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The various tools for risk measurement and management, especially
for value-at-risk (VaR), are compared, with special emphasis on
Japanese market data. Traditional Generalized Autoregressive
Conditional Heteroskedasticity (GARCH)-type methods are com-
pared to extreme value theory (EVT). The distribution of extremes,
asymmetry, clustering, and the dynamic structure of VaR all count as
criteria for comparison of the various methods. We find that the
GARCH class of models is not suitable for VaR forecasting for the
sample data, due to both the inaccuracy and the high volatility of the
VaR forecasts. In contrast, EVT forecasting of VaR resulted in much
better VaR estimates, and more importantly, the EVT forecasts were
considerably more stable, enhancing their practical applicability for
Japanese market risk forecasts.
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I. Introduction

The financial industry, both private firms and regulators, has become increasingly
aware of the impact of risk in tradable assets. There are many reasons for this: deregu-
lation makes risk-taking activities available to banks; technology both fosters risk-tak-
ing and makes the measurement of risk more accurate; and increasing competition
means banks need to engage in increasingly risky activities simply to stay competi-
tive. As a result, market risk measurement and management, which, until recently,
was an arcane part of the banking business, has been thrust into the forefront of
issues facing bankers and regulators alike. In response to this, supervisory authorities
require banks to practice risk management, and report risk measures to them. In
addition to publicly mandated risk measuring, many banks choose to measure and
manage risk internally. Banks’ approach to risk management ranges from a reluctant
minimum compliance to regulations to comprehensive internal risk management
programs. Since market risk management is a recent phenomenon, innate banking
conservatism, in many cases, hinders the adoption of modern market risk methods.
These techniques have been, to a large extent, developed in the U.S.A., where banks
have, by and large, the best risk management systems in the world, undoubtedly
underpinning their preeminent role in global finance.

In the analysis of risk management, one has to distinguish between external and
internal practices. Banks in all major financial centers are required to comply with
the so-called ‘Basel rules,’ regulations proposed by the Basel Committee on Banking
Supervision (1996), which consists of members from Central Banks and other super-
visory authorities, such as the Japanese Financial Services Agency (FSA). The grist of
these regulations is the use of internal models by banks, i.e. banks model risk inter-
nally and report the outcome to the regulators in the form of Value-at-Risk (VaR).
VaR is the minimum amount of losses on a trading portfolio over a given period of
time with a certain probability. VaR has to be reported daily. While the VaR measure
has been rightly criticized by risk managers for being inadequate, it bridges the gap
between the need to measure risk accurately and for non-technical parties to be able
to understand the risk measure. As such, it is the minimum technical requirement
from which other, more advanced, measures are derived. In addition, while VaR, as a
risk measure, may be inadequate, at least it serves to force recalcitrant banks to prac-
tice minimum risk management. The concept of VaR does have several shortcom-
ings, the main one being that it is only the minimum amount of losses, while
expected losses are more intuitive. For example, if the VaR is ¥1 billion, then we do
not know if maximum possible losses are ¥1.1 billion, or ¥10 billion. In response,
other measures have been proposed, e.g. expected shortfall, defined as the expected
loss, conditional on exceeding the threshold. For a discussion on the properties of
risk models and their application to regulatory capital, see Daníelsson (2000a).
Interestingly, the criticism that current VaR measures, being excessively volatile, result
in excessive fluctuations in bank capital, is not valid in practice. While it is unques-
tionably true that most VaR measures are excessively volatile, this has little or no reg-
ulatory impact on financial institutions. The reason is that regulatory VaR is a loss
that happens more than twice a year, and a financial institution that cannot handle
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that loss is faced with more serious problems than fluctuating regulatory capital.
While regulatory capital is three or four times the 10-day 99 percent VaR level, capi-
tal for most banks is of an order of magnitude higher than that. This is both due to
the fact that credit risk capital is much larger than market risk capital, and also that a
bank that has the minimum market risk capital will be viewed as a very high risk by
prospective clients. For example, in 1996, the average reported daily VaR by the JP
Morgan Bank was US$36 million implying regulatory capital of US$340 million.
This surprisingly small amount is only a small fraction of JP Morgan’s capital in
1996.

Internal risk management is a different issue. Here, banks are able to employ a
wide variety of techniques to deal with the myriad of risk management issues. For
example, capital has to be allocated to various risky activities, fund managers and
traders have to be monitored, etc. As a result, internal requirements for financial risk
measurement are more complex and diverse than regulatory requirements. For exam-
ple, risk measurement serves diverse managerial purposes, ranging from integrated
risk management to allocation of position limits. When risk measurement methods
are used to allocate position limits to individual traders, or set mandate letters for
fund managers, high volatility of risk measures is a serious problem, because it is very
hard to manage individual positions with highly volatile position limits.

Fundamentally, all statistical risk measuring techniques fall into one of three cate-
gories, or a hybrid thereof: fully parametric methods based on modelling the entire
distribution of returns, usually with some form of conditional volatility; the non-
parametric method of historical simulation; and parametric modelling of the tails of
the return distribution. All these methods have pros and cons, generally ranging from
easy and inaccurate to difficult and precise. No method is perfect, and usually the
choice of a technique depends on the market in question, and the availability of well-
trained financial engineers to implement the procedures.

Below, we compare some of these procedures, with a special focus on extreme
value theory (EVT) and the issue of dependence. In Chapter II, we discuss the gen-
eral properties of financial returns, and how they relate to risk management, along
with a brief review of common risk methods. Then, in Chapter III, we present an
extensive discussion of EVT from a risk perspective, examining the pros and cons of
that method. After that, Chapter IV contains a discussion on extensive empirical
results. Mathematical derivations are contained in Appendix.

II. Distribution of Returns and Risk Forecasting

In order to predict risk, one needs to model the dynamic distribution of prices.
However, even though financial practitioners usually prefer to work with the con-
cepts of profit and loss (P/L), it is not well-suited for risk management, with returns
being a preferred measure. There are two equivalent ways to calculate returns.
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(1)

(2)

The compound returns in (2) are generally preferred for risk analysis, both due to
their connection with common views of the distribution of process and returns, as
well as the link with derivatives pricing, which generally depends on (2). In empirical
analysis of the empirical properties of returns on liquid traded assets, three properties,
or stylized facts, emerge which are important from a risk perspective:

1. non-normality of returns,
2. volatility clustering, and
3. asymmetry in return distributions.

In addition, the volatility of risk forecasts is problematic in practical risk applica-
tions. We address each issue in turn.

A. Distribution of Returns
1. Non-normality and fat tails
The fact that returns are not normally distributed is recognized both by risk man-
agers and supervisory authorities:

“.....as you well know, the biggest problem we now have with the whole
evolution of risk is the fat-tail problem, which is really creating very
large conceptual difficulties. Because, as we all know, the assumption of
normality enables us to drop off the huge amount of complexity in our
equations... Because once you start putting in non-normality assump-
tions, which is unfortunately what characterizes the real world, then
these issues become extremely difficult.”
Alan Greenspan (1997)

The non-normality property implies the following for the relative relationship
between the return distribution and a normal distribution with the same mean and
variance:

1. the center of the return distribution is higher,
2. the sides of the return distribution are lower, and
3. the tails of the return distribution are higher.

This implies that the market is either too quiet or too turbulent relative to the nor-
mal. Of these, the last property is most relevant for risk. The fat-tailed property
results in large losses and gains being more frequent than predicted by the normal.
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An assumption of normality for the lower tail is increasingly inaccurate, the farther
into the tail one considers the difference. For example, if one uses the normal distrib-
ution to forecast the probability of the 1987 crash by using the preceding years’ data
and the normal, one roughly estimates that a crash of the ’87 magnitude occurs once
in the history of Earth. Most financial analysis, until recently, has been based on the
assumption of normality of returns. The reason for that is the mathematical tractabil-
ity of the normal, since non-normal distribution is very difficult to work with. While
normality may be a relatively innocuous assumption in many applications, in risk
management it is disastrous, and non-normality needs to be addressed.
2. Volatility clustering
The second stylized fact is that returns go through periods when volatility is high and
periods when it is low. This implies that, when one knows that the world is in a low
volatility state, a reasonable forecast is for low financial losses tomorrow. Most risk
models will take this into account, usually with a form of the GARCH model (see
Bollerslev [1986]). The reason for the prevalence of the GARCH model is that it
incorporates the two main stylized facts about financial returns, volatility clustering
and unconditional non-normality. The popular RiskMetrics method is a restricted
GARCH model where ω=0 and α+β=1. The most common form of the GARCH
model is the GARCH(1,1):

(3)

(4)

One of the appealing properties of this model is that, even if the conditional distribu-
tion is normal, the unconditional distribution is not normal. This model will per-
form reasonably well in forecasting common volatility, e.g. in the interior 90 percent
of the return distribution. However, as the normal GARCH model implies that the
thickest tails of the conditional forecast distribution are only as fat as the normal with
highest volatility forecast, they are still normal. This, coupled with the fact that the
parameters of the GARCH model are estimated using all data in the sample equally
weighted, and that, say, only 1 percent of events are in the tails, results in the estima-
tion being driven by common events. Furthermore, because of the functional form of
the normal distribution, the tail observations have lower weight than the center
observations, and hence contribute too little to the estimation. This is the same rea-
son why the Kolmogorov-Smirnoff test is not robust in testing for non-normality in
fat-tailed data. Note that the JP Morgan RiskMetrics technique (J.P. Morgan [1995])
is based on a restricted form of the GARCH model.

For this reason, a GARCH model with Student-t innovations is sometimes used
for risk.

(5)

29

Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market

r r N

r

t t t

t t t

  ,

      ,  , ,  ,  .

−

− −

( )
= + + > + <

1
2

2
1

2
1

2 0 1

~ µ σ

σ ω ασ β ω α β α β

r r
tt t

t

  
( )

−1

σ ν~

~



where  σt is as in (4), and the degrees of freedom parameter, ν, is estimated along
with the other parameters. Since the Student-t is fat-tailed (see Chapter III), it has
much better properties for risk forecasting. There are three reasons why the Student-t
is not ideal for risk forecasting:

1. its tails generally have a different shape than the return distribution,
2. it is symmetric, and
3. it does not have a natural multivariate representation.

As a result, while the GARCH Student-t will, in most cases, provide much better
risk forecasting than a normal GARCH, its limitations imply that the model should
be used with care.
3. Extreme clustering
While it is a stylized fact that returns exhibit dependence, it is less established
whether extremes are clustered.  We suggest the following definition:

Definition 1 (Extreme clustering) Data are said to have extreme clusters if the arrival
time between extreme events is not i.i.d.

Furthermore, data with extreme clustering may have the following property:

Hypothesis 1 Dependence in time between quantiles decreases with the lower probability
of the quantiles.

The truthfulness of the hypothesis depends on the underlying distribution of returns.
Hence, the validity of the hypothesis will, of course, crucially affect the choice of
optimal risk forecast technique. For example, Hypothesis 1 is true for the popular
GARCH model. As we argue below, this may imply that, for very low probability
quantiles, one should use an unconditional risk forecast technique, even if the true
data generating process is GARCH. In addition, the rate at which dependence
decreases will affect the modelling choice. If the rate is rapid, then unconditional risk
forecast methods are preferred, but if the rate is slow, long memory models should be
used. Since the GARCH model, and most related models, fall into the rapid decline
class, unconditional models are preferred to GARCH models.

We propose a test for extreme dependence in order to aid the modelling decision.
Specifically, we decide on a threshold, and count the number of consecutive non-
exceedances between two exceedances. If the observations exceed  the threshold inde-
pendently, the counted numbers are geometrically distributed. If the sample counted
numbers are far from geometric distribution, it is reasonable evidence of extreme
clustering, and can be tested by the  goodness of fit test.

Specifically, if  rt is the return, then the statistic  φt, defined as
χ 2

30 MONETARY AND ECONOMIC STUDIES/DECEMBER 2000



(6)

becomes increasingly more i.i.d. as  λ  increases.
The data used are the TOPIX index, oil price index WTI, SP-500 index,

JPY/USD exchange rate, and Tokyo Stock Exchange Second section index TSE2. In
addition, various subsets of the data were used. See Table 1 for summary statistics.
We tested the independence of extremes for returns, as well as the residuals of normal
and Student-t GARCH forecasts. The thresholds chosen were 5 percent, 2.5 percent,
1 percent and 0.5 percent for each tail. These results are presented in Tables 2-4.

Table 2 shows the dependence in the returns. As expected, at the lower probability
levels (5 percent, 2.5 percent), there is significant dependence, but at the 0.5 percent
level, the data are mostly independent. Interestingly, at the 1 percent level, for the
lower tail there is dependence, but not for the upper tail. This is consistent with the
fact that the upper tail is usually thinner than the lower tail. The longest datasets
have dependence at the 0.5 percent level. These results indicate that dependence
decay is slow, suggesting that long memory models may be appropriate for risk fore-
casting.

Table 3 shows the results from testing for dependence of residuals in normal
GARCH residuals, and Table 4 does the same for a Student-t GARCH model. As
expected, there is much less dependence in residuals.  However, for some of the
datasets, the GARCH models fail to eliminate dependence. Even worse, if the
extreme dependence is not of the GARCH type, the residuals may exhibit spurious
extreme dependence.
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Table 1  Summary Statistics

Data From To Obs. Mean S.D. Skew. Kurt. AC(1) 
TOPIX 08/01/49 07/30/99 14,179 0.032% 0.88% –0.44 19.30 0.16
TOPIX 08/01/49 07/31/59 3,007 0.052% 0.90% –0.12 12.41 0.25
TOPIX 08/01/59 07/31/69 3,006 0.021% 0.72% –0.36 6.46 0.16
TOPIX 08/01/69 07/31/79 2,896 0.039% 0.69% –1.44 17.28 0.22
TOPIX 08/01/79 07/31/89 2,803 0.063% 0.49% –2.41 70.62 0.10
TOPIX 08/01/89 07/30/99 2,467 –0.023% 1.25% 0.30 7.81 0.11
WTI 06/01/83 07/30/99 4,021 –0.010% 2.45% –1.38 28.87 0.01
SP500 08/01/49 07/30/99 12,632 0.035% 0.85% –1.78 50.89 0.10
SP500 08/01/49 07/31/59 2,518 0.055% 0.71% –0.83 10.27 0.10
SP500 08/03/59 07/31/69 2,515 0.017% 0.63% –0.50 12.82 0.16
SP500 08/01/69 07/31/79 2,543 0.005% 0.86% 0.29 5.45 0.24
SP500 08/01/79 07/31/89 2,529 0.048% 1.09% –3.75 83.59 0.06
SP500 08/01/89 07/30/99 2,527 0.053% 0.88% –0.50 9.31 0.01
JPY/USD 08/01/79 07/30/99 5,093 –0.012% 0.71% –0.81 10.65 0.02
JPY/USD 08/01/79 07/31/89 2,489 –0.018% 0.66% –0.39 5.48 0.04
JPY/USD 08/01/89 07/30/99 2,604 –0.007% 0.76% –1.06 13.20 0.00
TSE2 08/01/69 07/30/99 8,166 0.031% 0.70% –0.79 13.10 0.43
TSE2 08/01/69 07/31/79 2,896 0.049% 0.63% –1.02 13.96 0.47
TSE2 08/01/79 07/31/89 2,803 0.051% 0.54% –1.76 30.21 0.32
TSE2 08/01/89 07/30/99 2,467 –0.012% 0.91% –0.31 7.29 0.45
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Table 2  Extreme Dependence in Returns

Lower tail Upper tail
Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%
TOPIX 49-99 *** *** *** *** *** *** *** ***
TOPIX 49-59 *** *** *** *** *** *** ***
TOPIX 59-69 *** *** *** *** ***
TOPIX 69-79 *** *** *** *** ***
TOPIX 79-89 *** *** *** *** *** *** ** ***
TOPIX 89-99 *** *** *** *** **
WTI 83-99 *** *** *** *** *** *** *** ***
SP500 49-99 *** *** *** *** *** *** *** ***
SP500 49-59 **
SP500 59-69 *** *** *** *** ** **
SP500 69-79 *** *** *** *** *** *** *** ***
SP500 79-89 *** *** *** *** *** *** ***
SP500 89-99 *** *** *** *** ***
JPY/USD 79-99 *** *** *** *** ***
JPY/USD 79-89 *** *** *** *** *** *** ** ***
JPY/USD 89-99 *** *** *** *** **
TSE2 69-99 *** *** *** *** *** *** *** ***
TSE2 69-79 *** *** *** *** *** *** *** ***
TSE2 79-89 **
TSE2 89-99 *** *** *** *** ** **

Notes: ***indicates significance at the 1% level, **at the 2.5% level and *at the 5% level.

Table 3  Extreme Dependence in Normal GARCH Residuals

Lower tail Upper tail
Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%
TOPIX 49-99 ** ** **
TOPIX 49-59 *** **
TOPIX 59-69 ***
TOPIX 69-79
TOPIX 79-89
TOPIX 89-99 **
WTI 83-99
SP500 49-99 ***
SP500 49-59
SP500 59-69 * *
SP500 69-79 ** ** **
SP500 79-89 *** **
SP500 89-99 ***
JPY/USD 79-99
JPY/USD 79-89
JPY/USD 89-99 **
TSE2 69-99
TSE2 69-79 ***
TSE2 79-89
TSE2 89-99 * *

Notes: ***indicates significance at the 1% level, **at the 2.5% level and *at the 5% level.



33

Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market

Table 4  Extreme Dependence in Student-t GARCH Residuals

Lower tail Upper tail
Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%
TOPIX 49-99 ** ** ** **
TOPIX 49-59 *** ***
TOPIX 59-69 ***
TOPIX 69-79
TOPIX 79-89
TOPIX 89-99 **
WTI 83-99
SP500 49-99 ***
SP500 49-59
SP500 59-69 ** *
SP500 69-79 ** ** **
SP500 79-89
SP500 89-99 **
JPY/USD 79-99
JPY/USD 79-89 **
JPY/USD 89-99
TSE2 69-99 *** ** ***
TSE2 69-79 **
TSE2 79-89 ** ** **
TSE2 89-99 * **

Notes: ***indicates significance at the 1% level, **at the 2.5% level and *at the 5% level.

4. Violation clustering
While the concept of extreme clustering applies to the actual data, it is also of interest
to consider clustering in violations of the VaR. We propose the following definition:

Definition 2 (Violation clustering) When the time between VaR violations is not i.i.d.
Violation clustering depends on the data and VaR forecast method. In practice, it is
probably impossible to create a VaR model that does not result in some type of viola-
tion clustering, either globally or, at least, locally. A form of local violation clustering
can be seen in Figure 1, where we forecast VaR for the TOPIX index by both normal
GARCH and EVT methods (see below for a more detailed discussion of the VaR
forecasts). We see that the GARCH method lags behind the returns, but overcom-
pensates by producing an extremely large VaR forecast. The EVT method is hardly
affected by the event. The overly sharp reaction in the GARCH  model, combined
with a rapid decrease, suggests that the long memory models would be much prefer-
able to the GARCH model, and in the absence of a long memory model, the EVT
method is preferred.



5. Asymmetry
One feature of conditional volatility models, such as the GARCH model, is the
implicit assumption of symmetry of the return distribution. As discussed below, this
is not correct. Usually, one of the tails is fatter than the other. For example, for equi-
ties, the lower tail is commonly thicker than the upper tail. In general, if the market
trend is upwards, the upper tail is thinner than the lower tail, i.e. the market moves
in small steps in the direction of the trend, and in large jumps away from the trend.
In the 1990s, most major stock indices have a relatively thicker lower tail, except the
NIKKEI. Since the GARCH model, and its immediate extended forms, are symmet-
ric, due to conditional normality or Student-t distributional assumptions, they tend
to underpredict losses relative to gains, and hence, for an unsuspecting risk manager,
will provide false comfort. While, in theory, it is straightforward to extend the
GARCH model to take into account asymmetry, this necessarily complicates the
model.

The EGARCH model by Nelson (1991) is sometimes used for volatility forecast-
ing.
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Figure 1  Risk Overshooting in TOPIX VaR Forecast
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where  θ and  γ are the parameters of asymmetry, and  Li is the lag operator. The
advantage of this model is, primarily, its relation to stochastic volatility models.
Hence, it provides a link to continuous time finance. For risk applications, the pri-
mary advantage is the explicit asymmetry, where risk forecasts depend on the direc-
tion of lagged marked movements. However, typically, when this model is estimated,
the asymmetry parameters are non-significant, suggesting that this model is misspeci-
fied. As a result, in risk applications, this model does not have any special advantage
over the GARCH model, and since it is more complex than the GARCH, it cannot
be recommended for risk forecasting.

The best way to forecast risk would be to use skewed conditional distributions.
This, however, is not commonly done, due to the difficulty of finding an appropriate
skewed distribution and estimating its parameters.
6. VaR volatility
One feature of conditional volatility models, such as the GARCH, is that the volatil-
ity of risk forecasts is very high. Table 5 shows some sample statistics of predicted
VaR numbers for the first two quarters of 1999 for the TOPIX index. We see that, in
a portfolio of ¥1 billion, a normal GARCH model predicts VaR ranging from ¥18
million to ¥41 million. Since market risk capital is 3 × VaR, this would imply very
large fluctuations in capital. If financial institutions actually set capital at this level, it
would imply very high financing costs, and most likely result in the institution keep-
ing a higher capital level than necessary. The reason why this is largely irrelevant,
from a regulatory point of view, is that  the regulatory VaR is typically of an order of
magnitude higher than required. One area where this problem is not academic is in
internal risk management, where VaR may be used, e.g. to set limits for traders. Since
frequently fluctuating VaR limits would result in high variability in the size of posi-
tions, this would be considered unacceptable in most cases. As a result, in practice,
most banks would use various techniques to dampen VaR volatility. In many cases,
the covariance matrix is updated at infrequent intervals, e.g. once every three months.
This, of course, usually results in large jumps in the limits (which are derived from
the covariance matrix) four times a year, which in itself creates problems.
Alternatively, a dampening function on the covariance matrix could be used, e.g. a
moving average. A better way would be to use a long memory model for volatility. In
this case, the variance is neither stationary nor non-stationary, implying a fractal
dimension. The advantage is that these models provide persistence in shocks that falls
between the extremely short horizon of the GARCH-type model and the infinite per-
sistence of I (1) models, like RiskMetrics. Long memory models are, however, notori-
ously difficult to work with, and have some way to go until they can be employed in
regular risk management. Another common method is to dispense with conditional
volatility-based methods altogether for the setting of limits, and perhaps use histori-
cal simulation or extreme value theory. See Daníelsson (2000b) for more discussion
on risk volatility.
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III. Extreme Value Theory

In common statistical methods, such as GARCH, all observations are used in the
estimation of a forecast model for risk, even if only one in 100 events is of interest.
This, obviously, is not an efficient way to forecast risk. The basic idea behind extreme
value theory (EVT) is that, in applications where one only cares about large move-
ments in some random variable, it may not be optimal to model the entire distribu-
tion of the event with all available data. Instead, it may be better only to model the
tails with tail events. For example, an engineer designing a dam is only concerned
with the dam being high enough for the highest waters. Regular days when the
waters are average simply do not matter. Extreme value theory is a theory of the
behavior of large, or extreme, movements in a random variable, where extreme obser-
vations are used to model the tails of a random variable (see Figure 2). EVT has been
widely used in diverse fields, such as engineering, physics, chemistry, and insurance.
However, it is only recently that it has been applied to financial risk modelling.
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Table 5  VaR Volatility in the TOPIX Index (Percentage Returns)

Name From To Mean S.E. Min. Max. Violations
GARCH normal 1954/07/29 1999/07/30 –1.71 1.04 –28.28 –0.59 1.65%
GARCH-t 1954/07/29 1999/07/30 –1.86 1.09 –22.30 –0.65 1.25%
EVT 1954/07/29 1999/07/30 –2.20 0.70 –3.94 –1.03 1.17%
GARCH normal 1996/01/04 1999/07/30 –2.64 0.91 –7.56 –1.43 1.48%
GARCH-t 1996/01/04 1999/07/30 –2.90 0.92 –7.13 –1.75 0.91%
EVT 1996/01/04 1999/07/30 –3.25 0.21 –3.94 –2.90 0.91%
Returns 1999/01/04 1999/03/31 0.26 1.18 –2.41 3.70
GARCH normal 1999/01/04 1999/03/31 –2.59 0.64 –4.12 –1.80
GARCH-t 1999/01/04 1999/03/31 –2.79 0.61 –4.21 –2.04
EVT 1999/01/04 1999/03/31 –3.18 0.03 –3.31 –3.09
Returns 1999/04/01 1999/06/30 0.18 1.00 –2.01 3.24
GARCH normal 1999/04/01 1999/06/30 –2.57 0.37 –3.57 –2.02
GARCH-t 1999/04/01 1999/06/30 –2.82 0.40 –3.84 –2.23
EVT 1999/04/01 1999/06/30 –3.17 0.03 –3.19 –3.09

Note: These are summary statistics of VaR predictions.

Figure 2  The Tail

(a) Entire distribution (b) Left tail



A. Theoretical Background
Classification of tails of distribution is often arbitrary. For example, a high kurtosis is,
perhaps, the most frequently used indication of fat tails. This, however, is an incor-
rect use of kurtosis, which measures the overall shape of the distribution. One way to
demonstrate this  is by Monte Carlo experiments. We generated repeated samples of
size 2000 from a known fat-tailed distribution, the Student-t (3). For each sample,
we excluded the largest and smallest 40 values. Our random sample was, hence, trun-
cated from above and below, and clearly thin-tailed. However, the average excess kur-
tosis was 7.1, falsely indicating fat tails. In addition, various models are frequently
labeled as fat-tailed, e.g. the conditionally normal stochastic volatility (SV) model. It
can be shown that, according to the criteria below, the SV model is thin-tailed. Note,
in contrast, that the GARCH model is fat-tailed, since the return process feeds back
to the volatility process.

Formally, random variables fall into one of three tails shapes, fat, normal, and
thin, depending on the various properties of the distribution.

1. The tails are thin, i.e. the tails are truncated. An example of this is mortality.
2. The tails are normal. In this case, the tails have an exponential shape. The

most common member is the normal distribution.
3. The tails are fat. The tails follow a power law.

It is a stylized fact that financial returns are fat. Hence, we only need to consider the
third case. An extremely important result in EVT is that the upper tail1 of any fat-
tailed random variable (x) has the following property:

(7)

where  α is known as the tail index, and F (.) is the asymptotic distribution function.
The reason why this is important is that, regardless of the underlying distribution of
x, the tails have the same general shape, where only one parameter is relevant, i.e. α.
If the data are generated by a heavy-tailed distribution, then the distribution has, to a
first order approximation, a Pareto-type tail:

(8)

as Daníelsson and de Vries (1997b) and Daníelsson and de Vries (1997a)
demonstrate that the distribution of the lower tail is

(9)

x → ∞.
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1. This applies trivially to the lower tails as well.
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where  n is the number of observations,  m is the number of observations in the tail,
and  Xm+1  is the decreasing order statistics,  X1 ≥ X2 ≥ ... ≥ Xm ≥ ...≥ Xn .  The tail index
α is the key parameter, in that it governs how rapidly the tails go down.

• If α = ∞, the tails decline exponentially, and the distribution is usually normal.
• If α < ∞, the tails are fat, and in that case,

– α is the number of finite moments,
– for the student-t distributions, α is the degrees of freedom, and
– for the stable distributions, α is the characteristic exponent.

B. Applications of EVT
Many applications exist for EVT in financial institutions. By estimating the tails of
return distributions, a financial institution is able to obtain better forecasts of out-of-
sample events, as well as better measurements of extreme in-sample quantiles. The
primary application considered here is risk management, but in addition, EVT has
important implications for measurement of diversification effects under heavy tails,
which implies that standard portfolio theory, which is based on risk-return profiles in
a mean variance framework, is not strictly correct. Also, derivatives pricing, especially
for exotic options, is strongly affected by the presence of heavy tails. This is as pre-
dicted by EVT. However, risk management remains the primary use of EVT within
the financial industry.

When EVT is used for VaR forecasting, the parameters of the lower tail are esti-
mated, i.e.  α and  m:  (9) forms the basis of the VaR forecast. Conditional on the
estimates of α and  m, we obtain  Xm+1. These three variables, in addition to the sam-
ple size  n,  enable us to calculate any probability–quantile combination (P, Q) where
P < m/n. Specifically, if we need to calculate VaRp%, we ascertain whether p ≥ m/n. If
that is the case, we use the pth sample quantile from the data to get q (p), i.e. historical
simulation is used to provide the VaR forecast. If p < m/n,  (9) is used to obtain the
corresponding quantile q(p). Knowing the quantile forecast q(p), calculating the VaR
is straightforward.

C. Estimation
If the tails follow the Pareto distribution is (8) exactly, i.e.

F (x) = 1 – ax -α , (10)

estimation of the tail indexed α is straightforward. Hill (1975) shows that a maxi-
mum likelihood estimator of the tail index is

(11)

The estimator in (11) is known as the Hill estimator, m is the number of  observa-
tions in the tail, and Xm+1 is the quantile (threshold) where the tail begins. If  the
Pareto approximation in (10) is only asymptotically correct, the Hill estimator is a
consistent method of moments estimator. For an appropriately chosen m, it is well

38 MONETARY AND ECONOMIC STUDIES/DECEMBER 2000

1 1

11ˆ
log .

α
=

+=
∑

m
X

X
i

mi

m



known that this estimator currently has the best empirical properties for the tail
index of financial returns. However, the choice of m is not trivial. Choosing m is the
same as determining where the tail begins. Choosing m arbitrarily, e.g. as 1 percent of
the sample size, is not recommended. Hall (1990) proposes a subsample bootstrap
method for the determination of m. His method relies on strong assumptions of the
tail shape, and Daníelsson and de Vries (1997a) propose an automatic double sub-
sample bootstrap procedure for determination of the optimal threshold, m*.
1. The optimal threshold
The choice of the optimal threshold m* is very important, since the estimates of α
and, hence, risk, will vary highly by changing m. The optimal choice of m*.depends
on the following results.

1. The inverse estimate of the tail index 1/ is asymptotically normally distrib-
uted.

2. Therefore, we can construct the asymptotic mean square error(AMSE)of 1/ .
3. Since, in general, 1/ is biased and is subject to estimation variance, we

need to take the following into account.

(a) As both the variance and bias are affected by the choice of m, it is opti-
mal to choose m where the bias and variance vanish at the same rate.

(b) Therefore, the level where the AMSE is minimized gives us the optimal
threshold level, m*, i.e. we have

We obtain the AMSE by a bootstrap procedure. However, resampling of size T
does not eliminate variation in the AMSE, and a subsample bootstrap is needed. Hall
(1990) proposes a subsample procedure, where he assumes an initial m level to obtain
an initial α, as a proxy for 1/α in the AMSE, then obtains 1/ estimates for each
subsample bootstrap realization, and chooses  m*sub for the subsample where the aver-
age is minimized. This is then scaled up to the full sample m* using α̂ sub and the
assumption of where β is the parameter of the second order expansion of
the limit law in (7). This however has two drawbacks:

1. a need to assume an initial α, and
2. assumption of a value for the second order parameter β (Hall argues that β =

α is a good assumption, but for Student-t, β = 2).

Daníelsson and de Vries (1997a) propose an automatic procedure to determine
m*, where they use a double subsample bootstrap to eliminate reliance on the initial
α and assumption of . The difference statistic between the Hill estimator and the
Daníelsson-de Vries estimator converges at the same rate and has a known theoretical
benchmark which equals zero in the limit. The square of this difference statistic pro-

β̂

ˆ ˆβ αsub sub=

α̂

α̂
α̂

α̂
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duces a viable estimate of the MSE[1/α] that can be minimized with respect to the
choice of threshold. Furthermore, in order to attain the desired convergence in prob-
ability, instead of convergence of distribution that can be obtained, at most, by a full
sample bootstrap, they show that one needs to create resamples of a smaller size than
the original sample with a subsample bootstrap technique. The reason is that two
samples with different sampling properties are needed for the estimation of the sec-
ond order parameter β, which is used in scaling the subsample optimal threshold up
to the full sample threshold, where the Hill estimator is used to obtain the full sam-
ple α estimate.

D. Issues in Application of EVT
While, sometimes, EVT is presented as a panacea for risk management, this is not
correct. There are several issues which limit the applicability of EVT to the financial
sector.
1. Sample size
While there is nothing intrinsic which limits the sample size in EVT applications, in
practice, there are constraints. There are primarily two types of constraints which
limit the sample size from below.

1. We need to observe some events which constitute extremes, and
2. most estimation methods for the threshold, m, depend on subsample boot-

strap or even double subsample bootstrap, which implies that the first con-
straint has to be observed in all bootstrap subsamples.

If the Hill estimator is used for the determination of m, one requires, at the absolute
minimum, that the number of observations in the tail is m+1. However, m is esti-
mated with a subsample procedure, where the size of the subsample should  be as
small as is feasible. Practical experience and theoretical results indicate that the size of
the subsample should be, perhaps, 10 percent of the sample size. Therefore, if the
sample size is 1000, the subsample size is 100, and on average, one will observe 50
positive values, from which to estimate the subsample values. However, in repeated
bootstraps, the particular bootstrap with the smallest number of positive observations
will provide the upper constraint on feasible positive values. In practice, this implies
that 1,000 observations is the absolute minimum, and 1,500 observations is prefer-
able. Having more than 6000 observations does not seem to make much of a differ-
ence. The risk manager is, therefore, in a classical Catch22 situation; statistical
demands may be inconsistent with the fact that the world is changing. Actually, this
is a reflection of a greater problem. In many markets, especially emerging markets,
there is simply not enough data to do sensible analysis, whether by EVT or any other
method. Perhaps for this reason, most published work on risk management is focused
on modelling risk in highly liquid, long running data series, such as SP-500.
2. EVT is usually univariate
While multidimensional EVT is actively being developed, it suffers from the same
curse of dimensionality problems as many other techniques, such as GARCH. As a
result, at the time of writing, such methods have very limited applicability in risk
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management. There are, however, signs that this is changing, especially in the very
interesting work of Longin (1999), where he measures how the covariance changes as
one moves into the tails.
3. Dependence
EVT, as presented here, assumes that the data is i.i.d. This, however, is not a theoretic
limitation. Resnick ans (1996) have shown that the Hill estimator is consis-
tent under certain types of dependence, such as GARCH.

E. Extreme Value Theory Forecasting
Results using EVT are presented in Table 6, and plots of the lower tail of the TOPIX
in the 1990s are presented in Figure 3. EVT was used to predict the largest expected
decrease and increase in each series over a 20-year interval. Of the datasets, oil prices
are the most volatile, and a one-day increase of 29 percent is expected once every 20
years, with a one-day drop of 19 percent once in the same period. We note that the
JPY/USD exchange rate is getting riskier over time, with a one-day increase of 9 per-
cent. Curiously, the Second Section stocks are subject to less extreme risk than the
TOPIX stocks. The main U.S.index, SP-500, is less risky than the major Japanese
index, TOPIX, in the 1990s, and the TOPIX is especially risky on the downside.

Starica
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Table 6  EVT Tail Estimates (Percentage Returns)

Data From To Obs. Mean S.D. Skew. Kurt. AC(1)
TOPIX 08/01/49 07/30/99 3.83 4.02 37 30 7.34 –7.37
TOPIX 08/01/49 07/31/59 3.27 4.70 32 17 6.27 –8.26
TOPIX 08/01/59 07/31/69 4.74 3.15 20 36 6.85 –4.29
TOPIX 08/01/69 07/31/79 3.44 2.68 28 41 8.89 –5.34
TOPIX 08/01/79 07/31/89 2.92 2.88 48 29 8.26 –7.63
TOPIX 08/01/89 07/30/99 4.00 5.57 22 12 7.51 –9.73
WTI 06/01/83 07/30/99 4.25 2.82 14 32 29.5 –18.9
SP500 08/01/49 07/30/99 3.89 3.25 61 163 7.18 –6.01
SP500 08/01/49 07/31/59 4.59 2.85 33 32 7.57 –4.02
SP500 08/03/59 07/31/69 2.97 3.59 76 25 5.07 –5.78
SP500 08/01/69 07/31/79 3.46 4.81 31 23 4.79 –7.13
SP500 08/01/79 07/31/89 3.97 2.80 33 56 10.4 –6.83
SP500 08/01/89 07/30/99 3.91 3.33 29 28 7.51 –6.15
JPY/USD 08/01/79 07/30/99 4.60 3.61 25 34 6.29 –4.08
JPY/USD 08/01/79 07/31/89 6.89 6.61 14 11 3.80 –3.02
JPY/USD 08/01/89 07/30/99 3.98 2.66 29 36 9.46 –4.91
TSE2 08/01/69 07/30/99 5.20 3.13 20 34 7.56 –4.35
TSE2 08/01/69 07/31/79 4.69 2.41 23 51 8.50 –3.86
TSE2 08/01/79 07/31/89 5.95 3.37 16 32 4.53 –2.81
TSE2 08/01/89 07/30/99 4.55 7.97 17 11 5.71 –5.67

Notes: αu and αl are the tail index for the upper and lower tails, respectively. mu and ml are the num-
ber of order statistics in the upper and lower tails, respectively. Max. 20 and Min. 20 are fore-
casts of the expected largest one-day increase and decrease in the data over 20 years in
percentages.
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Figure 3  Lower Tails of the CDF for TOPIX 1990-1999
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IV. Empirical Analysis

The empirical analysis is based on a variety of datasets from several periods. For most
parts, our empirical protocol was strictly non-data-snooping, i.e. we did not look at
the data before applying our procedures.

A. VaR Predictions
The most common model for VaR forecasting is the GARCH class of models. We
use the GARCH model with normal and Student-t innovations to forecast VaR. The
estimation window was 1000 observations, and the model is reestimated each day.
We moved the 1000-day window to the end of the sample. Each day, we forecast the
next day’s VaR and count the number of violations. The results from this exercise,
which are presented in Table 7, will not come as a surprise to readers of VaR litera-
ture, since many authors have tested this and reached the same conclusions. The nor-
mal GARCH model has the worst performance, followed by the Student-t GARCH,
with EVT the best method. These results are especially interesting in light of the
results on VaR volatility below.

B. Asymmetry
Both the normal and Student-t GARCH models are based on the assumption of a
symmetric conditional distribution, with no asymmetric responses of returns on the
risk forecasts. As a result, these models assume that the unconditional distribution of
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Table 7  VaR Violation Ratios

Lower tail Upper tail

Model Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%

Normal TOPIX 4.50% 3.07% 1.98% 1.47% 4.10% 2.71% 1.59% 1.21%
SP500 5.13% 3.40% 1.96% 1.41% 4.81% 2.93% 1.66% 1.19%
JPY/USD 5.65% 3.84% 2.50% 1.89% 5.15% 3.23% 2.09% 1.53%
WTI 5.08% 3.05% 1.98% 1.39% 4.80% 2.86% 1.90% 1.51%
TSE2 4.76% 3.05% 2.04% 1.53% 5.06% 3.29% 1.86% 1.35%

GARCH TOPIX 5.14% 3.01% 1.65% 1.25% 4.05% 2.19% 1.05% 0.63%
SP500 5.47% 3.33% 1.81% 1.12% 4.30% 2.31% 0.99% 0.59%
JPY/USD 5.57% 3.42% 2.12% 1.64% 4.90% 2.84% 1.50% 1.00%
WTI 5.04% 2.98% 1.71% 1.27% 4.40% 2.66% 1.43% 1.15%
TSE2 5.25% 3.26% 1.82% 1.26% 4.34% 2.54% 1.22% 0.72%

GARCH-t TOPIX 5.80% 3.02% 1.25% 0.76% 4.44% 2.11% 0.71% 0.28%
SP500 6.01% 3.18% 1.28% 0.60% 4.62% 2.11% 0.71% 0.34%
JPY/USD 6.26% 3.01% 1.34% 0.92% 5.23% 2.31% 0.86% 0.19%
WTI 6.27% 2.82% 1.15% 0.48% 4.68% 2.30% 0.99% 0.63%
TSE2 5.39% 2.91% 1.29% 0.69% 4.76% 2.33% 0.89% 0.21%

EVT TOPIX 5.23% 2.68% 1.18% 0.69% 5.38% 2.90% 1.30% 0.72%
SP500 5.61% 3.11% 1.27% 0.69% 5.55% 3.12% 1.27% 0.70%
JPY/USD 5.51% 2.98% 1.31% 0.95% 6.43% 3.03% 1.53% 0.81%
WTI 5.08% 2.94% 0.87% 0.48% 5.32% 2.78% 1.23% 0.63%
TSE2 5.45% 2.72% 1.23% 0.72% 5.75% 2.99% 1.38% 0.78%

Notes: Length of Test: TOPIX=12,679, SP500=11,133, JPY/USD=3,593, WTI=2,521, TSE2=6,666.
Each cell contains the ratio of VaR violations to total number of observations. The correct
ratio is in the top row.

returns is symmetric. This has two drawbacks for risk forecasting. First, it implies
that the upper and lower tails are identical. However, this is clearly not the case. It is
well known that return distribution is not symmetric, with the upper tail typically
thinner than the lower tail. This is also the case with our data (see Table 6). In addi-
tion, with the normal GARCH model, the thinner tail will be more important in the
estimation, due to the exponential kernel. Hence, the thicker tail, typically the lower,
will have a relatively lower impact on the estimation. We see that VaR predictions
with the GARCH model bear this out. There is considerable asymmetry in the
GARCH results. The VaR levels in the upper tail are overpredicted, while those in
the lower tail are underpredicted.

C. VaR Volatility
As discussed above, VaR volatility is of considerable concern. Table 5 shows statistics
on VaR predictions for a portfolio of ¥1 billion of the various models under consider-
ation. We first focus on the entire sample period. The normal GARCH model sug-
gests that the largest one-day 1 percent VaR is ¥280 million, while  the largest one-
day loss on the TOPIX was only ¥150 million with an unconditional probability of
0.007 percent, clearly indicating the implausibility of the GARCH results.
Attempting to rectify the forecast by the use of a Student-t GARCH model does not
help much, since its largest predicted loss is ¥220 million. A completely different pic-
ture emerges from the EVT results. The VaR forecasts are stable, and do not have any
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of the wild VaR forecasts produced by the GARCH models. The standard error of
the normal GARCH model VaR forecasts is 1.04, for the Student-t GARCH model
1.09, but only 0.70 for the EVT forecast.

A similar picture emerges for the first and second quarters of 1999. (Q1 and Q2)
We see that the normal GARCH model predicts VaR ranging from ¥18 million to
¥41 million. A factor of three change in VaR in three months is problematic for a
financial institution using VaR for either external or internal risk management, but
this is a typical result from conditional volatility models. Similar results obtain for a
Student-t GARCH model, with VaR ranging from ¥20 million to ¥42 million. In
Q1 of 1999, the EVT model had VaR forecasts which ranged from ¥31 million to
¥33 million, in line with expectations.

D. Violation Clustering
We also consider VaR clustering in the forecasts from the models by use of the
extreme clustering test discussed above. These results are presented in Table 8. We
find that, when considering the entire dataset, there is still considerable clustering in
EVT forecasts, and, as expected, the dependence in the GARCH models results in
much less global clustering. However, when considering local clustering, another pic-
ture emerges. Figure 1 shows both GARCH normal and EVT forecasts of TOPIX
VaR. We see that the GARCH method lags behind the returns, but overcompensates
by producing an extremely large VaR forecast. The EVT method is hardly affected by
the event. The overly sharp reaction in the GARCH model, combined with a rapid

Table 8  Violation Dependence

Lower tail Upper tail

Model Data 5% 2.5% 1% 0.5% 5% 2.5% 1% 0.5%

Normal TOPIX *** *** *** *** *** *** *** ***
SP500 *** *** *** *** *** *** *** ***
JPY/USD *** *** ** *** ** ** *
WTI *** *** *** *** *** *** *** ***
TSE2 *** *** *** *** *** *** *** ***

GARCH TOPIX *** *** *
SP500 *** ***
JPY/USD
WTI ***
TSE2 *** *** * *

GARCH-t TOPIX *** ***
SP500 *** ** **
JPY/USD
WTI
TSE2 *** * **

EVT TOPIX *** *** *** *** *** *** *** ***
SP500 *** *** *** *** *** *** *** ***
JPY/USD *** *** *** *** *** ***
WTI *** *** *** *** *** *** ***
TSE2 *** *** *** *** *** *** *** ***

Notes: ***indicates significance at the 1% level, **at the 2.5% level and *at the 5% level.
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decrease, suggests that the long memory models would be much preferable to the
GARCH model, and in the absence of a long memory model, the EVT method is
preferred.

V. Conclusion

Risk management has undergone vast changes in recent years. Traditional methods,
such as the GARCH class of models, have been pressed into service to provide risk
forecasts, with mixed results. New techniques, such as extreme value theory (EVT),
have been applied to the problem of risk forecasting. This is a dynamic field, and no
single technical solution exists. One faces the classical problem of accuracy vs. com-
plexity. In the paper, we compare and analyze the various methods for VaR forecast-
ing of Japanese financial data.

We find that Japanese market data are well suited for advanced techniques, such
as EVT. The data exhibit patterns observed in other markets, rendering risk forecasts
relatively straight forward. By using EVT, we find that VaR forecasts are very accurate
and stable over time. This implies that the use of EVT risk forecasting for Japanese
financial institutions and other users of Japanese market data is recommended.

In contrast, we find that GARCH-type techniques are less accurate than EVT
VaR forecasts, and even more worryingly, are very volatile. As a result, such models
cannot be recommended for practical VaR predictions. A detailed examination of the
VaR forecasts from both EVT and GARCH models demonstrated that the wild
swings observed in the GARCH VaR predictions are more an artifact of the GARCH
model, rather than the underlying data. Finally, we note that a long memory model
would provide the best risk forecasts. However, this cannot be recommended. This is
because such models are notoriously difficult to estimate and require very long esti-
mation horizons, effectively rendering them useless for most practical risk forecasting.



APPENDIX: EXTREME VALUE THEORY

This appendix gives an overview of the statistical methods that are used in obtaining
the estimated extreme tail distribution. The following is a brief summary of the
results in Daníelsson and de Vries (1997a), which also provides all the proofs; the
method has been applied by Daníelsson and de Vries (1997b).

Let x be the return on a risky financial asset where the distribution of x is heavy-
tailed. Suppose the distribution function F(x) varies regularly at infinity with tail
index α:

(A.1)

This implies that the unconditional distribution of the returns is heavy-tailed and
that unconditional moments which are larger than α are unbounded. The assump-
tion of regular variation at infinity, as specified in (A.1), is essentially the only
assumption that is needed for analysis of the tail behavior of the returns x. Regular
variation at infinity is a necessary and sufficient condition for distribution of the
maximum or minimum in the domain of attraction of the limit law (extreme value
distribution) for heavy-tailed distributed random variables.

A parametric form for the tail shape of F(x) can be obtained by taking a second
order expansion of F(x) as The only non-trivial possibility under mild
assumptions is

(A.2)

The tail index can be estimated by the Hill estimator (Hill 1975), where m is the ran-
dom number of exceedances over a high threshold observation Xm+1.

(A.3)

The asymptotic normality, variance, and bias are known for this estimator. It can be
shown that a unique AMSE-minimizing threshold level exists, which is a function of
the parameters and number of observations. This value can be estimated by the boot-
strap estimator of Daníelsson and de Vries (1997a).

It is possible to use (A.2) and (A.3) to obtain estimators for out-of-sample quan-
tile and probability (P, Q) combinations, given that the data exhibit fat-tailed distrib-
uted innovations. The properties of the quantile and tail probability estimators below
follow directly from the properties of . In addition, the out-of-sample (P, Q) esti-
mates are related in the same fashion as the in-sample (P, Q) estimates.

To derive the out-of-sample (P, Q) estimator, consider two excess probabilities p
and t with p < 1/n < t, where n is the sample size.  Corresponding to p and t are the
large quantiles, xp and xt , where for xi we have 1–F(xi) = i, i=t, p. Using the expansion
of F (x) in (A.2) with β > 0, we can show that, by ignoring the higher order terms in
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the expansion, and replacing t by m/n and xt by the (m+1)-th descending order statis-
tic, one obtains the estimator

(A.4)

It can be shown that the quantile estimator is asymptotically normally distrib-
uted. A reverse estimator can be developed as well by a similar manipulation of (A.2).

(A.5)

The excess probability estimator is also asymptotically normally distributed.p̂
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