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 “Almost all human life depends on probabilities.” 

        Voltaire, Essays 

 

 

1.  Introduction 
 

This paper examines how we view the cost associated with negative externality, often 

referred to as “contagion effect,” in the financial market and how effectively various 

types of ex ante disciplines can prevent the contagion from spilling over to other market 

participants. 

 

Suppose that banks are engaged in risky financial transactions, and the overall results of 

these transactions are summarised by winning and losing scores, which add up to zero 

(i.e. zero-sum game).  If, however, the losers of these transactions fail to pay their 

losses due to insufficient capital holdings, then the winners might not be able to collect 

all their gains.  Unless the losses are compensated by a third party, the winners will 

have to start the next round of transactions with less wealth than they would have 

obtained if the losers had paid their losses in full.  If the winners continuously fail to 

receive their full winning position at the end of each round of transactions, this may 

generate a higher possibility that they will eventually reach a threshold point of 

bankruptcy.  This is one way of illustrating the contagion effect transmitted from one 

party to others1.  Here the contagion cost is measured by the amount of funds which 

could have been obtained, had all the losses been paid in full or covered by a third party, 

minus the amount actually received. 

 

In this paper, we are interested in how this type of contagion effect accumulates over the 

long run for financial transactions.  We believe this is a unique interpretation.  One 

often associates the contagion with a situation where one strategy, such as a deposit 

withdrawal, can spread from a finite set of players to the whole population.  Our 

interpretation is unrelated to the choice of strategies.  Instead, we examine how a given 

strategy (i.e. there is no choice of strategies – players keep playing the game) changes 

financial positions over time by undertaking different methods of resolution against 

                                                 
1  This may cause a chain reaction – if the liabilities to one institution cannot be covered, this 
institution may fail to pay its liabilities to another institution, and a sequence of domino effects 
follows.  In a broader sense, network of debtor-creditor relationships transmits the effects of a 
debtors’ defaults to legally unrelated agents.  Such negative externality is called “systemic 
risk.” 
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bank failures.  This method establishes our general approach for analysing how the 

contagion effect is amplified through the course of play. 

 

In order to perform this analysis, we need to identify what resolution signifies.  Prior 

research has focused on two means of resolution mechanism: market discipline and 

regulatory discipline as prevention mechanisms of the contagious effect.  Market 

discipline has been regarded as discipline imposed on bank managers and stockholders 

through monitoring debtholders’ behaviour.  Here, debtholders can be either uninsured 

depositors or subordinated debtholders, who have a stronger incentive to monitor 

banking activities than ordinary debtholders. 

 

Empirical research on market discipline, however, shows somewhat mixed results.  

Park and Peristiani (1998) examine two effects: one being the price effect where 

uninsured depositors demand risk premium, and the other being the quantity effect 

where smaller amounts of uninsured deposits are collected.  They conclude that both 

effects are present in the U.S. thrift industry.  Avery, Belton and Goldberg (1988) 

examine market discipline from the perspective of subordinated debtholders, who have 

a stronger incentive to monitor banks than uninsured depositors, who can withdraw their 

funds and are likely to receive de facto insurance in some cases of resolution.  Their 

empirical evidence, however, suggests no such discipline is observed.  Recent studies 

by Billett, Garfinkel and O’Neal (1998) contend that given the complementary nature of 

market discipline and regulatory discipline, banks faced with more severe market 

discipline (e.g. downgrading by Moody’s), will shift their source of funding toward 

insured deposits while maintaining their riskiness; hence, market discipline will not 

have any effect on banks’ behaviour regarding moral hazard. 

 

In addition, the existence of market discipline is often undermined because regulatory 

discretion is often granted.  Gorton and Santomero (1990) contend that the presence of 

market discipline is non-linear and non-monotonic, and liabilities should be priced 

according to option theory.  Nonetheless, liability pricing is based on the assumption 

that the regulator’s closure policy is exogenous, well-defined and well-understood.  In 

reality regulatory discretion is prevalent, and may take several forms, such as a 

straightforward injection of capital, or purchase and assumption.  In any case, pricing 

tends to be complex.  This leads to Gordon and Santomero’s conclusion that risk 

premium cannot be priced accurately, because the regulator’s closure policy is not 

implemented discretion free. 
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These potential problems in measuring market discipline, have led us to analyse the role 

of regulatory discipline.  We examine the ex ante rules on how to resolve the 

problematic banks.  We scrutinise two rules: exit enforcement and capital injection.  

In the former, banks are asked to terminate operations once they hit a threshold point of 

exit (e.g. insolvency).  We study different scenarios such as implementation of the 

early closure rule (i.e. banks are asked to leave the financial system once they fail to 

fulfil minimum capital standards), the capital enforcement rule (i.e. banks hold higher 

levels of capital to strengthen their financial positions), and the netting operation rule 

(i.e. changing the frequency of netting that takes place between transactions in order to 

finalise winning and losing scores).  The third scenario demonstrates, as further 

discussed in footnote 1, that systemic risk is often transmitted through the netting 

operation or the payment system.  In order to prevent systemic risk from spreading, it 

may be better to increase settlement frequency. 

 

The next rule is capital injection whereby a third party injects a necessary amount of 

capital in order to prevent bankruptcy.  Here the third party plays the role of “lender of 

last resort.”  We compare how costly each rule and scenario is for the participants, and 

try to obtain a clearer view in order to assess the least costly resolution to prevent bank 

failures. 

 

Finally, we would like to stress that the ultimate objective of market participants, policy 

makers and the clearing house is to keep the markets open; there is no profit source if 

the markets were closed and no more transactions were to take place.  In this sense, 

our view is consistent with the alleged short-run objective of market participants, i.e. 

profit maximisation2.  This statement implies that participation is the first step to profit 

maximisation.  Consider players initially choosing whether to participate or not, and 

then choosing strategies to maximise their payoff.  As long as they are secured by 

limited liabilities, they will initially choose to participate in the transactions.  In this 

paper, we do not concern the second stage of the game, i.e. the choice of strategies, but 

our objective is to compare and contrast ourselves with the ways in which the financial 

market can continuously operate without the severe contagion effect by altering the 

rules to identify those players who must leave. 

 

                                                 
2  What is implicit in this statement is that limited liabilities are adopted and the participation 
constraints are satisfied. 
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2.  Coin-tossing Game Reflecting Banks’ Investment Activities 
 

Let us describe how we analyse the contagion and study the menu of policy options 

designed to prevent such contagion.  We will treat bank investment activity as a 

coin-tossing game, the simplest random walk process, which will enable us to examine 

a detailed mechanism of the contagion effect.  We will then study where the drawbacks 

lie in the classical random walk model as we interpret it as financial transactions.  We 

will review the main theorem of the random walk model.  We will then show a 

non-technical explanation of the arc-sine theorem and describe its implication in our 

model.  Lastly, we will explain a formal set-up of the game, especially the importance 

of the netting activities to settle the winning and losing scores between banks.  The 

simulation results are presented in section 3 and 4. 

 

2.1 Coin-tossing Game Revisited 

 

Unlike most bank studies where collecting deposits and making loans are carefully 

modelled, we will focus on financial transactions that take place between financial 

institutions, such as derivative transactions.  A simple way to illustrate such activities 

is to assume the outcome of the transactions is summarised in the results of the random 

walk process, such as a coin-tossing game3. 

 

Some may feel that a game so simple will not capture all essential features of today’s 

highly sophisticated financial transactions.  Nonetheless, we believe that one crucial 

feature of such financial transactions is their zero sum nature, namely that the payoff of 

each participant will total zero, and this feature is easily incorporated in the coin-tossing 

game.  To illustrate, think of a call option, where the buyer of the option has the right 

to buy stock at a specified exercise price.  Suppose further that the market price of the 

share is higher than the exercise price.  Then the buyer can exercise the right and earns 

profit equivalent to the difference between the market price and the exercise price.  On 

the other hand, the seller of the option suffers an equivalent loss.  If we add up the 

buyer’s profit and the seller’s loss, we expect a total of zero, because the profit simply 

reflects the loss borne by the counterpart.  In this sense, we are not concerned with the 

                                                 
3  The coin-tossing game has been developed extensively in probability theory.  The origin of 
probability theory can be traced back to Pascal and Fermat who formulated the theory of chance 
in 17th century France.  Since then, the notion of chance has found its way into almost all 
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nature of the derivative transactions, but instead we wish to emphasise that buying and 

selling the derivatives will enable them to achieve higher efficiency in terms of risk 

management, whereby we expect social welfare to improve.  The welfare level is not 

zero sum after the derivative transactions.  This is, however, not peculiar to financial 

derivatives.  Any transaction which transfers risk from one agent to another implies 

that the social welfare level will change as long as the transaction is carried out among 

agents with differing risk attitudes4.  For example, recall Diamond and Dybvig (1983), 

where the bank is assumed to be risk neutral and depositors are risk averse.  The 

demand deposit contract, which insures depositors against liquidity risk, will improve 

overall efficiency to a level that could not have been achieved without the deposit 

contract.  This implies that as long as the game is measured in terms of Pareto 

efficiency, we cannot conclude that the game possesses zero-sum feature any more.  In 

the end, let us refer to Feller (1957), who notes that “the (coin-tossing) model may serve 

as a first approximation to many more complicated chance-dependent processes in 

physics, economics, and learning theory.”5  We now review some stylised features of 

the coin-tossing game and explain how we depart from the classical set-up of the game 

in order to bridge the gap between the classical coin-tossing game and the nature of 

financial transactions. 

 

 

Let us next explain how the gap is bridged by incorporating several factors which 

involve further features of the financial practice.  We focus on two established types of 

                                                                                                                                               
branches of knowledge. 
4  This issue is somewhat related to St. Petersburg paradox.  According to the paradox, the 
game runs as follows: suppose a coin is tossed repeatedly until the head appears.  The gambler 
will be paid 2n dollars if the head appears in the n-th toss.  Then the question is, what price is 
the gambler willing to pay for the privilege of gambling?  The expected return from the 
gamble which the gambler wants to maximise is, 
 

 1...11)2/1(2...)2/1(2)2/1(2 22 nn ; 
 

hence, the gambler should be willing to pay any large sum of money in order to enter this 
gamble.  Several suggestions have been made to challenge this paradox, including one by 
Daniel Bernoulli, who proposes that one maximise the expected non-linear utility rather than the 
expected return.  The expected utility taking a finite number, one can derive an upper bound 
for the price that the gambler is willing to pay.  In order to understand why the agents play a 
zero-sum game (expected return is zero), it is more natural to think that the agents use the 
expected utility (not the expected return) for the basis of their decision making. 
5  Feller (1957) p.71. 
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the random walk: the random walk with absorption barriers and the random walk with 

reflection barriers.  One example of the random walk with absorption barriers is the 

Gambler’s Ruin problem.  Let us call this problem the “classical ruin problem,” where 

two players play the game and their aggregate endowments are fixed.  As soon as one 

player’s position reaches zero (i.e. he loses his entire endowment after playing the 

game), the game stops.  The main point of the classical ruin problem is to identify the 

probability of the gambler’s ultimate ruin and to calculate the duration of the game6.  

This set-up, nevertheless, has several drawbacks when we try to interpret the problem as 

financial transactions.  On this front, we intend to present the “new ruin problem.”  In 

the following paragraphs, we will describe the main departure from the classical ruin 

problem. 

 

First, the game in practice normally consists of more than two players.  This implies 

that even if one player is forced to quit, there remains a possibility that the game 

continues among the remaining players.  Our game is thus extended by incorporating 

more than two players in the game.  It should be pointed out, however, that the study 

of the ruin problem deals with the case where there are more than two players.  But the 

study does not address how long each player can survive, nor does it address how each 

player’s position is influenced if the game continues among the remaining players after 

other players are eliminated. 

 

Second, we believe that the ruin decision essentially inherits a mechanism underlying 

the closure rule.  In other words, whether a player is forced to retire or not depends on 

such ex ante rules such as (1) the player is ruined if he fails to pay the liabilities fixed 

through the netting operation, or (2) the player is ruined if his capital ratio falls below a 

certain level (prompt corrective action).  By incorporating different rules of closure, 

we can derive some policy implications of the ruin decision.  This is another extension 

we will put forth in the following section. 

 

 

A related issue in this ruin decision is how to decide the bank’s closure.  The key lies 

in the payment operation, through which the settlement amount is calculated, allowing 

                                                 
6  It is worth mentioning well-established results in the classical gambler’s ruin problem.  
Under a fair game with the same probability of win and loss (i.e. 1/2), the probability that the 
gambler’s wealth reaches N (combined capital) starting from i is i/N.  The expected duration of 
the game is D = i(N-i).  See Feller (1957), Maitra and Sudderth (1996) or Ross (1996) for more 
details. 
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for assessment of the bank’s net wealth.  In extreme cases, the operation can take place 

every time the coin is tossed.  This is equivalent to the philosophy of the “real time” 

settlement.  In the following section, we will see how the amount of capital necessary 

for each player changes by alternating the frequency of the settlement interval. 

 

Turning to the random walk with reflection barriers, one normally assumes that when 

one player reaches either the upper or lower barrier, the other player compensates him 

for the same amount and lets him stay in the game.  Again, this is crucial if the game 

consists of only two players; the game cannot be played any more if one player does not 

save the other.  This operation does not have any practical meaning, once we allow 

more than two players in the game.  Imagine a gambling house7; it does not make 

sense why an almost ruined player’s position has to be covered by the winners.  By 

leaving the almost ruined player without any compensation, winners may not be able to 

collect all of their winning positions, but they can still keep playing the game had they 

not saved the ruined player. 

 

Let us summarise our new ruin problem.  First, we allow more than 2 players in the 

game and we let the settlement operation take place a number of times.  Second, we 

specify the closure rule in various ways; we can let banks go bankrupt if they become 

insolvent, or we can let them fail if their net wealth position recedes from a certain 

positive level (i.e. early closure rule).  Third, we explicitly introduce, as a second rule, 

rescue operations by a third party.  Note this operation is specifically intended to show 

the effect of capital injection.  We are aware that such a policy may generate moral 

hazard, but our intention is to present the bottom line of the cost associated with the 

contagion effect, i.e. the cost can still be generated even if we assume banks do not 

engage in any risk-taking behaviour. 

 

 

 

 

2.2 Arc-sine Theorem 

 

The purpose of this section is to direct the reader’s attention to a striking result derived 

                                                 
7  In practice, most legally approved gambling houses sell tokens or tickets in exchange for 
cash before admitting people to play the game with these tokens or tickets, which allows for 
guaranteed payments for winners. 
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in the coin-tossing game.  The theorem was established as part of the probability 

theory in the 1950s8, but has been somewhat neglected mainly because of its nature – it 

contradicts generally accepted views based on the law of large numbers.   

 

More precisely, the random walk process has two seemingly contradictory features; a 

mean reversion (recurrent) process and the process summarised in the arc-sine theorem9.  

To show these contradicting features of the policy, we derive a completely different 

implication. 

 

The mean reversion process implies that a player will return to his initial position if the 

game is played infinite.  As a corollary, the wealth positions of all players at any point 

in time, form a normal distribution.  This feature is the keystone of modern finance 

theory10.  Recent discussion of value-at-risk (VaR) method of market risk management 

is also based on this feature.   

 

The arc-sine theorem, on the other hand, implies that it is more likely for players to stay 

continuously on the winning side or the losing side than to frequently switch between 

the two sides11.  This neglected theorem has a remarkable policy implication for the 

recent financial market crisis.  While the mean reversion process tends to imply a 

wait-and-see policy or a no intervention policy, namely that no matter how badly banks 

perform, many of them will return to the mean; hence, they can be left alone.  However, 

the arc-sine theorem justifies an early closure policy and is sceptical of the wait-and-see 

                                                 
8  The arc-sine theorem was first discovered by Paul Levy in his study of Brownian motion, 
then developed by Evolos and Kac as a limit theorem for sums of independent random variables 
with finite second moments in line with Lindeberg conditions (see Loeve (1977) Vol. 1. p. 380).  
In our daily life, we often come across situations where an unfortunate event causes another 
unfortunate event.  It is such a rare event for one who has been suffering substantial losses in 
the casino to all of a sudden recover the accumulated losses and start making gains.  Similar 
observations can be seen in the coin-tossing game. 
9  Ross (1996, p.148) cunningly points out that the arc-sine theorem indicates the proportion of 
time the symmetric random walk is positive does not converge to the constant value 1/2.  On 
the other hand, it is clear by symmetry, the random walk process returns to an initial position 
(recurrent) if the process continues infinitely.  The reason why the above two seemingly 
contradicting statements are in fact not a contradiction is that the expected cycle time is infinite.  
See Appendix 1 and 2 for more details.  As Keynes wrote “in the long run we are all dead” (A 
Tract on Monetary Reform, 1924), recurrence in infinity may not have a practical implication.  
10  In the modern finance theory, most prices of financial assets are assumed to be non-zero, 
thus to follow geometric Brownian motion (i.e. random walk with reflection barrier at zero).  
Mean reversion process is reinforced by this assumption.  See Dixit (1993) and Duffie (1996). 
11  In terms of the fair coin-tossing game, extreme scores such as large number of heads (or 
large number of tails) tend to appear quite frequently. 
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policy, namely that those who perform poorly have most likely been performing poorly 

and unless an infinite time interval is granted, it will probably take substantially long 

time to recover; hence, given a finite time period (e.g. players’ performance has to be 

evaluated every accounting year), they should not be left alone but rather they can be 

expelled from the system.  The most disturbing aspect of this theorem is that even after 

expelling poor performing players, this financial game will generate endogenously 

another poor performing players.  In other words, this game will not converge to the 

stable equilibrium where there are no more players who perform poorly, but keep 

generating divergence between winners and losers.  So the game is inherently unstable 

and is constantly exposed to the contagion risk. 

 

In the following, we will prove this rather counter intuitive theorem and see if we can 

apply it to our Monte Carlo simulation.  To give readers more a concrete feel for the 

arc-sine theorem, we will borrow a numerical example from Feller (1957).  In this 

example, the game conducts many coin tosses at the rate of one per second, day and 

night, for 365 days.  The total number of tosses will be approximately 31.53 million.  

The probability that a gambler whose score is eventually negative, but during the course 

of the game, has a positive score (i.e. more heads than tails at that point) for a total time 

less than the listed time of lead is summarised as follows. 

 

 

Table 1: Time of lead in the coin-tossing game 

 
Probability of 

The Unfortunate 
Time of Lead 

0.90 153.95 days 
0.80 126.10 days 
0.70 99.65 days 
0.60 75.23 days 
0.50 53.45 days 
0.40 34.85 days 
0.30 19.89 days 
0.20 8.93 days 
0.10 2.24 days 
0.05 13.5 hours 
0.02 2.16 hours 
0.01 32.4 minutes 

Source: Feller (1957, p.83) 
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The first row of the table describes that 90 % of the losers (i.e. unfortunate gamblers 

with negative scores at the end of the game) have a positive score throughout the game 

for only 153.95 days.  What is even more surprising is that approximately one in two 

losers enjoys a positive score for only 53.45 days of the year.  This example highlights 

that it is more likely for an unfortunate event to last long, even in a perfectly fair game 

such as coin-tossing.  Let us now formally present the theorem. 

 

 

Arc-sine Theorem (Feller (1957, p.82)) 

 

The probability that in the time interval from 0 to 2n the position spends 2k time 

units on the positive side (i.e. the position lies above the initial level) and 2n-2k 

time units on the negative side (i.e. the position lies below the initial level) equals 

)0,22()0,2(}2,2{ knPkPnkR  , where 

nrn
n

rnP 













 2
2

),( . 

Hence, 

n

kn

kn

k

k
nkR 22

222
}2,2{ 



















 . 

 

For a detailed theoretical discussion and proof, see Appendix 3.  The following figure 

graphs the theorem.  The x-axis denotes k/n, i.e. the probability that the position stays 

positive, and the y-axis denotes }2,2{ nkR  times the number of banks, which is 100 in 

our simulation. 
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Figure 1: Graphical presentation of the arc-sine theorem 

The figure explicitly shows the main feature of the arc-sine distribution whereby the 

probability that the position is on the positive side half the time is the least likely 

outcome, and the probability that the position stays either on the positive or negative 

side most of the time is the most likely outcomes. 

 

The implications of this theorem are rather straightforward.  Those who fall on the 

negative side tend to stay on the same side and therefore have less chance to recover 

their losses, even if they continue to play the game for a substantially long period of 

time.  Specifically, the only practical solution for those who have huge losses is to 

leave the game as soon as possible, if feasible. 

 

In the following section, we will see how this feature can be attained in our Monte Carlo 

simulation, but first let us describe the basic set-up of the game. 

 

2.3 Set-up of the Simulation 

 

There are 100 banks and all of them are engaged in investment activities.  Through the 

simulation, we derive a minimum level of wealth required to generate the outcome 

specified in the scenario.  Each scenario will be described in greater detail later in the 

section.  There is also a clearing house whose role is to preside over the netting 

activities among the banks.  We introduce three notations; round, position and score.  

We define “round” as a duration of investment activities between the netting operations.  

We assume that there are several rounds of play, and each time a round finishes, the 
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netting takes place until the game completely ends.  Next we define “position” as the 

net-wealth of each bank.  The position of each bank before the first round is equivalent 

to an initial level of wealth, and changes as the game proceeds, according to each bank’s 

performance.  In the worst case scenario, if a bank performs very poorly in one round, 

it may not have a sufficient position to cover the losses incurred during the round, in 

which case the bank may go bankrupt or seek capital injection from the government.  

Lastly, we define “score” as the outcome of investment activities during the round. 

 

The game in our simulation proceeds as follows.  Each bank tosses the coin and adds + 

1 when it obtains heads and – 1 when it obtains tails.  It independently tosses the coin 

and records the number of heads and tails to compute the score.  For example, if the 

bank has 8 heads and 2 tails after 10 tosses, its score is 6.  Then at the end of the first 

round of play, when scores must be settled, the clearing house will undertake the 

following procedure12.  First the banks are divided into two categories by their scores.  

If the score is positive, they are regarded as “winners,” whereas if the score is negative, 

they are regarded as “losers.”   Among the losers, if a bank’s position is sufficient to 

cover the score, it will give the clearing house an equivalent amount to the score.  On 

the contrary, if its position is not sufficient to cover the score, a problem arises.  In the 

following, we examine different scenarios by incorporating how a bank with insufficient 

funds to cover losses is treated.  In the first scenario, we allow banks go bankrupt as 

soon as they become insolvent.  In the second scenario, we examine the early closure 

rule, i.e. banks become bankrupt once they fail to fulfil a required standard, such as a 

solvency ratio.  In the third scenario, we change the frequency of netting operation (i.e. 

the duration of each round) and see if there is any effect on the bank’s initial wealth 

which prevents bankruptcy. 

 

3.  Simulation Result: Exit Enforcement 
 

In our GAUSS programme, the coin toss is based on the uniformly distributed random 

variable between zero and one.  If the variable is greater than (or equal to) 0.5, we 

assume the coin comes up heads, and add 1 to the bank’s score.  On the other hand, if 

                                                 
12  The following interpretation of the settlement operation may potentially underestimate the 
contagion effect.  In our simulation, the net debit position of the players is pooled and 
surviving players will share the loss if any (loss sharing rule).  Hence, each player’s exposure 
to a potential loss is limited.  If on the other hand each player is fully exposed to the potential 
loss caused by a bilateral transaction, the impact of the counterpart’s default is much more 
serious, and we may observe a severer degree of contagion effect. 
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the variable is less than 0.5, we assume that the coin comes up tails, and subtract 1 from 

the score13.  Each bank is assigned a specific number as a “seed.”  Each seed contains 

a stochastic process, known as a Markov chain, i.e. the conditional distribution of any 

future state xn+1, given the past states x0, x1, …, xn-1 and the present state xn, is 

independent of the past states and depends only on the present state.  Having the same 

seed implies a specific Markov chain is assigned to a specific bank. 

 

3.1 Basic Result 

 

In this simulation, we assume that banks which failed to cover their losses in a round of 

play will go bankrupt after paying off their position to the clearing house.  This means 

that the clearing house is granted authority to seize the bank’s assets (position) if the 

bank fails to cover its losses from the round.  After the money is collected from the 

losers, the clearing house will distribute it to the winners.  If there were no banks 

which failed to pay their losses in full, winners will receive their winnings in full.  If 

the clearing house fails to collect all the money as a result of the bankruptcy of losers, 

winners will not fully receive their winnings, but will instead be paid their winnings in 

proportion to others’ winnings. 

 

After the money is distributed among the players, the losers who failed to pay their 

liabilities in full will go bankrupt, and they will not be engaged in the investment 

activities starting with the next round.  Other players, i.e. winners and losers who 

covered their losses but still managed to sustain a positive position, will proceed to the 

next round, where the same activities will continue: tossing the coin a certain number of 

times, counting the score, and execution of the clearing house netting operations.  

According to these specifications, we receive the following results: 

                                                 
13  In this set-up, the scores of winners and losers uniformly move one unit ( 1 ), as we ignore 
the case where a player bets more than one unit in a game.  However, the optimal strategy of 
attaining a certain level of wealth or of maximising expected playing time is the timid strategy 
that always bets 1 unit when probability of win and loss is 1/2.  See Ross (1983, p.76-83).  
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Table 2: Required level of wealth which leads to 10 banks defaulting 

at various stages of coin-tossing 

 
 sim=1 10 20 50 100 150 200 

n=1 0 5 7 11 11 16 18 
10 6 13 22 27 43 63 70 
20 7 22 28 45 60 79 103 
50 13 31 50 71 111 143 154 

100 15 49 73 112 151 212 242 
150 20 64 98 140 204 273 350 
200 22 68 111 168 252 298 383 

 

Table 2 shows the minimum amount of wealth each bank needs to hold if the system 

allows 10 banks to default through the course of play14.  The row (n) in the table 

represents the number of coin tosses taking place during a single round.  The column 

(sim) represents the number of rounds.  Hence, each bank will toss the coin a number 

of times equal to the product of row and column (n×sim).  At the end of each round, 

the operation which assesses the winning and losing scores for every bank will take 

place.  This is equivalent to the net settlement.  For example, the table says that each 

bank will need to hold 383 units of wealth if the game is to last 40,000 tosses during 

which the netting operation will be carried out every time 200 coin tosses have taken 

place.  It is quite obvious as the number of coin tosses increases the amount of initial 

wealth necessary to create the same number of default will increase.  For cases to be 

discussed later, we shadowed 151 units of wealth as a benchmark15. 

 

In figure 2, we show a 3-dimensional presentation of the wealth per coin tosses.  In 

other words, it plots the amount of wealth necessary for each coin toss.  For example, 

383 units for 40,000 times of coin-tossing in table 2 is plotted as approximately 0.01.  

This figure signifies that the wealth per coin toss will generally decrease and stay 

                                                 
14  Admittedly the simulation is not sophisticated enough to allow banks to start with different 
levels of wealth.  Our simulation thus far treats all 100 banks homogeneously at the beginning.  
It is an important extension, because the initial wealth represents the strength of the financial 
position (i.e. the larger amount of wealth, the less likely that the bank goes insolvent), and the 
financial system is better represented by players with differing wealth positions.  Nevertheless, 
our simulation allows wealth positions of banks to vary from the second round onwards. 
15  After 10,000 times of coin tosses, marginal increase in required levels of wealth becomes 
substantially small.  We believe that marginal gain of increasing in number of coin tosses 
becomes relatively small and that small sample bias may disappear after 10,000 times.  See 
figure 2. 
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around 0.01, as the number of tosses increases. 

Figure 2: Level of initial wealth per coin-tosses 

 

(Contagion Effect) 

 

We now proceed to show how the existence of the contagion effect affects the financial 

state of the other players in the game.  The best way to see the effect is to measure 

wealth distribution at the end of the game.  To be more precise, we first take the case 

where the contagion effect exists, namely that banks which failed to pay their liabilities 

in full go bankrupt and other banks without receiving their full winnings keep playing 

the game.  We choose as a benchmark the situation where banks hold 151 units of 

initial endowments and play 100 rounds of the game, where each round consists of 100 

coin tosses; hence the coin is tossed 10,000 times.  This figure is taken from table 2 

which results in 10 bankruptcies.  Second, we assume that banks suffering financial 

difficulties are rescued by having their liability positions covered by third parties16.  

They are rescued by means of capital injection, and the winners in each round of the 

game receive their full winnings.  After they pay the liabilities in full, they can keep 

playing the game.  This coincides with the case where there is no contagion effect and 

the risk derived from the inability of losers to pay liabilities in full will not take place. 

 

The next table and figure show the summary statistics for the distribution of wealth with 

and without the contagion effect after 10,000 coin tosses. 

 

 

                                                 
16  This is equivalent to the capital injection case studied in the next section.  For a detailed 
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Table 3: Summary statistics of wealth distribution for the surviving players 

 
 Contagion No Contagion 
Mean 167.8 156.3 
Standard Deviation 90.5 96.2 
Minimum Value 5.0 0.0 
Maximum Value 422.4 424.9 
# of Players 90 100 

 

Table 4: Summary statistics of wealth distribution for the winning players 

 
 Contagion No Contagion 
Mean 224.2 226.4 
Standard Deviation 64.2 64.1 
Minimum Value 151.1 152.9 
Maximum Value 422.4 424.9 
# of Players 55 55 

 

In the table, “Contagion” refers to the situation where the players toss the coin 10,000 

times (n=100 and sim=100) with an initial wealth of 151.  As seen from table 2, this is 

equivalent to the case where 10 banks go bankrupt; hence, we expect to observe the  

contagion.  On the other hand, “No Contagion” refers to the situation where the 

players again toss the coin 10,000 times (n=100 and sim=100) with an initial wealth of 

151.  This time, however, the players who fail to pay their losses have their debt 

positions covered by a third party; hence, we do not expect to observe the contagion 

effect. 

 

We have summarised two tables: the first table shows the statistics of wealth 

distribution for all surviving players, and the second table shows the statistics of wealth 

distribution for the winners.  From table 3, it is not apparent whether or not 

“Contagion” really has a contagion effect, because the mean distribution is much higher 

for “Contagion”.  This is, nonetheless, due to the fact that in cases of “No Contagion”, 

banks which played very badly receive injected capital, but they tend to perform at the 

very bottom of the wealth distribution17.  This pulls down the mean wealth. 

                                                                                                                                               
analysis, see section 4. 
17  Here we assume that the third party covers only debt positions; hence, the wealth of the 
injected banks right after the injection is zero.  We will further develop the analysis where the 
injection policy is more accommodating, allowing for situations such as injections raising a 
bank’s wealth position to the 8 % of the initial level. 
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Table 4 shows the very weak contagion effect 18 .  By focusing on the wealth 

distribution of the winning players, we see that the “Contagion” mean is marginally 

lower than the “No Contagion” mean, with the same number of winning banks.  Both 

the minimum and maximum wealth positions in “No Contagion” are marginally higher 

than those in “Contagion”.  Although its effect seems rather weak, it seems to be 

consistent with our proposition that contagion weakens the financial positions of sound 

players.   

 

(Arc-sine Feature) 

 

Next, we present a result that exemplifies the arc-sine nature.  We have seen a 

benchmark case where 100 banks hold 151 units of initial wealth and play 100 rounds 

of the game with each round consisting of 100 coin-tosses.  Figure 3 shows the 

histogram of the first round, where the x-axis represents the probability that the 

accumulated score of coin tosses lies above zero, and the y-axis represents the number 

of banks.  For example, if the accumulated record of 10 coin tosses follows a path, {1, 

2, 1, 0, -1, -2, -3, -2, -1, 0}, then the record is 4, because the intervals (0→1), (1→2), (2

→1) and (1→0) remain above zero, i.e. the positive side.  The line in figure 3 

represents the number of banks theoretically derived from the arc-sine theorem.  This 

is a pure random walk process.  Here the higher the probability is, the higher the 

number of times the score remains afloat. 

 

                                                 
18  This is basically because the contagion effect is pooled among all winners, so that a 
marginal impact per player is limited. 
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Figure 3: Graphical presentation of arc-sine 

after the first round in the benchmark case 

 

The figure inherits the nature of the arc-sine distribution, where probabilities staying on 

either the positive side or negative side are more likely to occur than other probabilities. 

 

The next figure presents the wealth distribution at the end of 100 coin tosses.  All the 

banks start with 151 units of initial wealth. 

 

Figure 4: Wealth distribution after 100 coin tosses 
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By construction of the game, we find the contagion effect is rather weak, although the 

results still support our proposition that the contagion will weaken the financial 

positions of the sound players.  On the other hand, the arc-sine theorem shows that 

those banks that are destined to perform poorly continue to perform poorly.  From this 

result, it is quite costly to leave the poor performing banks; a wait-and-see policy will 

allow these banks to perform even worse and the contagion effect will become more 

prevalent.  Thus it is better not to wait until they recover in the unforeseeable future. 

 

What we are more interested in is to see whether we still observe the differences as 

suggested above by depicting the observations at the end of each round.  Of course, the 

path which consists solely of the end-of-round observations does not represent the 

random walk in an genuine sense – a sequence of the outcome after the aggregation of 

each round’s 100 coin tosses, followed by the netting operation in order to make the 

game zero sum, does not possess a random walk feature, i.e. +1 with probability 0.5 and 

–1 with probability 0.5.  Figure 5 is a histogram that records the number of times that 

the banks’ position stays above the initial wealth.  There seems to be less observations 

under extreme probabilities, but the figure still inherits the arc-sine feature – a tendency 

which suggests there are more banks which either play poorly (i.e. the probability is 

close to 0) or nicely (i.e. the probability is close to 1). 

 

Figure 5: Graphical presentation of arc-sine 

at the end of each round in the benchmark case 

 

 

0

5

10

15

20

0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96 1



20  

The results in figure 3 and 5 suggest a general trend tracing arc-sine.  In one sense, the 

result in figure 5 is quite striking; the path we follow in the figure is not purely random 

walk – the change in wealth position from round to round is not uniform and the 

settlement process at the end of each round disturbs the smoothness of arc-sine. 

 

What is more striking is that once we divide banks into two groups: those banks that are 

ultimately winners (i.e. banks whose position ends above the initial wealth) and those 

that are ultimately losers (i.e. banks whose position ends below the initial wealth), we 

find winners’ history of end-of-round wealth tends to be generated by the good 

performance whereas losers’ history of wealth is generated by the poor performance.  

This observation is graphed in figure 6. 

 

Figure 6: Histogram of winners and losers at the end of each round 
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In sum, figure 6 summarises our conjecture that the upper end of the arc-sine histogram 

comes from the winners and the lower end of the histogram comes from the losers. 

 

One implication we derive from this analysis is that those banks that are destined to 

perform poorly (i.e. to stay on the negative side) will continue to perform poorly.  

From this point of view, it will be quite costly to leave the poor performing banks; a 

wait-and-see policy will allow these banks to perform even worse and the contagion 

effect will become more prevalent.  Thus it is better not to wait until they recover in 

the unforeseeable future.  Owing to this observation, next section concerns several 

policy options and evaluates which policy seems appropriate. 

 

We examine three scenarios.  First we study what if banks are asked to close operation 

before they become insolvent.  We study the case where the threshold level of closing 

its operation is 8 % of the initial wealth.  We compare the performance of players and 

see how effective this early closure policy is to isolate the contagion.  Second we 

examine what if they start with higher levels of initial wealth by raising additional 

capital.  We identify four cases that generate no bankruptcy, 1 bankruptcy, 5 

bankruptcies and 10 bankruptcies, and the minimum levels of initial wealth to generate 

an assigned number of bankruptcy are computed.  Third we examine what if the 

clearing house changes the frequency of the netting operation.  In an extreme case, the 

operation takes place every time banks toss the coin.  We calculate how many banks 

will go default if we change the frequency of the operation while maintaining both the 

total number of coin tosses and the initial wealth constant. 
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Lastly figure 7 presents the wealth distribution at the end of the game (i.e. 100 rounds). 

 

Figure 7: Wealth distribution at the end of the game 

 

 

3.2 Policy: Early Closure Rule 

 

In the last section, we showed a possibility that the contagion effect results in a 

weakening of the winners’ positions.  In this section, we extend the analysis to study 

the scenario where the banks are forced into bankruptcy even if their net wealth position 

remains positive. 

 

The last section assumed that banks fail if they cannot cover their debt positions with 

their wealth.  In other words, if the summation of the wealth and the score of the game 

in each round is below zero, the banks are asked to leave the game.  Here we assume 

that they are forced to shut down their operation if the summation of the wealth and the 

score fails to reach a certain level above zero, say 8 % of the initial wealth position.  In 

essence, this is in line with the early closure rule, often referred to as “prompt corrective 

action.” 

 

Prompt corrective action provisions are proposed as a possible approach to overcome 
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provisions such as the appointment of a receiver/conservator within 90 days, suspension 

of payments on subordinated debt, restrict certain activities. 

 

In the context of our game, the early closure maintains the following feature – due to the 

game’s losers being asked to leave before their net-wealth position reaches zero (strictly 

speaking, they are not yet insolvent), the winners are able to collect larger sums; hence, 

the severity of the contagion effect is limited. 

 

Although we may still observe some degree of the contagion effect unless full losses 

can be covered, we expect the effect to lie somewhere between the “Contagion” and 

“No Contagion” cases in the last section.  The statistical results of a numerical 

example which enables us to run a comparative study with the benchmark cases is 

shown below. 

 

Table 5: Summary statistics of the wealth distribution for the surviving players 

 
  Reference 
 Early Closure Contagion No Contagion 
Mean 177.6 167.8 156.3 
Standard Deviation 85.2 90.5 96.2 
Minimum Value 34.8 5.0 0.0 
Maximum Value 424.1 422.4 424.9 
# of Players 85 90 100 

 

Table 6: Summary statistics of the wealth distribution for the winning players 

 
  Reference 
 Early Closure Contagion No Contagion 
Mean 225.3 224.2 226.4 
Standard Deviation 64.2 64.2 64.1 
Minimum Value 152.5 151.1 152.9 
Maximum Value 424.1 422.4 424.9 
# of Players 55 55 55 

 

From table 5, we see that “Early Closure” results in more bank closures (15 banks), but 

the average wealth position of the surviving banks further improved.  Table 6 reveals, 

as expected, that the average wealth position of the winners in “Early Closure” is higher 

than the position of the winners in “Contagion”.  This seems to suggest that early 

closure policy is effective in the sense that the contagion effect is restricted; hence, the 
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policy would be of benefit to the financial system as a whole.  The argument states that 

because losing banks tend to do worse, it is best to adopt a non-discretionary policy and 

let these banks fail through adopting harsher standards, such as early closure rule. 

 

3.3 Policy: Capital Enforcement Rule 

 

One way to avoid the risk from contagion is to implement a tighter capital enforcement 

rule19.  We know from table 1 the minimum level of initial endowments which would 

allow 10 % of the total banks to go bankrupt.  If the regulator asks each bank to hold 

more endowments before the start of the game, how much would each bank have to 

increase its level?  This study is conducted and summarised in the following figure.  

The figure represents the initial level of wealth necessary for no default (Case 1, i.e. 

none of 100 banks goes bankrupt), one bank’s default (Case 2), five banks’ default 

(Case 3) and ten banks’ default (Case 4) which is the same result obtained in the 

previous sub-section. 

 

                                                 
19  Note in this paper what we mean by “capital enforcement” is to raise additional capital at 
the beginning of the game.  Hence the degree of capital enforcement is not related to the 
performance of banks.  As we will examine in the next section, we distinguish it from “capital 
injection,” which is another resolution mechanism whereby additional capital is injected if 
banks perform poorly. 
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Figure 8: Minimum level of initial wealth needed 

to generate a specified number of defaults 

 

The general trend is as banks hold more wealth, they are less likely to face a threat of 

default.  In order to achieve a “risk free system,” banks have to hold a substantial 

amount of wealth, perhaps by means of raising additional capital, as shown in the figure 

as Case 1: Default=0.  None of the banks having sufficient wealth will go bankrupt, 

and the rescue operation as specified in the last section will not need to be implemented. 

 

An interesting observation is to see how the capital enforcement rule and the early 

closure policy will interact each other in our model.  Their fundamental philosophy 

concerning how to resolve the systemic risk is, however, different. 

 

In the capital enforcement rule, the policy guide is to raise additional capital, so that the 

players have sufficient wealth to avoid bankruptcy beforehand.  Thus the more capital 

the banks raise, the less number of banks face the threat of going bankrupt.  The policy 

pursues to prevent market risk by strengthening the financial position of the players. 
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In the closure policy, the policy guide is how to pinpoint the poor performing players in 

early stage and to get rid of them from the financial system before systemic risk 

becomes more prevalent.  Thus the tighter the policy is, the more number of banks will 

face the bankruptcy.  Here the policy does not aim to strengthen the financial position, 

but rather it takes the initial position as given and implements the mechanism according 

to which contagion does not spill over to other players. 

 

In this sense, we claim that the former is ultimately contagion-free, whereas the latter 

more realistically lets the contagion happen but concerns how to minimise its effect. 

 

In the following, we show a table where each cell identifies the improvement of wealth 

for survivors at the end of the game.  In the table, the row represents the closure policy 

and the column represents the capital enforcement. 

 
 151 186 245 278 
Exit by Insolvency +16.8 +9.8 +2.5 0 
Early Closure +26.6 +18.4 +7.6 +2.8 

 

Each level of wealth in the first row represents respectively 10 bankruptcies, 5 

bankruptcies, 1 bankruptcy and 0 bankruptcy, under the benchmark case with the exit 

rule specified in the first column.  Obviously, by adopting the early closure rule, the 

number of bankruptcies in each level would rise.  The general trend is, the larger the 

level of wealth banks hold, the less magnitude of improvement they experience.  Also, 

the early closure rule, because it excludes more number of ailing banks, will improve 

the financial position of the survivors even further. 

 

3.4 Policy: Frequency of Netting Operation 

 

The next possibility we will explore is how the netting operation will affect the number 

of defaulting banks.  Let us first show how the number of defaults is altered by 

changing the frequency of netting while maintaining not only the total number of coin 

tosses but also the initial amount of wealth in 151 units. 

 

Our conjecture is that the number of bankruptcies will rise as netting takes place more 

frequently (i.e. larger values for n indicates that netting of the scores will take place for 

a lower number of coin tosses; for example, sim=5 and n=2,000 means that netting is 

done every 5 tosses).  This follows basic intuition – the more frequently the banks net 
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their scores, the more often they face a situation where they must pay their liabilities if 

they end up with negative scores after a round, the higher level of wealth they must hold 

ex ante in order to avoid bankruptcy20. 

 

Table 7: Number of defaults for 151 units of wealth 

 

sim n Number of 
Defaults 

5 2,000 13 
10 1,000 15 
20 500 14 
50 200 15 
100 100 10 
200 50 11 
500 20 10 

1,000 10 10 
2,000 5 8 

 

However, table 7 shows results which are somewhat mixed.  In the figure, we expected 

the number of defaults to fall as sim rose.  The difference in the number of default 

between 13 in sim=5 and n=2,000 and 15 in sim=10 and n=1,000 may be marginal, but 

we are not inclined to make a concrete statement on how to interpret this result.  The 

table does not seem to support our conjecture that the number of defaults will rise as 

netting takes place more frequently.  In the next table, we show another result.  

 

 

 

 

 

 

 

 

 

 

 

 
                                                 
20  In an extreme case, netting can take place every time the banks toss the coin (sim=1 and 
n=10,000 represent the case).  This “real time” netting could not be addressed in this paper, 
because it exceeds our computer capacity. 
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Table 8: Minimum amount of wealth for various combinations of sim and n 

 
  Number of Defaults 

sim n 0 1 5 10 
5 2,000 290 250 194 164 
10 1,000 288 279 190 169 
20 500 285 267 191 156 
50 200 283 271 188 168 
100 100 278 245 186 151 
200 50 269 245 186 154 
500 20 269 245 178 151 

1,000 10 269 245 179 147 
2,000 5 269 245 175 139 
5,000 2 269 245 165 130 

 

The table presents the minimum amount of wealth that causes 4 different numbers of 

default under specified numbers for rounds and coin tosses.  Again, our benchmark 

(sim=100 and n=100 with 151 units of wealth) is shadowed.  In order to reduce the 

number of bankruptcies, it is best to increase wealth to a level where there are no more 

defaults.  This is the same policy implication we derived in the last section.  We know, 

however, from table 7, that there may be another route, namely that if additional capital 

accumulation is too costly (for example, each bank is asked to add 127 units of capital 

ex ante to reach a wealth position of 278 if they want to avoid any bankruptcy in the 

sim=100 and n=100 situation), they could prolong the interval of netting. 

 

Of course, our numerical result in the table did not produce a case where there were no 

bankruptcies with an initial wealth equivalent to 151.  The best they could achieve is to 

allow 8 bankruptcies by extending the interval of netting from one netting out of 

sim=100 to one netting out of sim=2,000 (see figure 7).  Nonetheless, our analysis in 

this section seems to suggest that the interaction between the capital enforcement rule 

and the frequency of settlement has to be considered.  In other words, it is easy to see a 

paradigm where the capital is strongly enforced and the netting operation takes place in 

“real time” (for example, 290-units of wealth in sim=5 and n=2,000 results in no 

bankruptcy).  Yet if we face the situation where capital is limited or is simply too 

costly for banks to hold the required amount of wealth by raising additional capital 

derived in the simulation, then a more feasible solution is to find a compromise which 

requires less wealth, but provides a lower number of defaults.  Our simulation seems to 

have this feature; it suggests that it is not just increasing the amount of initial level of 

wealth, but once combined with the frequency of settlement procedure, it may achieve 
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better results. 

 

We also carried out the simulation with different seed numbers for banks to see if there 

were any differences in our results.  The next table is based on the same GAUSS 

programme, but it features different seed numbers (we added 5,000 to each seed).  The 

overall result of the simulation does not seem to show significant change. 

 

Table 9: Minimum amount of wealth for various combinations of sim and n 

 
  Number of Defaults 

sim n 0 1 5 10 
5 2,000 285 256 171 151 
10 1,000 284 248 179 153 
20 500 280 244 185 149 
50 200 291 244 185 152 
100 100 281 244 190 168 
200 50 270 245 190 161 
500 20 282 244 186 140 

1,000 10 270 244 153 140 
2,000 5 270 244 162 136 
5,000 2 270 244 153 130 

 

 

4.  Simulation: Capital Injection 
 

In this section, we will add another dimension to the fundamental set-up of the game.  

In the previous section, it was simply assumed that a bank is driven out of the system 

once the loss in a round of play reaches a level that cannot be covered by the available 

funds (position).  This is consistent with the classical Gambler’s Ruin problem.  Then 

we extended the analysis by adopting the early closure rule: if the summation of the 

bank’s wealth and the resulting score of the game fail to reach the minimum standard 

the regulator has set in advance, then the bank is closed.  We saw how this mitigates 

the contagion effect because the winners manage to cover larger shares of their winning 

positions.  Nonetheless, what we have recently seen is not just how to get rid of the 

broke players, but also how to contain them in the system without causing moral hazard.  

Of course, our framework is too primitive to incorporate any incentive to assume an 

additional risk factor in investment activities, but our point is, even without generating 

moral hazard, the system is exposed to further risk by an additional injection policy of 

the regulator. 
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Here we ask the following question, what if a bank, faced with the situation where the 

loss exceeds the position, has been injected capital rather than been forced to go 

bankrupt?  We will see that, although the new capital is injected, the bank will 

repeatedly face the threat of going bankrupt, where in each case the regulator needs to 

add new capital.  We believe this is due to the fact that as long as the bank maintains 

the same portfolio (the same Markov chain in our programme), it is more likely that the 

bank will continue to produce poor scores.  Perhaps, a more reasonable solution is to 

close these banks before injecting additional capital. 

 

4.1 Capital injection at insolvency 

 

In the following tables, we summarise the total amount of capital injection that 

generates a specific number of bankruptcies (10 bankruptcies in table 10 and 5 

bankruptcies in table 11).  Here the amount of injection is defined as a net-debit 

position; hence, in each case the bank’s position will become zero after both the capital 

injection and the settlement of the scores with other players take place. 

 

Table 10: Total amount of capital injection with an initial wealth position 

generating 10 bankruptcies (as specified in table 2) 

 
 sim=1 10 20 50 100 150 200 

n=1 n.a. 14.4 16.3 18.9 33.4 51.0 75.7 
10 9.5 38.6 57.7 112.3 104.3 112.3 221.0 
20 21.8 59.4 92.8 64.9 330.5 276.4 177.5 
50 12.7 84.5 97.0 294.8 340.2 455.5 461.7 

100 22.5 85.4 224.4 371.6 533.6 326.6 796.0 
150 35.8 128.2 144.2 514.5 453.1 970.6 664.1 
200 60.4 275.1 153.2 423.7 714.8 922.5 495.9 

 

We need to compare the results in table 10 with those in table 8 where the minimum 

amount of wealth to generate different numbers of default is shown.  In the benchmark 

case, we know from table 8 that if the system has to generate the non-bankrupt case, 

each bank has to raise 127 (i.e. 278-151) additional units of capital; hence, the total cost 

for the system to reach a risk-free environment would be 12,700.  In table 10, however, 

we derive that the total cost represented by the amount of capital injection is 533.6.  

Although we should be careful in comparing the cost derived in these two figures,21 our 
                                                 
21  The comparison requires care because the simulation has not incorporated heterogeneity of 
banks.  If each bank is treated differently (e.g. riskier banks are required to raise additional 



31  

result seemingly suggests that any ex ante measure against bankruptcy is more costly 

than an ex post measure, because the latter pinpoints the exact amount of funds 

necessary to avoid bankruptcy, while the former requires a large risk premium. 

 

The next table also conducts the same simulation which results in 5 bankruptcies.  

Because banks initially hold higher levels of wealth, the total cost of injection is much 

less, compared with the amounts specified in table 10. 

 

Table 11: Total amount of capital injection with an initial wealth position 

generating 5 bankruptcies 

 
 sim=1 10 20 50 100 150 200 

n=1 n.a. 3.6 5.5 7.9 19.4 34.5 41.6 
10 4.0 5.0 32.2 74.1 43.9 29.6 93.9 
20 8.7 33.2 50.6 29.3 87.0 77.3 70.7 
50 6.4 61.7 33.8 101.0 281.9 219.9 209.1 

100 4.4 31.6 108.0 241.3 222.0 140.1 421.9 
150 29.9 37.7 111.2 168.4 191.6 270.2 306.1 
200 25.6 117.4 69.2 269.1 417.9 212.8 262.9 

 

 

4.2 Capital injection at 8 % level 

 

We have also carried out another simulation.  In section 4.1, the amount of capital 

necessary for injection is designed to cover a net-debit position.  Here we adopt a more 

generous rule, namely that the amount of capital injection not only covers the net-debit 

position but also raises the next round’s position equivalent to 8 % of the initial wealth.  

Under this rule, banks which accepted the capital injection will have some buffer to start 

with from the next round of play. 

 

 

 

 

 

 

 

                                                                                                                                               
capital to achieve higher levels of wealth while sound ones are not at all), the total cost is 
expected to decline. 
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Table 12: Total amount of capital injection with an initial wealth position 

generating 10 bankruptcies 

 
 sim=1 10 20 50 100 150 200 

n=1 n.a. 17.2 19.6 24.2 45.7 63.8 88.6 
10 13.4 48.6 71.7 134.1 137.4 155.4 275.6 
20 27.1 75.0 108.9 94.4 378.5 334.6 247.5 
50 15.9 100.4 130.7 343.8 394.9 548.2 568.8 

100 34.7 118.1 276.0 434.7 608.2 459.7 904.9 
150 44.1 174.3 202.6 597.5 572.8 1,068.5 876.5 
200 72.2 296.5 201.4 511.5 852.3 1,115.4 760.0 

 

 

Table 12 summarises the total amount of capital injection that generates 10 bankruptcies.  

Because each time capital is injected, it raises the bank’s position to 8 % of the initial 

wealth, the total amount is much higher than the one in table 1022. 

 

 

5.  Summary of Simulation Results  
 

This section sums up broad simulation results.  By construction of the game, we find 

the contagion effect is rather weak although our results still support our proposition that 

the contagion will weaken the financial positions of the sound players.  On the other 

hand, the arc-sine theorem shows that those banks which are destined to perform poorly 

continue to perform poorly.  From this result, it is quite costly to leave the poor 

performing banks; a wait-and-see policy will allow these banks to perform even worse 

and the contagion effect will become more prevalent.  Thus it is better not to wait until 

they recover in the unforeseeable future. 

 

5.1 Ex ante Measures 

 

Three types of ex ante policy measures are considered.  Although we cannot provide 

an overall evaluation of which policy rule is the optimal, we show ample evidences that 

combined use of these rules would enforce the policy implementation more effectively.   

 

                                                 
22  Admittedly, the analysis in this section is still incomplete.  Several further studies remain 
to be done.  We would like to know what the optimal level of capital injection is and how 
efficient the capital injection be. 
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(a) Early closure rule 

We study what if banks are asked to close operation before they become insolvent.  We 

study the case where the threshold level of closing its operation is 8 % of the initial 

wealth.  We compare the performance of players and see how effective this early 

closure policy is to isolate the contagion.  From the benchmark case, we find the early 

closure results in more number of bank closures, but the average wealth position of the 

surviving banks improved further.  This seems to suggest that the early closure policy 

is effective in the sense that the contagion is restricted.  Comparing the early closure 

rule with the exit by insolvency rule, the former, because it excludes more number of 

ailing banks, would improve the financial position of the survivors even further than the 

latter.  We therefore conclude that the policy would be beneficial to the financial 

system as a whole. 

 

(b) Capital enforcement rule 

We examine what if banks start with higher levels of initial wealth by raising additional 

capital.  We identify four cases that generate no bankruptcy, 1 bankruptcy, 5 

bankruptcies and 10 bankruptcies, and the minimum levels of initial wealth to generate 

an assigned number of bankruptcy are computed.  In short, the general trend is that the 

larger amount of wealth banks hold, the less likely they face the threat of going default.  

In order to achieve the “risk free system,” they have to hold substantial amount of 

wealth, perhaps by means of raising additional capital.  In this system, none of the 

banks having sufficient capital would go bankrupt, and the rescue operation as specified 

in the last section would not have to be implemented.  Needless to say, this rule 

imposes high cost to the participants. 

 

(c) Frequency of netting operation 

We examine what if the clearing house changes the frequency of the netting operation.  

In an extreme case, the operation takes place every time banks toss the coin.  We 

calculate how many banks will go default if we change the frequency of the operation 

while maintaining both the total number of coin tosses and the initial wealth constant.  

In general, the more frequently the banks net out their scores, the more often they face 

the situation where they are asked to pay their liabilities if they end up with the negative 

scores in the round of the game, the higher level of wealth they need to hold ex ante in 

order to avoid bankruptcy.  Our simulation did not provide a strong support to this 

conjecture, but the combination of this measure with others seems to be a promising as 

well as practical solution to the contagion effect.  If we face the situation where the 
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capital is limited or simply it is just too costly for banks to hold the required amount of 

wealth by raising additional capital derived in the capital enforcement rule, then more 

feasible solution is to find a compromise which requires less amount of wealth with 

more frequent settlement. 

 

5.2 Ex post Measures 

 

Although the new capital is injected, the bank will face the threat of going bankrupt 

repeatedly, where in each case the regulator needs to add new capital.  This is due to 

the fact that as long as the bank maintains the same portfolio (the same Markov chain in 

our programme), it is more likely that the bank will continue to produce the poor scores.  

Our result also contends that any ex ante measure against bankruptcy is more costly 

than ex post measure, because the latter pinpoints the exact amount of funds necessary 

to avoid bankruptcy, while the former requires a large risk premium. 

 

 

6.  Conclusion 
 

This paper examined how we view the cost associated with negative externality, often 

referred to as “systemic risk” in the financial markets and how effectively ex ante 

discipline can prevent this externality from spreading to other participants in the market.  

The ultimate objective for the market participants, the policy makers and the operators 

of the clearing house is to keep the market open, and for that purpose we identified how 

the regulator sets the rule which prevents the contagion effect, while making as many 

participants as possible to take part in the transactions. 

 

By construction of the game, we find the contagion effect is rather weak although our 

results still support our proposition that the contagion will weaken the financial 

positions of the sound players.  Moreover, the arc-sine theorem shows that those banks 

that are destined to perform poorly continue to perform poorly.  This result has a 

remarkable policy implication that no matter how well policy rules are implemented, the 

finanical market game will not converge to any stable equilibrium where no player 

wants to play game any longer.  By construction, the game generates big winners and 

big losers constantly.  It is the big losers that make the financial system unstable.  As 

long as this financial market game keeps going, potential prevalence of systemic risk or 

the contagion exists.  
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Practical solutions to prevent the contagion effect from spreading are twofolds: market 

discipline and regulatory discipline.  Nonetheless, the sheer existence of market 

discipline has been under controversy in various studies. 

 

In this paper, we focused on regulatory discipline.  We examined ex ante rules on how 

to resolve the problematic banks.  We scrutinised three scenarios: early closure rule, 

capital enforcement policy and frequent settlement system.  In the first scenario, banks 

which have performed very poorly but are not yet insolvent, are asked to close down.  

In the second scenario, the participants are asked to hold additional capital at the 

beginning of the game in order to prevent insolvency of the participants.  In the third 

scenario, we examine how the amount of wealth necessary to generate the same number 

of exits is altered by changing the frequency of settlement operations. 

 

Our simulation results indicate that each policy rule works with its own costs.  

Although we do not intend to identify which policy rule is most appropriate, through 

our analysis under the arc-sine theorem, our results seem to suggest that early closure 

and capital enforcement are effective devices to preventing the contagion effect.  In 

addition, the combination of various policy rules seems to derive a more practical 

resolution mechanism to preventing the contagion effect. 

 

We also studied the capital injection rule whereby the clearing house injects money into 

a participant facing potential bankruptcy, in order to improve the bank’s debt position.  

In such a situation, the clearing house is a “lender of last resort.”  We concluded that 

the ex post measure is less costly than any ex ante measures, because the former 

pinpoints the exact cost necessary to prevent contagion. 
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Appendix 1 : Diffusion Processes of Random Walk 

 

If the length of one-step (d) is made smaller and each step is spaced so close in time that 

the resultant change appears practically as a continuous Brownian motion. 

 

Suppose that an unrestricted random walk starts at the initial endowment position x0 and 

that the n-th step leads to the position wn where wn  = x0 + x1 + x2 +….+ xn is the sum of 

n-independent random variables each assuming the values ±d with the equal probability 

1/2. 

 

Variance of wn  is expressed as v(wn) = tD (D=d2/T, d= the length of one-step, T = a 

unit time interval), D is called a diffusion coefficient.  Mean of wn is E(wn)=tC where 

C is a drift coefficient. 

 

Consider the position of the particle at the n-th and the (n+1)-st trial it is obvious that 

the stochastic process p(z, t+T) satisfy the difference equations, 
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Since p has continuous derivatives we can use the Taylor series expansion at the limit, 
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This is a special diffusion equation known as the Fokker-Plank equation for diffusion.  

In our system, drift coefficient C is zero and thus (A1-2) becomes, 
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This is known as Brownian motion or Wiener process. 

 

Stochastic process p(z,t) can be obtained by integrals over ),(  , then by Fourier 

transformation with initial condition p(0,0)=1, 
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This turns out to be the normal distribution with mean = zero and variance = tD.  

Figure A1-1 shows changes in the probability density of Brownian motion over time 

(t1< t2< t3).   

 

Figure A1-1: The Probability density of Brownian Motion without Drift 

　p(z, t)

 0　　　　　　　　　　　　　　　　z

　 t=0

　　t1

　　　　t2

　　　　　　　t3

   p(z, t)=N(0, Dt)
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Appendix 2 : Relationship between The Mean Reversion Process and The Arc-Sine 

Theorem  

 

Under a fair and infinitely repeated game, a player will return to the initial position with 

probability one.  This is known as the mean reversion process (see Feller (1957), 

pp.347-8).  The arc-sine theorem, on the other hand, implies that it is more likely for 

players to stay continuously on the winning side or the losing side than to frequently 

switch between the two sides. 

 

The former states that a player will return to the initial position for sure, while the latter 

states that a player tends to stay on one side for most times in the game or the rounds of 

games. 

 

These seemingly contradictory phenomena occur in the same diffusion process of 

random walk as shown in Appendix 1 and they are, in fact, not contradictory at all, if we 

understand a nature of random walk, i.e. non-stationality.   

 

We can restate the random walk process discussed in Appendix 1 in terms of time series 

econometrics.  According to Granger and Newbold (1986, pp.38-41), a random walk 

without drift has following characteristics. 

 

If the process starts at t=0 with initial endowment, x0, then  
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where t  is a zero-mean white noise process. 
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where 2
 is the variance of t  and is finite.  Thus 
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Provided t is large compared to  , all t,  approximate unity.  The sequence of xt 

is smooth but nonstationary since its variance is increasing with t as shown in (A2-3).  

This result implies that the xt process tends to stay in one side (above or below the initial 

position x0) and thus it satisfies the arc-sine theorem.  Of course, this process will 

reverse the course. That is, if it continues infinitely, the process will return to the initial 

position.  The statement “all roads lead to Rome” is justified in less than two 

dimensions random walk.  The mean reversion is fulfilled. 

 

Nevertheless, within a practical length of period, the arc-sine process dominates the 

mean revision process.  Furthermore, if the random walk is defined in more than 

two-dimensions, the mean reversion process is not satisfied (Feller (1957), pp.359-360). 
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Appendix 3 : Coin Tossing Game and Arc-sine Theorem 

 

The purpose of this appendix is to formally derive the arc-sine theorem in the 

mathematical context, which nevertheless contradicts to a general belief based on the 

law of averages. 

 

The starting point to resolve the misunderstanding based on the law of averages is 

stating the derived result that a large number of independent coin tosses at one time 

does not share the same statistical nature with the results from a single coin toss played 

over a long time period.  The former game possesses the characteristics of the law of 

averages, while the latter is what we will pursue in the arc-sine theorem. 

 

With these differences in mind, imagine the following situation.  An individual is 

involved in a coin-tossing game.  If he gets heads, he adds + 1 to his score, and if he 

gets tails, he adds – 1 to his score.  Now the question is, how likely it is that his score 

reverts to zero, namely that the number of heads and tails up to the time of counting is 

identical, as he continuously plays the game over a long period of time.  The intuitive 

answer to this question is, because the game itself is fair in the sense that both heads and 

tails appear with the same probability (i.e. probability 0.5), the resulting score tends to 

stay around zero.  The arc-sine theorem, however, states that this is not the case.  The 

startling message of the theorem is, unlike basic intuition, that the score breaking even 

is the least likely outcome. 

 

To demonstrate, we need to follow several steps23.  We first examine the ballot 

theorem based on the reflection principle, from which we will learn the number of paths 

which do not cross the break-even point (position value of zero).  Second, we show the 

lemma which states that the probability that the paths will not go through position 0 at 

all is identical to the probability that the paths will return to position 0 eventually.  

Third, we explain the arc-sine theorem which can be derived from the ballot theorem 

and the lemma. 

 

 

 

                                                 
23  We owe deep gratitude to Cox and Miller (1965), Feller (1957, 1966), Loeve (1977) and 
Ross (1970, 1983, 1996). 
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Notation 

Let us denote )},()0,0{( rnP   as the probability that the path leads to ),( rn .  In the 

following analysis, we write each position as ),( rn  which corresponds to the position 

r after n coin tosses.  The starting position is obviously (0,0).  For simplicity any 

probability starting from (0,0) will be written as )},()0,0{(),( rnPrnP  .  Let Si be 

the position after time period i.  Let us denote ),( rnN  as the number of paths with Sn 

= r, namely after n tosses, the player’s position is r. 

 

Suppose now coin tossing results are p heads and q tails.  Consequently, we derive the 

following relationship; 

 
 rqpnqp  , (A3-1)
 

And we write 
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and its probability is 
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Ballot Theorem 

 

The number of paths finishing with Sn = r after n coin tosses is proportional to 

the difference between the number of paths reaching r-1 in n-1 tosses and the 

number of paths reaching r+1 in n-1 tosses. 
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Sketch of Proof 

 

Let us define ),( rn   as the “reflection position” of ),( rn .  It implies that n times of 

coin tosses will yield an opposite outcome, which can be achieved by reversing the 

numbers of heads and tails. 

 

First, we know that the number of paths from (1,1) to ),( rn  which nonetheless do not 

go through (t,0) where t=1,… n-1 is equal to the number of paths from (0,0) to ),( rn  

which do not go through (t,0) either.  Second we also know that the number of paths 

from ),(  , where n0  and 0 , to ),( rn , which cross (t,0) where t=α

+1,… n-1 is equal to the number of paths from ),(   , reflection position of ),(  , 

to ),( rn . 

 

With these features, the number of paths from (0,0) to ),( rn , which do not cross (t,0) 

where t=1,… n-1, is given as )1,1(  rnN , the number of paths from (1, 1) to ),( rn , 

minus )1,1(  rnN , the number of paths from (1, -1) to ),( rn .  From equations 

(A1-1) and (A1-2), 
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Lemma 

 

The probability that the paths will not go through the position 0 at all during the 

period between 1 and 2n is identical to the probability that the paths will return to 

the position 0 at period 2n. 

 

Next, consider P(2n,2r), the probability that paths from (0,0) to (2n,2r) stay on the 

positive side, or in other words, the position will always remain positive during the 

period between 0 and 2n.  The ballot theorem yields the equation: 
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If we add all the paths with respect to r in order to derive the probability that the path 

will return to (t,0), where t=1,… 2n-1, during the periods we are concerned with, we 

have 
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Transforming the equation, we have 
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This implies that the probability that paths from (0,0) remain positive is equal to half the 

probability that the path will return to position 0 after a 2n time period.  The same 

applies when the position is negative.  If we add them together, we will derive the 

probability that the paths will not go through (t,0) while t=1,… 2n-1 is equivalent with 

P(2n,0). 

 

 

Arc-sine Theorem (Feller (1957, p.79)) 

 

The probability that in the time interval from 0 to 2n the position spends 2k time 

units on the positive side and 2n-2k time units on the negative side equals 
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Sketch of Proof 

 

For simplicity, let us use the equation: 
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vPu 2

2 2
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
 , (A3-4)

 

which states that the probability that the return to the origin occurs at period 2v.  We 

also let vf 2  the probability that the first return to the origin occurs at period 2v, or in 

other words that 0,0,,0 2121   vv SbutSS  .  Between these two notations, we 

derive the following relationship. 

 
 

024242222 ufufufu nnnn     (A3-5)

 

In other words, a return to the origin at period 2n may be the first return, or otherwise it 

occurred some time ago, such as 2k (k=1,…, n-1), followed by a renewed return at 

period 2n.  Here, the probability of the latter is denoted by knk uf 222  , because there 

are k
k f 2

22  paths ending with a first return at period 2k, and kn
kn u 22

222 
  paths from 

(2k, 0) to (2n, 0). 

 

Next we denote vkb 2,2  as the probability that the position lies above the initial position 

for a time period of 2k for a length of time of 2v.  What we have to prove is: 

 
 }2,2{2,2 vkRb vk  . (A3-6)

 

We know }2,2{)0,0()0,2(22,2 vvRPvPub vvv  .  Assume now a time period of 

2k is spent on the positive side.  Then there are two possibilities. 

 

(1) A first return to the origin occurs at some time 2r < 2n.  If the 2r time period is 

spent on the positive side, then 2k-2r must stay above the initial position as well as 

during the remaining time period.  The number of such path is: 
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(2) A first return occurs at some time 2r < 2n.  If the 2r time period is spent on the 

negative side, then 2k must stay above the initial position during the remaining time 

period.  The number of such path is, 
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Adding up these numbers of path in (A3-7) and (A3-8), we derive 
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We know (A3-6) holds when v=1.  By induction, suppose (A3-6) is also true for 

1 nv .  This leads to: 
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(A3-10) 

 

From (A3-5), the equation above can be written as: 

 
   }2,2{

2

1
2222222222,2 nkRuuuuuub knkknkkknnk   . (A3-11) 

 

We therefore conclude (A3-6) also holds when v=n. 

□ 

 


