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Abstract

The asymimetrical movement between the downward and upward phases
of the sample paths of many financial time series has been commonly noted
by economists. Since this feature cannot be described by the Autoregressive
Integrated Moving-average (ARIMA) model and the Autoregressive Con-
ditional Heteroskedastic (ARCH) model, we introduce a class of the Simul-

“taneous Switching Autoregressive Integrated Moving-Average (SSARIMA)
model with ARCH disturbances. The asymmetrical volatility function of
financial time series with daily effects can easily be estimated by this mod-
elling. We also report a simple empirical result on stock price daily indices
of the Nikkei-225 and SP-500.
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1. Introduction

In the past decade, several non-linear time series models have been proposed
by econometricians. In particular, considerable attention has been paid to the au-
toregressive conditional heteroskedasticity (ARCH) model, which was originally
proposed by Engle (1982). A number of extensions of the standard ARCH model
have been proposed and some of them have been used in empirical studies. In
addition, some non-parametric and semi-parametric estimation methods for the
conditional heteroskedasticities in asset prices and returns have been proposed.
The related issues of modelling the conditional heteroskedasticities in asset prices
and their volatilities have been discussed by Bollerslev (1986) and Chapter 21 of
Hamilton, for instance.

In this paper we shall propose to use a new class of non-linear time series mod-
els called the Simultaneous Switching Autoregressive Integrated Moving-average
(SSARIMA) models for analyzing stock prices and possibly other asset prices.
In particular, we shall use the SSARIMA model with the autoregressive condi-
tional heteroskedastic (ARCH) disturbances to estimate the volatility functions
of stock prices. The main reason for using this class of non-linear time series
models is because we are convinced that the class of Autoregressive Integrated
Moving-average (ARIMA) time series model and the standard ARCH models
cannot describe one important aspect in some financial time series, that is, the
asymmetrical movement in the upward phase (or regime) and in the downward
phase (or regime). It has often been observed and argued that major financial
series including stock prices display some kind of asymmetrical movements in the
upward and downward phases. This feature of time series can be regarded as one
form of time irreversibility discussed in the statistical time series analysis : see
Chapter 4 of Tong (1990).

Earlier, we introduced a simple stationary SSAR time series model and dis-
cussed its statistical properties in some detail (Kunitomo and Sato (1996a)). Let
{y:} be a sequence of scalar time series satisfying

Ayy + o1 i ye 2 Yoy
(11) Ye = )
Byiy + o2ve if Yy < ye

where A, B, 0; (0; > 0,1 = 1, 2) are scalar unknown coefficients, and {v;} are a se-
quence of i.i.d. random variables followed by N (0, 1). By imposing the coherency
condition given by

1-4 1-B

1.2 - =
(1.2) o = Y,

this time series model has the Markovian representation

(1-3) Ye = Ye—1 + [UII(Ut > ’Yyt-»l) + gl (ve < ’)’?/t—l)]["’)’yt—l + Uc} ;



where < is an unknown parameter and /(-) is the indicator function. When
01 = o, = o, then the Simultaneous Switching Autoregressive (SSAR) model
becomes the standard AR(1) model by re-parametrizing A= B=1—0v. As we
have shown (Kunitomo and Sato (1996a)), even this simplest univariate SSAR
model, called SSAR(1), gives us some explanations and descriptions of a very
important aspect of the asymmetrical movement of time series in two different
phases. Although this characteristic of economic time series has been observed by
a number of economists, as yet there has not been a simple but general time series
model incorporating this feature directly as far as we know in the econometric
literature.

In subsequent work (Kunitomo and Sato (1996b)), we have extended the basic
SSAR model that we proposed in Kunitomo and Sato (1996a) into two important
directions for econometric applications. First, we allow the disturbance terms in
the SSAR model to be auto-correlated and have a finite moving-average struc-
ture in addition to the non-linear autoregressive part in the time series models.
Second, we considered a class of non-stationary SSAR models, which is useful
for applications to major financial time series. It is important to note that it
is not possible to describe the kind of asymmetrical patterns in the upward and
downward phases by using the standard linear non-stationary time series models
including the ARIMA time series model and the standard ARCH model pro-
posed by Engle (1982). This issue has been previously pointed out by Nelson
(1991) and Harvey and Shephard (1993) in the context of the volatility function
of stock prices. Although there have been some proposed estimation methods
for volatility functions by Nelson (1991) and Harvey and Shephard (1993), the
time series models often become very complicated once the asymmetrical forms of
the volatility functions are introduced. Since the stationary SSARMA and non-
stationary SSARIMA models are natural extensions of the corresponding ARMA
and ARIMA models in some sense, they can easily be extended to handle the
asymmetrical conditional heteroskedasticities.

The main purpose of this paper is to give a new estimation method of the
volatility functions of asset prices, which can be asymmetrical in two phases,
by the use of the SSARIMA modelling with ARCH disturbances. Unlike other
parametric, non-parametric, and semi-parametric methods already available, our
formulation is a very simple parametric approach and it provides an easy way to
handle daily effects and holiday effects in the volatility functions of asset prices.
Since these effects have been observed by some financial economists and practi-
tioners in financial markets, our method for estimating the volatility functions
may have very real applications. Furthermore, our estimation method can be
justified by its asymptotic properties and hence the model selection procedure
within the class of SSARIMA models based on the information criteria can be
developed rather straightforwardly.

In Section 2, we shall introduce the univariate SSARIMA model with ARCH
disturbances. We also shall investigate some properties of the SSARIMA(p, q)
model with a time trend and ARCH(r) disturbances in some detail and give the
method of estimating the asymmetrical conditional heteroskedasticities in asset



prices. We shall also discuss the asymptotic properties of the estimation method
and develop the model selection procedure. Then in Section 3, we shall apply the
SSARIMA model with a time trend for the analysis of the Nikkei 225 spot index
at Tokyo and the SP 500 spot index at New York. In Section 4, some concluding
remarks on our econometric approach and empirical findings will be given. The
proofs of some theoretical results obtained in this paper will be gathered in the
Appendix.

2. The SSARIMA Model

There has been growing interest in the last decade among econometricians
to investigate financial time series data by using statistical time series analysis.
There are several interesting features often observed in financial time series data.
First, many financial time series such as stock prices, bond prices, interest rates,
foreign exchange rates, and their derivatives are often too volatile to use the sta-
tionary time series models used in standard statistical time series analysis. There
are cogent arguments in financial economics that there is a martingale measure
for financial time series : see Duffie (1992). Second, the distributions of finan-
cial prices, yields, and returns are often not well approximated by the Gaussian
distribution. It has often been found that the kurtosis calculated from the daily
returns for stock prices is much larger than 3, for instance. However, there is lit-
tle consensus on the class of distributions to be used for describing financial time
series among econometricians. Third, the estimated historical volatility functions
for many financial time series are often not constant over time. This leads to the
argument for that the conditional variances of time series are not constant over
time. Fourth, some financial time series exhibit asymmetrical movements in the
upward phase and the downward phase. In particular, a number of economists
have observed this type of asymmetrical time series movement in stock prices.

The standard linear time series models such as the autoregressive integrated
moving average (ARIMA) process can go towards explaining the first and second
features, but not to the third and fourth features. The standard autoregressive
conditional heteroskedasticity (ARCH) process, which was originally proposed by
Engle (1982) and has been sometimes used in recent econometric applications, is
consistent with the second and third features, but not with the fourth one. There
have thus been several attempts to extend the standard ARCH model.

2.1 A Simple Model of Stock Prices

In this section we first extend the simple econometric model of stock prices
that we used in Kunitomo and Sato (1996b). We began by modifying the well-
known economic model in financial economics developed by Amihud and Mendel-
son (1987).

Let the intrinsic value of a security at time t and its observed price be V; and
P, respectively. We distinguish the intrinsic value of a security and its observed



price. Since the two values V; and P; can be different, we can introduce a partial-
adjustment model when the intrisic value V; at ¢ deviates from the anticipated
price V¥, which is given by

a(Ve-V7) if Vi—-V72>0
(21) Pt“—Pt_1=
| aVe-Vy) if Vi-Vr<o

The anticipated price V;* at ¢ is calculated by the past realizations of prices and

given by
-1

(2.2) Vi=3 BiPiia
=0

and the adjustment coefficients in the stock price equation satisfy the condition
9:>0(=12).

Earlier, we dealt with the case when V;* = P,_; (Kunitomo and Sato (1996b)),
which is included in (2.2) as a special case. The anticipated price V,* in (2.2)
includes the optimal forecasts of price levels given the past information if P
could have followed some ARIMA models. Because there are new shocks or news
available at ¢ in markets, V; could be different from V,*. In addition, we have
allowed the adjustment coefficients g; (i = 1,2) to take different values. There
could be intuitive economic reasons why they can be different. For instance,
when V; > V;* the current price has been under-evaluated and there is economic
pressure mainly from the demand side to force the price up. On the other hand,
when V; < V;* the current price has been over-evaluated and there is economic
pressure mainly from the supply side to push the price down. Since there are two
main forces during the actual price determination process in financial markets, the
two coefficents g; (¢ = 1,2) could be different. However, instead of discussing the
rigorous economic justifications, here we simply point out that this formulation
includes many situations as special cases, which are theoretically or practically
interesting in financial economics. When g; = g3, (2.1) is reduced to the standard
linear adjustment model. Further, when g; = g = 1and V" = P,_;, then V; = P
and the intrinsic value of a security is always equal to its observed price. Hence,
by using the formulation we have adopted in (2.1) it is possible to examine from
the observed time series data if these conditions are reasonable descriptions of
reality.

In the recent financial economics, there has been a convention that the loga-
rithm of the intrisic security value {V;} follows an integrated process I(1) with a
drift,

(23) W=W_1+06t+# )

where u represents the expected daily return except stock dividends and {e.}
are a sequence of random variables generated by the linear stationary stochastic
process possessing a MA representation. Let the indicator functions be

1M =1(P> Piy)



and
I =1(P, <Py,

where I(w) = 1 if the event w occurs and I(w) = 0 otherwise. Then we re-
arrange (2.1) and (2.2). By combining (2.3) with (2.1) and (2.2), we can get the

representation of AP, as

(24) AR = g(t)[g—(t—l_—ﬁ ~ Bo] APy — g(t)z%; BiAPe—; + g(t)[u + ce]

where g(t) = gllt(l) + gglfz) and A is the difference operator such as AP, =
P, — P;_;. In this representation, It(l) = 1if and only if V; — V;* > 0. But then
(2.1) implies that If]) = 1if and only if AP, > 0. When p =1 and £, = 1, (2.4)
is identical to our SSIAR model in Kunitomo and Sato (1996b).

2.2 The SSARIMA(p,q)—ARCH(r) model

In this section we shall introduce a class of the simultaneous switching au-
toregressive integrated moving-average (SSARIMA) model. For the specific ap-
plication to financial time series in this paper we first consider the univariate
SSARMA model given by

»
ai + a5t + Y gy +orue (f ye > o)
i=1

(2-5) Yt

?
by + b5t + > biye—i + oour (i ye < ye1)
t=1
where we take o; > 0 (z = 1,2). The disturbance terms {u;} are a sequence of
I(1) process satisfying

q
(26) AUt = chvt-—j,
=0

where ¢ = 1 for the normalization factor. The random variables {v;} are mar-
tingale differences with E(v:|F,—1) = 0 and

(2.7) B(v}|Fe-1) = 14 ) oivl; a.s.,

1=1

where the unknown coefficients {a;,7 = 1,- -+, r} satisfy some restrictions on the
positivity of conditional variances o; > 0 (z = 1,---, 7). In the above notation the
o—field F;_; is generated by a set of random variables {y,, v, ; s < t—1}. Although
the conditional heteroskedasticity of {v;} has a simple form as in the original
ARCH model and is symmetrical, the resulting conditional heteroskedasticities
for {y:} and {Ay;} can be asymmetrical.
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The univariate non-linear time series model we introduced in (2.5) has the
first order multivariate autoregressive form with moving-average disturbances by
using the standard state space representation in time series analysis. Let us define
p X 1 vectors y, and u, by

Yt Uy
Yt—1 0
(28) Y. = . y g = . )
Yt—p+1 0
p x 2 matrices p; (: = 1,2) by
ay a3 by b
0 O 0 0
(29) B = . . y My = . . )
0 O 0 0

and also define p x p matrices A and B by

a e e a ' by e oo by

1 0 1 0
(2.10) A= . , B= .

0 1 0 0 1 0

Then the non-linear time sereis model we have introduced can be represented as

mizy + Ay, +ou, if ey, > ely,

(2.11) Y, = . ,

Boz; + By, +oyu, if ey, < ey,
where e} = (1,0,--+,0) and 2z} = (1,t)’ is the vector of strictly exogenous vari-
ables.

The most important feature of this representation is that the time series vari-
ables may take quite different values in the two different phases or regimes. This
type of statistical time series model could be classified as the threshold model
in the recent time series literature. However, since the vector time series and
two phases at time ¢t are determined simultaneously, we shall refer this type of
time series models to a simultaneous switching autoregressive (SSAR) time se-
ries model. The univariate time series model consisting of (2.5) and (2.6) can
be called the simultaneous switching autoregressive integrated moving-average
(SSARIMA) model. We denote this class of models as SSARIMA(p, 1, ¢) or sim-
ply SSARIMA(p, ¢), which is a direct extension of the standard ARIMA(p,q)
model in the statistical time series analysis. In the SSARIMA models we need
some restrictions on unknown parameters in order to make the stochastic process
defined by (2.11) meaningful in a proper statistical sense. This issue has been
called the coherency problem. We say the non-linear time series model (2.11) is
coherent if and only if the correspondence between {y,} and {u.} is one-to-one
given the initial condition Fq.



The conditions of ejy, > ejy,_, and e\y, < ejy,_, can be rewritten as

(2.12) oruy > ei(I, — Ay, , —ejp,
and
(2.13) oous < €1(I, — B)y,_, — ejp,

respectively. Then the set of conditions on coherency for the present case can be
summarized by a 1 x 2 vector v* = (47, 4;) and a 1 x p vector v/ = (m, -, Yp)

1 1
(2.14) ;;[—8’1#1» ey(I, — A4)] = ;2_[—'3'1”’2) ey (I, — B)]

= (7",7) .

Because the univariate SSARIMA(p, ¢) has some specific structure in the class
of the general multivariate SSARIMA model, it has a simple representation. For
instance, we do not need some additional conditions to (2.14) for the coherency
of the stochastic process. By using Theorem 2.1 of Kunitomo and Sato (1996a),
we have the one-to-one relation between the stochastic processes {y:} and {v:}
under the condition given by (2.14).

In order to obtain a useful representation of the process {Ay:}, we use the
indicator functions

It(l) = I(eiy, > €1y, ;)

and ,
1§ ) = I(ely, < €1Y;.1) -

We can then obtain the representation

(2.15) Y = p(t)z; + A Yy + o(t)u,,
where )
(2.16) M0=;uﬂm
(2.17) A(t) = AIY + BI? |
and ,
(2.18) at) =Y oI
i=1

When {;} in (2.15) is an I(1) process, the stochastic process {y:} is a non-
ergodic process. Hence it is of interest to investigate the ergodicity conditions
for {Ay:}. In the present univariate case we can simplify some coefficients by the
coherency conditions (2.14), that is, we have the relations

(2.19) p(t) = —(%, %3)o(2)
and
(2.20) el —elA(t) =(m, -, 'yp)a(t) .
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By using these relations, we re-write the disturbance terms {u,} as

‘ 1 L P
(2.21)  ou = <Ayt + Yt + Z YiYe—i -
O'(t) =1

Because of (2.6) and (2.21), given the information available at ¢ — 1, we have
to consider four phases for Ay, at ¢ depending on I®) and It(i)l (: = 1,2). By
taking the difference operation on (2.21) and using (2.14) and (2.15), we have the
representation as

(2.22) Ay, = o(t) {Ao + ZP: Ai(t = )a(t — 1) Ay + Aut} ,

1=]1
where Ag = —73,
Al(t— 1) = 1—’)’10'(t— 1) s
and
At —d) = —yo(t—1) (i=2,---,p).

It is immediately clear that the time series model defined by (2.4) is a special
case of (2.21). Moreover, we have the following characterization result on {Ay,},
which is a simple extension of Theorem 2.1 of Kunitomo and Sato (1996b).

Theorem 2.1 : Define the non-linear transformation of {Ay:} by
(2.23) T(Ay) =0 (1) Ay, .
Then the transformed stochastic process {T'(Ay:)} satisfies

(224) T(Age) = Ao+ 32 At — )T (Byms) + At

=1
where Ag and A;(t —1) (¢ =1,---,p) are defined by (2.22).

The time series model defined by (2.24) can be called the Threshold Au-
toregressive Moving-average (TARMA) model with time-varying coefficients in
the non-linear time series analysis. From this result it can be deduced that the
stochastic process for {Ay;} is slightly different from the TARMA(p, ¢) model.
Also the stochastic process {Ay;} has the representation



P
a; + Za,'Ayt-—i + 01Au, (f Ageey >0, Ay, > 0)

=1

p
a; + (%) biAyey + Y @by + 018y, (i Ayy <0, Ay, > 0)

t=2

Ay = ¢
b3+ () a1 Ayes + 2b;Ay¢_; + oA, (if Ayey >0, Ay, < 0)
p
@+Z}A%4+QAW (if Ayey <0, Ay < 0)
(2.25) =

By this form of representation, we notice that the differenced process {Ay;} from
the SSARIMA model has not only the simultaneous switching characteristic, but
also a characteristic of the threshold type time series model. For the stochastic
process {Ay;} defined by (2.25), we can present a set of sufficient conditions for
its ergodicity. A proof is provided in the Appendix. ‘

Theorem 2.2 : Suppose (1) p and q are finite numbers, (i1) the coherency condi-
tion (2.14) holds, (iii) the density function g(v) of {v:} is everywhere positive with
respect to the Lebesgue measure, and (iv) sup,; Ef|v|] < +00. Then the Markov
chain defined by (2.25) for {Ay} is ergodic if there exist p positive numbers
61' (Z = 1: T )p) satisfying (‘U) a; < 61)b1 < 61’ Iai| < 5:'7 ’bzl < 65 (2 = 2) T :p))

(226) [a1 - 61][b1 - (1 - 51 - Z_f)] <0 3
(2.27) by — 6:][ay — (1= 6; — gl ]<0,
and (vi) ,

(2.28) Yh<1,

For the precise definition and discussions on the ergodicity for Markov chains
on a general state space, see Tweedie (1975), Liu and Susko (1992), or Meyn and
Tweedie (1993). When p = 1, we have shown (Kunitomo and Sato (1996b)) that
the necessary and sufficient conditions for the ergodicity of {Ay,} are

(229) a1<1,b1<1,a1b1<1.

By a simple calculation, the sufficient conditions in the above theorem reduce to
these ones when p = 1. When p > 2 and ¢q = 0, the obvious sufficient conditions
for the ergodicity are given by

p p
(2.30) Zlagl < 1, Elb,l <1.

=1 (-3
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But they exclude many interesting non-linear phenomena such as the case when
there are some over-reactions and subsequent gradual adjustments to its mean
level. It seems that the conditions we have for the ergodicity cover some of these
important cases, but are too strong as the necessary conditions when p > 2. From
our limited number of simulations, we have found that our sufficient conditions
exclude some important cases even when p =

2.3 Estimation and Model Selection

In order to estimate the SSARIMA models, we have proposed and investigated
the maximum likelihood (ML) method (Kunitomo and Sato (1996b)). We are
also proposing to use the ML method for estimating the SSARIMA models with
ARCH disturbances. However, because of the ARCH effects for the disturbance
terms, we need to modify the likelihood function for the standard SSARIMA
model slightly.

We set the initial conditions such that vg = v_; = -+ = v_paqe,} = 0 and
Ay, 1 <t < p are fixed for simplicity’s sake. Then there is an important aspect
in the present model that the Jacobian of the transformation from {Au;,p+1 <
t <T} to{Ay,p+ 1<t <T}is given by

T

I «@®"

t=p+1

The Jacobian of the transformation from {vs,p+1 <t < T} to {Au,,p+1 <
t <T}is 1 provided that (2.6) is an invertible MA process.

Under the assumption that the disturbance terms {v:} given F,_; are con-
ditionally normal random variables, the normalized log-likelihood function for
{Ay:, p+ 1<t < T} given the initial conditions can be written as

(2.31)log Lr(0) = —E;l)—nllogQﬂ
2T
T
LY S I loglfun(8)] - o Y (®) (0,
t=p+1.:=1 2T t=p+1

where {v,(0)} are {v;} rewritten from (2.5) and (2.6) as functions of {Ay,}, 6
is a vector of structural parameters appearing in the original SSARIMA model,
and

(2.32) w(0) =1+ i vl ;.

1=1
The unknown coefficients {&; (: = 1,---,r)} satisfy

(2.33) >0, Ya<l.

=1

11



In this representation of the SSARIMA model with ARCH disturbances the vector
of unknown coefficients consists of

0/___ *
—‘(’)/2)711"')Vpacly"')CQ)UI)U2;a1)"')aT) .

The maximum likelihood (ML) estimator can be defined as the maximum
of log L7 (@) with respect to the unknown parameters in @, where the parameter
space @ is restricted by the coherency conditions given by (2.14). The asymptotic
properties of the ML estimator in the SSARIMA(1,q) has been established by
Kunitomo and Sato (1996b). By modifying those results slightly, we can establish
in the present case that the ML estimator is consistent and asymptotically normal
in the general SSARIMA(p,q)-ARCH(r) model. A sketchy proof of this is given
in the Appendix.

Theorem 2.3 : For the SSARIMA(p,q) model given by (2.25) with ARCH(r)
disturbances, suppose (1) the sufficient conditions for the coherency in (2.14) and
the ergodicity in Theorem 2.2 hold, (11) the disturbance terms {v;} are condition-
ally normally distributed given F,_; with sup,s, E[vi*®] < 400 for some § > 0
and a; > 0 (i = 1,---,7), (iii) the MA order ¢ is a finite number and (2.6) is in-
vertible, and (iv) o; > 0 (i = 1,2). Also suppose (v) the true parameter vector 8,
is an interior point of a compact set @q in the parameter space @. Then the ML
estimators 61, of unknown parameters in @ are consistent and asymptotically
normally distributed as

A d -
provided
) d?log Lr(8)

s a positive definite matriz.

The conditions in the above theorem are the same as in Theorem 2.4 of Ku-
nitomo and Sato (1996b) except (ii). In the present case, we need some sufficient
conditions for the non-negativity of conditional variance functions and the exis-
tence of unconditional moments, which imply some restrictions on the parameter
space. These conditions could be considerably relaxed. A related issue has been
discussed by Chapter 21 of Hamilton (1994). The asymptotic information matrix
can be consistently estimated by

0 log L1(8)
(2.36) s o,

Although we have obtained the consistency and the asymptotic normality of
the ML estimator under a set of sufficient conditions, presently we do not know
much of the behavior of the ML estimator when the sample size is not very
large and the conditional distribution of disturbances are not normal. In this

12



respect, we have investgated the finite sample properties of the ML estimator
in a systematic way for the SSARIMA(1,0) model when T' = 100 and 7' = 500
(Kunitomo and Sato (1996b)). We produced some evidence for the use of the ML
estimation method for the SSARIMA(1, 0) model even when the sample size is
not very large and the conditional distribution of disturbances are different from
normal in certain extent. From those results we expect that similar finite sample
properties could hold in the present situation.

It is important to note that the class of the SSARIMA(p, ¢)-ARCH(r) models
we have introduced in this paper includes many statistical time series models as
special cases. For instance, it includes the ARIMA(p, 1, ¢) models with ARCH(r)
disturbances. In order to select an appropriate model within the class of the
SSARIMA(p, g)-ARCH(r) models, we propose to use the minimum Akaike’s In-
formation Criterion (AIC): see Akaike (1973). Although there have been many
proposed criteria for model selection procedures, it is widely known that the min-
imum AIC is useful and successful in many applications. The value of AIC for
the SSARIMA(p, ¢)-ARCH(r) model in the present case can be defined by

12 2 .
(2.37) AIC(p,q,r) = =3 3 IV logldw,(8))
Ti=1 T=p+1
1 4 o\ —1 0\2
+ = D wl(8)v(6)’ +2(p+g+7),
Tt=p+1

where &; (i = 1,2) denote the ML estimator of o; (i = 1,2) and @ denotes the
vector of the ML estimator for 6.

3. An Application to Financial Data

In this section we shall report an empirical result using some stock time series
data. In our data analysis we have used the time series data of the Nikkei-225
indices which are the most popular stock price index traded in Japan and the
SP-500 from the U.S. The first data sets are the closing daily data of the Nekkei-
225 Spot index from January 1985 to December 1994 and the second data sets
are the closing daily data of the SP-500 from January 1985 to December 1994.
All data were transformed into their logarithms before the estimation of the non-
stationary SSAR-ARCH model. It may be of some interests for economists to
compare the time series movements of these spot prices, which are reprentative
indices in two major stock markets in the world.

It has often been argued by financial economists and practitioners in major
financial markets that there have been significant daily effects in the volatility
functions of financial prices. The typical argument for the existence of daily
effects is from the observation that the information flows are different from day
to day and there are some trading day effects and holiday effects. By taking
account of this observation, in actual estimation we have the volatility function
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(3.1) | wi(8) =14+ v} ;+Y BiDs,
) 1=1 =1
where D;; are the dummy variables defined by

1 if ted;
(32) D,’t = 3
0 if te¢J;

and the index sets J; (: = 1,---,r*) denote the calendar days.

We have estimated the SSARMA(p,g)—ARCH(r) model with the dummy
variables of the form (3.1). The estimation of structural parameters in the
SSARMA(p, g9)—ARCH(r) model has been conducted by the ML method under
the assumption of the normal disturbances. Since we cannot obtain an explicit
formula for the ML estimators of unknown parameters, we have used a numerical
non-linear optimization technique with the coherency restrictions on parameters.
In the actual estimation we took ¢ = 0 because we could not find any signif-
icant MA terms in most cases and there are some technical difficulties in MA
estimation at present. We have divided the full sample period for Nikkei-225
into 4 sub-periods, each consisting of about 200 data points. This has been done
because many different phenomena occurred in the full sample period and the
assumption of constant coefficients in the underlying SSARMA model could be
unreasonable from a practical point of view . The resulting estimation results
are summarized by Table 1 for the Nikkei-225 data and Table 2 for the SP-500
data.

There are several interesting empirical observations from Table 1. First, the
spot stock price index sometimes shows sharp asymmetrical movements either
in the upward or downward phase. This phenomenon was evident in 1985 and
1987. Actually we already knew that there was a sharp decline in October of
1987. During these sharp downward phases, the estimated values of the down-
ward coefficients are often smaller than the corresponding upward coefficients.
This agrees with the fact that the estimated volatility in the downward phase is
often larger that the volatility in the upward phase. Second, we have found sig-
nificant daily effects on the volatility functions in most cases. In our estimation of
daily effects we have normalized the volatility coefficients such that the Monday
volatility always takes the value of 1. Except for the first data period 2, we have
found negative daily effects from the Monday volatility, which are statistically
significant. This agrees with the notion that the Monday volatility effect is sig-
nificantly larger than other days because of holiday effects, but also it is less than

1For instance, many changes in regulations, taxes, and financial institiotions have occurred
at financial markets in Japan during the full sample period.

2The estimated Monday and Tuesday volatilities in this period are different from our in-
tuition. However, Dr. Kunio Okina has suggested as possible explanation that there was a
substantial amount of informational flow from the U.S. financial markets to the Tokyo stock
market during the first period. Because there is a time lag in two countries, the Tuesday
volatility in Tokyo was quite large.
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the holiday length from Friday to Monday times the normal level of volatility. In
Japanese financial markets there was some trading on Saturday mornings during
1980s. It would not be possible to find any significant differences in the daily
volatility differences because the trading on Saturday was terminated at the end
of the 1980s. Also we found that the inclusion of daily effects in the form of (3.1)
does not have a significant effect on the estimation of asymmetry and volatility
level. In most cases the estimated coefficients of a;,b;, and «; are similar for the
model (2.25) with or without daily effects. Third, after around 1990 3, there
have not been many occasions as was the case previously when the asymmetrical
movements of the price indices are evident and the estimated coefficients are not
very large. The differences of AIC in ARIMA(p, 1,0) and SSARIMA(p, q) are
not very large in most cases in this period. Fourth, as far as the SP-500 data is
concerned, we find some evidence of the asymmetry discussed during the periods
before around 1990. This is quite evident for the data including that for 1987.
In addition, we often find some asymmetry whenever we use a large quantity of
data over more than 5 years before 1990. However, in the data of 1990s it is
difficult to find any asymmetry and the estimated coefficients are generally not
very large. We only show the estimation results by using the data from January
1990 to June 1992 in Table 2, which seem to be typical of recent SP-500 data.
The model chosen by AIC is ARIMA(0, 1,0) with ARCH(2) and daily effects.
It is often possible to find significant ARCH effects as well as daily effects on
volatility in the 1990s by comparing the values of AIC.

These empirical problems and findings may have some implications for finan-
cial economists. Needless to say, these observations from our empirical results on
stock indices are preliminary. But clearly it has not been easy to detect these
features of the financial time series data by using the existing methods and the
linear time series modelling in particular.

4. Conclusions

In this paper we have focused on one important aspect in many financial eco-
nomic time series, which has been sometimes ignored in the past econometric
studies on the volatilities of major financial time series. Since the asymmetri-
cal pattern in the movements of time series between the upward phase and the
downward phase often observed by economists can not be represented properly
by the standard ARMA, ARIMA, and ARCH processes, we have proposed to
use the class of simultaneous switching autoregressive integrated moving-average
(SSARIMA) models with autoregressive conditional heteroskedastic (ARCH) dis-
turbances, which was recently proposed by Kunitomo and Sato (1996b). In this
paper we have investigated some properties of the SSARIMA(p, ¢)-ARC H(r)
model and the asymptotic properties of the maximum likelihood estimation method

3There can be economic as well as institutional reasons for this phenomenon. For instance,
we have compared the movements of the Nikkei-225 spot index and futures index (Kunitomo
and Sato (1996b)). The active trading of the Nikkei-225 futures in Japan was started at the
end of 1989.
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for estimating its unknown parameters. Unlike other methods already available
for estimating the volatilities of financial time series, our method is a very simple
but general one for investigating whether they are asymmetrical or not from a
medium size set of time series data. The model selection procedure in the class
of the SSARIMA(p, q)-ARCH(r) can be straightforwardly developed.

We have also tried to show that there are some reasons why the SSARIMA
model with ARCH disturbances is a useful tool to analyze many financial time
series in financial markets. The point is that if we permit the intrisic value of
security to be different from the observed price and have a non-linear adjustment
process, the result is the SSARIMA model. Then the estimated coefficients in
the upward phase and in the downward phase can be different and the resulting
volatility of financial time series can be asymmetrical around the normal volatility
level.

In this paper we have used the SSARIMA-ARCH modelling to examine the
movements of the Nikkei-225 stock index at Tokyo and the SP-500 index at New
York from 1985 to 1994. We have found some evidence of the asymmetrical
movements of stock indices before around 1990 in particular, which has been
consistent with the view of some financial economists and practitioners in the
Japanese financial markets. By using our empirical example, at least we have
shown that our modelling approach is useful for analysing some financial prices.

Finally, we should mention that our approach can be easily extended to a
more general form of conditional heteroskedasticity models such as the generalized
ARCH model by Bollerslev (1986). In addition, our formulation does not need a
large quantity of data for estimation as some non-parametric and semi-parametric
time series methods do. We think there are some advantageous aspects to our
modelling compared to other methods.

5. Mathematical Appendix

In this appendix, we gather some mathematical details which we have omitted
in the previous sections. However, since most of the theoretical results reported
in this paper are rather straightforward extensions of the corresponding ones in
Kunitomo and Sato (1996b), we freely refer to the notations and results in that
paper. We use the notation z; = Ay, in the Appendix.

Proof of Theorem 2.2 : We shall use a method similar to the one used in
Theorem 2.3 of Kunitomo and Sato (1996b). Define a (p + ¢) x 1 vector X, by
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/xt\

Te-1

Tt-p+1
Ut

(A.1)

>
I

Vi1

Ut—q+1 /
We then consider the Markovian representation for {X,}. For the sake of sim-
plicity, we set 7; = 0. The condition z; > 0 is equivalent to v; > a,_, X, ; ,
where 1

(A.2) a;_l =(m- m, Y2,y Yoy —C1, —C2,°*+, —Cq)

and {c;,j < j < g} are the MA coefficients of {Au;}. From (2.20) we have the
representation

(A.3) Xi=H(Xeq,v),
where
( _a(t)a;—lxt-—l + o (t)ve )
Te-1
(A.4) H(Xt—l, Ut) = xt;p-’-]
t
Vg1
\ Vt—g+1 /

We use the criterion function

ptaq

(A.5) G(£) = 2_h(&)

=1

where h(&) = lle and § = (fl’ °t '1€p+Q)‘

If we use a sequence of compact sets K, = [-n,n] x +++ x [-n,n],n = 1,2,---,
then inf&m G(§) — 400 as n — +oo. For t > ¢,

-1

(46)  EG(XJ)\R] = E[§h<xt_j)+§h(vt_,-)|fol

< b+ S BBz Fogll - 7]

7=0 »

because E'[|v;|]] < +00 and k; is a positive constant.
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Let
(A7) Qs = Elh(z))|Fizi]
= E{h[-o(t)a, ;X1 + o(t)u ]| Fies |

for any ¢ > 1. We first consider the case when z,_; > 0. In this case from (2.25)
we have two phases at ¢ given the condition z,—_; > 0 and we have

(A8) Qe

= cn/ ‘ [—l—a:t 1= 'y'z[t_lﬁ-c'v[t_1]+z]g(z)dz
>(———)x1 1+‘7 z[,-;, cv[' 1) J1
]. 1 ]
- 02/ [—z¢-1—7 Z(_q) + € v_g) + 2]g9(2)dz,
<(""“')$1-1 +7 z[f—l]"'c By 91
where ¢ = (Cl,‘ " acq)) Lit-1] = (-’Bt-—h "':mt-—p)a and Vjt—1] = (Ut—ly"')vt-q)-

We note that (2.26) and (2.27) in Theorem 2.2 imply 0 < (1 — 6;)/01 < m <
1/o1 + 61/03 and 0 < (1 — 61)/02 < 71 < 1/oz + 61/01 . Then by using the
conditions in Theorem 2.2, we have an inequality

(A.9) Q-1 < ka(1+ Z lve—i]) + Z 6iyTemiy ] -

=1
When z,_; > 0, we have the above 1nequa11ty by using the conditions in Theorem
2.2. Then we have

(A']‘O)Qtlt-p-—l S k2(1 + Z lvt—t,) + Z 611]02(1 + Z ,Ut—q—_yl ,ft—-p— ]

j=1 =1

) )
+ 2080 20 8 Bllme—iy—ip| [Fempi] -
n=1 =1 v
By repeating this procedure and taking 6 = ¥.7_,6; (0 < § < 1), we have the
relation
(A.11) E[G(X,)|Fo) < k3 Z 6 (1 + Z fh-k—-;) + p6*G(X,) ,
k=0

where k3 is a positive constant and n, = E [[vk|] I(k > 0) + |vk|/(k < 0). Hence
we have established the boundedness condition on the criterion function

(A.12) sup E[G(X)|Fo] < +00 .

The rest of our proof is the same as the sufficiency part of the proof of Theorem
2.3 in Kunitomo and Sato (1996b). The essential part is to use Theorem 1.1 of Liu
and Susko (1992) for the ergodicity of Markov chain with a general state space.
We can use their theorem because we have the following Lemma A.1, which is an
straightforward extension of Lemma A.1 of Kunitomo and Sato (1996b) and we
omit its proof. Q.E.D.
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Lemma A.1 : Let {v} in the SSARIMA(p, q) model be independently and iden-
tically distributed random wvariables with the density function g(v), which is ev-
erywhere positive in R. Then given

(zt—l; Cry Tp—py V-1, " 7, Ut-—q) = (21, *tty2py 2p41y" " % zp+q)’

the conditional probability

(A.13) Pr{z, < z|zemy = 21, +, Tep = Zp, Vel = Zp41,* " Vg = Zp4q}

is a continuous function of 2' = (21, , zZptq).

Next, we shall give Lemma A.2 on the existence of moments for {Ay;}. Ku-
nitomo and Sato (1996b) have proved Lemma A.2 when p = 1 as their Lemma
A.2. However, it is straightforward to extend that proof for an arbitrary p and
so we omit the details.

Lemma A.2 : In the SSARIMA model given by (2.25), assume (i) the co-
herency conditions (2.14), (i) the ergodicity conditions (2.26)-(2.28), and (ii1)
sup,>; Ef|v|*] < +oo for some k > 1. Then

(A.14) sup Ef|z.|¥] < +oo.
t>1

Proof of Theorem 2.3 : The method of our proof is similar to the one
used in Kunitomo and Sato (1996b). However, some modifications are necessary
because there is an ARCH effect in the disturbance terms and p is an arbitrary
integer.

Step 1: Let the stochastic process {Au;(8)} be defined by

P
(A.15)  Au(8) = D(t) 'z + v+ [m — D(t — 1) Newy + > Yz

1=2
which is identical to {Awu} in (2.25). We denote the vector of true parameter
values of

0 =(7;:71;""’7}”01’UZ)CI)"')Cq)ala'”;ar)
as (0) . (0) (0) _(0) (0) (0)
' (0) (0 0) (o 0
00=(72 N )"':71(;0)a01 yT02 1€y )"')CEIO);O‘I )'“:aSO))'
Also we denote ' = (ay,--+,,) and a, = (ag"), +++, o). Tt is then possible to

prepare the following lemma, which is similar to Lemma 3.1 and Lemma 3.2 of
Weiss (1986) and we give a sketchy proof at the end of Step 1.

Lemma A.3 : (i) Define a (14 p+ q) x 1 vector of parameters

: *
m —(')/2,71,"',’)’},,61,"’,(3(7)
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and assume Ev?] < +oo. Then

avt(o) 3‘0,(9)
om  om'

(A.16) E[——— ]1>0as.

(ii) Assume E[vf] < +oo. Then

6wt?—9—t]>0a5

(A.17) E[%—— oy

Under the assumptions we have made for the ergodicity, we can follow the
argument used in Theorem 3.1 of Weiss (1986). The criterion function in the
present case

| T 2 112 .
(A18)  Rr(8)= ———-Z > 1P loguwi(e) — 55 Y v (8) wi (a) ™
t=2 i=1 t=2
converges in probability to

(A.19) R(®) = —3 Bllogen()] - 2 B[us (6)* (@) ™).

Then by expanding v,(8) around @ = al® and using the second half of Lemma
A.2, we haye

awt 8w¢

(0)
da da’ o =)

(A20)  Elw(ea)] = El(a®)]+(a-a®)E[—
2 E[”t(a(o))z]-

under the assumptions we have made. The equality holds only at a = a(®). Also
we have an inequality

(A21) — 2 Blloguwi(@)] - 3 Blu (6 wi(e) ™) < ~ > Bllogan(a®)] - 7,

while the equality holds only at a = a(®.
Sketch Proof of Lemma A.3: Since the MA error is invertible, we have

6%(9)

(A.22) v(8) = u(80) + —>|g-(8 — 8) ,

where 8~ is a point between @ and 6, in © and _”L(_l|9, is in F;—; . Also from
(A.15), we have a representation

(A.23) z, = D(t)v(8o) + D(t)z;_, ,
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where z; = Ay, and zj_, is in F,_;. Without loss of generality we consider the
simple case of p = ¢ = 1. Suppose we have a 1 x 3 vector A" = (A1, Ay, A3) such
that

] Ut
(A.24) Al 1l |[=0as.
It
Then we can show that A; # 0 (i = 1,2, 3). Since
A A
(A.25) g = (—2)+ (- D)y, as.
A3 A3

we have a contradiction with (A.23) and (A.24). Thus we obtain (A.17). We can
use the same argument in order to establish (A.18).

Step 2: Next, we consider the maximization problem of the criterion function
R(#) with respect to (v3, Y1, -+, ¥p,C1," " ", ¢q) - By using the first half of Lemma
3.2 and similar arguments to Weiss (1986), R(8) is uniquely maximized at

" *(0
(727711”')7;);61;" ) (72( ))750)) )7;50)) )"' (0))
under the assumptions we have made. The rest of our argument with respect to
o; (i = 1,2) is the same as the one in Kunitomo and Sato (1996b). Hence we can
prove that the probability limit of

T 2 . 117
(A.26)Qr(6 ——-—-ZZI()longt i——-——th(O ) we (@)™

t=2 =1
is uniquely maximized at @ = 8y. Also the probability convergence is uniform in

@ C O with respect to 8. Then by applying Theorem 4.1.1 of Amemiya (1985),
we obtain the consistency of @,,;.

Step 3 : In order to prove the asymptotic normality of the ML estimator
in the SSARIMA model under the assumptions we have made, the most im-
portant step is to use the martingale property of the partial derivatives of the
log-likelihood function summarized in the following Lemma A 4.

Lemma A.4 : Let 8 be a vector of unknown parameters in the SSARMA model
with ARCH(r) disturbances. Then we have

dlog L,(6) _ log Li—1(8)
E[ I i 08

where F,_, is the o~field generated by {y,,s <t —1;v,,s <t—1}.

(A.27)

Sketch Proof of Lemma A.4 : For the parameters in 8 except o (j =
1,-+-,r), we can obtain the result by slightly modifying the derivation of Lemma
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A .4 of Kunitomo and Sato (1996b). For the ARCH parameters oj (j = 1,---, ),
we have : :

dlog L7(0 _ 1 51 _lawt

732G

-1 _
80[] J (g)wt 1] :

(A.28)

It is straightforward to show that
dlog L7(0)

T x o,

is a martingale.

Step 4 : The last step is to use the central limit theorem for martingales.
(See Hall and Heyde (1980), or Anderson and Kunitomo (1992), for instance.) We
can utilize the existence of unconditional moments sup,;, E[v{*%] < oo to show
the conditional Lindeberg type condition. For instance, define a 1 x ¢ vector

Zt = (zjt;j = 1))'?) by
(A.29) zje = wi ol [Vt - 1]
Then we have
1 7
(A.30) T > Ell 2P| Fe-i]
t=1

converges to E[||Z||?] in probability under the assumptions we have made. Also
we have an inequality

(ASDE S BNZII0Z > VEe|Fins] < & \,—VzEnztn“ﬂft-J

t=1

for any positive constant ¢ and some positive constant §. The last term converges
to zero in probability because its expectation is bounded by

1.1 245
(A.32) =(7) igyEUthll ].

As the rest of the proof is similar to the arguments used in Sato and Kunitomo
(1996), we omit the details. Q.E.D.
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Table 1: Nikkei 225 Index (Jan. 1, 1985 — Feb. 20, 1987)

(1) Modelling with daily effects

AIC

ARCH(0) ARCH(1) ARCH(2) ARCH(3)

SSARIMA(1) | -4174.02  -4239.82  -4297.53  -4298.33
SSARIMA(2) | -4178.76  -4239.16  -4297.63  -4297.67
SSARIMA(3) | -4176.76  -4237.32  -4295.67  -4295.83
ARIMA(0) -4143.68  -4213.05  -4268.96  -4270.93
ARIMA(1) -4166.34  -4234.70  -4286.93  -4287.64
ARIMA(2) -4170.94  -4234.17  -4286.98  -4287.19
ARIMA(3) -4169.05  -4232.41  -4285.00  -4285.52

Selected Model: SSARIMA(1,0) - ARCH(3)  AIC: -4298.33

1 2 3 I (431 2 3
a (up) 0.2676 - - 0.0030 ARCH coef. 0.19 0.37 0.07
b (down) 0.0752 - - 0.0038

Mon. Tue. Wed. Thu. Fri. Sat.
Daily effects 1 3.20 1.97 1.81 2.26 0.60

(i1) Modelling without daily effects

AIC

ARCH(0) ARCH(1) ARCH(2) ARCH(3)

SSARIMA(1) | -4163.98  -4227.60 -4284.09  -4282.21
SSARIMA(2) | -4165.67  -4227.98  -4282.41 -4280.46
SSARIMA(3) | -4163.97  -4226.54  -4280.61 -4278.66

ARIMA(0) -4135.46  -4207.97  -4255.02  -4253.02
ARIMA(1) -4154.55  -4223.05  -4271.77  -4269.77
ARIMA(2) -4155.80  -4224.08  -4270.08  -4268.08
ARIMA(3) -4154.64  -4222.85  -4268.51  -4266.51

Selected Model: SSARIMA(1,0) - ARCH(2) AIC: -4284.09

1 2 3 4 o1 az a3
a (up) 0.2719 - - 0.0043 ARCH coef. 0.23 034 -
b (down) 0.0693 - - 0.0056
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Table 1 (cont.): Nikkei 225 Index (Feb. 21, 1987 — Dec. 31, 1989)

(1) Modelling with daily effects

AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -4828.46  -5114.55  -5167.47  -5167.29
SSARIMA(2) | -4836.28 -5129.81 -5166.09  -5165.70
SSARIMA(3) | -4834.52 -5129.29  -5164.11  -5163.80
ARIMA(0) -4741.86  -5096.03  -5151.75  -5154.42
ARIMA(1) -4740.41  -5098.90  -5163.12  -5163.86
ARIMA(2) -4762.00 -5102.56  -5161.77  -5162.18
ARIMA(3) -4761.40  -5122.66  -5159.77  -5160.23
Selected Model: SSARIMA(1,0) - ARCH(2) AIC: -5167.47
1 2 3 g ay g Q3
a (up) 0.2083 - — 00058  ARCHcoef. 0.70 0.16 -
b (down) 0.0776 - - 0.0068
Mon. Tue. Wed. Thu. Fri. Sat.
Daily effects 1 0.68 0.63 0.56 0.58 0.87
(i1) Modelling without daily effects
AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -4782.42 -5111.23  -5169.37 -5168.64
SSARIMA(2) | -4787.27 -5122.35  -5167.88  -5167.01
SSARIMA(3) | -4785.35  -5121.75  -5165.89  -5165.07
ARIMA(0) -4658.77  -5071.68  -5149.73  -5152.83
ARIMA(1) -4658.20  -5086.33  -5161.78  -5162.11
ARIMA(2) -4666.46  -5091.56  -5160.47  -5160.42
ARIMA(3) -4664.74  -5093.18  -5158.50  -5158.43
Selected Model: SSARIMA(1,0) - ARCH(2)  AIC: -5169.37
1 2 3 o o oy o3
a (up) 0.2177 - - 0.0048 ARCH coef. 0.70 0.17 -

b (down) 0.0624 - - 0.0057
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Table 1 (cont.): Nikkei 225 Index (Jan. 1, 1990 — Jun 11, 1992)

(1) Modelling with daily effects

AIC
| ARCH(0) ARCH(I) ARCH(2) ARCH(3)
SSARIMA(1) | -3117.69 -3174.44 -3203.24 -3210.30
SSARIMA(2) | -3135.06 -3193.48 -3222.36  -3225.73
SSARIMA(3) | -3133.11 -3191.66 -3220.53  -3223.77
ARIMA(0) | -3115.75  -3171.58  -3201.35  -3209.02
ARIMA(1) | -3115.24 -3174.18  -3201.64  -3208.62
ARIMA(2) | -3132.40 -3192.57 -3222.68  -3225.92
ARIMA(3) | -3130.46 -3190.85 -3220.73  -3223.93

Selected Model: ARIMA(2,0) - ARCH(3) AIC: -3225.92

1 2 3 o oy oo o3
a (up) 0.0866 -0.2126 - 0.0153 ARCH coef. 0.21 0.28 0.09
b (down) 0.0866 -0.2126 - 0.0153

Mon. Tue. Wed. Thu. Fri. Sat.
Daily effects 1 0.42 0.66 0.3¢ 0.50 -

(i1) Modelling without daily effects

AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -3112.69  -3166.62 -3191.60  -3200.92
SSARIMA(2) | -3129.99 -3185.10 -3212.33  -3217.27
SSARIMA(3) | -3128.13  -3183.23  -3210.41  -3215.28
ARIMA(0) | -3110.39 -3162.32 -3189.49  -3199.39
ARIMA(1) | -3110.52 -3166.22 -3191.03  -3200.28
ARIMA(2) | -3127.91 -3184.49 -3213.30 -3218.28
ARIMA(3) | -3126.04 -3182.67 -3211.33  -3216.28

Selected Model: ARIMA(2,0) - ARCH(3) AIC: -3218.28

1 2 3 o oy o9 o3
a (up) 0.1097 -0.2114 - 0.0113 ARCH coef. 0.24 0.26 0.12
b (down) 0.1097 -0.2114 - 0.0113
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Table 1 (cont.): Nikkei 225 Index (Jun 12, 1992 - Dec. 15, 1994)

(1) Modelling with daily effects

AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -3541.45 -3565.11 -3591.16  -3604.67
SSARIMA(2) | -3539.49  -3563.46 -3598.44  -3605.82
SSARIMA(3) | -3539.28  -3562.02  -3597.07  -3603.82
ARIMA(0) | -3544.81 -3566.08 -3592.55  -3603.28
ARIMA(1) | -3543.32 -3565.25 -3591.39  -3604.31
ARIMA(2) | -3541.35 -3563.49 -3598.73  -3605.75
ARIMA(3) | -3541.10 -3561.97 -3597.33  -3603.77

Selected Model: SSARIMA(2,0) - ARCH(3) AIC: -3605.82

1 2 3 2 ay o2 a3
a (up) -0.0920 0.1228 - 0.0138 ARCH coef. 0.10 0.28 0.12
b (down) -0.0005 0.1125 - 0.0127

Mon. Tue. Wed. Thu. Fri. Sat.
Daily effects 1 0.62 0.47 0.45 0.31 -

(i1) Modelling without daily effects

AIC

ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -3532.68 -3554.39 -3571.48 -3591.93
SSARIMA(2) | -3530.71  -3552.51  -3577.91  -3592.61
SSARIMA(3) | -3529.69 -3551.01 -3577.14  -3590.61
ARIMA(0) | -3536.31 -3554.74 -3572.29  -3589.20
ARIMA(1) | -3534.36 -3553.42 -3570.62 -3591.18
ARIMA(2) | -3532.38  -3551.49 -3577.72  -3591.97
ARIMA(3) | -3531.29 -3549.89 -3577.05 -3589.98

Selected Model: SSARIMA(2,0) - ARCH{(3) AIC: -3592.61

1 2 3 o ay a2 a3
a (up) -0.1192 0.0950 -  0.0105 ARCH coef. 0.12 0.19 0.18
b(down) -0.0153 0.0861 -  0.0095
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Table 2 : S & P 500 Index (Jan. 1, 1990 — Jun 11, 1992)

(i) Modelling with daily effects

AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -4034.48 -4033.51 -4043.41 -4043.50
SSARIMA(2) | -4033.53  -4032.35 -4042.65 -4042.56
SSARIMA(3) | -4031.83  -4030.65 -4040.89  -4041.11
ARIMA(0) | -4036.02 -4035.33  -4046.02  -4045.88
ARIMA(1) | -4036.10 -4035.28  -4045.17  -4045.38
ARIMA(2) | -4035.08 -4034.05 -4044.32  -4044.39
ARIMA(3) | -4033.42 -4032.37  -4042.60  -4042.99

Selected Model: ARIMA(0,0) - ARCH(2) AIC: -4046.02

1 2 3 o o1 Q2 o3
a (up) - - - 0.0094 ARCH coef. 0.03 0.11 -
b (down) - - - 0.0094 :

Mon. Tue. Wed. Thu. Fri. Sat.
Daily effects 1 0.80 0.49 0.75 0.91 -

(ii) Modelling without daily effects

AIC
ARCH(0) ARCH(1) ARCH(2) ARCH(3)
SSARIMA(1) | -4033.19 -4033.18  -4039.60  -4040.22
SSARIMA(2) | -4032.07 -4031.72  -4038.50  -4038.95
SSARIMA(3) | -4030.49  -4030.01  -4036.78  -4037.53
ARIMA(0) | -4033.46 -4034.17 -4041.31 -4041.56
ARIMA(1) | -4034.32 -4034.62 -4040.84 -4041.74
ARIMA(2) | -4033.09 -4033.07 -4039.61  -4040.36
ARIMA(3) | -4031.58 -4031.39  -4037.94  -4039.04

Selected Model: ARIMA(1,0) - ARCH(3) AIC: -4041.74

1 2 3 o ay ag asj
a (up) 0.0640 - - 0.0081 ARCH coef. 0.03 0.09 0.08
b (down) 0.0640 - - 0.0081
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