂β

Since

1    ∂ (1 – F )    1 ∂P0E [(——— ———— – — ——)2

|D = 0]1 – F ∂β        P0  ∂β

1         1    ∂ (1 – F )    1 ∂P0= —∫
b

a (——— ———— – — ——)2

h (1 – F )dx
P0         1 – F ∂β        P0  ∂β  

1         h ∂ (1 – F )          1  ∂P0= —[∫b

a
———(————)2

dx – —(——)2], (10)
P0  1 – F ∂β        P0  ∂β

we have

1    ∂ (1 – F )    1 ∂P0E (1 – D )(——— ———— – — ——)2

1 – F ∂β        P0  ∂β

λ 0 h ∂ (1 – F )          1  ∂P0= —[∫b

a
———(————)2

dx – —(——)2]. (11)
P0  1 – F ∂β        P0  ∂β
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Therefore, from equations (6), (7), (9), and (11),

1   ∂ logL  2

AV (ESMLE )–1 = E — (———)N ∂β

λ 1           h ∂f       1   ∂P1= —[∫A1

—(——)2

dtdx – —(——)2]P1 f ∂β             P1 ∂β

λ 0 h ∂ (1 – F )          1  ∂P0+ —[∫b

a
———(————)2

dx – —(——)2]. (12)
P0  1 – F ∂β        P0  ∂β

We can also verify the second equality of equation (6).

B. Inconsistency of RSMLE
We will show that RSMLE is inconsistent under the endogenous sampling scheme
described in the beginning of Section II.A. The likelihood function to be maximized
to obtain RSMLE is

LR = Πh (xi)f (ti ).Πh (xi)[1 – F (b – xi )]. (13)
1                            0

Therefore, we have

logLR = ∑Di log f (ti ) + ∑(1 – Di )log[1 – F (b – xi )], (14)

1  ∂ logLR 1 1   ∂f      1 1 ∂ (1 – F )
— ——— = — ∑D — —— + — ∑(1 – D ) ——— ————, (15)
N ∂β N f ∂β    N                   1 – F ∂β

1  ∂ logLR λ 1 ∂P1 λ 0 ∂P0E — ——— = — —— + — ——. (16)
N ∂β P1 ∂β P0   ∂β

The inconsistency follows from the fact that the RHS of equation (16) is not zero
unless λ 1 = P1 (hence λ 0 = P0).

We will evaluate the degree of the inconsistency of RSMLE in a simple example.
For this purpose, we must treat the β that appears on the RHS of equation (15) as the
domain of the function and take the expectation using the true value β*. Note that
in equation (16) I was implicitly evaluating the function at the true value without
defining a new symbol. Then, we have, instead of equation (16),

λ 1 1  ∂f  λ 0 1    ∂ (1 – F )
—— ∫A1

— —— hf *dtdx + —— ∫
b

a
——— ———— h (1 – F *)dx , (16*)

P1* f ∂β P0* 1 – F ∂β

where the functions with * are evaluated at β*. Note that equation (16*) is reduced
to equation (16) when we remove * from the RHS. Given the true value β*, the
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probability limit of RSMLE is given by solving for β the equation obtained by 
equating equation (16*) to zero. The simple example we will consider is defined by 
a = 0, b = 1, h (x ) = U (0, 1), f (t ) = βexp(–βt ), and λ 0 = λ 1 = 0.5. We will assume 
β* = 1. Then we can calculate the probability limit of RSMLE to be 0.468.

C. Comparison of ESMLE and RSMLE
We will now compare the asymptotic variances of RSMLE and RSMLE derived
under their respective correct models. We have already done so for ESMLE in
Section II.A, so we now do the same for RSMLE. Note that equations (17), (18), 
and (19) below are analogous to equations (7), (9), and (11). From equation (15), 
we obtain

1   ∂ logLR 1            1   ∂f ∂P1—— ——— = —— ∑ (D — —— – ——)√
—
N ∂β      √

—
N f  ∂β    ∂β

1                      1 ∂ (1 – F )    ∂P0+ —— ∑ ((1 – D )——— ———— – ——). (17)
√
—
N 1 – F ∂β        ∂β

Note a slight difference between equations (17) and (7). Analogous to equation (9),
we have

1   ∂f ∂P1 h    ∂f ∂P1E (D — —— – ——)2

= ∫A1

—(——)2

dtdx – (——)2

, (18)
f  ∂β     ∂β           f    ∂β               ∂β

and analogous to equation (11) we have

1    ∂ (1 – F )    1 ∂P0       E [(1 – D )——— ———— – — ——]2

1 – F ∂β        P0  ∂β 

h ∂ (1 – F )            ∂P0= ∫
b

a
———(————)2

dx – (——)2

. (19)
1 – F ∂β        ∂β

Unlike the derivation in the case of ESMLE, however, here we need to calculate
the expectation of the cross product:

1   ∂f ∂P1 1    ∂ (1 – F )    1 ∂P0             ∂P1E (D — —— – ——)((1 – D )——— ———— – — ——) = (——)2

. (20)
f  ∂β     ∂β               1 – F ∂β        P0  ∂β        ∂β

Therefore, from equations (17) through (20) we obtain
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1  ∂ logLRAV (RSMLE )–1 = E — (———)2

N ∂β

h    ∂f                   h ∂ (1 – F )
= ∫A1

—(——)2

dtdx +∫
b

a
———(————)2

dx. (21)
f    ∂β                 1 – F ∂β

It is interesting to note that if we put λ 1 = P1 and λ 0 = P0 in equation (12), we do not
get equation (21). In fact, what we obtain by putting λ 1 = P1 and λ 0 = P0 in equation
(12) is smaller than equation (21). For some values of λ 1 and λ 0, however, equation
(12) may be larger than equation (21), allowing for the possibility that ESMLE may
be more efficient than RSMLE. From equation (12), it is clear that the RHS of 
equation (12) is maximized either at λ 1 = 1 or λ 0 = 1 depending on which of the
coefficients on p1 and p0 is greater. Thus, contrary to intuition, the optimum does
not occur in between.

To get a concrete idea about the difference in asymptotic efficiency between
ESMLE and RSMLE, we will evaluate their asymptotic variances in the same simple
example we considered at the end of the preceding section: namely, a = 0, b = 1, 
h (x ) = U (0, 1), and f (t ) = βexp(–βt ). Define ESMLE1 to be the estimator using
only the default sample and ESMLE0 using only the non-default sample. Their
asymptotic variances are given by equations (8) and (10). Then, inserting the values
specified by the simple example into equations (8) and (10), we obtain

β – 3 + (3 + 2β + β2)e –β (1 – e –β – βe –β)2

AV (ESMLE1 )–1 = —————————— – ———————, (22)
β3 – β2 + β2e –β (β2 – β + βe –β)2

2 – (β2 + 2β + 2)e –β (1 – e –β – βe –β)2

AV (ESMLE0 )–1 = ———————— – ———————, (23)
β2 – β2e –β (β – βe –β)2

1     1     e –β

AV (RSMLE )–1 = — – — + ——. (24)
β2      β3          β3

In Table 1, we have evaluated these three inverses of the asymptotic variances for
some values of β.
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Table 1  Asymptotic Variances of Three Estimators

β 0.5 1 5

AV(RSMLE) –1 0.852 0.368 0.032

AV(ESMLE1) –1 0.052 0.048 0.020

AV(ESMLE0) –1 0.082 0.079 0.033



III. Conditional ESMLE Using Defaults

ESMLE using only the default sample maximizes

L1 = P1
–N1Πh (xi)f (ti ), (25)

1

and its asymptotic variance is given by equation (8). A problem with this estimator is
the fact that P1 depends on h (x ) and hence h (x ) cannot be ignored even if one
wanted to estimate only the parameter β that characterizes f (t ). Conditional ESMLE
(CESMLE) alleviates this difficulty. This estimator is analogous to the conditional
maximum likelihood estimator used in the duration model with left censoring (see
Amemiya [1999]).

The conditional density of t given x in A1 is given by

h (x )f (t )           f (t )
f (t |x ) = —————— = ——— . (26)

∫0

b –xh (x )f (t )dt     F (b – x )

Therefore, CESMLE maximizes

f (ti )LC = Π ————, (27)
F (b – xi)

or, equivalently,

logLC = ∑log f – ∑logF. (28)

Consider

1 ∂ logLC 1       1  ∂f      1       1  ∂F
— ——— = —∑— —— – —∑— ——. (29)
N ∂β        N f ∂β   N F ∂β

Taking the probability limit,

1 ∂ logLC 1  ∂f   1  ∂F 
plim — ——— = E (— —— |D = 1) – E (— —— |D = 1)N ∂β            f ∂β                     F ∂β

1  ∂P1 1   ∂P1= — —— – — —— = 0. (30)
P1 ∂β     P1 ∂β

Therefore, CESMLE is consistent.
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To evaluate the asymptotic variance, consider

1 ∂ logLC 1          1  ∂f   1  ∂P1—— ——— = —— ∑ (— —— – — ——)√
—
N ∂β      √

—
N f  ∂β    P1 ∂β

1        1  ∂F   1  ∂P1– —— ∑ (— —— – — ——). (31)
√
—
N F ∂β    P1 ∂β

We need to evaluate the mean of the square of each term and the cross product. 
The mean of the square of the first term has been derived in equation (8). We have

1   ∂f   1  ∂P1 1  h   ∂F 1  ∂P1E [(— —— – — ——)2

|D = 1] = —[∫a

b — (——)2

dx – —(——)2] (32)
f  ∂β    P1 ∂β                    P1 F  ∂β          P1 ∂β

and

1   ∂f   1  ∂P1 1   ∂F  1  ∂P1E [(— —— – — ——)(— —— – — ——) |D = 1]f  ∂β    P1 ∂β   F   ∂β    P1 ∂β   

1  h   ∂F 1  ∂P1= —[∫a

b — (——)2

dx – —(——)2 ]. (33)
P1 F  ∂β          P1 ∂β

Therefore,

1 ∂ logLCAV (CESMLE )–1 = E (—— ———)2

√
—
N ∂β

1      h ∂f h ∂F
= — [∫A1

—(——)2

dtdx – ∫a

b—(——)2

dx ]. (34)
P1 f ∂β                F  ∂β

The above can be shown to be equal to

1 ∂ 2logLC–E— ———–.
N  ∂β2

We will show that equation (34) is smaller than the inverse of the asymptotic 
variance of ESMLE using only the default sample, namely, what we obtain by
putting p1 = 1 in equation (12). For this, we need to verify
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h ∂f               1  ∂P1 h ∂f                  h ∂F∫A1

—(——)2

dtdx – —(——)2

≥ ∫A1

—(——)2

dtdx – ∫a

b — (——)2

dx, (35)
f ∂β             P1 ∂β f ∂β                F  ∂β

or equivalently

h ∂F  ∂P1P1∫a

b— (——)2

dx ≥ (——)2

, (36)
F  ∂β  ∂β

or equivalently

1  ∂F   ∂F∫a

b Fhdx .∫a

b — (——)2

hdx ≥ (∫a

b ——hdx )2

, (37)
F  ∂β  ∂β

which follows from the Cauchy-Schwartz inequality

EV 2.EU 2 ≥ (EUV )2, (38)

if we put 

1   ∂F
U = —— ——, V = √

—
F ,

√
—
F   ∂β

and the expectation is taken with respect to x. 
ESMLE using only the non-default sample maximizes

L0 = P0
–N0Πh (xi)[1 – F (b – xi)]. (39)

0

Thus, each density has the form 

h (x )[1 – F (b – x )]
——————————. (40)
∫a

bh (x )[1 – F (b – x )]dx

Note that equation (40) depends only on x. Therefore, there is no CESMLE using
only the non-default sample.
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IV. Separate Estimation of h (x )

We now consider the case where we can estimate the density h (x ) or the distribution
function H (x ) using an augmented sample independent of that used to estimate β.

We maximize equation (25) after estimating h from a separate independent 
sample. That is, maximize

W = Π f (ti)P̂ 1
–1, (41)

where

P̂1 = ∫a

bF (b – x )dĤ(x ) (42)

and Ĥ is the empirical distribution function based on K separate observations. Thus, 

K

P̂1 = K –1∑F (b – xk). (43)
k =1

If we denote this estimator by β~1, its asymptotic distribution can be obtained from 

1    ∂ logW    1 ∂ 2logW√
—
N (β~1 – β) = – (—— ———)(— ———–)

–1

. (44)
√
—
N ∂β       N ∂β2

The second-derivative term above divided by N will converge to the same limit 
as if H were not estimated. So, here, we will consider only the first derivative part.
We have, ignoring the terms that do not depend on β,

N                                                 K

logW = ∑log f (ti) – N log∑F (b – xk). (45)
i =1 k =1

Since

∂ logW     N 1   ∂f N    K ∂F
——— = ∑— —— – ——∑——, (46)

∂β       i =1 f ∂β      K k =1 ∂β∑F
k =1
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1   ∂ logW      1   N 1   ∂f 1  ∂P1—— ——— = ——∑(— —— – — ——)√
—
N ∂β         √

—
N i =1 f ∂β    P1 ∂β

 1 K ∂F ∂P1 ∂P1 1  K                      —∑—— – ——    ——(—∑F – P1) K k =1 ∂β     ∂β     ∂β   K k =1 
–√

—
N ——————— – ———————

 1  K 1 K       —∑F                  P1—∑F 
       K k =1                                          K k =1               

1   N 1   ∂f 1  ∂P1LD ——∑(— —— – — ——)= √
—
N i =1 f ∂β    P1 ∂β

 1 K ∂F ∂P1 ∂P1 1  K                      —∑—— – ——    ——(—∑F – P1) K k =1 ∂β     ∂β     ∂β   K k =1  (47)
–√

—
N ——————— – ——————— .

      P1 P 1
2 

       

Note that the first term after LD above is 
=

1 ∂ logL1—— ———
√
—
N ∂β

in the case of using only the default sample, as can be seen from the first term on 
the RHS of equation (7), and the second term arises from estimating H. Therefore, 
if we define

1 ∂ logL1 1 h   ∂f 1   ∂P1B = E [—— ———]2

= —[∫A1

—(——)2

dtdx – —(——)2], (48)
√
—
N ∂β      P1 f ∂β             P1 ∂β

the asymptotic variance of √
—
N (β~1 – β) is given by

AV [√—
N (β~1 – β)] =

N 1    ∂F     N 1  ∂P1 N 1 ∂P1 ∂F
B –1[B + — —V—— + — —(——)2

VF – 2— — —— cov(F,——)]B –1. (49)
K P 1

2 ∂β     K P 1
4 ∂β             K P 1

3 ∂β ∂β

Thus, if N/K → 0, the estimator is as efficient as if H were known. Otherwise, 
K must go to infinity at least as fast as N in order for the above to remain finite.

If we estimate the density h by a kernel estimator of the form

K xi – x 1
ĥ (x ) = ∑ g (———)——, (50)

i =1 d     Kd

89

Endogenous Sampling in Duration Models



we can get the same asymptotic result as above provided that the kernel function g
and the rate of convergence of d to zero satisfy certain conditions. But the proof is
more involved in this case. See, for example, Ait-Sahalia (1994).

We will now obtain an analogous result for the case of ESMLE using only the
non-default sample. Here we maximize

W = Π[1 – F (b – xi)]P̂ 0
–1, (51)

where

1 K

P̂ = — ∑[1 – F (b – xk )]. (52)
K k =1

We have, ignoring the terms that do not depend on β,

N                                            K

logW = ∑log[1 – F (b – xi)] – N log∑[1 – F (b – xk )]. (53)
i =1 k =1

Since

∂ logW   N 1     ∂ (1 – F )         N        K ∂ (1 – F )
——— = ∑——— ———— – ———— ∑————,

(54)∂β   i =1 1 – F ∂β         K
k =1 ∂β∑(1 – F )

k =1

1   ∂ logW       1  N 1     ∂ (1 – F )   1 ∂P0—— ——— = ——∑(——— ———— – — ——)√
—
N ∂β       √

—
N i =1 1 – F ∂β        P0  ∂β

 1 K ∂ (1 – F )  ∂P0 ∂P0 1  K                      —∑———— – ——    ——(—∑(1 – F ) – P0) K k =1 ∂β     ∂β     ∂β   K k =1 
–√

—
N ————————— – —————————

 1  K 1 K        —∑(1 – F ) P0—∑(1 – F ) 
        K k =1                                                     K k =1               

1   N 1     ∂ (1 – F )     1  ∂P0LD = ——∑(——— ———— – — ——)= √
—
N i =1 (1 – F ) ∂β    P0 ∂β

 1 K ∂ (1 – F )  ∂P0 ∂P0 1  K                      —∑———— – ——    ——(—∑(1 – F ) – P0) . K k =1 ∂β     ∂β     ∂β   K k =1  (55)
–√

—
N ————————— – —————————      P0                                                          P 0

2 
       
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Figure 2  Two Types of Spells

Note that the first term after LD above is 
=

1 ∂ logL0—— ———
√
—
N ∂β

in the case of using only the default sample, as can be seen from the second term on
the RHS of equation (7), and the second term arises from estimating H. Therefore, 
if we define

1 ∂ logL0 1 h      ∂ (1 – F )         1   ∂P0C = E [—— ———]2

= —[∫a

b———(————)2

dx – —(——)2], (56)
√
—
N ∂β      P0 1 – F ∂β             P0 ∂β

the asymptotic variance of √
—
N (β~0 – β) is given by

AV [√
—
N (β~0 – β)] =

N 1    ∂F    N 1  ∂P0 N 1 ∂P0 ∂F
C –1[C + — —V—— + — —(——)2

VF – 2— — —— cov(F,——)]C –1. (57)
K P 0

2 ∂β    K P 0
4 ∂β             K P 0

3 ∂β ∂β

V. ESMLE with Left Censoring

At the beginning of Section II.A, we defined the range of the starting time x of a spell
as (a, b ), where a is a certain time in the past and b is the present time. Now we 
consider a time within this interval and denote it as zero. The assumption of the 
present section is that we sample only those spells which either are continuing at time
zero or start after zero. (This is the problem of left censoring studied by Amemiya
[1999].) Moreover, we sample only defaults, that is, only those spells which end
before b. (This is the problem of endogenous sampling.) In this section, we consider
a simultaneous occurrence of left censoring and endogenous sampling.

Consider the following two types of spells: (1) those that start in (a , 0) and 
continue to zero but end before b and (2) those that start in (0, b ) and end before b.
The two types of spells are described in Figure 2.
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In Figure 3, the domains of the two types of spells are described on the x-t plane.
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We have

P1 ≡ P (A1) = ∫
0

a ∫–x

b–x

fhdtdx = ∫
0

a
[F (b – x ) – F (–x )]hdx, (58)

P2 ≡ P (A2) = ∫
b

0 ∫0

b–x

fhdtdx = ∫
b

0
F (b – x )hdx. (59)

The question that we now wish to address is: should we divide Type (1) sample by P1

and Type (2) sample by P2, or all the samples by P ≡ P1 + P2 ?
If we divide all the samples by P, we maximize

L = P –N Πh (xi)f (ti )Πh (xi)f (ti ). (60)
1                             2

Ignoring the terms that do not depend on β, we have

logL = –N logP + ∑log f , (61)

1 ∂ logL 1 1   ∂f 1  ∂P
—— ——— = —— ∑ (— —— – — ——). (62)
√
—
N ∂β      √

—
N f  ∂β    P ∂β

Figure 3  Domains of the Two Types of Spells

t

A1

A2

t = –x

t = b – x

a 0 b x



Thus, in analogy to equation (12),

1   ∂ logL  2 1      h   ∂f 1 ∂P
E — (———) = —[∫A

—(——)2

dtdx – —(——)2]. (63)
N ∂β         P      f    ∂β              P ∂β

where A = A1∪ A2.
If we divide Type (1) sample by P1 and Type (2) sample by P2, we maximize

L* = P1
–N1Πh (xi)f (ti)P2

–N2Πh (xi)f (ti). (64)
1                                    2

Ignoring the terms that do not depend on β, we have

logL = –N1logP1 – N2logP2 + ∑log f , (65)

1   ∂ logL* N1 1  ∂P1 N2 1  ∂P2 1       1 ∂f
—— ——— = —— — —— – —— — —— + ——∑— ——
√
—
N ∂β      √

—
N P1 ∂β      √

—
N P2  ∂β  √

—
N f  ∂β

1  ∂P1 1               P1 1  ∂P2 1               P2= – — —— ——∑ (D1 – —) – — —— ——∑ (D2 – —)P1 ∂β   √
—
N P       P2  ∂β  √

—
N P

1         1 ∂f 1   ∂P
+ ——∑ (— —— – — ——), (66)

√
—
N f  ∂β P  ∂β

where D1 = 1 if the spell is of Type (1) and D2 = 1 if it is of Type (2). Since the last
term above is equal to the RHS of equation (62),

1   ∂ logL* 1  ∂P1 P1 P1 1  ∂P2 P2 P2E — (———)2

= — (——)2

—(1 – —) + — (——)2

—(1 – —)N ∂β        P 1
2 ∂β P P     P 2

2 ∂β P P

2 ∂P1 ∂P2          2 ∂P1 1   ∂P1       P1 ∂P
– — —— —— – — ——(— —— – — ——)P 2 ∂β  ∂β      P1 ∂β  P ∂β     P 2 ∂β

2 ∂P2 1   ∂P2       P2   ∂P          1    ∂ logL
– — ——(— —— – — ——) + E — (———)2

P2 ∂β  P ∂β     P 2 ∂β         N ∂β

1 ∂P    1 ∂P1 1 ∂P2      1 ∂ logL
= — (——)2

– ——(——)2

– ——(——)2

+ E — (———)2

. (67)
P 2 ∂β    PP1 ∂β     PP2 ∂β    N ∂β
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The above can be shown to be equal to 

1  ∂ 2logL*
–E — ———–.

N ∂β2

To see that L is the better likelihood function than L*, verify

1 ∂ logL         1  ∂ logL*
E — (———)2

– E — (———)2

N ∂β           N ∂β

——              ——
1 ∂P1 1 ∂P2       1 ∂P 1      P2 ∂P1             P1 ∂P2= ——(——)2

+ ——(——)2

– — (——)2

— [ — (——) – — (——)]2

≥ 0,
PP1 ∂β     PP2 ∂β      P 2 ∂β P 2    √ P1 ∂β      √ P2 ∂β

(68)

VI. Conditional ESMLE with Left Censoring

Conditional density of t given x in A (≡ A1∪ A2) is given by

h (x )f (t )        f (t )
f (t | x ) = —————— = ——, (69)

∫A
h (x )f (t )dt    G (x )

where

G (x ) = F (b – x ) – X (a ,0)(x )F (–x ). (70)

Note that X(a ,0)(x ) = 1 if x ∈ (a , 0) and = 0 otherwise. All the results of Section III
will go through by replacing F by G. Thus,

1      h ∂f h ∂G
AV (CESMLE )–1 = — [∫A

—(——)2

dtdx – ∫a

b —(——)2

dx ]. (71)
P f ∂β                G  ∂β

The above can be shown to be less than equation (63) by replacing F by G on the
Cauchy-Schwartz inequality equation (36).
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VII. Generalizations to the Case of Heterogenous Samples

So far, we have assumed that we have i.i.d. observations on the random variables 
X and T. In actual applications, however, their densities, h and f , are likely to 
depend on vectors of exogenous variables si and zi so that we can write h (xi – si'θ) and
f (ti – zi'β). We will indicate how the foregoing results should be modified to take
into account these specifications. Below, we will indicate necessary modifications to
some of the preceding equations.

(1)0 Replace h and f with h (xi – si'θ) and f (ti – zi'β).

1  N

(12) Add lim —∑ to every term after the above replacement.
N i =1

(21) Same as above.

(34) Same as above.

(41) W = Π f (ti – zi'β)P̂ 1i
–1.

i =1

(42) P̂ 1i = ∫a

bF (b – x – zi'β)dĤ(x ),

where Ĥ is a step function with a jump of size 1/K at xk – sk'θ̂, θ̂ being the least
squares estimator of the regression of xk on sk . Therefore,

1 K

(43) P̂ 1i = —∑F (b – xk + sk'θ – zi'β),
K k =1

A further error is introduced by the estimation of θ, but the rate of convergence is
the same as in the case of the homogenous sample.
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