
The issues of identification, estimation, and statistical infer-
ences of nonstationary time series and simultaneous equation
models are reviewed. It is shown that prior information matters
and the advantage of dichotomization of the traditional
autoregressive distributed lag model into the long-run equilib-
rium relation and the short-run dynamic adjustment process as
an empirical modeling device may be exaggerated. A Japanese
money demand study is used to illustrate that a direct approach
yields a more stable long-run and short-run relationship and
has better predictive power than the approach of letting the
data determine the long-run relationship and modeling the
short-run dynamics as an adjustment of the deviation from its
equilibrium position.
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I. Introduction

Many macro or financial time-series data are nonstationary. The major difference
between the stationary and nonstationary data is that in the former case the absolute time
the data are observed is irrelevant, prob ( y

∼ t+1 < a∼ 1, . . . , y
∼ t+m < a∼ m) = prob ( y

∼ t+1+s < a∼ 1, . . . ,
y
∼ t+m+s < a∼ m) or prob ( y

∼ t+1 < a∼ 1, . . . , y
∼ t+m < a∼ m x∼ t ) = prob ( y

∼ t+1+m < a∼ 1, . . . , y
∼ t+m+s < a∼ m x∼ t+m),

and the impact of a shock in the system gradually diminishes over time, while in the latter
case the absolute time of an event occurs matters and the impact of a shock does not
diminish over time (although its relative impact may become smaller). The stationary
process may be modeled by an autoregressive process with roots greater than one.
The nonstationary process may be modeled by an autoregressive process with roots equal
to one (integrated case) or less than one (explosive case). Anderson (1959) and White
(1958) have derived the limiting distributions of the least squares estimators for such
processes. In this paper, we shall focus on nonstationarity generated by integrated
variables since this is the case for most observable economic data. However, because the
limiting distribution of the conventional estimator for data that are integrated of
order d, I (d ), d = 1, 2, . . . , is nonstandard, econometricians, by and large, have been
following the suggestion of Box and Jenkins (1970) to take successive differences of 
the variables to transform nonstationary time series into stationary time series to construct
time series or econometric models. The advantage of such a procedure is that conven-
tional √

—
T convergence of an estimator to its true value holds and the limiting distribution

of an estimator is normal so that in formulating the Wald-type test statistic of a null
hypothesis, it is asymptotically χ-square distributed under the null. The disadvantage is
that differencing the data removes the information about long-run relationships
among variables. It is not until Engle and Granger (1987) and Granger and Weiss (1983)
propose the concept of cointegration that we see an outburst of econometric models that
integrate the long-run equilibrium relations and short-run dynamics (e.g., Hendry
[1993]) and statistical analysis of time-series regressions with integrated regressors
(e.g., Chan and Wei [1988]; Fuller [1996]; Johansen [1988, 1991]; Park and Phillips
[1988, 1989]; Phillips [1986, 1987, 1991, 1995]; Phillips and Durlauf [1986];
Phillips and Hansen [1990]; Sims, Stock, and Watson [1990]; and Tsay 
and Tiao [1990]).

This paper attempts to summarize the contribution of time-series literature from
the Cowles Commission structural equation perspective (e.g., Hood and Koopmans
[1953]). In particular, given the prevailing view that many macro or financial time
series are nonstationary but certain linear combinations of nonstationary series may
be stationary:

This twofold proposition has important implications for both econometricians
and economists. For the econometrician, nonstationarity invalidates many
standard inference procedures, whose rationale involved the stationarity
assumption. On the other hand, least squares now appears as a super-powerful
estimator of cointegrating regressions. Furthermore, the tantalizing prospect is
held out of letting the data determine the long-run relationships, rather than
having to make strong a priori specifications, and dynamic relationships can be
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formulated to contain an appealing error-correction term, representing the last
period’s deviation from the long-term equilibrium (e.g., Hendry [1993] and
Hendry and Ericsson [1991]). (Johnston [1991])

While this view appears to be dominant among empirical researchers, we wish to
argue that nonstationarity does not necessarily call for a different modeling strategy.
In particular, we wish to clarify the following points:

[1] The relationship between the time series and dynamic simultaneous equation
modeling with or without cointegration.

[2] Is the concept of identification still relevant or what should be the relevant
concept of identification? 

[3] Does the separation of long-run and short-run relationships require separate
identification conditions (e.g., Johansen [1992], Johansen and Juselius [1994],
and Hsiao [1996a, 1997a]) and estimation procedures (e.g., Engle and
Granger [1987] and Johansen [1988])?

[4] Does the super-consistency result of Phillips and Durlauf (1986) and Stock
(1987) render the issue of “simultaneity bias” irrelevant for models involving
integrated regressors?

[5] What is the implication of the dichotomization of a set of variables into
endogenous and exogenous variables when variables are integrated? 

[6] What are the statistical properties of the conventional system estimators 
(e.g., two-stage least squares [2SLS] and three-stage least squares [3SLS]) and
implications on hypothesis testing in structural equation modeling when variables
are integrated and a subset of variables can be treated as strictly exogenous? 

[7] What are the statistical properties of the conventional system estimators when
there does not exist a subset of variables that are strictly exogenous (i.e., in a
vector autoregression format)?

In Section II, we propose a basic framework linking time-series models and a
structural equation model and discuss the implication of cointegration. Section III dis-
cusses a relevant concept for identification involving nonstationary data and demonstrates
that the conventional rank condition is necessary and sufficient to identify an equation
in a system. The interdependence between the identification of a short-run dynamic
adjustment process and long-run equilibrium relation is also demonstrated. Section IV
demonstrates that the least squares estimator is inconsistent if the regressors are coin-
tegrated and are correlated with the errors of the equations. Section V argues that
under the strict exogeneity assumption there is no need to devise new estimators. The
conventional 2SLS and 3SLS estimators are consistent and the limiting distributions are
either normal or mixed normal. Therefore, the Wald-type test statistic will be asymp-
totically χ-square distributed. Section VI argues that without the strict exogeneity
assumption the 2SLS and 3SLS estimators remain consistent, but their limiting distri-
butions may involve matrix unit-root distribution unless there is prior knowledge
about the direction of nonstationarity. Section VII uses Japanese money demand data to
compare the direct approach versus the approach of dichotomizing the behavioral
relation into the long-run equilibrium and the short-run adjustment process as an
empirical modeling device. The conclusion is in Section VIII.
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II. Vector Autoregression and Dynamic Simultaneous 
Equation Model with or without Cointegration 

Vector autoregression (VAR) was made a popular tool for analyzing the dynamics of
economic system by Sims (1980). For instance, let w∼ t be an m × 1 vector of random
variables. The conventional VAR specification assumes that the current value of a
variable—for example, w1t—is a function of its own past values, and the past values
of other variables, w∼ t– j. This type of specification makes no use of prior theoretical
ideas about how these variables are expected to be related and therefore cannot be
used to test economic theories or interpret the data in terms of economic principles.
To allow for the possibility of making use of prior theoretical ideas, we assume that
w∼ t has an autoregressive representation of the form

A(L )w∼ t = A0w∼ t + A1w∼ t–1 + A2w∼ t–2 + . . . + Apw∼ t–p (1)
= ε∼ t, t = 1, . . . , T,

where A(L ) is an m × m matrix polynomial in the lag operator L, A(L ) = ∑AjL
j, and

ε∼ t is an m × 1 vector of independently, identically distributed random variables with
mean 0∼ and nonsingular covariance matrix ∑εε. A0 is assumed to be nonsingular and
is not equal to an identity matrix. When A0 = Im, equation (1) is the conventional
VAR used by Sims (1980) and others (e.g., Sims, Stock, and Watson [1990]). When
A0 ≠ Im, elements of w∼ t are related contemporaneously. We shall call it the structural
VAR. We assume that the roots of A(L )  = 0 are either one or outside the unit circle.

Let

A(L ) = A*(L )∇ + A (1)L p, (2)

where A*(L ) = A 0* + . . . + A*p –1L
p–1, A j* = ∑

j

l=0
A l , and ∇ = (1 – L ). We can express

equation (1) in the error-correction form

A*(L) ∇ w∼ t + A (1)w∼ t– p = ε∼ t. (3)

Following Engle and Yoo (1989), we can factor A(L ) as 

A (L ) = U (L )M (L )V (L ), (4)

where the roots of U (L )  = 0 and V (L )  = 0 are lying outside the unit circle and
M (L ) is a diagonal matrix with roots equal to one. We choose the normalization that
M (L ) is diagonal and M (L )  = (1 – L )d, where 0 ≤ d ≤ m . If d = 0, the process is
stationary. If d = m, the process is I (1) and not cointegrated. If d = K < m , then there
are K linearly independent I (1) processes and G = m – K linearly independent
cointegrating relations. There is no loss of generality to let

IG 0∼M = [0∼ ∇ IK
] . (5)
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For ease of exposition, we shall assume all the elements of w∼ t are I (1). Partition w∼ t

into (w∼ '1t , w∼ '2t)' ; where w∼ 1t is G × 1 and w∼ 2t is K × 1, the conformable partition of
equation (4) is

A11(L ) A12(L ) U11(L )  U12(L ) IG 0∼ V11(L )  V12(L )[A21(L ) A22(L )] = [U21(L )  U22(L )] [0∼ ∇ IK
] [V21(L )  V22(L )]. (6)

Then

A11(1)  A12(1)    U11(1)[A21(1)  A22(1)] [U21(1)] [V11(1)  V12(1)], (7)

where, by construction, U11(1) and V11(1) are nonsingular. Therefore, we have a
structural error-correction representation

A*11(L ) A*12(L ) ∇ w∼ 1t IG w∼ 1,t–p ε∼ 1t[A*21(L ) A*22(L )] [∇ w∼ 2t
] = – [C ] [A11(1)  A12(1)] [w∼ 2,t–p

] + [ε∼ 2t
], (8)

where C = U21(1)U11(1)–1. We note that the presence of the deviations from long-run
equilibrium relations in the last K equations of equation (8) is a linear combination
of the long-run relations implied by the first G equations of equation (1), [A11(1)w∼ 1,t–p

+ A12(1)w∼ 2,t–p]. In other words, each of the first G equations of equation (1) implies
one structural (or behavioral) long-run relation, if it exists. Such a structural long-run
relation is simply the sum of the corresponding current and lagged coefficients. As 
for the equation that only describes short-run dynamic behavior of ∇ w∼ 2t (the last K
equations of equation [8]), more than one deviation from the long-run equilibrium
relations, A11(1)w∼ 1,t–p + A12(1)w∼ 2,t–p , can appear. Furthermore, by construction, A11(1)
is nonsingular, [A11(1) A12(1)] = A11(1)[IG Π*], when Π* = A11(1)–1 A12(1). The coin-
tegrating relations between w∼ 1 and w∼ 2 can be expressed in reduced form [IG II*] and
define the long-run equilibrium relations as

w∼ 1* = –Π*w∼ 2*. (9)

Equation (9) implies that each element of w∼ 1 can be written as a function of w∼ 2.
The nonstationarity of w∼ 1 is caused by the nonstationarity of w∼ 2. Hence, w∼ 2 may be
viewed as the common trends of Stock and Watson (1988).

Multiplying equation (8) by A 0
–1, we obtain the (reduced form) Granger represen-

tation (Engle and Granger [1987])

w∼ 1, t–p
(10)∇ w∼ t = D (L )∇ w∼ t–1 + α∼ [A11(1) A12(1)] [w∼ 2, t–p

]+ η
∼ t ,
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where D (L ) = –A 0
–1(A*1 + A*2L + . . . + A*p–1L

p–2 ), α∼ = –A 0
–1(IG C' )' and η

∼ t = A 0
–1ε∼ t.

Furthermore, if one defines the long-run equilibrium relations in terms of the
reduced form, then the adjustment to the deviations from long-run equilibrium
coefficients matrix becomes α∼ * = α∼ A11(1). The reduced-form representation allows
each ∇ wgt to be a function of a number of deviations from equilibrium relations in
contrast to the structural form, which implies one long-run relation per equation if
such a relation exists. More than one deviation from long-run equilibrium relations
can appear in a behavioral equation only if that equation describes short-run
dynamics (i.e., in a nonstationary direction).

If

A21(L ) ≡ 0∼ , (or A*21(L ) ≡ 0∼ ), (11)

then w∼ 1 does not Granger cause w∼ 2 (Granger [1969]). Equation (6) implies that
U21(L ) ≡ 0∼ and V∼ 21(L ) ≡ 0. It follows that α∼ = (IG 0∼ )' . That is, if w∼ 1 does not
Granger cause w∼ 2, there is no so-called adjustment to the deviation from the equilib-
rium relation in the equations describing ∇ w∼ 2t (the last K equations of equation [1]).
In addition to equation (11), if

E (ε∼ 1t ε∼ '2t) = 0∼ , (12)

then w∼ 2 is exogenous. If elements of w∼ are not cointegrated, M (L ) = ∇ Im , under
equations (11) and (12), equation (3) becomes

A*11(L )∇ w∼ 1t + A*12(L )∇ w∼ 2t = ε∼ 1t , (13)

A*22(L )∇ w∼ 2t = ε∼ 2t , (14)

Suppose there exist common factors in A*11(L ) and A*12(L ) such that

[A*11(L ) A*12(L )] = U11(L )[Γ(L )  B (L )], (15)

then equation (13) becomes

Γ(L )∇ w∼ 1t + B (L )∇ w∼ 2t = * (L )ε∼ 1t , (16)

where * (L ) = U11(L )–1. Equation (16) is the Zellner and Palm (1974) form of a
dynamic simultaneous equation model that is expressed in terms of the first differ-
ence of the variables.1 The vector ∇ w∼ 1t is treated as endogenous. The vector ∇ w∼ 2t is
treated as exogenous and is assumed to be generated by equation (14). Similar factor-
ization can represent ∇ w∼ 2t as generated by a multivariate autoregressive integrated
moving average process (MARIMA).
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If w∼ 1t and w∼ 2t are cointegrated, then A (1) ≠ 0∼ . Equation (3), under equations (11),
(12), and (15), becomes the conventional dynamic simultaneous in level variables, 

Γ(L )w∼ 1t + B (L )w∼ 2t = u∼ t , (17)

where u∼ t = * (L )ε∼ 1t , and the exogenous variables w∼ 2t are generated by equation (14). 
Let 

Γ(L ) = Γ(1)L + (1 – L )Γ*(L ), (18)

and

B (L ) = B (1)L + (1 – L )B*(L ). (19)

Then equation (17) can be written in the error-correction form

Γ*(L )∇ w∼ 1t + B*(L )∇ w∼ 2t + Γ(1)w∼ 1,t– 1 + B (1)w∼ 2,t– 1 = u∼ t , (20)

where Γ(1)w∼ 1t + B (1)w∼ 2t gives the implied long-run equilibrium relation and Γ*(L )
∇ w∼ 1t + B*(L )∇ w∼ 2t gives the implied short-run dynamics. Equation (20) implies that if
w∼ 1 and w∼ 2 are cointegrated, then the dynamic simultaneous equation model should
be expressed in levels and the Zellner and Palm (1974) form of equation (16) is a
misspecification because it has omitted the term Γ(1)w1,t– 1 + B (1)w∼ 2,t– 1. On the other
hand, if w∼ 1 and w∼ 2 are not cointegrated, then the dynamic simultaneous equation
model should be expressed in terms of the first difference of the variables because
A11(1) = 0∼ and A12(1) = 0∼ (equation [13]). The transformation of equation (13) into
level variables yields 

Γ
∼

*(L )w∼ 1t + B
∼
*(L )w∼ 2t = ε∼ 1t , (21)

but then Γ
∼

*(L ) and B
∼
*(L ) are subject to the common factor restrictions Γ

∼
*(1) ≡ 0∼

and B
∼
*(1) ≡ 0∼ . In other words, if one takes a structural equation approach, the

presence (equation [17]) or absence (equation [16]) of cointegration is preassumed
from the way one writes down the simultaneous equation model.

We may summarize the main relations among various formulations of a vector
time series w∼ 't = (w∼ '1t , w∼ '2t) as follows: if A0 = Im, we call the process (equation [1]) a
reduced-form VAR. If A0 ≠ Im, we call equation (1) a structural VAR. If A21(L ) ≡ 0,
then w∼ 1 does not Granger cause w∼ 2. If A21(L ) ≡ 0∼ and Eε∼ 1ε∼ '2 = 0∼ , then w∼ 2 can be
treated as exogenous variables. If w∼ are I (1) and are not cointegrated, then A (1) =
∑A j = 0∼ and M (L ) = ∇ Im. Its dynamic simultaneous equation formulation should be
expressed in terms of the first difference of the variables (equations [13] or [16]).
There is also no error-correction representation of the process. If w∼ 1 and w∼ 2 are coin-

IG 0∼tegrated, then A (1) ≠ 0∼ and M (L ) = [0 ∇ IK
] . A cointegrated process with linearly 

independent I (1) variables satisfying exogeneity conditions admits a dynamic
simultaneous equation model with variables entering in levels (equation [16]). It 
also allows an error-correction representation (equation [20]). However, each behav-
ioral equation only implies one long-run relation. More than one long-run relation
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can appear in an equation only when the error-correction representation is in a
reduced-form representation. 

III. Identification

The problem of whether it is possible to draw inferences from the probability distrib-
utions of the observed variables to an underlying theoretical structure is the concern
of econometric literature on identifications (e.g., Hsiao [1983]). Traditionally, identi-
fication is approached from the assumption that the density function of random
variables w∼ is known, but the parameter vector θ∼ (assumed to belong to a compact set
N , R q) that characterizes the density function is unknown. Therefore, the problem
of identification is reduced to the problem of distinguishing between parameter
points (e.g., Koopmans, Rubin, and Leipnik [1950] and Rothenberg [1971]).
However, in a nonstationary framework, the timing of events matters and it is hard
to define the appropriate simple sufficient statistics. For instance, for a p -th order
univariate autoregressive process with independently, identically distributed Gaussian

errors, in a finite sample the sufficient statistics are ∑
T

t=1
wtwt– j, j = 0, 1, . . . , p. However,

as T → ∞, T
–1 ∑wtwt– j → ∞ and T

–1 2∑wtwt– j all converge to the same random variable if
wt is I (1). Therefore, we find it more convenient to define observationally equivalent
structures in terms of conditional density of w∼ t given past w∼ 's . Let w∼

t– = (w∼ t– 1, w∼ t– 2, . . .)
denote the information set before time t .

DEFINITION 3.1. Two structures, θ∼ and θ∼
–

in N , R q, are said to be observationally
equivalent if f (w∼ t  w∼

t– ; θ∼ ) = f (w∼ t  w∼
t– ; θ∼

–
) for all w∼ t , w∼

t–, and t .

DEFINITION 3.2. The structure f (w∼ t  w∼
t– ; θ∼ ) is “identified” if there is no other θ∼

–
in N

that is observationally equivalent.

Suppose that the maximum order of the autoregressive model (equation [1]) is
known to be p and  A0  ≠ 0, then the conditional density, f (w∼ t  w∼

t– ; θ∼ ), is completely
specified by the reduced form (Hsiao [1996a]),

w∼ t = ∑
p

j=1

Π jw∼ t– j + v∼ t , (22)

where Π j = A 0
–1A j , j = 1, . . . , p, v∼ t = A 0

–1ε∼ t. Equation (22) is the conventional VAR
used by Johansen (1988, 1991), Phillips (1995), Sims (1980), and Sims, Stock, and
Watson (1990), etc. Since the reduced-form parameters can be consistently estimated
by the least squares method (Hsiao [1996a]), identification conditions can then be
derived from the algebraic relations between the structural form and reduced form
(e.g., Fisher [1967]). Moreover, since equation (1) can be transformed into an error-
correction representation, 
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∑
p–11

j=0

A j
*∇ w∼ t– j + A p*w∼ t– p = ε∼ t , (23)

by the nonsingular transformation matrix M ,

Im Im . . .  Im

M = 0∼ Im

. . .  Im , (24). . .  . . .  . . .[ 0∼ 0∼ Im
]

that relates A = [A0, A1, . . . , Ap ] to A* = [A*0 , . . . , A*p ] by

A* = AM. (25)

Let A
∼
*1 = [A*0 , . . . , A*p –1]; then A

∼
*1 and A*p provide the implied short-run dynamics

and long-run relations of the system (equation [1]). Suppose the g -th equation of
equation (1) satisfies the prior restrictions α∼ 'gΦg = 0∼ ', where α∼ 'g denotes the g-th row of
A and Φg denotes the (p + 1)m × rg matrix with known elements, then α∼ 'gΦg = 0∼ ' is
equivalent to α∼ 'gMM –1Φg = α∼ *' Φ*g = 0∼ ' where α∼ * denotes the g -th row of A* and 
Φ*g = M –1Φg is also a known matrix. Therefore, as shown in  Hsiao (1996a),

THEOREM 3.1. (a) Suppose that the prior restrictions on the g-th equation take the form
α∼ 'gΦg = 0∼ ', then the g-th equation of equation (1) or equation (23) is identified if and
only if 

rank (AΦg) = m – 1, (26)

or

rank (A*Φ*g ) = m – 1. (27)

(b) The structural VAR (equation [1]) is identified if and only if its structural error-
correction representation (equation [23]) and its implied short-run dynamics and 
long-run equilibrium relations are identified.

LEMMA 3.1. For a system involving G cointegrating relations out of (G + K )I (1)
variables, the identification of both the short-run dynamics and long-run relations are
interrelated. More specifically, suppose the prior restrictions on the g-th short-run, long-
run, and both the short-run and long-run coefficients take the form

α∼
∼ *'g1Φ

∼
*g1 = 0∼ , α∼ *'g pΦ

∼
*g2 = 0∼ , and (α∼

∼ *'g1, α∼ *'g p )Φ*g3 = α∼ *'g Φ*g3 = 0∼ ,

where α∼ *'g = (α∼
∼ *'g1, α∼ *'gp ), then

[1] A sufficient condition to identify the g-th long-run relation out of G linearly
independent cointegrating relations is that rank ([A11(1), A12(1)]Φ

∼
*g2) = G – 1.
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(Johansen [1995], Johansen and Juselius [1994], and Pesaran and Shin [1995]).
[2] Given the identification of the g-th long-run relation, a necessary condition to

identify the corresponding short-run dynamics is that there exist at least K restric-
tions involving the short-run coefficients.

[3] A sufficient condition to identify the g-th short-run coefficients is that 
rank (A

∼
*1 Φ

∼
*g1) = G + K – 1. That is, there exist at least G + K – 1 prior restrictions on

the g-th short-run coefficients. However, if the short-run coefficients are identified by 
α∼ *'g1Φ

∼
*g1 = 0∼ , so are the corresponding long-run coefficients because rank (A

∼
*1 Φ

∼
*g1) = 

G + K – 1 implies rank (A*Φ*g ) = G + K – 1. In other words, rank (A
∼
*1 Φ

∼
*g1) = 

G + K – 1 is sufficient to identify both the g-th short-run and long-run coefficients.
[4] A necessary and sufficient condition to identify both the g-th short- and long-run

relations is that rank (A*Φ*g ) = G + K – 1. That is, we can have both relations
identified without the existence of sufficient information to identify either the
short- or the long-run relation.

In the case of structural equation modeling, the prior restrictions that A21(L ) ≡ 0∼
and Eε∼ 1t ε∼ '2t = 0∼ are imposed. Then equation (1) becomes

A11(L )w∼ 1t + A12(L )w∼ 2t = ε∼ 1t , (28)
A22(L )w∼ 2t = ε∼ 2t . (29)

Then

THEOREM 3.2. Consider the g-th equation in the system (equation [28]). Suppose there
exist prior restrictions of the form α∼ 'gΦg = 0∼ , where Φg denotes a (p + 1)(G + K ) × rg

matrix with known elements. A necessary and sufficient condition for the identification of
the g-th equation is that

rank [(A11,0, . . . , A11,p, A12,0, . . . , A12,p)Φg] = G – 1. (30)

Suppose the k-th equation in the system (equation [29]) is subject to prior restriction
of the form α∼ 'k Φk = 0, where Φk is a (p + 1)K × rk matrix with known elements. A
necessary and sufficient condition to identify this equation is

rank [(A22,0, A22,1, . . . , A22,p)Φk] = K – 1. (31)

Equation (28) can be transformed into an error-correction form: 

A*11,0∇ y
∼ t + . . . + A*11,p–1∇ y

∼ t–p+1 + A*12,0∇ x∼ t + . . . + A*12,p–1∇ x∼ t–p+1

+ A*11,py∼ t–p + A*12,px∼ t = ε∼ 1t .
(32)

Since 

(A
∼
*1, A

∼
*2 ) = [(A*11,0, A*12,0), . . . , (A*11,p, A*12,p)] 

= [(A11,0, A12,0), . . . , (A11,p, A12,p)]M,
(33)
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where M is a nonsingular (p + 1)(G + K ) × (p + 1)(G + K ) matrix defined in equation
(24), it follows that

COROLLARY 3.1. Suppose the g-th equation of equation (32) satisfies α∼ *'g Φ*g = 0∼ .Then a
necessary and sufficient condition for the identification of this equation is

rank [(A
∼
*1, A

∼
*2 )Φ*'g ] = G – 1. (34)

Moreover, if there exist prior restrictions to identify the g-th long-run relation such
that α∼ *'g2 Φ

∼
*g2 = 0∼ has rank (A

∼
*2 Φ

∼
*g2) = G – 1, then the g-th short-run relation is also iden-

tified. Similarly, if there exist prior restrictions to identify the g-th short-run dynamics,
then the g-th long-run relation is also identified.

IV. The Least Squares Estimator

Phillips and Durlauf (1986) and Stock (1987) have shown that there is no
“simultaneity bias” for the least squares estimator when the regressors are I (1).
However, this result only holds if the regressors are not cointegrated. Due to behav-
ioral inertia and institutional or technological rigidity, many behavioral equations are
better described by an autoregressive distributed lag model (e.g., Jorgenson [1966]).
A dynamic structure contains both current and lagged variables. Therefore, even
though the regressors are integrated processes, the current and lagged variables are
trivially cointegrated. Cointegrated regressors can be transformed into linearly
independent I (0) and I (1) components with corresponding transformation of the
parameters without changing the structure of the equation. While the coefficients of
the linearly independent I (1) process can be consistently estimated by the least
squares method, the coefficients of the I (0) component cannot be consistently esti-
mated if the I (0) components are correlated with the error of the equation. Since the
parameters of interest involve the transformation of the coefficients of both the I (0)
and I (1) components, in general, they cannot be consistently estimated by the least
squares method.

To illustrate this, we assume that the g -th equation is identified. (Otherwise, there
is no unique least squares estimator.) For ease of exposition, we assume that all
variables are I (1) and the prior restrictions are in the form of exclusion restrictions.
Then the g -th equation of equation (1) can be written as 

w∼ g = Zg δ∼ g + ε∼ g , (35)

where w∼ g and ε∼ g denote the T × 1 vectors of (wg1, . . . , wgT )' and (εg1 . . . , εgT ),
respectively, and Z g denotes the included current and lagged values of w∼ t .

Let M g be the nonsingular transformation matrix such that Z*g = Z g M g = (Z*g1,
Z*g 2), where Z*g 1 is a T × l matrix denoting the linearly independent I (0) variables
and Z*g 2 is a T × b matrix denoting the linearly independent I (1) variables. Then
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w∼ g = Z g Mg M –1
g δ∼ g + ε∼ g

(36)
= Z*g δ∼ *g + ε∼ g ,

where δ∼ *g = M –1
g δ∼ g = (δ∼

*'
g1, δ∼

*'
g 2 )' . The least squares estimator of δ∼ g is equal to

δ̂∼ g , l s = Mg δ̂∼ *g , l s, (37)

where δ̂∼ *g , ls is the least squares estimator of equation (36),

δ*∼ g1, ls δ*∼ g1 Z*'g1Z*g1 Z*'g1Z*g2
1—
T Il 0∼δ̂∼ *g , ls = [ δ̂

ˆ

∼ *g2, ls
] = (δ*∼ g 2

) + [(Z*'g2Z*g1 Z*'g2Z*g2
)

–1

( 0 1—
T 2Ib

)
–1 ]

(38)
1—
T Il 0 Z *'1 ε∼ g( 0 1—

T 2Ib
) (Z*'2 ε∼ g

) .

Under fairly general conditions, it can be shown that (e.g., Phillips and Durlauf
[1986] and Hsiao [1997a]) 1—

T Z *'g1 Z*g1 → M*zg1,zg1,  
1—

T Z *'g1 Z*g2 ⇒ M*zg1,zg 2,  
1—

T 2 Z *'g2 Z*g1 →

0, 1—
T 2 Z *'g2 Z*g2 ⇒ M*zg2,zg 2 and  1—

T 2 Z *'g2 ε∼ g → 0 where → and ⇒ denote convergence in
probability and in distribution of the associated probability measure, respectively,
M*zg1, zg1 is a nonsingular constant matrix of dimension l , M*zg2, zg 2 is a nonsingular
random matrix almost surely. Therefore, δ̂∼ *g2 converges to δ∼ *g2, but δ̂∼ *g1 will converge to
δ∼ *g1 only if  1—T Z*'1 ε∼ g → 0. However, if Z*1 contains contemporaneous ∇ w∼ t, then 

—1
(A 0

–1∑g)g

T Z*1' ε∼ g → ( 0∼
), (39)

where ∑g denotes the g -th column of ∑, and (A 0
–1∑g)g denotes those elements of

A –1∑g that correspond to included w∼ gt except for w∼ gt . Therefore δ̂∼ *g1 is an inconsistent
estimator of δ∼ *g1.

The least squares estimator of δ∼ g (equation [35]) is equal to δ̂∼ g,l s = Mgδ̂∼ *g ,l s, which 
is a linear combination of δ̂∼ *g1,l s and δ̂∼ *g2,l s. Since δ̂∼ *g1 is inconsistent, the least squares
estimator of δ∼ g is inconsistent despite the fact that the variables are I (1). In other
words, in a dynamic framework, the issue of “simultaneity bias” raised by the Cowles
Commission remains a legitimate concern whether the regressors are I (0) or I (1).

V. Estimation of a Dynamic Simultaneous Equation Model

Interest in the dichotomization of the short-run dynamics and long-run equilibrium
relations has led to the development of many new estimators. For instance, Engle and
Granger (1987) propose a two-step estimation procedure, Johansen (1988, 1991) 
has proposed a maximum likelihood estimator that utilizes Anderson (1951)
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reduced-rank regression techniques, Phillips (1991) and Phillips and Hansen (1990)
propose a fully modified least squares estimator, etc. However, because of the non-
linear nature in the dichotomization (e.g., equations [20] and [10]), many of these
estimators are difficult to implement and have dubious finite sample properties.
Moreover, they tend to estimate the reduced-form specification of equation (10) (i.e.,
D0 = Im). Hsiao (1996a,b) argued that from a structural equation perspective, there is
no need to devise new estimators. A conventional 2SLS or 3SLS estimator can be
implemented and possesses the optimality property in the sense of Phillips (1991)
under the exogeneity assumption (equations [11] and [12]). 

More specifically: first, the 2SLS estimator of equation (35) and the 3SLS esti-
mator of equation (28) are consistent. The conventional formulae for computing the
asymptotic (conditional) covariance matrices of the 2SLS and 3SLS estimators
remain valid (Hsiao [1997a,b]) even though the variables may be I (1).

Second, the speed of convergence of the 2SLS and 3SLS estimators to their true
values depends on the nature of prior restrictions. For instance, consider the model

yt = γyt– 1 + β1x1, t– 1 + β2x2, t– 1 + ε∼ t, (40)

where y, x1, and x2 are all I (1), y, x1, and x2 are cointegrated but x1 and x2 are not
cointegrated. The least squares estimator that is the maximum likelihood estimator of
γ, β1, and β2 converges to their true values at the speed of T 2

–1. However, if there 
is prior restriction that β1 + β2 = c, then the constrained least squares estimator
converges to their true values at the speed of T rather than T 2

–1(Hsiao [1997a]).
Third, the limiting distributions of the 2SLS or 3SLS estimators are either normal

or mixed normal. However, the limiting distributions may be singular because 
the estimation errors typically consist of two components, a T –1/2 component and 
a T –1 component. The limiting distribution of an estimator is determined by the
component that has a slower rate of convergence (Hsiao [1997a,b]).

Fourth, the possible singularity of the limiting distribution does not create
problems of inference because even if a particular linear combination eliminates the
T –1/2 component, there is still a T –1 component. When the estimation error is
weighted by its covariance matrix, it will provide the right scale factor to make the
limiting distribution non-degenerate. Therefore, consider the null hypothesis Pδ∼ = c∼ .
The Wald test statistic

(P δ̂∼ – c∼ )' [P cov ( δ̂∼ )P' ]–1(P δ̂∼ – c∼ ) (41)

will be asymptotically χ-square distributed, where δ̂∼ is the 2SLS or 3SLS estimator 
of δ∼ and cov ( δ̂∼ ) is the conventional formula for approximating the covariance 
matrix of δ̂∼ .

Fifth, if one is interested in the dichotomization of the short-run dynamics and
long-run equilibrium relations, one can derive the implied short-run and long-run
coefficients and their limiting distributions from the relation (equation [25]), which
is simply a linear transformation of the conventional estimator of (equation [28]).
They are asymptotically efficient.
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In short, although the speed of convergence and the limiting distribution are of
theoretical interest, for empirical structural model builders, the message is clear—in a
structural approach one still needs to worry about the issues of identification and
“simultaneity bias,” but one need not worry about the issues of nonstationarity and
cointegration. All one needs to do in structural model building is to follow the advice
of the Cowles Commission. 

VI. Estimation of a Structural VAR

When the exogeneity assumptions (equations [11] and [12]) are not imposed,
contrary to the stationary case where predeterminedness is sufficient, the con-
ventional structural equation estimators lose much of the appealing features 
(Hsiao [1996b]). 

As argued in Hsiao (1996b): first, the 2SLS and 3SLS estimators remain consistent.
Second, for those parameter estimates that converge to their true values at the

speed of T –1/2, their limiting distribution is a multivariate normal, possibly singular.
For those parameters that converge to their true values at the speed of T –1, their
limiting distribution involves (matrix) unit-root distribution.

Third, the conventional formulae of computing the covariance matrices of the
2SLS and 3SLS estimators are no longer valid. Hence, the Wald-type test statistic
(equation [41]) is not asymptotically χ-square distributed under the null.

If the direction of nonstationarity is known a priori —for example, the last K
equations—then as shown in Hsiao (1996b), we can express the last K equations in
reduced form and consider the estimation of the system2

A11(L )w∼ 1t + A12(L )w∼ 2t = ε∼ 1t, (42)

A
∼
*21(L )∇ w∼ 1t + A

∼
*22(L )∇ w∼ 2t = ε∼ 2t, (43)

where A
∼
*22,0 = IK.

The statistical property of the 2SLS estimator of equation (42) will not change
with this prior knowledge; however, the 3SLS estimator of equations (42) and (43)
will again have the desirable properties for the coefficients of level variables, as in the
case when we know certain variables are exogenous. The limiting distribution of the
2SLS and 3SLS estimators will be either normal or mixed normal.  The conventional
formula of computing the covariance matrix will be valid. The Wald-type test
statistic (equation [41]) will again be asymptotically χ-square distributed under the
null. Furthermore, the structural form coefficients of the last K equations can be
derived from the relationships between the structural form and reduced form.

The difference between applying 2SLS and 3SLS to equation (1) or equations
(42) and (43) is that, in the former, the unit roots are either implicitly or explicitly
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(8) to the last K equations, then transforming them into the reduced form (equation [43]).



estimated, while in the latter case it does not involve the estimation of unit roots. 
In other words, the knowledge of exogeneity or direction of nonstationarity can 
help eliminate the (matrix) unit-root distribution and make the Wald-type statistics
legitimate tools of inference. However, since the identification conditions discussed
in Section III do not require such knowledge, it is desirable to pretest for unit roots
and explicitly incorporate the pretest results in the specification before implementing
the 2SLS and 3SLS estimators, because the use of unit-root information is dramatic,
all second-order bias effects will be removed, and the asymptotic distribution
becomes symmetric. 

VII. Japanese Money Demand Equation: An Illustration

It is often argued that the conventional approach to the money demand function
gives unstable income elasticity of money demand. However, it is also argued that the
long-run income elasticity of money demand can be recovered from the cointegrating
vector of money and income. Instead, we have argued that both the long-run and
short-run coefficients can be straightforwardly derived from the estimation of tradi-
tional autoregressive distributed lag form and there is no particularly compelling
argument in favor of the approach of first letting the data determine the long-run
relation, then formulating the dynamic relationships as an adjustment of deviation
from the long-term equilibrium. In this section, we estimate the Japanese money
demand equation from both approaches to illustrate our point. Seasonally adjusted
real M2+CDs, GNP, and the nominal overnight collateralized call rate from 1968/III
to 1993/I are used.

Let M denote log real money, Y denote log real income, R denote the interest 
rate, an autoregressive distributed lag form of a money demand equation is 
often specified:

Mt = C1 + α11Mt–1 + α12Mt–2 + α13Yt + α14R t + ε1t. (44)

The augmented Dickey-Fuller (ADF) test (including six lags of differenced term)
statistics are –2.68 for Y and –2.87 for M . The critical value of rejecting the null
hypothesis of the existence of the unit root at the 5 percent significance level is
–3.46. Therefore, we may treat Y and M as I (1) variables. However, as argued 
in Section II, equation (44) implies that Y and M are cointegrated. The Phillips 
and Quliaris (1990) test statistic for cointegration between M and Y is –5.346. 
The critical value of the null of no cointegration at the 5 percent significance level is
–3.915. In other words, the statistical test also supports the prior conjecture implied
by the specification (equation [44]) that M and Y are cointegrated I (1) variables.

If, as it is sometimes argued (e.g., Goldfeld and Sichel [1990]), the interest rate is
set by the monetary authority exogenously and real income is predetermined within
the period of analysis, then as discussed in Section V, the least squares method is
optimal. The least squares estimate of equation (44) is
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M̂t = –0.3255 + 1.6307Mt–1 – 0.7061Mt–2 + 0.1079Yt – 0.0073R t , (45)(0.1809) (0.088)         (0.0887)       (0.042)     (0.0031)
Durbin-Watson = 2.1174, standard error = 0.0086.

The implied long-run income elasticity of equation (45) equals 0.1079/(1 –
1.6307 + 0.7061) = 1.431.

Given that M and Y are cointegrated, an alternative approach of deriving the
estimates of equation (44) is by first estimating the long-run equilibrium relation 

Mt = a + bYt + vt , (46)

then substituting equation (46) into equation (44) to estimate the short-run dynam-
ics. The least squares estimate of equation (46) is

Mt = –5.7606 + 1.5218Yt + v̂t , (47)(0.179)   (0.013)

where the standard errors are in parentheses. Using (1, –1.5218, 5.7606) as the coin-
tegrating vector, we obtain the short-run dynamic adjustment equation as

∇ M̂t = 0.0091 + 0.8093∇ Mt–1 – 0.0648v̂t –1 – 0.0033R t , (48)(0.0056) (0.0845)          (0.0288)      (0.0031)
Durbin-Watson = 2.1436, standard error = 0.0089.

If one believes that M, Y, and R are jointly determined, then one can augment
equation (44) by the reduced-form specifications of ∇ Y and R,

∇ Yt = c2 + α 21∇ Mt–1 + α 22∇ Mt–2 + α 23∇ Mt–3 + α 24∇ Yt–1 + α 25∇ Yt–2

+ α 26∇ Yt–3 + α 27∇ R t–1 + α 28∇ R t–2 + α 29∇ R t–3 + ε2t,
(49)

R t = c3 + α 31∇ Mt–1 + α 32∇ Mt–2 + α 33∇ Mt–3 + α 34∇ Yt–1 + α 35∇ Yt–2

+ α 36∇ Yt–3 + α 37R t–1 + α 38R t–2 + α 39R t–3 + ε3t.
(50)

We note that, by Theorem 3.1, a necessary and sufficient condition for the identi-
fication of equation (44) in a system involving equations (44), (49), and (50) is that
the matrix

α 22 – α 23, – (1 + α 24), α 24 – α 25 α 25 – α 26 α 26 α 27 α 28 α 29

(51)[α 32 – α 33, – (1 + α 34), α 34 – α 35 α 35 – α 36 α 36 α 37 α 38 α 39
]

is of rank two. A necessary and sufficient condition to identify equation (49) is that
the matrix
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1  –α 14

(52)[0   1 ]
is of rank two. A necessary and sufficient condition to identify equation (50) is that
the matrix

1  –α 13

(53)[0   1 ]
is of rank two.

Under the assumption that all three equations are identified, as pointed out 
in Section VI, equation (44) can be directly estimated by the 3SLS estimator. The
limiting distribution of the 3SLS estimator of equation (44) is either asymptotically
normal or mixed normal. The conventional Wald-type test statistics will be χ-square
distributed. Using Mt–1, Mt–2, Mt–3, Mt–4, Yt–1, Yt–2, Yt–3, Yt–4, Yt–4, R t–1, R t–2, R t–3 as
instruments, the 3SLS estimate of equation (44) is

M̂t = –0.3240 + 1.6389Mt–1 – 0.7126Mt–2 + 0.1058Yt – 0.0068R t , (54)(0.1677) (0.0742)       (0.0732)       (0.0405)   (0.0035)
Durbin-Watson = 2.1327, standard error = 0.0084.

The implied long-run income elasticity of equation (54) is equal to 0.1058/(1 –
1.6389 + 0.7126) = 1.436.

If M and Y are jointly dependent, although the least squares estimator of equation
(46) remains consistent, it no longer possesses good statistical properties (Phillips and
Durlauf [1986]). Phillips and Hansen (1990) (PH) have suggested using a fully mod-
ified procedure to remove the impact of endogenous regressors and serial correlation
in the residuals.3 The PH fully modified regression estimates of equation (46) are

Mt = –7.1147 + 1.6177Yt + v̂ t.
(0.5418) (0.0403)

(55)

Under the assumption that Yt and R t are exogenous, the least squares estimate 
of the short-run dynamic adjustment equation using (1, –1.6177, 7.1147) as the
cointegrating vector yields
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3. The Phillips-Hansen (1990) fully modified least squares estimator of the model yt = x∼ tβ∼ + ut is

β̂∼ = (∑
T

t =1
x∼ t x∼ 't )–1(∑

T

t =1
x∼ t y

∼
+
t – T∆Ωu∇ x Ω–1

∇ x∇ x)
where yt

+=yt – Ωu, ∇ x Ω–1
∇ x,∇ x ∇ x∼ t , Ω∇ x ,∇ x =  ∑

∞

v = –∞
E (∇ x∼ t ∇ x∼ 't +v ), Ωu ∇ x = ∑

∞

v = –∞
E (ut∇ x'∼ t +v ) and ∇ = ∑

∞

v =0
E (u∼ t u'∼ t –v ).



∇ M̂t = 0.0081 + 0.7981∇ Mt –1 – 0.0195v̂t –1 – 0.0019R t ,
(0.0056) (0.0984)           (0.0291)      (0.0031)

(56)

Durbin-Watson = 2.0931, standard error = 0.0092.

Under the assumption that Mt, Yt , and R t are jointly dependent, we should use
the 2SLS or 3SLS estimator to estimate the short-run dynamic adjustment equation
of ∇ Mt . However, since in our case equations (49) and (50) are exactly identified, the
2SLS and 3SLS estimators are identical. The 2SLS estimator using ∇ Mt –1, ∇ Mt –2, 
∇ Mt –3, ∇ Yt –1, ∇ Yt –2, ∇ Yt –3, R t –1, R t –2, R t –3, as instruments yields the short-run
dynamic adjustment equation as

∇ M̂t = 0.0049 + 0.9230 ∇ Mt –1 – 0.0953v̂t –1 + 0.0015R t,
(0.0063) (0.1080)           (0.0594)     (0.0043)

(57)

Durbin-Watson = 1.9833, standard error = 0.0097.

As one can see from equations (48), (56), and (57), first, the estimates of the
short-run adjustment behavior are sensitive to the estimates of the long-run relation.
The adjustment coefficient of the deviation from the long-run equilibrium based on
the least squares estimates is more than three times larger in magnitude (–0.0648)
than the one based on the PH fully modified regression (–0.0195). Second, the inter-
est rate coefficient, although equation (56) has the correct sign, is no longer statisti-
cally significant and is less than half the magnitude of the one derived from direct
estimation (equations [45] or [54]). Moreover, equation (57) has the wrong sign.

Transforming equation (48) into the autoregressive distributed form yields 

M̂t = –0.3641 + 1.7445Mt –1 – 0.8093Mt –2 + 0.0986Yt –1 – 0.0033Rt . (58)

Transforming equation (56) into the autoregressive distributed lag form yields

M̂t = –0.1306 + 1.7786Mt –1 – 0.7981Mt –2 + 0.0315Yt –1 – 0.0019Rt . (59)

Transforming equation (57) into the autoregressive distributed lag form yields 

M̂t = –0.6730 + 1.8277Mt –1 – 0.9230Mt –2 + 0.1541Yt –1 + 0.0015Rt . (60)

Comparing equations (45), (54), (58), (59), and (60), several results are worth
noting. First, different methods of estimating the long-run income elasticity yield
similar results. The least squares and 3SLS estimation of the autoregressive model
yield long-run income elasticity of 1.431 and 1.436, respectively. The least squares
and PH method of estimating long-run income elasticity directly yield 1.5218 and
1.6177, respectively. Second, different methods yield very different short-run income
elasticities. The least squares and 3SLS of the autoregressive model yield 0.1079 and
0.1058, respectively. The least squares estimate of the error-correction model using
1.5218 as the long-run coefficient yields 0.0986. The least squares and 2SLS
estimates using 1.6177 as the long-run coefficient yield short-run income elasticity of
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0.0315 and 0.1541, respectively. Third, the implied short-run and long-run behav-
ioral dichotomization are sensitive to the estimation methods used. The estimated
short-run income elasticity and interest rate coefficient derived from the least squares
estimates of the cointegrating vector are almost twice as large as those derived from
the PH method of estimating the cointegrating vector [(0.0986, –0.0033) versus
(0.0315, –0.0019)]. This in turn implies very different short- and long-run elasticity
of the interest rate. For instance, if the interest rate is at 3.5 percent, then the implied
short-run elasticity is –0.094 for equation (58) and –0.054 for equation (59) and the
implied long-run elasticity is –1.4542 and –2.7828, respectively. If the interest rate is
at 5 percent, then the implied short-run elasticity is –0.066 for equation (58) and
–0.038 for equation (59) and the long-run elasticity is –1.018 and –1.948, respec-
tively. Fourth, the direct method yields statistically significant short-run and long-run
coefficients of the interest rate of –0.0068 and –0.092 (equation [54]), which in turn
implies short-term interest rate elasticities of –0.194 and –0.136 and long-term
interest rate elasticities of –2.628 and –1.84 when interest rates are at 3.5 percent and
5 percent, respectively. On the other hand, the two-step method yields statistically
insignificant short-term interest rate coefficients of –0.0033 for equation (58) and
–0.0019 for equation (59) and long-term interest rate coefficients of –0.0509 and
–0.0974, respectively. Fifth, in terms of goodness of fit, the direct method has a
standard error of 0.0084, while the indirect methods yield standard errors of 0.0089
for equation (48) and 0.0092 for equation (56).

Finally, we compare the predictive performance of the direct method versus the
two-step method. We split up the sample into two periods. The first period consists
of observations from 1968/III to 1990/IV. The second period consists of observa-
tions from 1991/I to 1993/I. The first-period data are used to reestimate model
equation (44) either directly or by the two-step method. The estimated models are
then used to generate predicted values for the second period. Table 1 provides predic-
tion errors by equation (45), hereafter EDOLS; equation (48), hereafter ETSLOLS;
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Table 1  Prediction Comparison between the Direct Method and Two-Step Method

Direct Two-step
Period

EDOLS ED3SLS ETSLSOLS ETSPOLS ETSP2SLS

1991/I –0.00274 –0.00321 –0.00612 –0.00949 –0.00905

1991/II 0.00645 0.00607 0.00306 0.00066 0.00005

1991/III 0.00304 0.00270 –0.00018 –0.00202 –0.00355

1991/IV –0.00744 –0.00771 –0.01058 –0.01187 –0.01386

1992/I –0.00023 –0.00027 –0.00208 –0.00274 –0.00414

1992/II –0.01862 –0.01857 –0.02109 –0.02111 –0.02298

1992/III –0.00136 –0.00106 –0.00181 –0.00154 –0.00179

1992/IV –0.00570 –0.00543 –0.00668 –0.00601 –0.00737

1993/I –0.00613 –0.00576 –0.00586 –0.00496 –0.00606

Mean –0.00364 –0.00369 –0.00570 –0.00657 –0.00764

RMPE 0.00769 0.00762 0.00876 0.00914 0.01014



equation (54), hereafter ED3SLS; equation (56), hereafter ETSPOLS; and equation
(57), hereafter ETSP2SL. Figure 1 plots the prediction errors. As one can see, apart
from 1991/II and III, the direct method dominates the two-step method in all other
time periods. The mean prediction errors as shown in Table 1 are –0.00364 and
–0.00369 for the direct method and –0.0057, –0.00657, and –0.00764 for the two-
step method. The root mean square prediction errors (RMPE in Table 1) are
0.00769 and 0.00762 for the direct method and 0.00876, 0.00914, and 0.01014 for
the two-step method.
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In short, both in terms of the stability of the parameter estimates and the predic-
tion comparison, the direct estimation of an autoregressive distributed lag form
appears to dominate the approach of dichotomizing economic relations into long-run
equilibrium and short-run dynamic adjustment behavior. Neither does the
dichotomization of nonstationary data offer any statistical advantages over the direct
method in terms of inference and estimation. In fact, not only is economic behavior
typically formulated in an autoregressive distributed lag form, it is also much simpler
to analyze.

VIII. Conclusion

In this paper, we presented statistical issues of VAR and Cowles Commission
structural equation modeling when the data were nonstationary. A basic framework link-
ing time-series models and structural equation models were provided, and the implications
of cointegration were discussed. We demonstrated that the same rank condition is
necessary and sufficient to make inferences of an underlying theoretical structure
from the observed data whether the data are stationary or nonstationary. Moreover,

Figure 1  Prediction Errors
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because a dynamic structure introduces trivial cointegration between the current and
lagged variables, the “simultaneity bias” of the least squares estimator remains a legitimate
concern even when the regressors are I (1). Conventional structural equation estimators
like 2SLS and 3SLS still possess desirable statistical properties provided that certain vari-
ables in the system satisfy the strong exogeneity assumptions. The Wald-type test statistic
will be asymptotically χ-square distributed. However, if the strong exogeneity
assumption is relaxed as in the case of fitting a VAR model, although the 2SLS and 3SLS
estimators remain consistent, their limiting distributions will involve (matrix) unit-root
distributions, which are nonstandard. Thus, the conventional formulae for computing
the covariances of the 2SLS and 3SLS estimators are no longer valid and the Wald-type
test statistic may not be asymptotically χ-square distributed. It is only in the case that the
directions of nonstationarity of a system are known and incorporated in the specification
that a 3SLS estimator will again possess the desirable statistical properties in the sense of
Phillips (1991). 

Two implications appear to follow from the analysis of this paper. First, as argued
in sections IV, V, and VI, the dichotomization of the long-run equilibrium and 
short-run adjustment process of a dynamic relationship is a very useful tool in 
understanding the statistical properties of the estimators of a conventional autoregres-
sive distributed lag model when variables are I (1), but it probably unnecessarily
complicates the empirical model building process. As the analysis of Japanese money
demand in Section VII has demonstrated, the estimation of the short-run adjustment
process of the deviation from the last period’s long-run equilibrium can be very
sensitive to the way the long-run relation is estimated. Neither the error-correction
formulations can generate more accurate predictions than the traditional auto-
regressive distributed lag model. In fact, it is easier to understand and much simpler
to estimate a traditional autoregressive distributed lag model. Inferences about
economic agents’ long-run and short-run behavior can be drawn from such a 
model straightforwardly. 

Second, contrary to the common belief that prior information does not matter 
in a nonstationary framework, in fact, it is more important than in a stationary
framework. Not only does the identification of a theoretical structure from the
probability distributions of observed variables depend on it, but also whether an
estimator will have desirable statistical properties depends on it. Prior information
plays a critical role in providing a valid inference. Although the idea of letting 
the data speak for themselves is admirable, the shortage of degree of freedom and
multicollinearity can often hamper proper statistical inference. In fact, because so
many possibilities exist, any model could arise by chance through a sequence of tests
applied to a heavily parameterized model with a finite number of observations.
Without a structure, “We may be asking too much of our data. We want them to test
our theories, provide us with estimates of important parameters, and disclose to us
the exact form of the interrelationships between the variables (Griliches [1967]).” 
A purely data-based approach is likely to start an investigation from scratch. 
It is against the principle of division of labor. There are good theories.
Econometricians constructing econometric models could make use of the insights of
other good economists.
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