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Abstract

    We consider decompositions of financial time series that identify important modes of

variation in the series. The first term in the decomposition measures long term trends and

focuses on large-scale features of variability. The second term measures short term trends and

local features of variability remaining after the long term trend has been removed. The third term

measures the irregularity left in the series after the long and short term trends have been

subtracted out. This term is further broken down by regressing it on its own lagged values. One

goal of this decomposition is to transform a “raw” time series into three interpretable terms plus a

term that is approximately noise. In this paper, the methodology is applied to the exchange rates

of Japanese Yen, German Marks, Swiss Francs, and British Pounds in the unit of U.S. dollars.

Similarities and differences in the trends between these currencies as well as their volatilities are

discussed.
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 I.  Introduction I.  Introduction I.  Introduction I.  Introduction

In this paper we decompose financial time series by using and extending the ideas of Shibata

and Miura(1997) where they introduced a two-step smoothing technique. We consider the

properties of such decompositions and apply them to currency exchange rate time series.

Our initial decomposition of the time series Y(t) , t 1, ,T= ⋅ ⋅ ⋅ , is of the form

Y(t) L(t) S(t) I(t)= + +

where L(t)  represents “long term trend”, S(t) stands for “short term trend”, and  I(t) =

Y(t) - [L(t) + S(t)]  is the “residual” or “irregular” part of the series.

More precisely, we assume, in the whole of this paper, that Y(t)  is a random variable with

population mean µ(t) , t 1, ,T= ⋅ ⋅ ⋅ , and define L(t) , the theoretical long term trend, as a weighted

average of µ(t)  over a long time interval such as a quarter or a year. After subtracting out the

long term trend, the short term trends S(t) can be detected after removing the long term trend by

taking a weighted average over a short time span. That is, the theoretical local features of
variability can be measured by a short term weighted average of µ(t) L(t)− . The left over fine

grain theoretical variability can now be measured by the series [ ]I(t) Y(t) L(t) S(t)= − + , which

we call the theoretical residual or irregular series.
The empirical decomposition of Y(t)  is defined as

Y(t) L(t) S(t) + I(t)= +$ $ $

where $L(t)  and $S(t) are the empirical weighted averages obtained by replacing µ(t)  by Y(t)  in

the definitions of L(t)  and S(t), and [ ]$ $ $I(t) Y(t) L(t) S(t)= − + .

Our decomposition is similar to the analysis of variance decomposition which decompose a

variance into a sum of variability due to signal plus variability due to noise except we have

decomposed the signal into two parts, large time-scale and short time-scale variability. Moreover,
because of the dependence over time in the series, we further decompose the noise term I(t)  when

necessary into terms related to lagged values plus “pure” noise using parametric autoregressive

techniques.

Our approach uses nonparametric regression techniques, on one hand, to model long and

short term trends and it uses classical parametric time series techniques, on the other hand, to
model the residual I(t)  of the fit L(t) + S(t) .

We apply the decompositions to the analysis of exchange rate data, in particular to the

exchange rates of a U.S.dollar in units of Japanese Yen (JY), German Marks (GM), Swiss Francs

(SF), and British Pounds (BP) for the 1196 days from January 5, 1992 until April 14,1995. The

exchange rates are converted to the percentage value of the initial value (Jan 5,1992) before
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applying the decomposition. We find that the GM and SF series are very similar in that not only

do they have close long term trends, but their short term trends and residual series are also very

close. We use our decomposition to give graphical representation of the relationship between

German Marks and Swiss Francs exchange rates. We conjecture that the similarity between the

movements of GM and SF is related to the macro-economic relations with the US economy and

also related to the attitude of currency traders who simultaneously trade the SF in the same

direction as the GM. There could be a perception by dealers that when one of these two currencies

moves, the other will move in the same direction; so if one of them falls behind, it will quickly

catch up to the other one as dealers try to take advantage of the gap.

    Starting about 600 days into the time period, the long term trend of JY becomes very similar

to that of GM and SF. After 720 days into the period, the dollar show a steady long term decline

against JY, GM and SF, but the decline is not linear. It switches between concave and convex.

This represents a macro-level economic relationship to the US dollar.

The chapters give further findings obtained by applying our methodology.

Figure 0 : Indexed Exchange Rates : JY, GM, SF, and BPFigure 0 : Indexed Exchange Rates : JY, GM, SF, and BPFigure 0 : Indexed Exchange Rates : JY, GM, SF, and BPFigure 0 : Indexed Exchange Rates : JY, GM, SF, and BP
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Figure 0. Indexed currency exchange rates of the Japanese Yen , German Marks , Swiss

Francs , and British Pounds for the time period Jan 5, 1992 to April 14, 1995.

We consider two types of decompositions in Chapter II. The first type is a decomposition as in

Shibata and Miura (1997) and is based on an ex-post analysis of the data in the time series. Its

decomposition is symmetric in the sense that it gives equal weight to values before and after each

time point t. It gives a description based on all the data of global and local tendencies of the time

series. The second type of smoothing, which is often used for the prediction of a time series, is
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called here predictive since it is based on values of the time series up to the time t. In sections 1

and 2 of Chapter II we explain the details of the decomposition methodologies with symmetric

and predictive smoothing respectively, and display the results of its applications to the four

currency exchange rates. In Section 3, Chapter II, we discuss the implications of our

decomposition results for risk measurements and derivative pricing based on VaR( Value at

Risk).

In order to check whether our decompositions have been successful in transforming the

original time series into interpretable terms plus independent, identically distributed (i.i.d.)

residuals, we need hypothesis-testing of the i.i.d. hypothesis. Here we use the Brock, Dechert, and

Scheinkman (BDS)(1987) test statistic which is based on the correlation dimension in chaos

theory. (This BDS statistics is also applied in Section 3 of Chapter II.)

  In Chapter IV, we give two applications of the predictive decomposition to the assessment of

weekday volatility in the exchange rates. Our first approach is based on introducing

[ ]V(t) X(t) m(t)
2= − , where [ ]X(t) Log Y(t) Y(t 1)= −  are returns and m(t)  is the conditional

mean of X(t)  given the previous values X(t r) , r 1− ≥ . An estimate of heterogeneous volatility

based on previous values V(t r) , r 1− ≥ , of V(t)  can then be obtained from the estimated sum
$ $L (t) S (t)PV PV+  of the predictive long and short term trends of V(t) . We find that the volatilities

of German Marks and Swiss Francs are close, while the Japanese Yen follows a more

independent path. For the Japanese series we compare our method to J.P.Morgan’s

RiskMetricsTM and argue that our method gives a better representation of volatility. Our second

approach to volatility is based on the logarithm of the days high to the days low, that is

W(t) Log
High

Low
= .

This measure has been shown to have some advantages over the squared deviations V(t)  as a

volatility measure. We show how the predictive long and short term trends of W(t)  can be used to

estimate conditional volatility, and again find strong similarities between German Marks and

Swiss Francs, while the Japanese Yen is more individualistic.

In the appendix we derive asymptotic approximations to the long and short term trends and

show how they are affected by sudden changes in the mean of the time series. We also show that

locally linear predictive method introduced in Chapter II-2 tend to represent the “true” trend

better than kernel method such as J.P.Morgan’s RiskMetricsTM whenever the methods are

applied to series where trends are present.
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Chapter II. Decomposition of Currency Exchange RatesChapter II. Decomposition of Currency Exchange RatesChapter II. Decomposition of Currency Exchange RatesChapter II. Decomposition of Currency Exchange Rates

Section II-1. Decomposition of Time Series in terms of Two-Step Symmetric RegressionSection II-1. Decomposition of Time Series in terms of Two-Step Symmetric RegressionSection II-1. Decomposition of Time Series in terms of Two-Step Symmetric RegressionSection II-1. Decomposition of Time Series in terms of Two-Step Symmetric Regression

SmoothersSmoothersSmoothersSmoothers

(i) Long Term Trend(i) Long Term Trend(i) Long Term Trend(i) Long Term Trend
We define L(t)  as a weighted average of means over a long time span. That is

L(t) = w (t) (k)k
k=t-M

t+M

µ∑

for appropriate weights that typically sum to one; examples of such weights are the kernel

weights

w (t)
1

C
K

k t

Mk = −





     for t - M k t + M≤ ≤ (1)

where the kernel K(u)  is a symmetric density on the interval [ ]−1, 1 , 2M-1 is the length of the

time span where w (t)k  is positive, and C K
k t

Mk t-M

t+M

=
−



=

∑ . Typically 
C

M
 is very close to one since

it can be approximated by the integral K(u)du
1

1

−∫ , which equals 1 by the density assumption.

One possibility for a long term trend that has been considered in the literature(e.g. Beveridge
and Nelson(1981), Enders(1994)) is the linear trend µ α β(t) = + t . If this is the true formula for

µ(t) , our definition of L(t)  will yield L(t) t= +α β  for t between t M−  and t M+ . This result

can be extended to all of t by using locally linear or locally polynomial weights w (t)k
* . These are

defined as follows:
Let w (t)k  be a preliminary set of nonnegative weights such as (1), and let a,b , ,b1 d⋅ ⋅⋅  be the

values of α β β, , ,1 d⋅ ⋅⋅  that minimize the local weighted sum of squares.

( )µ α β(k) k t w (t)j
j

j 1

d

k t-M

t+M
2

k− + −


















==

∑∑ . (2)

Then ~µ(s) a b (s t)j
j 1

d
j= + −

=
∑  is called the locally polynomial fit, and the locally polynomial long

term trend at time t is L(t) = (t) = a~µ . It can be shown that L(t)  can be written in the form

L(t) a w (t) (k)k
*

k t-M

t+M

= =
=
∑ µ . (3)

where w (t)k
*  are constants. In the case of a locally linear fit, where d=1,
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w (t) =
a (t)

a (t)
, with a (t) w (t) w (t)(t i)(k i)k

* k

k
k t-M

t+M k k i
i t-M

t+M

=

=∑
∑= − − . (4)

Locally polynomial smoothers of µ(t)  have many desirable properties that have been

demonstrated by Cleveland(1978), Cleveland and Devlin(1988), Fan(1993), Fan and Gijbels(1995),

Ruppert and Wand(1995), among others. The regression smoother LOWESS in S-PLUS (1993) is
a locally linear smoother adjusted for outliers (extreme values) among the { }µ(t) . LOESS, which

also is in S-PLUS,  includes locally polynomial smoothers. The locally polynomial long term
trend function L(t)  has the important polynomial reproduction property. That is, if the true

mean µ(t)  is a polynomial of degree p, then the degree d p 1= +  locally polynomial long term

trend function L(t)  equals µ(t)  for all t = 1,2, ,T⋅ ⋅ ⋅ .

Another interesting set of weights w (t)k  is given by the set of “exponential weights”

w (t) , 0 1k

t k

t k

k 1

T= < <
−

−

=
∑

λ

λ
λ .

These weights are symmetric versions, standardized to sum to one, of the weights used by

J.P.Morgan’s (1994) RiskMetricsTM, who recommends λ = 0.94. The related weights ( ) ( )1 t k− −λ λ

are from the Integrated Moving Average process ARIMA(0,1,1). See Box and Jenkins (1976,

p.105). A very simple and easily understood set of weights are the “uniform moving average
weights” which equal (2r +1)-1  for k in the interval [ ]t r , t r− + , and equal 0 elsewhere. In this

case L(t)  is the uniform moving average

L(t) (2r +1) (t)-1

k t r

t r

=
= −

+

∑ µ .

The set of weights should be chosen to balance between stability, familiarity, and
interpretability. For instance, a 91 day uniform moving average L(t)  can be interpreted as

focusing on quarterly trends. Moreover, such moving averages of exchange rates are of particular

interest because they are used in place of daily rates in many financial instruments. On the other

hand, moving averages are unstable in periods of sudden changes at the beginning and end of a

series (the boundary curse). A much more stable measure of long term trend is obtained by using
the locally linear L(t)  defined by (2), (3), and (4) with d =1 and

w (t) M (k t) , t M k t M

= 0 , otherwise 
k

2 2= − − − ≤ ≤ +

The long term trend can be used to analyze the development of a series without the
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distractions of local time changes, and it is especially useful for comparing similar time series. To
illustrate, we introduce the natural unbiased estimator of L(t) , which is

$L(t) w (t)Y(k)k
k t-TL

t+TL

=
=
∑ .

Figure 1 gives the estimated long term trends as represented by the 91 and 181 day LOWESS

SMOOTHERS for the exchange rates of Japanese Yen, German Marks, Swiss Francs, and British

Pounds in U.S. dollars for the time period Jan 5, 1992 until April 14, 1995. There are 1196 days

(including weekends) in this time period during which there were respectively 36, 34, 51, and 40

missing values (holidays) among the Japanese Yen, German Marks, Swiss Francs, and British

Pounds. The missing values are replaced by the linear interpolate between the nearest two actual

values in the series. This has very little effect on the regression decomposition since ( )$L t  is a

“smoother” which smoothes out the effect of individual points. The four exchange rates series all

have been rescaled to have initial value 100. That is, the graphs show the percentage value of a

US dollar in the four currencies when compared to the value on Jan 5, 1992. The four exchange

rate values were all recorded at the same instance, 10 p.m., GMT.

Figure 1-A : Long Term Trends : Symmetric (91 days) : JY, GM, SF, and BPFigure 1-A : Long Term Trends : Symmetric (91 days) : JY, GM, SF, and BPFigure 1-A : Long Term Trends : Symmetric (91 days) : JY, GM, SF, and BPFigure 1-A : Long Term Trends : Symmetric (91 days) : JY, GM, SF, and BP
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Figure 1-B : Long Term Trends : Symmetric (181 days) : JY, GM, SF, and BPFigure 1-B : Long Term Trends : Symmetric (181 days) : JY, GM, SF, and BPFigure 1-B : Long Term Trends : Symmetric (181 days) : JY, GM, SF, and BPFigure 1-B : Long Term Trends : Symmetric (181 days) : JY, GM, SF, and BP
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Figure 1. Long term trends of the Japanese Yen , German Marks ,Swiss Francs , and

British Pounds  for the time period Jan 5, 1992 to April 14, 1995. Figure 1-A and 1-B give the 91

and 181 day LOWESS regression smoothers, respectively.

The graphs show that Swiss Francs and German Marks have very similar long term trends

while the long term trends in Japanese Yen and British Pounds follow their own low and high

paths, respectively. The “spike” in the British Pounds shortly after day 200 corresponds to the

time when it was “cut loose” from other European currencies. Also note that starting near day 600,

the path of the Japanese Yen is very similar to that of the German Marks and Swiss Francs. The

91 and 181 day long term trends are very similar except for the British Pounds shortly after day

200 when it was “cut loose” from other European currencies. The correlations are as follows.

Long Term
Trend

(91 days)
JY GM SF BP

Long Term
Trend

(181 days)
JY GM SF BP

JY 1.00 0.11 0.52 -0.59 JY 1.00 0.09 0.53 -0.66

GM 0.11 1.00 0.85 0.52 GM 0.09 1.00 0.85 0.51

SF 0.52 0.85 1.00 0.24 SF 0.53 0.85 1.00 0.18

BP -0.59 0.52 0.24 1.00 BP -0.66 0.51 0.18 1.00

 < Table 1-1(a) >  < Table 1-1(b) >

Daily
Increments of

Long Term
Trend

(91 days)

JY GM SF BP

Daily
Increments of

Long Term
Trend

(181 days)

JY GM SF BP

JY 1.00 0.56 0.61 0.29 JY 1.00 0.53 0.59 0.26

GM 0.56 1.00 0.95 0.72 GM 0.53 1.00 0.94 0.66

SF 0.61 0.95 1.00 0.73 SF 0.59 0.94 1.00 0.66

BP 0.29 0.72 0.73 1.00 BP 0.26 0.66 0.66 1.00

 < Table 1-2(a) >  < Table 1-2(b) >

Table 1. Correlations between long term trends in the four currencies. Table 1-1(a) and Table 1-1(b)  give

respectively the correlations for LOWESS 91 day and 181 day long term trends. Table  1-2(a) and
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Table1-2(b) give respectively the correlations for the daily increments of LOWESS 91 day and 181 day

long term trends.

The correlation table gives a concise summary of the trends shown in the graphs. It also

provides one surprise: The correlation of the long term trend between JY and SF is much higher

than that between JY and GM indicating a surprisingly strong macro-economic relationship

between the Japanese and Swiss currencies. Note that the correlation of ( )dL t  is very close to one

for SF and GM.

(ii) Short Term Trend(ii) Short Term Trend(ii) Short Term Trend(ii) Short Term Trend

We define the short term trend S(t) as a weighted average over a short time span of deviations

of the long term trend from the mean. That is

[ ]S(t) v (t) (k) L(k)k
k t-TS

t+TS

= −
=
∑ µ

where the weights v (t)k  are nonzero over a short time span. S(t) depicts fluctuations which have

been smoothed out in calculating L(t)  with the large time span. The trend function S(t) focuses

on changes over short time periods such as one or two weeks and gives short term “micro”
fluctuations that are not measured by the long term “macro” trend function L(t) . In the case of

exchange rates where there are strong “day of the week” effects (currencies are traded seven days

a week, but Saturday and Sunday trades are subject to conditions different from the other days of

the weeks), the seven day uniform moving average is without the day of the week effect.
The natural unbiased estimator of S(t) is

[ ]$ $S(t) v (t) Y(t) L(t)k
k t-TS

t+TS

= −
=
∑ .

Figure 2-A : Short Term Trends : Symmetric (91 days---7 days) : GM and SFFigure 2-A : Short Term Trends : Symmetric (91 days---7 days) : GM and SFFigure 2-A : Short Term Trends : Symmetric (91 days---7 days) : GM and SFFigure 2-A : Short Term Trends : Symmetric (91 days---7 days) : GM and SF
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Figure 2-B : Short Term Trends : Symmetric (181 days---15 days) : GM and SFFigure 2-B : Short Term Trends : Symmetric (181 days---15 days) : GM and SFFigure 2-B : Short Term Trends : Symmetric (181 days---15 days) : GM and SFFigure 2-B : Short Term Trends : Symmetric (181 days---15 days) : GM and SF
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Figure 2-C : Short Term Trends : Symmetric (91 days---7 days) : JY and BPFigure 2-C : Short Term Trends : Symmetric (91 days---7 days) : JY and BPFigure 2-C : Short Term Trends : Symmetric (91 days---7 days) : JY and BPFigure 2-C : Short Term Trends : Symmetric (91 days---7 days) : JY and BP
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Figure 2-D : Short Term Trends : Symmetric (181 days---15 days) : JY and BPFigure 2-D : Short Term Trends : Symmetric (181 days---15 days) : JY and BPFigure 2-D : Short Term Trends : Symmetric (181 days---15 days) : JY and BPFigure 2-D : Short Term Trends : Symmetric (181 days---15 days) : JY and BP
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Figure 2. 2-A and 2-B give the short term trends of German Marks  and Swiss Francs  using

respectively 7 and 15 day short term trends based respectively on 91 and 181 day long term trends. 2-C

and 2-D similarly give short term trends of Japanese Yen  and British Pounds .

Figure 2 gives the estimated short term trends $S(t) for the four currencies we consider. We see

that the German Marks and Swiss Francs have very similar short term trends while the

Japanese Yen and British Pounds do not. The correlations are as follows.
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Short Term
Trend

(91 --- 7 days)
JY GM SF BP

Short Term
Trend

(181---15days)
JY GM SF BP

JY 1.00 0.41 0.43 0.10 JY 1.00 0.42 0.46 0.15

GM 0.41 1.00 0.93 0.64 GM 0.42 1.00 0.95 0.71

SF 0.43 0.93 1.00 0.63 SF 0.46 0.95 1.00 0.70

BP 0.10 0.64 0.63 1.00 BP 0.15 0.71 0.70 1.00

 < Table 2-1(a) >  < Table 2-1(b) >

Daily
Increments of
Short Term

Trend
(91 --- 7 days)

JY GM SF BP

Daily
Increments of
Short Term

Trend
(181---15days)

JY GM SF BP

JY 1.00 0.55 0.52 0.28 JY 1.00 0.41 0.41 0.11

GM 0.55 1.00 0.93 0.69 GM 0.41 1.00 0.94 0.73

SF 0.52 0.93 1.00 0.69 SF 0.41 0.94 1.00 0.70

BP 0.28 0.69 0.69 1.00 BP 0.11 0.73 0.70 1.00

 < Table 2-2(a) >  < Table 2-2(b) >

Table 2. Correlations between short term trends in the four currencies. (a) uses a 7 day

short term trend based on a 91 days long term trend while (b) uses a 15 days short term

trend based on a 181 day long term trend. Table 2-1 shows the correlations for the level of

short term trends and Table 2-2 shows the correlations for their daily increments.

The relatively small correlations of Japanese Yen to the other currencies is an indication that

it’s short term movements are more influenced by national economic developments than the other

currencies. In contrast to the long term trends, JY is now similarly related to SF and GM.

Moreover, a strong local relationship between SF and GM is evident in the correlations tables.
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(iii) The Residual Series(iii) The Residual Series(iii) The Residual Series(iii) The Residual Series
We define the residual or irregular series I(t)  as the residual of the original series Y(t)  after

subtracting the sum L(t) + S(t)  of the long and short term trends. That is

[ ]I(t) Y(t) L(t) S(t)= − + .

Our empirical residual series is

[ ]$ $ $I(t) Y(t) L(t) S(t)= − + .

This series has an interpretation as a residual of a residual series, that is a re-residual. To see

this rewrite $( )I t  as

[ ]$ $ $I(t) Y(t) L(t) S(t)= − − .

We introduce $ $R(t) Y(t) L(t)= −  as the empirical residuals after a long term fit. Then, by

definition, $S(t) is the nonparametric regression fit to $R(t) , and $ $R(t) S(t)−  is the residual of the

fit to the residual - a re-residual.

Figure 3 gives the empirical residual series of the four currencies. The same story as in

Section II-1(i) and II-1(ii) emerges: The German Marks and Swiss Francs are closely correlated

while the Japanese Yen and British Pounds show less of a relationship to the other currencies.

The British Pound still shows a spike after it was cut loose from other European currencies. The

correlations are as follows.

Residual
(91 --- 7 days) JY GM SF BP Residual

(181---15days) JY GM SF BP

JY 1.00 0.47 0.46 0.33 JY 1.00 0.50 0.48 0.38

GM 0.47 1.00 0.91 0.72 GM 0.50 1.00 0.92 0.75

SF 0.46 0.91 1.00 0.68 SF 0.48 0.92 1.00 0.69

BP 0.33 0.72 0.68 1.00 BP 0.38 0.75 0.69 1.00

 < Table 3(a) >  < Table 3(b) >

Table 3. Correlations between residuals of the four currencies. (a) uses a 7 day short term

trend based on a 91 days long term trend while (b) uses a 15 days short term trend based

on a 181 day long term trend.
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Figure 3-A : Residuals : Symmetric (91 days---7 days) : GM and SFFigure 3-A : Residuals : Symmetric (91 days---7 days) : GM and SFFigure 3-A : Residuals : Symmetric (91 days---7 days) : GM and SFFigure 3-A : Residuals : Symmetric (91 days---7 days) : GM and SF
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Figure 3-B : Residuals : Symmetric (181 days---15 days) : GM and SFFigure 3-B : Residuals : Symmetric (181 days---15 days) : GM and SFFigure 3-B : Residuals : Symmetric (181 days---15 days) : GM and SFFigure 3-B : Residuals : Symmetric (181 days---15 days) : GM and SF
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Figure 3-C : Residuals : Symmetric (91 days---7 days) : JY and BPFigure 3-C : Residuals : Symmetric (91 days---7 days) : JY and BPFigure 3-C : Residuals : Symmetric (91 days---7 days) : JY and BPFigure 3-C : Residuals : Symmetric (91 days---7 days) : JY and BP
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Figure 3-D : Residuals : Symmetric (181 days---15 days) : JY and BPFigure 3-D : Residuals : Symmetric (181 days---15 days) : JY and BPFigure 3-D : Residuals : Symmetric (181 days---15 days) : JY and BPFigure 3-D : Residuals : Symmetric (181 days---15 days) : JY and BP
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Figure 3. 3-A and 3-B give the residual series for German Marks  and Swiss Francs  using

(A) 91 and 7 days long and short term trends and (B) 181 and 15 days long and short term trends. 3-C and
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3-D similarly give residual series for the Japanese Yen  and British Pounds .

(iv) The Decompositions(iv) The Decompositions(iv) The Decompositions(iv) The Decompositions

Our theoretical and empirical decompositions of the time series Y(t) are

Y(t) L(t) S(t) I(t)= + + , and Y(t) L(t) S(t) I(t)= + +$ $ $ .

An interesting question is whether the residual series is (nearly) “pure noise”, that is whether it

consists of (nearly) independent identically distributed random variables. We will return to this

question in Section IV.

Another interesting question is whether the three series $L(t) , $S(t), and $I(t)  are nearly

orthogonal or uncorrelated. The correlation between them measure the extent to which each

series provide “orthogonal information”. For instance, we hope that the short term trend $S(t) is

nearly orthogonal to the long term trend $L(t) . Moreover, the correlation between $ $L(t) S(t)+  and
$I(t)  measure to what extent the decomposition

[ ]Y(t) Y L(t) S(t) Y I(t)− = + − +$ $ $

have been successful in splitting the variability in the series into a signal and a noise part. The

correlations are given in Table 4.

JAPANESE YEN GERMAN MARKSCorrelation for
(91,7) days trends $L(t) $S(t) $ $L(t) S(t)+ $I(t) $L(t) $S(t) $ $L(t) S(t)+ $I(t)

$L(t) 1.00 0.08 1.00 0.00 1.00 0.23 0.98 -0.02

$S(t) 0.08 1.00 0.15 -0.04 0.23 1.00 0.39 0.11

$ $L(t) S(t)+ 1.00 0.15 1.00 0.00 0.98 0.39 1.00 0.00

$I(t) 0.00 -0.04 0.00 1.00 -0.02 0.11 0.00 1.00

SWISS FRANCS BRITISH POUNDSCorrelation for
(91,7) days trends $L(t) $S(t) $ $L(t) S(t)+ $I(t) $L(t) $S(t) $ $L(t) S(t)+ $I(t)

$L(t) 1.00 0.19 0.99 -0.03 1.00 0.29 0.99 -0.06

$S(t) 0.19 1.00 0.34 0.07 0.29 1.00 0.43 -0.04

$ $L(t) S(t)+ 0.99 0.34 1.00 -0.02 0.99 0.43 1.00 -0.07

$I(t) -0.03 0.07 -0.02 1.00 -0.06 -0.04 -0.07 1.00
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JAPANESE YEN GERMAN MARKSCorrelation for
(181,15) days trends $L(t) $S(t) $ $L(t) S(t)+ $I(t) $L(t) $S(t) $ $L(t) S(t)+ $I(t)

$L(t) 1.00 0.09 0.99 0.04 1.00 0.23 0.96 0.00

$S(t) 0.09 1.00 0.22 0.11 0.23 1.00 0.49 0.13

$ $L(t) S(t)+ 0.99 0.22 1.00 0.05 0.96 0.49 1.00 0.04

$I(t) 0.04 0.11 0.05 1.00 0.00 0.13 0.04 1.00

SWISS FRANCS BRITISH POUNDSCorrelation for
(181,15) days trends $L(t) $S(t) $ $L(t) S(t)+ $I(t) $L(t) $S(t) $ $L(t) S(t)+ $I(t)

$L(t) 1.00 0.19 0.97 0.01 1.00 0.29 0.96 -0.05

$S(t) 0.19 1.00 0.44 0.13 0.29 1.00 0.53 0.04

$ $L(t) S(t)+ 0.97 0.44 1.00 0.05 0.96 0.53 1.00 -0.03

$I(t) 0.01 0.13 0.05 1.00 -0.05 0.04 -0.03 1.00

< Table 4 >

Table 4. Correlations between the terms in the decompositions of four exchange rate

series.

The correlations between $L(t)  and $S(t)  in Table 4 show that JY is decomposed better than

the other currencies, since for JY this correlation is close to zero. For the time spans considered,

GM, SF, and BP have a more complicated structure and may require different time spans to

achieve orthogonality between $L(t)  and $S(t) . On the other hand, the decompositions have

achieved near orthogonality between $ $L(t) + S(t)  and the residuals $I(t)  for all the four currencies.

Finally, in Figure 4, we compare the variability of the original time series with that of the
terms in the decomposition by giving the box plots of Y(t) - Y(t -1) , $ $L(t) - L(t -1) , $ $S(t) -S(t -1),
$ $I(t) - I(t -1) , $I(t)  ,and the residuals of vector autoregressive fit to $I(t)  for the (91,7) symmetric

decomposition. These box plots indicate the frequency distribution of daily movements of the

terms in the decomposition. They show that a very large part of the daily increments
Y(t) - Y(t -1) of ( )Y ⋅  come from the irregulars, and the daily increments of ( )L t  and ( )S t  are

very small. This means that the increment or change of ( )L ⋅  and ( )S ⋅  are not so important in the

prediction of ( )Y ⋅ , but the change of ( )I ⋅  is the main action. Thus the main part of prediction will

depend on the (possibly stationary) behavior of ( )I t .
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Figure 4-A : Box Plots of Increments of Exchange Rates : Figure 4-A : Box Plots of Increments of Exchange Rates : Figure 4-A : Box Plots of Increments of Exchange Rates : Figure 4-A : Box Plots of Increments of Exchange Rates : ( )Y(t) - Y t -1  : Scaled : Scaled : Scaled : Scaled
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Figure 4-B : Box Plots of Increments of Long Term Trends (91 days) : Figure 4-B : Box Plots of Increments of Long Term Trends (91 days) : Figure 4-B : Box Plots of Increments of Long Term Trends (91 days) : Figure 4-B : Box Plots of Increments of Long Term Trends (91 days) : ( )$ $L(t) - L t -1  : Symmetric : : Symmetric : : Symmetric : : Symmetric :
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Figure 4-C : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 4-C : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 4-C : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 4-C : Box Plots of Increments of Short Term Trends (91 days---7 days) : ( )$ $S(t) - S t -1  : : : :
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Figure 4-D : Box Plots of Irregular Term (91 days---7 days) : Figure 4-D : Box Plots of Irregular Term (91 days---7 days) : Figure 4-D : Box Plots of Irregular Term (91 days---7 days) : Figure 4-D : Box Plots of Irregular Term (91 days---7 days) : $I(t)  : Symmetric : Scaled : Symmetric : Scaled : Symmetric : Scaled : Symmetric : Scaled
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Figure 4-E : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 4-E : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 4-E : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 4-E : Box Plots of Increments of Irregular Term (91 days---7 days) : ( )$ $I(t) - I t -1  : : : :
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Figure 4. Box plots of daily changes of (A) the exchange rates Y(t) , (B) the long term trends $L(t) , (C)

the short term trends $S(t) , (D) the irregular series $I(t) , and (E) the increments of the irregular series

using 91 and 7 days long and short term trends.

Remark. Comments on the types of decompositions.Remark. Comments on the types of decompositions.Remark. Comments on the types of decompositions.Remark. Comments on the types of decompositions.

Shibata and Miura (1997) discuss differences and similarities between the decomposition

Y(t) L(t) S(t) I(t)= + +$ $ $  and the decomposition “SABL” proposed by Cleveland et al (1981) and

implemented by Becker et al (1988). Other decompositions of time series have been proposed by

Beveridge and Nelson (1981). The application of regression smoothing techniques to time series

data is treated in monographs by Müller (1988) and Györfi, Härdle, Sarda, and Vieu (1989).
The issue of how long the long time span in L(t)  and short time span in S(t) should be chosen

can often be decided by practical considerations. For instance, long time spans of one quarter or

one year are natural and short time spans of one or two weeks are reasonable choices. The time

spans could also be chosen to minimize the correlations between the terms in the decompositions.
Cleveland et al (1981) proposed using a power transformation of the original series Y(t)  to

minimize the correlation between the terms in their SABL decomposition. This could also be done

with the LAST (long and short term) decomposition in particular using the nonparametric

correlation coefficient of Doksum and Samarov (1995). However, this was not done in our

exchange rate analysis since the squared correlations from Table 4 are very low (bounded from

above by 0.09) and because the original scale (exchange rate) is easier to interpret than a power

transformation.

(v) Auto-Regressive Analysis of Residuals(v) Auto-Regressive Analysis of Residuals(v) Auto-Regressive Analysis of Residuals(v) Auto-Regressive Analysis of Residuals

We investigate the dependence of $I(t)  on its lagged values by using a multivariate

autoregressive fit program ( “ar” in S-PLUS). We find that the Akaike Information Criteria

selects an order 4 autoregressive model. To check the success of the autoregressive fit we applied

the BDS test ,which will be defined later in Section III-1 of Chapter III, to the residuals and the

results are shown in Table 17 in that later section. The results there suggest that properties of

the residuals are very much like that of an independent and identically distributed sequence of
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variables.

    The coefficient matrices below suggest an univariate autoregressive fit of order one, for Yen.

This leads to the fitted model

$ $I(t) 0.724I(t 1) (t)1= − + ε

with prediction error variance 0.200 as compared to 0.198 for the MAR(4) model fit. The BDS
statistics for this ε1(t)  will be shown in Section III-2. This suggests that a good fit to the Yen

series is the parsimonious model

Y(t) L(t) S(t) 0.724I(t 1) (t)1= + + − + ε
[ ] [ ]= − + − − + − − +0.724Y(t 1) L(t) 0.724L(t 1) S(t) 0.724S(t 1) (t)1ε .

 A similar reasoning applied to German Marks yield the model

[ ] [ ]Y(t) 0.704Y(t 1) L(t) 0.704L(t 1) S(t) 0.704S(t 1) (t)1= − + − − + − − + ε

with prediction error variance 0.313.

The model of four-variate autoregressive fit is below.

( ) ( ) ( ) ( ) ( ) ( )I C I C I C I C I e1 2 4t t 1 t 2 t 3 t 4 t3= ⋅ − + ⋅ − + ⋅ − + ⋅ − +

, where ( )
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I t
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Prediction
Error

Variance
JY GM SF BP

JY 0.198 0.130 0.143 0.117

GM 0.130 0.298 0.298 0.255

SF 0.143 0.298 0.372 0.266

BP 0.117 0.255 0.266 0.381

order 0 order 1 order 2 order 3 order 4 order 5
3636.348 7.967 2.523 5.980 0.000 3.055
order 6 order 7 order 8 order 9 order 10 order 11

AIC
(subtracted
minimum
number of

AIC) 11.842 6.607 6.256 31.930 25.875 28.330

< Table 5-1 >

Table 5-1. Prediction error variances, and AIC for the order 4 autoregressive fit to the

residuals $I(t)  of the (91,7) symmetric decomposition.

Prin. Component
1

Prin. Component
2

Prin. Component
3

Prin. Component
4

EigenValue 2.956 0.629 0.315 0.100

Contribution 73.89% 15.73% 7.87% 2.51%

Cumulative Contribution 73.89% 89.62% 97.49% 100.00%

JY 0.404 0.901 0.160 0.012

GM 0.549 -0.179 -0.319 -0.752

SF 0.539 -0.159 -0.512 0.649
Eigenvectors

BP 0.495 -0.362 0.781 0.117

< Table 5-2 >
Table 5-2. Principal components analysis for the residuals ( )ε 4 t  of the order 4 vector

autoregressive fit to the residuals $I(t)  of the (91,7) symmetric decomposition.

Thus, each exchange rate has been decomposed and the irregulars of the four currencies have

been fitted with a Vector Autoregressive model. The autoregressive model explains the relationship

between the present irregulars and the past irregulars. Next we check the mutual contemporary

relationship between the four final residuals of the vector autoregressive fitting using principal

component analysis. The results are shown in Table 5-2. We see that while all the four have a

common factor (first principal component) the JY residual is rather isolated (by the second

principal component) from the three European currencies, and among the three European

currencies the BP residual is rather distant (by the third and the fourth principal components)

from GM and SF. The residuals of SF and GM have common factors mostly except the fourth

principal component whose explanatory power is however very small (as small as 2.5%).
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Figure 5 : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 5 : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 5 : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 5 : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : $I(t)  : : : :
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Figure 5. Box plot of residuals of autoregressive fit to the irregular series of symmetric decomposition.
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Section II-2. Two-Step Decomposition of Time Series with Predictive SmoothingSection II-2. Two-Step Decomposition of Time Series with Predictive SmoothingSection II-2. Two-Step Decomposition of Time Series with Predictive SmoothingSection II-2. Two-Step Decomposition of Time Series with Predictive Smoothing

(i) Methodology of Predictive Smoothing(i) Methodology of Predictive Smoothing(i) Methodology of Predictive Smoothing(i) Methodology of Predictive Smoothing

The methods in the preceding section provide a ex-post analysis of a complete time series.

That is, it provides a description in terms of a decomposition of how the series developed over

time by using at time t both values prior and posterior to t. However, we may also want to

decompose the time series today, at time t, using all the data available up to time t. Thus we want

to measure the long and short term trends as well as the residuals at time t using measurements
up to the time t. This leads to a decomposition of the time series Y(t)  into what we call predictive

long and short term trends as well as an irregular term. They are defined as

[ ]
[ ]

L (t) w (t) (k) , S (t) v (t) (k) L (k) ,

and  I (t) Y(t) L (t) S (t)

P k
k t-TL

t

P k P
k t-TS

t

P P P

= = −

= − +
= =
∑ ∑µ µ

(5)

where w (t)k  and v (t)k  are as in Section II-1. For instance we might use

w (t) , v (t) , k 1, , tk
1
t k

1
t k

k 1

t k
2
t k

2
t k

k 1

t= = = ⋅ ⋅⋅
−

−

=

−

−

=
∑ ∑

λ

λ

λ

λ

with λ 1  close to one such as 0.94 and λ 2  closer to zero such as 0.5 or smaller. These are the

ARIMA(0,1,1) weights used by J.P.Morgan’s (1994) RiskMetricsTM except for the standardization

constant in the denominator.

The empirical versions $ $L (t) , S (t)P P , and $I (t)P  of (5) are obtained by replacing µ(k)  by Y(k)
in the formulae (5).

In the case that only lagged values Y(t - k) , k 0≥ , can be used in the modeling of the series,

uniform moving averages have serious biases over time periods with monotone trends and the

locally linear method described in Section II-1 is superior. See the Appendix for the mathematical

expression of this bias.
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Figure 6-A : Long Term Trends (Predictive and Symmetric : 91 days) : JYFigure 6-A : Long Term Trends (Predictive and Symmetric : 91 days) : JYFigure 6-A : Long Term Trends (Predictive and Symmetric : 91 days) : JYFigure 6-A : Long Term Trends (Predictive and Symmetric : 91 days) : JY
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Figure 6-B : Long Term Trends (Predictive and Symmetric : 91 days) : GMFigure 6-B : Long Term Trends (Predictive and Symmetric : 91 days) : GMFigure 6-B : Long Term Trends (Predictive and Symmetric : 91 days) : GMFigure 6-B : Long Term Trends (Predictive and Symmetric : 91 days) : GM

0 200 400 600 800 1000

90
10

0
11

0

Figure 6-A. Indexed currency exchange rate of Japanese Yen  and the symmetric  and

predictive  long term trends series.

Figure 6-B. Indexed currency exchange rate of German Marks  and the symmetric  and

predictive  long term trends series.

(ii) Long and Short Term Trends and the Residuals in Predictive Decompositions(ii) Long and Short Term Trends and the Residuals in Predictive Decompositions(ii) Long and Short Term Trends and the Residuals in Predictive Decompositions(ii) Long and Short Term Trends and the Residuals in Predictive Decompositions

Figure 6 compares the past (ex-post, symmetric) and predictive long term trends $L(t)  and
$L (t)P , based on the locally linear method (weights), for the Japanese Yen and German Marks

series. The graphs show how the predictive smoother $L (t)P  overshoots the real series when there

are sudden sustained drops in exchange rates while it undershoots in the case of sudden

sustained increases. It illustrates the perils of prediction. We also computed $L(t)  and $L (t)P

based on uniform moving average weights. This $L (t)P  (not shown) overshoots and undershoots

the “true” trend $L(t)  much more than the locally linear $L (t)P .

    We further examined the correlation of the levels and increments of ( )L tP . Table 6-1 shows

the correlation coefficients of ( )L tP  of the four currencies and Table 6-2 shows that of lag-one

(daily) increments. We see that correlation of JY and BP is very small (almost uncorrelated) and
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correlation of JY and GM is around 0.4 which is somewhat smaller than that of JY and SF. The

correlation of GM and SF is very high, as high as 0.85. These results are quite concordant with

those based on symmetric smoothing noted in Section II-1-(i).

Long Term
Trend

(91 days)
JY GM SF BP

Long Term
Trend

(181 days)
JY GM SF BP

JY 1.00 0.07 0.46 -0.46 JY 1.00 -0.05 0.31 -0.30

GM 0.07 1.00 0.87 0.64 GM -0.05 1.00 0.87 0.78

SF 0.46 0.87 1.00 0.41 SF 0.31 0.87 1.00 0.66

BP -0.46 0.64 0.41 1.00 BP -0.30 0.78 0.66 1.00

 < Table 6-1(a) >  < Table 6-1(b) >

Daily
Increments of

Long Term
Trend

(91 days)

JY GM SF BP

Daily
Increments of

Long Term
Trend

(181 days)

JY GM SF BP

JY 1.00 0.33 0.41 0.09 JY 1.00 0.39 0.43 0.13

GM 0.33 1.00 0.85 0.37 GM 0.53 1.00 0.90 0.64

SF 0.41 0.85 1.00 0.43 SF 0.59 0.94 1.00 0.49

BP 0.09 0.37 0.43 1.00 BP 0.26 0.66 0.66 1.00

 < Table 6-2(a) >  < Table 6-2(b) >

Table 6-1  Correlations of long term predictive trends for the four currencies.

Table 6-2  Correlations of lag-1 increments of long term predictive trends for the four

currencies.

Figure 7 and 8 give the predictive short term trends, residual series, and long term trends for

the four exchange rates when the long and short term trends are based on 91 and 7 day locally

linear smoothers. The long term prediction starts 91 days after the beginning (Jan 5, 1995) of the

exchange rate series while the short term and residual series start 91+7=98 days after Jan 5,

1992. All the predictive series stop on April 14, 1995, one day before the last value in the series.

The results are very similar to the symmetric decompositions of Section II-1 except the long and

short term trends in the predictive decompositions are more volatile.

We can also show that the predictive decompositions are made up of nearly orthogonal terms.

This is seen from Table 9 which shows correlation coefficients of the predictively decomposed
components. Before that, we check the correlations of levels and increments of ( )S tP  of the four

currencies, which are shown in Table 7-1 and 7-2. Again the correlations are quite similar to that

of the symmetric decompositions, but interestingly the differences of  JY’s correlations with

GM(or SF) and BP are much less. It was 0.55-0.28 in the symmetric case, but it is 0.39-0.23 in this

predictive case. This means that it is more difficult in the predictive case to distinguish between
GM(or SF) and BP than in the symmetric case. The same effects are also seen in ( )I tP . Table 8

shows correlation coefficients of ( )I tP  of the four currencies, where we see that the correlations
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are smaller (by 0.1) than those in Table 3 in the previous section. These are the effects of not

using the data posterior to the time t. The choice of the time span such as (91,7) and (181,15)

also affects the resulting magnitude of the correlations. We will see later in this section that time

span (91,7) is superior to (181,15) in terms of prediction errors.

Figure 7-A : Short Term Trends : Predictive (91 days---7 days) : GM and SFFigure 7-A : Short Term Trends : Predictive (91 days---7 days) : GM and SFFigure 7-A : Short Term Trends : Predictive (91 days---7 days) : GM and SFFigure 7-A : Short Term Trends : Predictive (91 days---7 days) : GM and SF
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Figure 7-B : Short Term Trends : Predictive (91 days---7 days) : JY and BPFigure 7-B : Short Term Trends : Predictive (91 days---7 days) : JY and BPFigure 7-B : Short Term Trends : Predictive (91 days---7 days) : JY and BPFigure 7-B : Short Term Trends : Predictive (91 days---7 days) : JY and BP
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Figure 7-C : Residuals : Predictive (91 days---7 days) : GM and SFFigure 7-C : Residuals : Predictive (91 days---7 days) : GM and SFFigure 7-C : Residuals : Predictive (91 days---7 days) : GM and SFFigure 7-C : Residuals : Predictive (91 days---7 days) : GM and SF
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Figure 7-D : Residuals : Predictive (91 days---7 days) : JY and BPFigure 7-D : Residuals : Predictive (91 days---7 days) : JY and BPFigure 7-D : Residuals : Predictive (91 days---7 days) : JY and BPFigure 7-D : Residuals : Predictive (91 days---7 days) : JY and BP
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Figure 7. 7-A gives the short term trends of German Marks  and Swiss Francs  using the 91

long term and 7 day short term predictive decompositions. 7-B similarly gives short term trends for

Japanese Yen  and British Pounds . 7-C and 7-D give the corresponding residuals.

Figure 8 : Long Term Trends : Predictive (91 days) : JY, GM, SF,and BPFigure 8 : Long Term Trends : Predictive (91 days) : JY, GM, SF,and BPFigure 8 : Long Term Trends : Predictive (91 days) : JY, GM, SF,and BPFigure 8 : Long Term Trends : Predictive (91 days) : JY, GM, SF,and BP
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Figure 8. Predictive long term trends of the Japanese Yen , German Marks , Swiss Francs

 ,and British Pounds  for the time period April 4, 1992 to April 13, 1995. The graphs are 91

day LOWESS regression smoothers.

Short Term
Trend

(91--- 7 days)
JY GM SF BP

Short Term
Trend

(181---15days)
JY GM SF BP

JY 1.00 0.41 0.43 0.11 JY 1.00 0.40 0.42 0.08

GM 0.41 1.00 0.91 0.66 GM 0.40 1.00 0.94 0.74

SF 0.43 0.91 1.00 0.60 SF 0.42 0.94 1.00 0.69

BP 0.11 0.66 0.60 1.00 BP 0.08 0.74 0.69 1.00

 < Table 7-1(a) >  < Table 7-1(b) >
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Daily
Increments of
Short Term

Trend
(91 --- 7 days)

JY GM SF BP

Daily
Increments of
Short Term

Trend
(181 --- 5days)

JY GM SF BP

JY 1.00 0.39 0.40 0.23 JY 1.00 0.34 0.32 0.22

GM 0.39 1.00 0.82 0.60 GM 0.34 1.00 0.85 0.63

SF 0.40 0.82 1.00 0.56 SF 0.32 0.85 1.00 0.59

BP 0.23 0.60 0.56 1.00 BP 0.22 0.63 0.59 1.00

 < Table 7-2(a) >  < Table 7-2(b) >

Table 7-1  Correlations of short term predictive trends for the four currencies.

Table 7-2  Correlations of lag-1 increments of short term predictive trends for the four

currencies.

Residual
(91 --- 7 days) JY GM SF BP Residual

(181---15days) JY GM SF BP

JY 1.00 0.37 0.37 0.27 JY 1.00 0.41 0.37 0.31

GM 0.37 1.00 0.80 0.61 GM 0.41 1.00 0.89 0.70

SF 0.37 0.80 1.00 0.59 SF 0.37 0.89 1.00 0.66

BP 0.27 0.61 0.59 1.00 BP 0.31 0.70 0.66 1.00

 < Table 8(a) >  < Table 8(b) >
Table 8  Correlations of residuals for the four currencies.

The following Table 9 shows that the predictive decomposition is very successful in achieving

orthogonality for JY and is also quite successful for other three European currencies except the
remaining small correlations between ( )L tP  and ( )S tP .

JAPANESE YEN GERMAN MARKSCorrelation for
(91,7) days trends $L (t)p

$S (t)p
$ $L (t) S (t)p p+ $I (t)p

$L (t)p
$S (t)p

$ $L (t) S (t)p p+ $I (t)p

$L (t)p 1.00 -0.09 0.99 -0.03 1.00 -0.26 0.96 -0.01

$S (t)p -0.09 1.00 0.05 -0.10 -0.26 1.00 0.01 -0.13

$ $L (t) S (t)p p+ 0.99 0.05 1.00 -0.04 0.96 0.01 1.00 -0.04

$I (t)p -0.03 -0.10 -0.04 1.00 -0.01 -0.13 -0.04 1.00

SWISS FRANCS BRITISH POUNDSCorrelation for
(91,7) days trends $L (t)p

$S (t)p
$ $L (t) S (t)p p+ $I (t)p

$L (t)p
$S (t)p

$ $L (t) S (t)p p+ $I (t)p

$L (t)p 1.00 -0.23 0.97 0.00 1.00 -0.32 0.97 0.00

$S (t)p -0.23 1.00 0.03 -0.11 -0.32 1.00 -0.07 -0.17

$ $L (t) S (t)p p+ 0.97 0.03 1.00 -0.03 0.97 -0.07 1.00 -0.05

$I (t)p 0.00 -0.11 -0.03 1.00 0.00 -0.17 -0.05 1.00
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JAPANESE YEN GERMAN MARKSCorrelation for
(181,15) days trends $L (t)p

$S (t)p
$ $L (t) S (t)p p+ $I (t)p

$L (t)p
$S (t)p

$ $L (t) S (t)p p+ $I (t)p

$L (t)p 1.00 0.03 0.97 -0.01 1.00 -0.36 0.90 0.00

$S (t)p 0.03 1.00 0.28 -0.20 -0.36 1.00 0.08 -0.22

$ $L (t) S (t)p p+ 0.97 0.28 1.00 -0.06 0.90 0.08 1.00 -0.10

$I (t)p -0.01 -0.20 -0.06 1.00 0.00 -0.22 -0.10 1.00

SWISS FRANCS BRITISH POUNDSCorrelation for
(181,15) days trends $L (t)p

$S (t)p
$ $L (t) S (t)p p+ $I (t)p

$L (t)p
$S (t)p

$ $L (t) S (t)p p+ $I (t)p

$L (t)p 1.00 -0.28 0.91 0.01 1.00 -0.57 0.90 0.00

$S (t)p -0.28 1.00 0.15 -0.21 -0.57 1.00 -0.15 -0.22

$ $L (t) S (t)p p+ 0.91 0.15 1.00 -0.08 0.90 -0.15 1.00 -0.11

$I (t)p 0.01 -0.21 -0.08 1.00 0.00 -0.22 -0.11 1.00

< Table 9 >
Table 9  Correlations of components in the predictive decompositions.

(iii) Autoregressive Analysis of the Predictive Irregular Series(iii) Autoregressive Analysis of the Predictive Irregular Series(iii) Autoregressive Analysis of the Predictive Irregular Series(iii) Autoregressive Analysis of the Predictive Irregular Series

Table 10-1 shows the autoregressive fit to the predictive residuals $I (t)P . The Akaike

Information Criteria applied to the four-variate residuals selects order 3. Table 10-1 suggests an

univariate order 2 autoregressive fit to the Japanese Yen exchange rate series:

Y(t) L (t) S (t) 0 I (t 1) - 0.197I (t 2) + (t)P P P P P= + + − −$ $ . $ $ $137 ε (8)

where the residual variance is 0.076 which should be compared with the variance 0.080 of $I (t)P .

This shows that the decomposition Y(t) = L (t) +S (t) + i.i.d. noiseP P
$ $  is very successful in that the

reduction in variance by going to the more complex model (8) is only 0.080-0.076=0.004.

The four variate autoregressive fitted model is:

( ) ( ) ( ) ( ) ( )I C I C I C I eP 1 P 2 P P Pt t 1 t 2 t 3 t3= ⋅ − + ⋅ − + ⋅ − +

, where ( )

( )
( )
( )
( )

I P t

I t  of JY

I t of GM

I t of SF

I t of BP

=



















, ( )

( )
( )
( )
( )

eP t

t of JY

t of GM

t of SF

t of BP

=



















ε
ε
ε
ε

, 
C1 =

− −
− −
− − −
− − −



















0149 0 061 0 008 0 046

0 024 0 010 0 055 0 007

0 034 0 036 0176 0 036

0 014 0 051 0 078 0188

. . . .

. . . .

. . . .

. . . .

,

C2 =

− −
− − − −
− − −
− − −



















0183 0 069 0 041 0 020

0 008 0110 0 056 0 014

0 000 0 075 0173 0 029

0 022 0154 0 075 0116

. . . .

. . . .

. . . .

. . . .

, and 
C3 =

− − −
− −

− −
− −



















0110 0 066 0 098 0 011

0 012 0 043 0150 0 004

0 024 0 058 0 238 0 028

0 016 0 047 0142 0 078

. . . .

. . . .

. . . .

. . . .

.
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Prediction
Error

Variance
JY GM SF BP

JY 0.073 0.028 0.033 0.026

GM 0.028 0.081 0.074 0.062

SF 0.028 0.074 0.109 0.072

BP 0.026 0.062 0.072 0.131

order 0 order 1 order 2 order 3 order 4 order 5AIC
(subtracted
minimum
number of

AIC)
241.895 175.135 53.566 0.000 16.668 19.834

< Table 10-1 >

Table 10-1. Prediction error variances, and AIC for the order 3 autoregressive fit to the

residuals $I (t)P  of the (91,7) predictive decomposition.

Prin. Component
1

Prin. Component
2

Prin. Component
3

Prin. Component
4

EigenValue 2.548 0.791 0.447 0.214

Contribution 63.70% 19.78% 11.18% 5.34%

Cumulative Contribution 63.70% 83.48% 94.66% 100.00%

JY 0.351 0.925 0.147 0.001

GM 0.562 -0.149 -0.395 -0.711

SF 0.561 -0.149 -0.411 0.703
Eigenvectors

BP 0.497 -0.317 0.808 0.010

< Table 10-2 >

Table 10-2. Principal components analysis for the residuals of the order 3 vector

autoregressive fit to the residuals $I (t)p  of the (91,7) predictive decomposition.

Remark 1.Remark 1.Remark 1.Remark 1.The (91,7) predictive decomposition uses 91 days prior to t to make the long term

prediction $L (t)P  and seven days prior to t to make the short term prediction $S (t)P . This short

term predictor can be regarded as a “local autoregressive” fit. It is a weighted linear fit using

seven lagged values. Autoregressive techniques applied to the residuals $I (t)P  are teasing out

possible overall (nonlocal) linear dependencies on lagged values. For instance, with Japanese Yen

there were some slight autoregressive dependencies of $I (t)P  on the 2 first lagged values.
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Figure 9-A : Box Plots of Increments of Long Term Trends (91 days) : Figure 9-A : Box Plots of Increments of Long Term Trends (91 days) : Figure 9-A : Box Plots of Increments of Long Term Trends (91 days) : Figure 9-A : Box Plots of Increments of Long Term Trends (91 days) : ( )$ $L (t) - L t -1P P  : : : :

Predictive : ScaledPredictive : ScaledPredictive : ScaledPredictive : Scaled
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4
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Figure 9-B : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 9-B : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 9-B : Box Plots of Increments of Short Term Trends (91 days---7 days) : Figure 9-B : Box Plots of Increments of Short Term Trends (91 days---7 days) : ( )$ $S (t) - S t -1P P  : : : :
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Figure 9-C : Box Plots of Irregular Term (91 days---7 days) : Figure 9-C : Box Plots of Irregular Term (91 days---7 days) : Figure 9-C : Box Plots of Irregular Term (91 days---7 days) : Figure 9-C : Box Plots of Irregular Term (91 days---7 days) : $I (t)P  : Predictive : Scaled : Predictive : Scaled : Predictive : Scaled : Predictive : Scaled
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Figure 9-D : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 9-D : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 9-D : Box Plots of Increments of Irregular Term (91 days---7 days) : Figure 9-D : Box Plots of Increments of Irregular Term (91 days---7 days) : ( )$ $I (t) - I t -1P P  : : : :
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Figure 9-E : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 9-E : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 9-E : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : Figure 9-E : Box Plots of Residuals of MAR fit to Irregular Term (91 days---7 days) : $I (t)P  : : : :
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Figure 9. Box plots of (A) daily increments of the long term trends $L (t)P , (B) the increments of the short

term trends $S (t)P , (C) the irregular series $I(t) , (D) the increments of the irregular series, and (E) the

autoregressive residuals using 91 and 7 days long and short term trends.

Next we consider the (181,15) predictive decomposition where L (t)P  depends on 181 lagged

values and S (t)P  depends on 15 lagged values. In this case we find a different result from the

(91,7) decomposition. The multivariate autoregressive analysis shown in Table 11-1 yields an

order 7 (Akaike) model. The fitted model is below.

( ) ( ) ( ) ( ) ( )I C I C I C I eP 1 P 2 P 7 P Pt t 1 t 2 t 7 t= ⋅ − + ⋅ − + + ⋅ − +L

, where ( )

( )
( )
( )
( )

I P t

I t  of JY

I t of GM

I t of SF

I t of BP

=



















, ( )

( )
( )
( )
( )

eP t

t of JY

t of GM

t of SF

t of BP

=



















ε
ε
ε
ε

, 
C1 =

− −
−
− −
− − −



















0573 0 020 0 037 0 004

0 060 0527 0 027 0 016

0 051 0141 0 491 0 019

0 027 0 024 0 058 0598

. . . .

. . . .

. . . .

. . . .

,

C2 =

−
− −
− −

− −



















0100 0 008 0 033 0 025

0 016 0 050 0 008 0 064

0 018 0 061 0 075 0 070

0 049 0 010 0 012 0 069

. . . .

. . . .

. . . .

. . . .

, 
C3 =

− − −
− −
− −
− −



















0 025 0112 0 081 0 056

0 043 0 099 0129 0 061

0 012 0 093 0109 0 043

0 063 0 442 0 328 0195

. . . .

. . . .

. . . .

. . . .

,
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C4 =

− −
− −

− −
− −



















0 052 0 057 0 074 0 004

0 047 0 205 0176 0 034

0 022 0 247 0 205 0 008

0 010 0 321 0 237 0 001

. . . .

. . . .

. . . .

. . . .

, 
C5 =

− −
− −

−
− −



















0 079 0 025 0 007 0 008

0 007 0 058 0 028 0 016

0 018 0 093 0177 0 035

0 000 0 068 0 084 0 004

. . . .

. . . .

. . . .

. . . .

,

C6 =

− −
− −
− −

− −



















0 012 0 015 0 033 0 074

0 055 0 039 0 049 0 002

0 015 0 018 0 062 0 012

0 092 0 020 0 005 0 041

. . . .

. . . .

. . . .

. . . .

, and 
C7 =

− −
− −

− − −
− − −



















0146 0 013 0 044 0 024

0 013 0169 0 061 0 005

0 049 0106 0 015 0 014

0 006 0 077 0 050 0 086

. . . .

. . . .

. . . .

. . . .

.

Prediction
Error

Variance
JY GM SF BP

JY 0.175 0.102 0.104 0.091

GM 0.102 0.257 0.245 0.216

SF 0.104 0.245 0.307 0.224

BP 0.091 0.216 0.224 0.375

order 0 order 1 order 2 order 3 order 4 order 5
1689.859 223.242 192.898 148.232 121.648 65.295
order 6 order 7 order 8 order 9 order 10 order 11
46.055 0.000 15.197 24.033 30.451 28.094

order 12 order 13 order 14 order 15 order 16 order 17
43.807 48.014 59.391 65.189 77.799 87.109

order 18 order 19 order 20 order 21 order 22 order 23

AIC
(subtracted
minimum
number of

AIC)

103.639 119.188 134.328 147.678 169.488 187.582

< Table 11-1 >

Table 11-1. Prediction error variances, and AIC for the order 7 autoregressive fit to the

residuals  $I (t)P  of the (181,15) predictive decomposition.

Prin. Component
1

Prin. Component
2

Prin. Component
3

Prin. Component
4

EigenValue 2.806 0.698 0.372 0.125

Contribution 70.14% 17.44% 9.29% 3.13%

Cumulative Contribution 70.14% 87.58% 96.87% 100.00%

JY 0.382 0.917 0.111 0.036

GM 0.557 -0.161 -0.343 -0.739

SF 0.546 -0.198 -0.463 0.669
Eigenvectors

BP 0.496 -0.307 0.810 0.065

< Table 11-2 >

Table 11-2. Principal components analysis for the residuals of the order 7 vector

autoregressive fit to the residuals $I (t)p  of the (181,15) predictive decomposition.

Remark 2.Remark 2.Remark 2.Remark 2. For a discussion of conditions needed for the existence of nonparametric time series

models of the type considered in this paper, see Masry and Tjóstheim (1995).

Remark 3.Remark 3.Remark 3.Remark 3. Since weekend trades are fewer than weekday trades and subject to different rules
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than weekday trades, we investigated a possible weekend effect by redoing the analysis using

only weekdays for the (91,7) decomposition. The results did change a little. The Akaike

Information Criteria selects an order 6 multivariate autoregressive fit and the lag one through

three coefficients explains most of the variability with one interesting exception: The lag 6

(weekly) coefficient for British Pounds is large for German Marks and Swiss Francs. The

multivariate lag one coefficient for Yen is 0.149 when weekends are included and 0.125 when

weekends are excluded. The fitted model is:

( ) ( ) ( ) ( ) ( )I C I C I C I eP 1 P 2 P 7 P Pt t 1 t 2 t 7 t= ⋅ − + ⋅ − + + ⋅ − +L

, where ( )

( )
( )
( )
( )

I P t

I t  of JY

I t of GM

I t of SF

I t of BP

=



















, ( )

( )
( )
( )
( )

eP t

t of JY

t of GM

t of SF

t of BP

=



















ε
ε
ε
ε

, 
C1 =

− − −
− −
− −
− −



















0125 0 019 0 016 0 057

0 038 0 092 0 029 0 035

0 040 0 002 0163 0 099

0 032 0 006 0101 0149

. . . .

. . . .

. . . .

. . . .

,

C2

0198 0 092 0 097 0 012

0 000 0149 0 052 0 017

0 001 0 071 0190 0 003

0 022 0 021 0 023 0189

=

− −
− − −
− − −
− − −



















. . . .

. . . .

. . . .

. . . .

, 
C3

0134 0 088 0102 0 038

0 001 0164 0 063 0 011

0 011 0 042 0 254 0 023

0 019 0 018 0 091 0105

=

− − −
− − − −

− −
− − −



















. . . .

. . . .

. . . .

. . . .

,

C4

0 075 0106 0115 0 028

0 022 0 026 0 030 0 025

0 003 0 019 0 005 0 064

0 032 0 022 0 031 0 097

=

− − −
− − −
− − −

−



















. . . .

. . . .

. . . .

. . . .

, 
C5

0 088 0146 0145 0 005

0 050 0107 0 027 0 046

0 036 0 024 0141 0 034

0 038 0 019 0 052 0 045

=

− − −
− − −

− −
− − −



















. . . .

. . . .

. . . .

. . . .

,and

C6

0 090 0 003 0 058 0 002

0 005 0 021 0 075 0 086

0 013 0 042 0 031 0 072

0 001 0 288 0 294 0156

=

− − −
− −

− − −
− − −



















. . . .

. . . .

. . . .

. . . .

.

Prediction
Error

Variance
JY GM SF BP

JY 0.000 0.000 0.000 0.000

GM 0.000 0.000 0.000 0.000

SF 0.000 0.000 0.000 0.000

BP 0.000 0.000 0.000 0.000

order 0 order 1 order 2 order 3 order 4 order 5
231.285 172.404 90.077 43.439 49.600 22.589
order 6 order 7 order 8 order 9 order 10 order 11
0.000 4.475 2.979 17.940 32.831 47.102

order 12 order 13 order 14 order 15 order 16 order 17
69.445 81.815 90.372 90.526 101.688 126.703

order 18 order 19 order 20 order 21 order 22

AIC
(subtracted
minimum
number of

AIC)

137.719 136.961 141.391 156.097 178.150

< Table 12>

Table 12. Prediction error variances, and AIC for the order 7 autoregressive fit to the

residuals  $I (t)P  of the (181,15) predictive decomposition.
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(iv) Prediction(iv) Prediction(iv) Prediction(iv) Prediction
We now consider the problem of predicting ( )Y t 1+  from past values ( )Y k  ,  k t≤ . Suppose

we use ( )$L tP  initially to predict ( )Y t 1+ . The unknown prediction error is then ( ) ( )Y t +1 - L tP
$ .

This error can be assessed by using a weighted average of known lagged prediction errors, that is

by

[ ]S (t) v (t) Y(k +1) L (k)P
*

k P
k t-TS

t-1

= −
=
∑ $ .

Now ( ) ( )$L t S tP P
*+  is the revised predicted value of ( )Y t 1+ . If our decomposition has been

successful, then the residual time series

( ) ( ) ( ) ( )[ ]$ $R t +1 Y t 1 L t S tP P P
*= + − +

is nearly stationary and can be further decomposed using autoregressive techniques. That is, we

can express ( )$R t +1P  as

( ) ( )$ $ $R t +1 R t - j errorP P
j k

0

= +
=−
∑Cj .

, where ( )

( )
( )
( )
( )

$

$

$

$

$

R P t

R t of JY

R t of GM

R t of SF

R t of BP

P

P

P

P

=





















, $

. . . .

. . . .

. . . .

. . . .

C1 =

− −
−
− −
− −



















0 469 0102 0 013 0 013

0 041 0 237 0 097 0 020

0 049 0 008 0 406 0 040

0 051 0 216 0 045 0506

,

$

. . . .

. . . .

. . . .

. . . .

C2

0188 0 064 0 004 0 009

0 014 0 023 0123 0 032

0 019 0 066 0 208 0 006

0 052 0 029 0 016 0 030

=

− −
− −
− −
− − −



















,and $

. . . .

. . . .

. . . .

. . . .

C3

0 084 0117 0 080 0 040

0 052 0 087 0141 0 042

0 027 0181 0 212 0 029

0 023 0 241 0 220 0131

=

− − −
− −
− −
− −



















.

The estimated coefficients { }$Cj  of the fit are based on ( ){ }$ ; , , ,R tP t = 99 100 1196L . This yields

the final prediction

( ) ( ) ( ) ( )$ $ $ $Y 1197 L 1196 S 1196 R 1196 - jP P
*

P
j k

0

= + +
=−
∑Cj

for ( )Y 1197 . Table 13 gives the covariance matrix of the error term,

( ) ( ) ( ) ( )Y t +1 L t S t R t - jP P
*

P
j k

0

− + +










=−
∑$ $ $Cj , and variances of predicted values of ( )Y t 1+ , that is,
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( ) ( ) ( )$ $ $L t S t R t - jP P
*

P
j k

0

+ +
=−
∑Cj .

Variance JY GM SF BP Variance JY GM SF BP
JY 0.263 0.160 0.177 0.133 JY 82.432 3.718 29.824 -37.319

GM 0.160 0.412 0.397 0.334 GM 3.718 34.491 35.979 32.953

SF 0.177 0.397 0.509 0.335 SF 29.824 35.979 50.324 25.655

BP 0.133 0.334 0.335 0.538 BP -37.319 32.953 25.655 77.426

                 < Table 13-1 >                                  < Table 13-2 >

Table 13. Variance-covariances Matrices of (1) ( ) ( ) ( ) ( )Y t +1 L t S t R t - jP P
*

P
j k

0

− + +










=−
∑$ $ $Cj

and (2) ( ) ( ) ( )$ $ $L t S t R t - jP P
*

P
j k

0

+ +
=−
∑Cj .

Note from the coefficient matrices that for Japanese Yen all the coefficients are small except for

the lag1 and 2 Japanese Yen exchange rate coefficients. This suggests a very parsimonious order

2 univariate autoregressive model for Japanese Yen ( )t = 99 100 1196, , ,L ,

( ) ( ) ( )$ . $ . $R t +1 R t R t -1 errorP P P= − +0 425 0189

with error term mean -0.0003 and variance 0.271. This compares with an error term mean -

0.0005 and variance 0.263 for the order 3 multivariate autoregressive fit. The prediction at time

point 1196 based on the univariate AR(2) decomposition of ( )$R t +1P  for Japanese Yen is thus

( ) ( ) ( ) ( ) ( )$ $ . $ . $Y 1197 L 1196 S 1196 R 1196 R 1195P P
*

P P= + + −0 425 0189 .

We also computed the prediction for time points prior to 1197 starting with t=108 and an

autoregressive fit to ( )$R tP  based on the 9 values prior to 108. Next we predicted ( )Y 109  using 10

values prior to 109 for the autoregressive fit, and so on up to t=1197. The resulting error means

and variances are given in Table 14-1. Note that the $Cj  coefficients in the autoregressive fits are

recomputed each time using the expanding windows 99,100, , tL  and thus depend on t. They are

too numerous to be given here.

JY GM SF BP Variance JY GM SF BP
Mean -0.0047 -0.0022 0.0074 -0.0042 JY 0.288 0.169 0.194 0.145

GM 0.169 0.453 0.436 0.360

SF 0.194 0.436 0.564 0.359

BP 0.145 0.360 0.359 0.585

< Table 14-1 >

Table 14-1. Means and covariance matrix of error term using expanding windows to
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compute the coefficients $Cj,t  in the multivariate autoregressive fit.

We also used fifty day windows to compute the coefficients, $Cj,t . That is, to produce our

predictor of ( )Y t +1 , we used the autoregressive fit based on the fifty days prior to t+1. The

resulting predictor

( ) ( ) ( ) ( )$ $ $ $Y t +1 L t S t R t - jP P
*

P
j k

0

= + +
=−
∑Cj,t

for Japanese Yen has error mean 0.0013 and variance 0.324. The error means and variances of

the predictor based on the fifty day windows for the four currencies are given in Table 14-2.

JY GM SF BP Variance JY GM SF BP
Mean 0.0013 0.0007 0.0077 0.0023 JY 0.324 0.181 0.195 0.154

GM 0.181 0.488 0.482 0.387

SF 0.195 0.482 0.622 0.402

BP 0.154 0.387 0.402 0.648

< Table 14-2 >

Table 14-2. Means and covariance matrix of error term using fifty day windows to compute

the coefficients $Cj,t  in the multivariate autoregressive fit.
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Chapter II-3. Implications for Risk MeasurementChapter II-3. Implications for Risk MeasurementChapter II-3. Implications for Risk MeasurementChapter II-3. Implications for Risk Measurement

Based on the decompositions done in the previous sections, we briefly describe a few possible

applications to risk measurement. Recall that the decomposed components have very small

correlations. We utilize these properties within a series and also their relations with decomposed

components of other series.

The basic idea for the applications is based on the interpretation that long and short term

trends represent macro and micro aspects of the time-series movements respectively, that the

irregular part represents daily stochastics, and that the decomposition decomposes the variance

of the whole time series movements into nearly orthogonal parts. This interpretation for three

components, i.e. three levels of uncertainties, is still heuristic and depends on the time-span used

in the smoothing procedure. In order to confirm it we need to do a further study to relate the

components with macro- and micro-economic indices of the countries. We have not done this yet.

So the terms, macro, micro and daily moves used in the following suggestions for applications are

based on our heuristic interpretations.

Table 15-(a) and 15-(b) shows the matrix of correlation coefficients of daily increment of the

decomposed time-series components, ( )L t  and ( )S t , and the final AR-residuals, for the four

currencies. They are shown for both of symmetric and predictive smoothing cases, respectively.

dL(t)

JY

dL(t)

GM

dL(t)

SF

dL(t)

BP

dS(t)

JY

dS(t)

GM

dS(t)

SF

dS(t)

BP

ARres

JY

ARres

GM

ARres

SF

ARres

BP

dL(t) :JY 1.00 0.56 0.61 0.29 0.10 0.00 0.01 0.00 -0.02 0.01 0.01 -0.01

dL(t) :GM 0.56 1.00 0.95 0.72 0.00 0.05 0.06 0.09 0.02 -0.02 -0.02 -0.06

dL(t): SF 0.61 0.95 1.00 0.73 0.01 0.06 0.08 0.10 0.01 0.00 0.00 -0.05

dL(t): BP 0.29 0.72 0.73 1.00 -0.03 0.04 0.05 0.11 0.00 -0.02 -0.01 -0.05

dS(t): JY 0.10 0.00 0.01 -0.03 1.00 0.54 0.51 0.27 0.06 0.03 0.04 0.01

dS(t) :GM 0.00 0.05 0.06 0.04 0.54 1.00 0.93 0.68 0.02 0.03 0.04 0.02

dS(t): SF 0.01 0.06 0.08 0.05 0.51 0.93 1.00 0.69 0.03 0.02 0.03 0.01

dS(t): BP 0.00 0.09 0.10 0.11 0.27 0.68 0.69 1.00 0.04 0.00 -0.01 0.05

ARres:JY -0.02 0.02 0.01 0.00 0.06 0.02 0.03 0.04 1.00 0.54 0.53 0.42

ARres:GM 0.01 -0.02 0.00 -0.02 0.03 0.03 0.02 0.00 0.54 1.00 0.90 0.76

ARres:SF 0.01 -0.02 0.00 -0.01 0.04 0.04 0.03 -0.01 0.53 0.90 1.00 0.71

ARres:BP -0.01 -0.06 -0.05 -0.05 0.01 0.02 0.01 0.05 0.42 0.76 0.71 1.00

Table 15-(a). Correlations between ( )dL t , ( )dS t  and AR-residuals of the Symmetric

decomposition (91,7)
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dLp(t)

JY

dLp(t)

GM

dLp(t)

SF

dLp(t)

BP

dSp(t)

JY

dSp(t)

GM

dSp(t)

SF

dSp(t)

BP

ARres

JY

ARres

GM

ARres

SF

ARres

BP

dLp(t) :JY 1.00 0.33 0.41 0.09 -0.12 0.00 -0.03 0.03 0.00 0.02 0.06 0.03

dLp(t) :GM 0.33 1.00 0.85 0.37 -0.04 -0.10 -0.05 -0.04 0.00 -0.05 0.01 -0.01

dLp(t): SF 0.41 0.85 1.00 0.43 -0.04 -0.05 -0.09 -0.02 -0.02 -0.04 -0.02 -0.01

dLp(t): BP 0.09 0.37 0.43 1.00 0.03 0.01 -0.01 -0.21 -0.01 0.02 -0.01 -0.06

dSp(t): JY -0.12 -0.04 -0.04 0.03 1.00 0.39 0.40 0.23 0.31 0.30 0.28 0.21

dSp(t): GM 0.00 -0.10 -0.05 0.01 0.39 1.00 0.82 0.60 0.25 0.45 0.47 0.39

dSp(t): SF -0.03 -0.05 -0.09 -0.01 0.40 0.82 1.00 0.56 0.22 0.44 0.45 0.33

dSp(t): BP 0.03 -0.04 -0.02 -0.21 0.23 0.60 0.56 1.00 0.19 0.36 0.37 0.36

ARres:JY 0.00 0.00 -0.02 -0.01 0.31 0.25 0.22 0.19 1.00 0.37 0.37 0.27

ARres:GM 0.02 -0.05 -0.04 0.02 0.30 0.45 0.44 0.36 0.37 1.00 0.79 0.60

ARres:SF 0.06 0.01 -0.02 -0.01 0.28 0.47 0.45 0.37 0.37 0.79 1.00 0.60

ARres:BP 0.03 -0.01 -0.01 -0.06 0.21 0.39 0.33 0.36 0.27 0.60 0.60 1.00

Table 15-(b). Correlations between ( )dL tP , ( )dS tP , and AR-residuals of the Predictive

decomposition (91,7)

From the Box-Plots for daily increments of ( )Y t , ( )L t , ( )S t , and ( )I t , and for ( )I t  itself and

the final residuals, (i.e., Figure 4), we see that the relative magnitude of the increments of ( )L t

and ( )S t  are small compared to that of ( )I t  in the symmetric smoothing case, but that they are

not so small, especially ( )S t  is not small, in the predictive smoothing case. To be precise, for JY

during our data period, ( )dL t , ( )dS t  , and AR-residual of ( )I t  take values mostly between -0.10

and 0.05, -0.12 and 0.12, -0.5 and 0.5, respectively in our symmetric (91-7) decomposition. They

are mostly between -0.19 and 0.09, -0.39 and 0.41, -0.19 and 0.2, respectively in our predictive

(91-7) decomposition. (These numbers are based on rescaled unit used for Figure 4, 5, and 9). For

other currencies see Table 16-(a) and 16-(b). where 10% and 90% percentiles of ( )dL t , ( )dS t , and

AR-residual for each currency are shown. These figures are important because these relative-

magnitude counts on average as relative contributions for the whole increment of ( )Y t  that is

“Risk”.

Looking at time series data retrospectively (with symmetric smoothing), we see how it

behaved as results of market tradings, and looking at the uncertainties at each time-points (with

predictive smoothing), we simulate what the practitioners have been facing at each time-point.

The applications of our decompositions would utilize these two viewpoints.
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( )dL t  JY ( )dL t  GM ( )dL t  SF ( )dL t  BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.1005 0.0495 -0.1216 0.0982 -0.1410 0.1116 -0.0885 0.1197

( )dS t  JY ( )dS t  GM ( )dS t  SF ( )dS t  BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.1211 0.1179 -0.1733 0.2061 -0.1978 0.2231 -0.2353 0.1986

AR-residuals : JY AR-residuals : GM AR-residuals : SF AR-residuals : BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.4954 0.4481 -0.6578 0.6294 -0.6991 0.6917 -0.7181 0.6684

Table 16-(a). 10% and 90% percentiles of ( )dL t , ( )dS t , and AR-residuals of four

currencies based on the Symmetric decomposition (91,7)

( )dL tP  JY ( )dL tP  GM ( )dL tP  SF ( )dL tP  BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.1864 0.0891 -0.1843 0.1713 -0.2229 0.2044 -0.1683 0.1954

( )dS tP  JY ( )dS tP  GM ( )dS tP  SF ( )dS tP  BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.3862 0.4147 -0.5306 0.5542 -0.6062 0.6040 -0.6060 0.5912

AR-residuals : JY AR-residuals : GM AR-residuals : SF AR-residuals : BP

10% 90% 10% 90% 10% 90% 10% 90%

-0.1935 0.2017 -0.2380 0.2666 -0.2816 0.2959 -0.2943 0.2878

Table 16-(b). 10% and 90% percentiles of ( )dL tP , ( )dS tP , and AR-residuals of four

currencies based on the Predictive decomposition (91,7)

(i)  Behaviors of the four currencies against US dollar in three levels(i)  Behaviors of the four currencies against US dollar in three levels(i)  Behaviors of the four currencies against US dollar in three levels(i)  Behaviors of the four currencies against US dollar in three levels

Our currency exchange rates data represent the relative weakness of each currency against

US dollars.

The correlation coefficients of ( )dL t (increment of ( )L t , ( ) ( )L t 1 L t+ − ) and ( )dS t

(= ( ) ( )S t 1 S t+ − ) of Japanese Yen with those of GM are 0.56 and 0.54 in symmetric smoothing and

they are 0.33 and 0.39 in predictive smoothing. These numbers are about the same for SF but

they are a lot smaller for BP. These numbers decrease in the predictive smoothing case. Note

that ( )dL t  of JY and BP are uncorrelated in the predictive smoothing case though it is correlated

a little (0.29) in symmetric smoothing. More detailed correlations for final AR-residuals have

been provided in the previous sections (II-1(v) and II-2(iii)) with principal component analysis.

It is possible under our decompositions to relate the component-wise correlations to
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correlation of the whole ( )dY t  for any two currencies using Table 15-(a) and 15-(b). We do not

explicitly write it down here since it is straight forward.

The gaps in the numbers between the two smoothings reflect the lack of trading information

in the predictive smoothing.

A more detailed study will require the analysis of the relationship with other data including

macro- and micro-economic indices. We leave it for later research.

  

(ii)  Calculating VaR (Value at Risk)(ii)  Calculating VaR (Value at Risk)(ii)  Calculating VaR (Value at Risk)(ii)  Calculating VaR (Value at Risk)

Assuming that the long term trend does not have any sudden changes, it should be possible to

reduce the value of a standard deviation of ( )dY t . Note that ( ) ( ) ( ) ( )dY t dL t dS t dI tP P P= + +  and

our idea is the ( )dL tP  may be almost a predictable constant under the assumption.

At a time point t, our prediction ( )$Y t +1  of ( )Y t 1+  is

( )$Y t 1+ = ( )L tP + ( ) ( ){ }L t L t -1P P+ + ( )S tP +(time-dependent autoregressive form of ( )I tP ).

Then, under our assumption, ( )dY t  is decomposed as follows:

( ) ( ) ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ) ( ) ( ) ( )

dY t = Y t +1 - Y t

= Y t +1 Y t +1 Y t +1 Y t

= dL t dS t a 1 I t b I t 1P P t P t P

− + −

+ + − + − +

$ $

L

.

Regarding ( )dL tP  as almost a constant, the variance of ( )dY t  is almost that of sum of ( )dS tP

and I P  terms. (See Figure 10)

Following this intuition, we tried the measure VaR. Our estimate of 1% percentile, or Value

at Risk, will be almost

( ) ( ){ }$Y t 1 Y t 2.33+ − − σ  (σ  stands for standard deviation of [ ( )dS tP + I P  terms]).

The assumed steady movements of long term trend of currency exchange rates will be

realistic if the macro-economic and political relations of the two countries are steady. When

steady, we do not need to take the variabilities caused by the unsteady relations.

In order to see how our VaR works, we calculated our VaR for 201 days in a row, and

compared with two other standard VaR based on equally weighted sample variance and

J.P.Morgan’s exponentially weighted sample variance.
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Our VaR was wild in a sense that the actual ( )dY t  went below our VaR, 22 times within 201

days while this happened 3 times for J.P.Morgan’s.

Our intuitive idea needs to be more polished so that this excess frequency be more compatible

with 1% chance. Our effort is to have a small and efficient $σ  by squeezing out the practical

uncertainties for VaR. Our $σ  is smaller than other two in most of the case. This is what we

thought to happen.

Figure 10-A : Figure 10-A : Figure 10-A : Figure 10-A : ( )dL tP  : JY : JY : JY : JY

0 50 100 150 200

0.
0

0.
01

5

Figure 10-B : Figure 10-B : Figure 10-B : Figure 10-B : ( )dS tP  : JY : JY : JY : JY
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0.
06

0.
14

Figure 10-C : Figure 10-C : Figure 10-C : Figure 10-C : ( ) ( ) ( )a 1 I t b I t 1t P t P− + − +L  : JY : JY : JY : JY

0 50 100 150 200

0.
01
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06

Figure 10. 10-A and 10-B give daily increments of 91 days long term trends and 91 and 7 days shot term

trends for Japanese Yen, respectively. 10-C gives I P  term.
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Figure 11-A : VaR : Equally Weighted : Figure 11-A : VaR : Equally Weighted : Figure 11-A : VaR : Equally Weighted : Figure 11-A : VaR : Equally Weighted : 
( )

( )Log
Y t +1

Y t
 : JY : JY : JY : JY
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Figure 11-B : VaR : Exponentially Weighted Figure 11-B : VaR : Exponentially Weighted Figure 11-B : VaR : Exponentially Weighted Figure 11-B : VaR : Exponentially Weighted ( )λ = 0 94.  :  :  :  : 
( )
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Y t +1
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Figure 11-C : VaR : Exponentially Weighted Figure 11-C : VaR : Exponentially Weighted Figure 11-C : VaR : Exponentially Weighted Figure 11-C : VaR : Exponentially Weighted ( )λ = 0 94.  :  :  :  : ( ) ( )$Y t 1 Y t+ −  : JY : JY : JY : JY
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-1
.0

0.
5

Figure 11. Plots of actual daily increments of ( )Y t   and VaR . Figure 11-A and B are based

on the differences of logarithm of ( )Y t  using equally weights and exponentially weights, respectively.

Figure 11-C is based on the differences of predicted value of tomorrow and today’s value, that is ,

( ) ( )$Y t 1 Y t+ −  using exponentially weights.
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Figure 12 : Comparison of VaR : JYFigure 12 : Comparison of VaR : JYFigure 12 : Comparison of VaR : JYFigure 12 : Comparison of VaR : JY
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Figure 12. This figure gives the comparison of VaR which are based on differences of logarithm with

equally weights , based on differences of logarithm with exponentially weights , and based

on ( ) ( )$Y t 1 Y t+ −  with exponentially weights , respectively.

(iii) Back Testing(iii) Back Testing(iii) Back Testing(iii) Back Testing

Back-Testing of VaR measurement system compares the time series values of VaR calculated

by the system under examination, with the time series values of realized values of the portfolio at

the time. They count how many times the realized values went over the estimated 1% percentile,

i.e., VaR.

Our two-step smoothing technique provides the decomposition of the variability from two

viewpoints. So it will be interesting to see and compare the time series behavior of VaR with our

decomposed ( )L t , ( )S t , and ( )I t . And when the realized value of a portfolio goes over VaR at a

certain time, we may check which one of the three components is most responsible in a

retrospective way (with symmetric decompositions), and we may also check what was known to

the practitioners at the time in the predictive way.

  

The same remarks apply to the measurement of volatility in evaluating the increments of

prices of derivatives. For these problems, it will also be interesting to compare the volatilities

obtained from our predictive smoothings and the implied volatilities provided among the traders

in the markets

We leave these interesting problems for later research.
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Chapter III. Testing and measuring dependence within and between time seriesChapter III. Testing and measuring dependence within and between time seriesChapter III. Testing and measuring dependence within and between time seriesChapter III. Testing and measuring dependence within and between time series

III-1. The BDS statisticIII-1. The BDS statisticIII-1. The BDS statisticIII-1. The BDS statistic

The graphs of the residual series in Figure 3, 7-C, and 7-D indicate a dependence of $I(t)  on

its own lagged values. One way to measure such dependence in a general time series X(t)  is by

the BDS (Brock, Dechert and Scheinkman (1987)) correlation dimension statistic

( ) ( ) ( )C
2

T T 1
I X ,Xm,T

m m
t
m

s
m

t s

δ δ=
− <

∑

where ( ) ( )X X(t), , X(t m 1) , T t (m 1) , and I X , Xt
m

m t
m

s
m= ⋅⋅⋅ + − = + − δ  is the indicator function of

the event X Xt
m

s
m− < δ . Here  is the supremum norm. An estimate of the standard

deviation of C ( )m,T δ  is

( ) ( )σ εm,T
2

T
m

T
m j 2j

j 1

m 1
2 2m 2

T
2m 24 K 2 K C m 1 C m K C= + + − −









−

=

−
−∑
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=

− −

+

+



















< <
∑  and  ( )C C1,T= δ .

It is known (Brock and Dechert(1988), Brock, Hsieh, and LeBaron (1991)) that under the
null hypothesis of independent identically distributed X(t) ,

( )
BDS

T C ( ) C ( )

( )

m,T 1,T
m

m,T

=
−$ $

$

δ δ

σ δ
(6)

has asymptotically as T → ∞  (and approximately for T 500≥ ) a standard normal distribution.

In this paper we will take $ $δ σ= k , where $σ  is the sample standard deviation of the series

being analyzed, and k  = 0.50, 0.75, 1.00, 1.25, and 1.50.

The BDS statistic is an “omnibus” statistic in the sense that it has good power properties

against a variety of alternatives. It is not designed with any specific parametric alternative in

mind. See Brock, Hsieh, and LeBaron (1991). The correlation dimension has its root in chaos

theory (see Grassberger and Procaccia(1983)).

When we apply the BDS statistic to the residuals $I(t)  of our symmetric exchange rate

decompositions we find values much larger than the α -critical value for the significance level
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α =0.001. For $I(t)  based on 91 and 7 day trends, the values of the standardized BDS statistic

(6) with m=2, 3, 4 , 5, and k =1 are listed in Table 17. From Table 17, a hypothesis of i.i.d. is

rejected. (These values are all between -1.96 and 1.96. Note that the upper 2.5% point of the

standard normal distribution is 1.96.)

JY GM SF BP
11.230 7.925 9.139 10.900

m=2 6.501 7.398 6.817 8.071
6.456 5.035 5.437 6.577

m=3 4.018 4.956 4.561 4.867
5.742 4.598 4.837 5.952

m=4 3.603 4.692 4.229 4.267
5.938 4.859 5.073 6.259

m=5 3.703 4.929 4.373 4.383

< Table 17 >

Table 17. Values of the BDS statistic for $I(t)  of the (91,7) symmetric decomposition. In

this table, k =1.

Note that all of the BDS statistics in this paper are calculated using ‘data segment #1’,

which we picked from day 197 to day 696 of the data series, and ‘data segment #2’, from day 697

to day 1196. Thus the number in each segment is equally T=500.

The results of each segment are shown in the tables as follows: for example, the BDS

statistic 11.230 in the first row of ‘m=2’ in the above table was calculated using data segment #1,

on the other hand, for the case of data segment #2, when m=2, the BDS statistic is 6.501 as

shown in the second row of ‘m=2’. Or we will show the results such as ‘BDS statistic of data

segment #1’ : ‘BDS statistic of data segment #2’ when the statistic are not listed on the table.
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III-2. Autoregressive Decomposition of the ResidualsIII-2. Autoregressive Decomposition of the ResidualsIII-2. Autoregressive Decomposition of the ResidualsIII-2. Autoregressive Decomposition of the Residuals $I(t) : Symmetric Decomposition.: Symmetric Decomposition.: Symmetric Decomposition.: Symmetric Decomposition.

We investigated, in Section II-1(v), the dependence of $I(t)  on its lagged values by using a

multivariate autoregressive fit program ( “ar” in S-PLUS). We found that the Akaike

Information Criteria selects an order 4 autoregressive model. To check the success of the

autoregressive fit we applied the BDS test to the residuals and found the values below .

JY GM SF BP
1.021 0.736 0.502 0.469

m=2 1.032 0.590 0.732 0.576
0.923 0.393 0.259 0.254

m=3 0.730 0.400 0.369 0.328
0.987 0.329 0.313 0.234

m=4 0.760 0.351 0.246 0.339
1.058 0.310 0.307 0.320

m=5 0.771 0.369 0.197 0.389

< Table 18-1 >

Table 18-1. Values of the BDS statistic for residuals of multivariate autoregressive fit in

Section II-1(v). In this table, k =1.

Since the BDS statistic has considerable power when T=500, the values in the table indicate

that the distribution of the residuals can be reasonably well approximated by the distribution of

independent identically distributed random variables.
The values of BDS statistics for ( )ε1 t , the residuals of univariate autoregressive fit of ( )I t

for Japanese Yen and German Marks in Section II-1(v) are shown in Table 18-2. The values of

the BDS statistics suggest that null hypothesis of i.i.d. can not be rejected.

JY GM
0.856 0.755

m=2 0.883 0.564
0.850 0.397

m=3 0.625 0.404
0.877 0.341

m=4 0.657 0.380
0.935 0.297

m=5 0.665 0.385

< Table 18-2 >

Table 18-2. Values of the BDS statistic for residuals of univariate autoregressive fit of
( )I t  in Section II-1(v). In this table, k =1.
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III-3. Predictive DecompositionIII-3. Predictive DecompositionIII-3. Predictive DecompositionIII-3. Predictive Decomposition

We also did an analysis of the predictive smoothers. The values of the BDS statistic when

applied to the residuals $I (t)P  of (91,7) predictive decomposition are shown in Table 19. The

values of BDS statistic of $I (t)P  equal -0.221:-0.093 and -0.238:-0.432 for Japanese Yen and

German Marks when m=2, while these values are 0.282:0.056 and 0.039:-0.097 when m=3. This
suggests the very parsimonious model Y(t) L (t) S (t) (t)P P= + + ε  with ε(t)  i.i.d. for Japanese

Yen and German Marks. Since the value of BDS statistics are close to zero, the null hypothesis

of i.i.d. can not be rejected. So we did not go further to see the autoregressive structure of $I (t)P .

JY GM SF BP
-0.221 -0.238 -0.117 -0.104

m=2 -0.093 -0.432 -0.404 -0.331
0.282 0.039 0.080 -0.024

m=3 0.056 -0.097 -0.139 0.042
0.395 0.234 0.214 0.034

m=4 0.208 0.039 -0.003 0.176
0.417 0.300 0.219 0.060

m=5 0.288 0.042 -0.051 0.200

< Table 19 >

Table 19. Values of the BDS statistic for $I (t)P  of the (91,7) predictive decomposition. In

this table, k =1.
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Chapter IV. Volatility Measures and Their Time Series DecompositionsChapter IV. Volatility Measures and Their Time Series DecompositionsChapter IV. Volatility Measures and Their Time Series DecompositionsChapter IV. Volatility Measures and Their Time Series Decompositions

The predictive decomposition of Section II-2 can be applied to time series other than original

exchange rates. We next consider the problem of assessing the volatility of exchange rate series

such as those considered in Section II, III, and IV.

A. Volatility Measures Based on ReturnsA. Volatility Measures Based on ReturnsA. Volatility Measures Based on ReturnsA. Volatility Measures Based on Returns
Many commonly used measures of volatility are based on the conditional variance σ 2 (t)

given the past of the returns

X(t) log
Y(t)

Y(t 1)
=

−






e.g. ARCH (Engle, 1982) and GARCH (Bollerslev, 1986). The set of conditioning variables,
which we denote by Ω t 1− , contains information on lagged values of X(t)  as well as on other

exchange rates, interest rates, etc. in general, up to and including time t 1−  . Let

( )m(t) E X(t) t 1= −Ω

denote the conditional mean of the returns and let

[ ]V(t) X(t) m(t)
2= −

denote the squared deviation from the conditional mean. By definition, the conditional variance

σ 2 (t)   given the past is ( ) [ ]σ 2
t-1 t 1(t) = Var X(t) E V(t)Ω Ω= − . Thus we can think of σ 2 (t)  as

the conditional mean of V(t) , and apply the predictive decomposition of Section II-2. To

illustrate, we take Ω t 1−  to be the set of lagged values X(t 1),X(t 2),− − ⋅⋅ ⋅  of the returns.

Because of the empirical evidence and computational convenience, m(t)  is often taken to be

zero or a constant. We considered different candidates for m(t)  and found that the moving

average

m(t)
1

t 1
X(j)

j 1

t 1

=
− =

−

∑

gave the best results in the sense of avoiding overfits. Using locally linear smoothers for m(t)

led to overfits, that is, they would tend to make V(t)  close to zero.

The long and short term trends in the conditional variance σ 2 (t)  are

[ ]σ L
2

k
k 1

t

(t) w (t)E V(k)=
=

∑ ,
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[ ]{ }σ σS
2

k L
2

k 1

t

(t) v (t) E V(k) (k)= −
=

∑ .

Our assumption is that, to a close approximation, [ ]I (t) V(t) (t) (t)P L
2

S
2= − +σ σ  has conditional

(given Ω t 1− ) expected value zero (if not, a further decomposition of I(t)  as in Section II-2-(iii)

could be used).
Before analyzing V(t)  for the exchange rate data, we removed the weekends. In the long

and short term decomposition in the earlier sections it was convenient to leave them in since it

makes the time axis correspond to calendar time and because this particular analysis is not

sensitive to weekend effects. However, returns are sensitive to weekend effects, especially since

the number of weekend transactions is a small fraction of the number of weekday transactions.

This makes the absolute weekend returns very close to zero and the volatility measures biased

towards zero. It would help to divide the returns by the logarithm of volume, however, this ratio

would then have a much larger variance for weekends than for weekdays.

By using only weekday exchange rates, we will have returns only for Tuesday, Wednesday,

Thursday, and Friday ; that is for 689 days. The restriction to weekdays has the advantage of

reducing the number of missing data days considerably. For Japanese Yen, there were only one

missing data day, while for German Marks and Swiss Francs there were 2 and 2 missing data

days. For these days, we used the average of the returns of the two closest days were returns

are available. For days with volume less than 200, where volume stands for the number of

changes on the computer screen during a 24 hour period, we used the average of that days

return with the returns of the two closest days were returns are available. The average volume

(in number of changes per 24 hours) over weekdays for days with volume at least 200 was 3456

and exceptionally small volumes were rare.

Figure 13 shows a graphical analysis of the volatility of Japanese Yen. The A part compares
the 91 and 181 day long term trends $σ L (t)  and changes in V(t)  while the 181 day trend make

more moderate adjustments as V(t)  changes. The B part shows how the addition of the short

term trend fine tunes the long term trend and results in a volatility measure which is very

sensitive to the recent past.

Figure 14 gives a comparison of the volatilities of German Marks and Swiss Francs. They

resemble each other, but the Swiss Francs are generally more volatile.
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Figure 13-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 13-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 13-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 13-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :
( ) ( )( )Log Y t Log Y t 1− −  : JY : JY : JY : JY

0 100 200 300 400 500

0.
00

2
0.

00
6

Figure 13-B : Standard Deviation Estimator : Long Term Trend and Long + Short TermFigure 13-B : Standard Deviation Estimator : Long Term Trend and Long + Short TermFigure 13-B : Standard Deviation Estimator : Long Term Trend and Long + Short TermFigure 13-B : Standard Deviation Estimator : Long Term Trend and Long + Short Term
Trend (181 days...15 day) : Trend (181 days...15 day) : Trend (181 days...15 day) : Trend (181 days...15 day) : ( ) ( )( )Log Y t Log Y t 1− −  : JY : JY : JY : JY
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Figure 13. 13-A gives the long term volatility of Japanese Yen using predictive decomposition based on 91

, and 181  day time intervals. 13-B gives the volatility of Japanese Yen using (181,15)

predictive decomposition. The solid line is the long term trend while the dotted line is the sum of the long

and short term trends.
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Figure 14-A : Standard Deviation Estimator : Long Term Trends (181 days) :Figure 14-A : Standard Deviation Estimator : Long Term Trends (181 days) :Figure 14-A : Standard Deviation Estimator : Long Term Trends (181 days) :Figure 14-A : Standard Deviation Estimator : Long Term Trends (181 days) :
( ) ( )( )Log Y t Log Y t 1− −  : GM and SF : GM and SF : GM and SF : GM and SF
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Figure 14-B : Variance Estimator : Short Term Trends (181 days...15 days) :Figure 14-B : Variance Estimator : Short Term Trends (181 days...15 days) :Figure 14-B : Variance Estimator : Short Term Trends (181 days...15 days) :Figure 14-B : Variance Estimator : Short Term Trends (181 days...15 days) :
( ) ( )( )Log Y t Log Y t 1− −  : GM and SF : GM and SF : GM and SF : GM and SF
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Figure 14. 14-A gives the long term volatility of German Marks  and Swiss Francs . The

estimators are 181 day predictive smoothers. 14-B gives the short term trends of German Marks 

and Swiss Francs  based on the (181,15) predictive decomposition.

B. RiskMetricsB. RiskMetricsB. RiskMetricsB. RiskMetricsTMTMTMTM

The J.P.Morgan RiskMetricsTM (1995) measure of volatility is an example of a predictive

long term trend kernel estimator. In the third edition of RiskMetricsTM - Technical Document

(page 80) they give

$σJP
2 2

k K

t

(t) w(t - k)X (k)=
=−
∑

with w(t - k) (1 ) (t k)= − −λ λ , λ =0.94 and X(0) , X( 1) , , X( K)− ⋅⋅⋅ −  historical data. An

approximation to $σ JP
2 (t)  based on the historical data is
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~ ~σ λσ λJP
2

JP
2 2(t) (t -1) + (1- )X (t)=

where ( )~σJP
2 2

k K

0

0
1

K
X (k)=

=−
∑ . This formula ~σJP

2 (t)  is the one recommended by J.P.Morgan even

though $σ JP
2 (t)   also can be computed for historical data and gives roughly the same results.

However, ~σ JP
2 (t)  has the advantage of being easy to understand as an updating formula. Note

that RiskMetricsTM, uses m(t) 0=  and V(t) X (t)2= . Other m(t) were tried by J.P.Morgan in

earlier versions.

Figure 15-A : Percent of Changes : Figure 15-A : Percent of Changes : Figure 15-A : Percent of Changes : Figure 15-A : Percent of Changes : ( ) ( )( )Log Y t Log Y t 1− −  : JY : JY : JY : JY
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Figure 15-B : Standard Deviation Estimator : Predictive (91 days) and JPM (Approximation) :Figure 15-B : Standard Deviation Estimator : Predictive (91 days) and JPM (Approximation) :Figure 15-B : Standard Deviation Estimator : Predictive (91 days) and JPM (Approximation) :Figure 15-B : Standard Deviation Estimator : Predictive (91 days) and JPM (Approximation) :
( ) ( )( )Log Y t Log Y t 1− −  : JY : JY : JY : JY
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Figure 15. 15-A gives the returns of the Japanese exchange rate series. 15-B gives the 91 day long term

trend volatility using our predictive decomposition  and the J.P.Morgan’s RiskMetricsTM volatility

 of Japanese Yen using Tuesday-Friday data from the time period from January 6, 1992 to April

14,1995.

Figure 15 uses the Japanese exchange rate series to give a comparison between the square
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roots of the predictive 91 day long term smoother and the RiskMetricsTM exponential kernel

estimator. Both are based on using the first 91 days as historical data. The figure shows that

both estimators give similar assessments of volatility with the 91 days predictive smoother

having slightly less abrupt changes. In the appendix we argue that the locally linear predictive

smoother shown in Figure 15, falls closer to the true volatility than RiskMetricsTM. Note that
RiskMetricsTM is higher than ( )$L tP  because it is based on using ( )$w t 0≡ .

C. Volatility Based on the Logarithmic RangeC. Volatility Based on the Logarithmic RangeC. Volatility Based on the Logarithmic RangeC. Volatility Based on the Logarithmic Range

Next we turn to measures of volatility based on the logarithmic range, that is on the

logarithm

W(t) Log
High

Low
= .

For this measure we will have 5 weekday values available, in our case a total of 860 days.

Missing values where replaced by the average of the nearest available W values, while the W

values for days with volume less than 200 were replaced by the average of that day’s W score

and the two nearest available W values.

Advantages of volatility measures based on the logarithmic range over measures based on

returns have been discussed by Parkinson (1980), Garman and Klass(1980), Kupiec (1990),

Kunitomo (1992), and Hsieh (1993), among others. Hsieh (1993) shows how logarithmic range

volatility measures can be readily applied to risk analysis.

Figure 16-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 16-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 16-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :Figure 16-A : Standard Deviation Estimator : Long Term Trends (91 days and 181 days) :

Log 
High

Low
 : JY : JY : JY : JY
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Figure 16-B : Standard Deviation Estimator : Long Term Trend and Long + Short Term TrendFigure 16-B : Standard Deviation Estimator : Long Term Trend and Long + Short Term TrendFigure 16-B : Standard Deviation Estimator : Long Term Trend and Long + Short Term TrendFigure 16-B : Standard Deviation Estimator : Long Term Trend and Long + Short Term Trend
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Figure 16. 16-A gives the long term logarithmic range volatility of Japanese Yen using LOWESS based on

91  and 181  day time intervals. 16-B gives the long term  and the long term plus short

term  volatility based on the (181,15) decomposition.

Figure 17-A : Standard Deviation Estimator : Long Term Trends (181 days) : Figure 17-A : Standard Deviation Estimator : Long Term Trends (181 days) : Figure 17-A : Standard Deviation Estimator : Long Term Trends (181 days) : Figure 17-A : Standard Deviation Estimator : Long Term Trends (181 days) : Log 
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Figure 17-B : Short Term Trends (181 days ... 15 days) of the within day volatility of GM andFigure 17-B : Short Term Trends (181 days ... 15 days) of the within day volatility of GM andFigure 17-B : Short Term Trends (181 days ... 15 days) of the within day volatility of GM andFigure 17-B : Short Term Trends (181 days ... 15 days) of the within day volatility of GM and
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Figure 17. 17-A gives the long term logarithmic range volatility of German Marks  and Swiss

Francs  based on the LOWESS 181 day smoother. 17-B gives the short term trends of German

Marks  and Swiss Francs  based on the (181,15) decompositions.

Figure 16 shows the 91 day and 181 day long term volatility- trends L (t)PW  based on W(t) .

By comparing Figures 13 and 16 we see interesting similarities and differences between the

volatilities based on returns and those based on the logarithmic range. This comparison sheds

light on the differences between “between day volatility” and “within day volatility”. Figure 17

compares the volatilities of German Marks and Swiss Francs and shows similar tendencies to

those in Figure 14.
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Appendix.  Asymptotic ApproximationsAppendix.  Asymptotic ApproximationsAppendix.  Asymptotic ApproximationsAppendix.  Asymptotic Approximations

Asymptotic results and approximations that yield insights into our decompositions can be
obtained by letting the number of terms T in the series Y(t)  tend to infinity. In particular we can

use approximations to quantify how sudden changes in the mean function of a time series is

reflected in our long and short term trend functions. The approximations also leads to ways of

evaluating the performance of predictive smoothers by comparing then with symmetric smoothers.

The reasoning is as follows: Because the symmetric smoothers are based on future as well as past

values of a time series, they track the “true” trends in the time series more closely than the

predictive smoothers. On the other hand, the predictive smoothers, such as J.P.Morgan’s

RiskMetricsTM, have applications to volatility assessment which can be used in portfolio

management. One way to choose among the many predictive smoothers available is to choose the

one that falls closest to the symmetric smoother since the symmetric smoother tracks the “true”

series better. Our approximations of this section show that in this sense the locally linear

predictor is preferable to kernel estimators such as RiskMetricsTM. We rescale by setting

u
k

T 1
, v

t

T 1
, h

M

T
=

+
=

+
= . (8)

That is, the fixed time point t of interest is transformed to v
t

T 1
=

+
, the summation index k is

transformed to u
k

T 1
=

+
, and the time interval [ ]−M , M  where the nonparametric regression

smoother is nonzero is transformed to [ ]−h, h .

We define ( )[ ]( ) ( )µ µ
T 1 (u) u T 1 , u 0, 1− = + ∈  , where [ ]  denotes the greatest integer function

and assume that ( )µ µ
T 01 (u) (u) , u 0, 1− → ∈  , for some function µ 0 (u)  on ( )0, 1 . In other words,

µ 0 (u)  is the mean function after the transformation (8) of the time scale to ( )0, 1 .

A. The Symmetric Regression SmoothersA. The Symmetric Regression SmoothersA. The Symmetric Regression SmoothersA. The Symmetric Regression Smoothers

In the case of the symmetric long term smoothing kernel weights of Section II-1-(i), we write

[ ]−M , ML L  for the interval of time points k that the kernel is nonzero, and we set h
M

TL
L= . To

use a very long term smoother is equivalent to assuming that for some 0 h 1, h h0 L 0< < →  as

T → ∞  . We let ( )[ ]( )L (u) L u T 1
T 1− = +  be the long term trend in the new units where L  is based

on the weights (1), then

( )lim L (v) h (u)K
u v

h
du v h x K(x)dx

T T 0
1

0
0

v h

v h

0 01

1

1
0

0

→∞

−

−

+

−
− = −






 = +∫ ∫µ µ . (9)

where ( )K ⋅  is a kernel function used in the Section II-1.

We call that the limit L (v)0  in (9) the asymptotic long term trend.
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For the short term kernel weights of Section II-1-(ii) we introduce h
M

TS
S=  where

[ ]−M , MS S  is the time interval where the kernel is nonzero. To use a short term smoother is

equivalent to assuming that h 0S →  as T → ∞ . Let ( )[ ]( )S (u) S u T 1
T 1− = +  be the short term

trend in the ( )0, 1  units. Since h 0S → , we can obtain useful approximations by expanding

S (v)
T 1−  in a Taylor series :

[ ]S (v) C K
u v

h
(u) L (u)

T

1

S
0 0

u

1− = −





 −− ∑ µ (10)

       ( )
[ ]

[ ] ( )= −







− − −

+ − −

















+− ∑h T K
u v

h

(v) L (v) + (v) L (v) (u v)

1

2
(v) L (v) (u v)

O hS

1

S

0 0 o
'

0
'

o
''

0
'' 2 S

3

u

µ µ

µ

where we have assumed that µ 0 (u)  has a continuous third derivative at v and that

Th
M

TS
3 S

3

2= → ∞  as T → ∞ .

Since the kernel K is symmetric, the derivative term in the expansion (10) is zero. By setting

x
u v

hS

= −
, we find the following approximation S (v)0  to the short term trend

[ ] ( )S (v) (v) L (v)
1

2
(v) L (v) h O h0 0 0 0

''
0
''

S
2

K
2

S
3= − + − +µ µ σ (11)

where σ K
2 2

1

1
x K(x)dx=

−∫  is the variance of K. This approximation shows how the short term

trend depends on the instantaneous value µ 0 0(v) L (v)− , the second derivative, the band width

hS , and the variance of K.

Next we consider the case where hL  is of order between T 1−  and hS , that is h 0L →  and

( )h h 0S L → . In this case the trend considered is moderately long. From (9) we find that the

moderately long term trend is

( ) ( )L (v) (v)
1

2
(v)h O h O h0 0 0

''
L
2

K
2

L
3

S
2= + + +µ µ σ .

By combining this with (11) we find

( )S (v)
1

2
(v)h O h0 0

''
L
2

K
2

L
3= − +µ σ .

This approximation shows that the second derivative has a crucial influence on the short term

trend.
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The idea of using hL  of different order corresponds to using different time spans or “different

levels of uncertainty”. See Miura and Kishino (1995).

B. The Predictive Regression SmoothersB. The Predictive Regression SmoothersB. The Predictive Regression SmoothersB. The Predictive Regression Smoothers

If we apply the preceding limits and approximations to the predictive smoothers in Section II-

2 based on weights of the form (1) we find the long term approximations

( )

[ ] [ ] ( )

L (v) 2h (u)K
u v

h
du 2 v h x K(x)dx , 0 h v

S (v) (v) - L (v) (v) L (v) h
1

2
(v) L (v) h O h

op 0
1

0
0

v h

v

0 01

0

0

op 0 op o
'

op
'

S PK o
''

op
''

S
2

PK
2

S
3

0

= −





 = + < <

= + − + − +

−

− −∫ ∫µ µ

µ µ µ µ µ

where µ PK 1

0
2 xK(x)dx=

−∫  and σ PK
2 2

1

0
4 x K(x)dx=

−∫ .

We now note that the short term trend depends crucially on the first derivative µ 0
' (v)  of the

mean. That is, the short term kernel regression smoother is very sensitive to sudden changes in
the theoretical means { }µ(t) . On the other hand, the locally linear smoothers discussed in

Section II-1 do not have this property. It is possible to show that for the locally linear short term

predictive smoother based on weights of the form (4)

[ ] ( )S (v) (v) - L (v)
1

2
(v) L (v) h O hop 0 op o

''
op
''

S
2

PK
2

S
3= + − +µ µ µ .

From this it follows that the locally linear predictive smoothers are much closer to the symmetric

smoothers and in this sense they are better than the kernel smoothers at tracking the “true”

trends in the time series.
If we consider moderately long term trends where h 0L →  and ( )h h 0S L → , we obtain, for

smoothers based on the weights (1), the approximations

( )
( )

L (v) (v) (v)h
1

2
(v)h O h

S (v) (v)h O h

op 0 o
'

L PK o
''

L
2

PK
2

L
3

op o
'

L PK L
2

= + + +

= +

µ µ µ µ µ

µ µ

These approximations show more clearly the sensitivity of the predictive kernel regression
smoothers to the first derivative µ 0

' (v) . The locally linear predictive smoothers do not share this

sensitivity and are much closer to the symmetric linear smoothers.
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