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ABSTRACT

This paper examines the relation between price volatility and trading
volume using intraday data on the Japanese Government Bond (JGB)
Futures contracts. Based on the mixture-of-distributions hypothesis, we
first set up a model in which price volatility and log volume are jointly
determined by a single latent common factor. Using a quasi-maximum
likelihood procedure via the Kalman filter, the model is then fitted to data.
We find that the common factor is not persistent, and that there exist
highly persistent idiosyncratic noises, providing evidence for
misspecification of the mixture-of-distribution hypothesis. In addition,
we find evidence of bi-directional causality as well as simultaneous
causality between volatility and volume which cannot be explained by our
common factor model although our common factor model fits data better
than a VAR model presented by Watanabe (1993, Chapter 4). The
presence of a significant causality from volume to volatility suggests that
high-frequency trading volume data may provide useful information for
financial risk management.
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Abstract

This paper examines the relation between price volatility and trad-
ing volume using intraday data on the Japanese Government Bond
(JGB) Futures contract. Based on the mixture-of-distributions hy-
pothesis , we first set up a model in which price volatility and log
volume are jointly determined by a single latent common factor. Us-
ing a quasi-maximum likelihood procedure via the Kalman filter, the
model is then fitted to data. We find that the common factor is not
persistent, and that there exist higly persistent idiosyncratic noises,
providing evidence for misspecification of the mixture-of-distributions
hypothesis. In addition, we find evidence of bidirectional causality as
well as simultaneous causality between volatility and volume which
cannot be explained by our common factor model although our com-
mon factor model fits data better than a VAR model presented by
Watanabe (1993, Chapter 4). The presence of a significant causality
from volume to volatility suggests that high-frequency trading volume
data may provide useful information for financial risk management.
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1 Introduction

This paper examines the relation between price volatility and trading volume
using intraday Japanese Government Bond (JGB) Futures data.

There is now considerable evidence that price volatility in financial mar-
kets changes randomly over time. An understanding of the properties of
volatility dynamics is, hence, important for financial risk management. The
last twenty years have seen a surge of interest in modelling changing volatil-
ity. Besides, studies of the joint dynamics of volatility and other variables
are important. It is now well known that high price volatility is associated
with high trading volume. The October crash in 1987 is the best known
example of this phenomenon. Karpoff (1987) reviews previous studies on
the return-volume relation in various financial markets, in which he cites 18
studies that document this phenomenon.

In considering this phenomenon, we cannot neglect the mixture-of dis-
tributions hypothesis proposed by Clark (1973) and developed by Epps and
Epps (1976), Tauchen and Pitts (1983), and Andersen (1993). The basic
idea of this hypothesis is that the amount of information that flows into the
market changes randomly over time. Changes in asset prices are usually
prompted by the arrival of new information. If the amount of information
arrivals changes randomly over time, so does daily return volatility. A well
known phenomenon of a high degree of volatility persistence can be explained
by serial correlations in the amount of information flow. The amount of in-
formation flow may also influence the trading volume. As the amount of in-
formation that flows into the market increase, traders’ expectations spread,
and hence the larger is the trading volume. This hypothesis is also consis-
tent with a well known phenomenon of comovements between volatility and
volume.

Based on this idea, Lamoureux and Lastrapes (1990) have entered the
current trading volume directly into the GARCH variance equation. Using
the daily data for 20 common stocks in the New York Stock Exchange, they
have found that variance persistence vanishes and the conditional normality
of returns is not rejected when volume is included as an explanatory variable
in the variance equation. Their results give strong support for the mixture-
of-distributions hypothesis. Locke and Sayers (1993) applied this approach



to minute-by-minute data on the S&P 500 Index Futures.!In contrast with
the results of Lamoureux and Lastrapes (1990), they find significant vari-
ance persistence even after controlling for volume. Their approach, however,
has a certain drawback. If return volatility and trading volume are jointly
determined, their results may be subject to the simultaneity bias.

This paper takes to a different approach. We first set up a model in which
volatility and volume are jointly determined by a single latent common factor
such as the amount of information flow. Then, we discuss a quasi-maximum
likelihood procedure based on the Kalman filter to estimate our model.

The data we use are 5-minute returns and trading volume for the Japanese
Government Bond (JGB) Futures contract from March 3 to May 31 in 1995.
Since these data show well known W-shaped intraday patterns and the means
and standard deviations vary across intraday time periods, we adjust data
by subtracting the mean and dividing standard deviation. Using the quasi-
maximum likelihood method, our model is fitted to these adjusted data.
For a comparison with our model, we also estimate an alternative model,
presented by Watanabe (1993, Chapter 4), in which the log volatility and
the log volume are specified as a vector autoregressive (VAR) process.

Our empirical findings are:

(1) While the common factor is not persistent, there exist persistent id-
iosyncratic noises. This means that high persistence of volatility cannot be
explained by the common factor and casts some doubt on the mixture of
distributions hypothesis.

(2) The latent common factor model proposed in this paper fits data better
than the VAR model of Watanabe (1993 Chapter 4).

(3) However, there exists a bidirectional causality as well as a simultaneous
relation between volatility and volume, which cannot be explained by the
common factor model. The presence of a significant causality from volume
to volatility suggests that high-frequency trading volume data may provide
useful information for risk financial risk management.

1They have also tried other variables such as the number of floor transactions, the
number of price changes, and executed order imbalance as proxies for the number of
information arrivals.



The remainder of this paper proceeds as follows; Section 2 reviews the
mixture-of-distributions hypothesis and introduces our common factor model.
Section 3 explains the estimation method for our model. Section 4 describes
our data. Section 5 fits our model to data and summarizes estimation results.
Conclusions are given in Section 6.

2 The Model
2.1 The Mixture of Distributions Hypothesis

We begin with a brief review of the mixture-of-distributions hypothesis pro-
posed by Clark (1973).

Changes in asset prices are usually prompted by the arrival of new in-
formation, and each change can be modelled as a random variable. Let R
denote the ith intraday increment in the logarithm of asset price in day t. The
basic idea of the mixture-of-distributions hypothesis is that the amount of
information that arrives at the market during a certain time interval changes
randomly over time. If the amount of information that flows into the market
during day t is I;, the change in the logarithm of asset price on day ¢, that
is, the asset return on day ¢, is represented by

Iy
R; = Eéit- (1)
i=1

Suppose further that €; is i.i.d. with mean 0 and finite variance o2. If
I; is sufficiently large, applying the Central Limit Theorem to equation (1)
yields that the distribution of R, conditional on I; is approximately normal
with mean 0 and variance o*I;. Hence, we may rewrite equation (1) as:

Rt = Ot€¢, € ~ NID(O, 1). (2)

where o? represents the vaiance of R; conditional on I;, which we call return
volatility, i.e.,
0't2 =0 2It. (3)



If I changes randomly over time, so does the asset return volatility and
hence R; is drawn from a mixture of distributions. As is well known, volatil-
ity shocks persist over time. If we assume that [; is autocorrelated, the
resulting model can give rise to this persistence. For instance, suppose that
the logarithm of I; follows an AR(1) process, i.e.,

In(l;) = d +bln(l;—1) + wi, w; ~ NID(0,02), (4)
Combining equation (3) with (4), we have
h? = a+bh?_, +ws, wi~ NID(0,02), (5)

where h; = In(0?) and a = o’ + (1 — b)In(c?).

The model that consists of equations (2) and (5) is usually called the
stochastc volatility model.

The amount of information I; may also influence the trading volume.
The rationale is that the larger the amount of information that flows into
the market, the more do the traders’ expectations spread and hence the
larger is the trading volume. If so, the mixture of distributions hypothesis
is also consistent with a well known phenomenon of a comovement between
volatility and volume.

Lamoureux and Lastrapes (1990) investigates this hypothesis using the
GARCH model. They enter the current trading volume directly into the
GARCH variance equation in the following way.

0’? =g + 016?_16?_1 + a20't2_1 + azV;. (6)

where V; represents trading volume. ;

Using the data for 20 common stocks in the NYSE, they have found that:
(1) a3 is statistically significant, (2) a; and a; are small and statistically
insignificant, and (3) the conditional normality for €; is not rejected. These
results give a strong support for the mixture-of-distributions hypothesis.

Locke and Sayers (1993) applied this approach to minute-by-minute data
on the S&P 500 Index Futures. In contrast to the results of Lamoureux
and Lastrapes (1990) who used daily data, they find significant variance
persistence after controlling for volume.

Their approach, however, has a certain drawback. As Lamoureux and
Lastrapes (1990) have mentioned in their paper, their results are subject to si-
multaneity bias if return volatility and trading volume are jointly determined.?

2Tauchen and Pitts (1983) and Andersen (1993) have presented a theoretical model
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2.2 Latent Common Factor Model

This paper reconsiders Lamoureux and Lastrapes’ (1990) and Locke and
Sayers’ (1994) results using a different approach. We set up a model in which
volatility and volume are jointly determined by a single latent common factor
such as the number of information arrivals. In particular, we assume that
the logarithm of o7, denoted by h;, and the logarithm of volume, denoted by
LV; , consist of a common factor and an idiosyncratic noise, i.e.,

hi = c1 + 21214 + Zoy, (7)

LV, = ¢ + 20214 + x3y, (8)

where ci1, ¢z, 21, and 2, are constant, z;; is the common factor that af-
fects both volatility and volume, and x,; and z3; are idiosyncratic noises.
While the common factor and idiosyncratic noises are assumed to be mutu-
ally independent and have no lead and lagged relations, we allow for serial
correlations in the common factor and idiosyncratic noises. Specifically, we
model the common factor and two idiosyncratic noises as AR(1) processes,
ie.,

Ty = buZig—1 +wis, wie~ NID(0,1), (9)
Lot = boo%op 1 +way, wor~ NID(0,00), (10)
Z3; = basxzp—1+wss, wse~ NID(0,o033), (11)

where w14, wo:, and wy, are mutually and serially independent.
Notice that the variance of w;; is normalized to unity and that the Lam-
oureux and Lastrapes (1990) approach is valid only if o33 = 0.

3 Methodology

In this chapter, we explain how to estimate the parameters in our model
that consists of equations (2) and (7)-(11). As will be shown below, our
model can be transformed into a linear state space form. Thus, we adopt the
quasi-maximum likelihood method via the Kalman filter employed by Nelson

in which volatility and volume are a joint random function of information flows. For
the estimatiom methods for their models, see also Lamoureux and Lastrapes (1994) and
Watanabe (1995).



(1988), Watanabe (1993, Chapter 4), Harvey, Ruiz, and Shephard (1994),
and Ruiz (1994). Specifically, we first transform our model into a linear state
space form. Since the observation noise in the resulting state space form is not
normally distributed, we approximate the density for the observation noise
with a normal distribution with the same mean and variance. Under this
approximation, executing the Kalman filter to the state space form produces
the quasi-likelihood, which is maximized to obtain the estimates of the model
parameters.

3.1 State Space Representation

We first transform our model into a linear state space form. Squaring both
sides of equation (2) and then taking the log yields:

In(Rf) = he+in(e),
= ¢ +21%14 + Tz + In(), (12)

where the mean and the variance of In(e?) are known to be approximately
-1.27 and 4.935 respectively. (See Abramovitz and Stegun (1970).)
Equation (12) may be rewritten as:

ln(Rf) =6 —1274+ 21214 + T2z + v, (13)

where v; = In(e?) +1.27, and the mean and the variance of v; are 0 and 4.935
respectively.
We represent equation (13) with the log volume equation (8) as:

Y =cC+ Zx; + vy, (14)
_ | In(R?) _la-127 _|lzn 10
Y= [ L‘/t , C= G ’ Z= % 01l

Z14
= | T2 |, V=
T3t

where

I
o8



and v; is non-normal but i.i.d. with mean o and covariance matrix H given

by
_[e2 o0
H:[O 0].

Equations (9)-(11) are represented by

T = Bwt_l + wy, i (15)
where
b11 0 0 Wit
B = 0 by O y W= W |,
0 0 b3 W3t
and w; is normal with mean o and covariance matrix X' given by
1. 0 O
= 0 092 0 .
0 0 033

Equations (14) and (15) constitute the familiar linear state space form with
x; as a state vector.

For convenience, let us remove constant term ¢ from equation (14). Then,
our model is:

y; = Zz + vy, (16)
Ty = Ba:t_1+wt, (17)

where Y} =y, — C.

E(y,)(= c¢) can be estimated consistently by the sample mean of y,
(See Priestley (1981)), and the sample mean is a quasi-maximum likelihood
(QML) estimator, that will be explained below, of E(y,) uncorrelated with
the QML estimator of the stochastic part of the model (See Harvey (1989,
pp-201-202)). In what follows, we simply use the sample mean of y, for E(y;)
and treat E(y,) as known.

3.2 Kalman Filter

Since the model described in equations (16) and (17) is in the familiar linear
state space form, we can apply the Kalman filter to it. The Kalman filter

8



is the algorithm that provides the estimator of the state vector in a linear
state space model. 3 If the noise terms in the state space model are normally
distributed, the Kalman filter provides the minimum mean square estimator
(MMSE). Notice that the observation error in our model, vy, is not normally
distributed. In such a case, the Kalman filter does not generally provide the
MMSE but still provides the estimator that minimizes the mean square error
within a class of linear estimators, that is, the minimum mean square linear
estimator (MMSLE).
In our model, the equations of the Kalman filter are:

One-Step-Ahead Prediction:

Tt-1 = Bx;_q3-1, (18)
Py = BP;_y_\B' + X, (19)
Updating:
Ty = Ty + Pop—1Z'F; v, (20)
Py = Pyy1 — Py 1 Z'F; ' Z Py, (21)

where @1 is the MMSLE of a; given information at t—1, @), is the MMSLE
of @; given information at ¢, Py is the covariance matrix of (@ — T1pp-1),
Py is the covariance matrix of (@¢ — @4t), V¢ is the prediction error vector
defined by:

v = Y: — LTy, (22)
and F; is its covariance matrix given by:
Ft = Z.Pﬁt_]Z’ + H. (23)

Once the initial values of zy;—; and Py_; are given, equations (20)-(25)
can be solved recursively. As usual, we use the unconditional mean and
variance of the state vector for those initial values, i.e.,

T = E(w),
= o, (24)
vec(Pyp) = vec(Var(x:)),
= [I - B ® B| 'vec(Sigma), (25)

3For a detailed discussion of the Kalman filter, the reader is referred to Harvey (1989).
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where ® is the Kronecker product, while the vec(-) operator indicates that
the columns of the matrix are being stacked one upon the other.

3.3 Quasi-Likelihood Function

If the error terms were normally distributed for all t, then the prediction
error v; would be normally and independently distributed with mean 0 and
variance F%, so that the log likelihood function would be given by:

1 Z 1Z

where T is the number of observations.

We choose the model parameters so that this function is maximized. Un-
fortunately, our observation error, v;, is non-normal, so that equation (26) is
not the true likelihood function and is, hence, called the quasi-likelihood func-
tion. The asymptotic properties of the quasi-maximum likelihood estimator
are, however, well known. (See Dansmuir (1979) and Ruiz (1994).)

4 Data Description

 Our primary data set consists of 5-minute returns and trading volume for the
Japanese Government Bond (JGB) Futures contracts that expire in March
and June 1995. The sample period is from March 3 to May 5 in 1995. Each
intraday data is comprised of 24 values during 9:00-11:00 and 30 values dur-
ing 12:30-15:00. During this period, the most heavily traded is the contract
that expires in March 1995. All price data in this project are for that con-
tract. The trading volume is the sum for the contract that expires in March
1995 and the one that expires in June 1995. Let returns (%) hereafter be de-
fined as R; = 100in(P,/P.-1), where P, = futures price at time t. Overnight
returns and the lunch break returns are not 5-minute returns, and we there-
fore delete those data in the subsequent analysis, so that the first data for
the mornig session is the return and volume from 9:00 to 9:05 and the first
data for the afternoon session is from 12:30 to 12:35. We also omit the data
when trading volume is zero. Since the the number of obsevations which are
ommitted is only 4, this omission is of little consequence. Total sample after

10



these corrections is 3234 observations. The return and log volume series are
respectively plotted in Figure 1.A and 1.B.

Descriptive statistics for returns and volume are reported in Table 1.A.
The sample mean of the 5-minute return of 0.003 % is indistinguishable from
zero at standard significance levels given the sample standard deviation of
0.063%. The null hypothesis of normality is rejected both for returns and
for trading volume at the 1% significance level. The sample skewness of 1.70
for returns and 0.288 for trading volume and the sample kurtosis of 25.0 for
returns and 1.16 for trading volume are both highly statistically significant.
The positive kurtosis coefficients are indicative of leptokurtic distributions.
At the same time, the maximum of 0.867% for returns and 9.67 for volume
and the minimum of -0.537% for returns and 1.61 for volume do not suggest
the presence of sharp discontinuities in the series. The Ljung-Box Q statistics,
constructed for lags of 6 and 12 days, test for serial correlation in the return
and the log volume series. These statistics are not large enough to reject the
null hypothesis of strict white noise for returns at 1 % while they are large
enough for the log volume. The conclusion must be that the log volume series
is serially correlated. Although not presented here, we conduct augmented
Dicky-Fuller tests for the log volume series, which reject the unit root null
hypothesis at 1% significance level.

Table 1.B presents correlation coefficients between return per se and trad-
ing volume and between absolute return and trading volume both on a con-
temporaneous basis and on a lead and lagged basis. On one hand, correlation
cofficients between return per se and volume are low. There is no apparent
relationship between return per se and trading volume. On the other hand,
there exists a remarkable correlation between the absolute returns and the
trading volume.

Some authors have noted intraday pattern in both the mean and variance
of price movements. Wood, MaclInish, and Ord (1985), Jain and Joh (1988),
and Lockwood and Linn (1990) document a U-shaped intraday pattern in
mean and standard deviations of the U.S. stocks, while Chang, Fukuda, Rhee,
and Takano (1993) document a W-shaped pattern in means and standard
deviations of price changes in Japanese stock market. In order to evaluate
the intraday seasonality of the JGB Futures returns and volume, Figure 2
plots the average sample mean for each 5-minute interval. At the opening
for the morning session (t=1), extremely large values are observed for the
means and the standard deviations of returns and log volume. At the closing
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for the morning session (t=24), the standard deviation of returns and the
mean of log volume have relatively large values. At the opening for the
afternoon session (t=25), only the standard deviation of returns has a large
value. At the closing for the afternoon session (t=>54), the standard deviation
of returns and the mean of log volume have large values. W-shaped patterns
are observed for the standard deviation of returns and the mean of log volume.

Since the means and standard deviations vary across intraday time peri-
ods, we adjust data by subtracting the mean and dividing standard deviation.*
The adjusted returns and log volume are plotted in Figure 3. Summary statis-
tics and correlation coefficients for the adjusted returns and log volume are
reported in Table 2. Adjusted returns and log volume have much smaller
kurtosis than unadjusted returns and log volume. Correlation coefficients for
adjusted data are also smaller than those for unadjusted data. These results
show that the leptokurtosis and the comovement of returns and log volume
are partly attributed to intraday seasonality. In contrast to the unadjusted
returns, LB(6) and LB(12) are large enough to reject the null hypothesis
that adjusted returns are serially uncorrelated at 1%. However, R, in our
model is assumed to be serially uncorrelated. Hence, we remove the serial
correlation in the adjusted return series using a first order autoregression.
(This lag length was selected by the Schwarz (1978) criterion.’) We use the
residuals obtained from this regression for R;. Because LV;* is allowed to
be serially correlated, we use the adjusted log volume after subtracting the
sample mean for LV;*.

5 Estimation

5.1 Stochastc Volatility Model

Before estimating our model, it may help to estimate a simple stochastic
volatility (SV) model, which is given by equations (2) and (5). Following
the method described in section 2, we can represent it in the following state
space form.

vi = hi+v, e=exp(v/2)~ NID(,1), (27)

4 Andersen and Bollerslev (1994) propose a method of removing intraday seasonality
based on the Fourier flexible form.
The Akaike (1974) criterion led to long lags.
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h; = bh}j_;+w;, w~ NID(,0o2), | (28)

where
y; = In(R})— E(In(RY})), |
= In(R?) +127—a/(1-0), (29)
hi = h— E(h),
= h—a/(1-0), (30)
v, = In(e). (31)

Table 3.A reports the estimated coefficients and standard errors. The
estimated value of b is 0.983, which indicates a high degree of persistence in
volatility.

So far, we have assumed that ¢ is normally distributed. In the last
section, normality of returns is rejected. In particular, they have a more lep-
tokurtic distribution. Following Watanabe (1993 Chapter 4), Harvey, Ruiz,
and Shephard (1994), and Ruiz (1994), we also estimate the SV model under
the alternative assumption that ¢ follows a Student-t distribution, which
is more leptokurtic than the normal. Although not presented here, we find
that normality cannot be rejected at the 10% significance level and hence
the leotokurtosis of 5-minute JGB Futures returns can fully be explained by
changing volatility. Hence, all analyses below will be conducted under the
normality assumption of ¢;.

Next, let us enter the log trading volume into the variance equation (30)
in the following way.

h; = bh}_; +cLV;* +wy, w; ~ N(0,02). (32)

The results are shown in Table 3.B. The estimated value of ¢ is 0.027
with a standard error of 0.002. The LR statistic for the null hypothesis that
¢ = 0 is 14.6. Hence, the trading volume is significantly positive. However,
the estimated value of b of 0.974 still shows a high persistence of volatility.
This shows that inclusion of trading volume does not eliminate serial depen-
dence of return volatility at all. This result is consistent with Locke and
Sayers (1993), who used intraday data, and inconsistent with Lamoureux
and Lastrapes (1990), who used daily data.

13



5.2 Latent Common Factor Model

Now, we estimate our latent common factor model. The results are reported
in Table 4. Let us first examine the persistence of the common factor and
two idiosyncratic noises. On one hand, the estimated value of b;; is 0.294,
which implies that the common factor is not so persistent. On the other
hand, the estimated values of by; and b33 are respectively 0.991 and 0.980,
which indicates substantial persistence in two idiosyncratic noises.

Next, let us test whether two idiosyncratic noises are constant. Since
under the null hypothesis, 92 and o33 are on the admissible parameter space,
the distribution of the LR statistic is given by

1 1
LR~ -2-x% + 35X, (33)

where X3 is a degenerate distribution with all its mass at the origin. The size
of the LR test can therefore be set appropriately by using 2a, rather than a,
significance point of a x? distribution for a test of size a. (See Havey (1989),
5.1.2.) The LR statistic for the null hypothesis that 52 = 0is 175.1 and that
for the null hypothesis that o33 = 0 is 144.2. The critical value for a = 5%
is 2.71. Therefore, we reject the constancy of idiosyncratic noises at the 5%
significance level.

The results that the common factor is not persistent and that there exist
idiosyncratic noises which have high persistence provide evidence for mis-
specification of the mixture of distributions model. It is consistent with
Locke and Sayers (1993) who used intraday data and is inconsistent with
Lamoureux and Lastrapes (1990) who used daily data.

5.3 A Comparison with the VAR Model

For a comparison with our latent common factor model, we also analyze an
alternative model proposed by Watanabe (1993 Chapter 4), in which the
vector x; that consists of the log volatility, h;, and the log volume LV, is
specified as an AR(1) process, i.e.,

wt=A+Bmt—1+wta thNID((),Z)a (34)
where h b b
= =@ = | o1 02
vy | a=|n] B=|0m ]

14



‘wts[w“], and ¥=|" Uu].
W2t

This model can also be estimated using the quasi-maximum likelihood
procedure via the Kalman filter. (See Watanabe (1993 Chapter 4) for the
detail.) The results are reported in Table 5. Although this model is not
based on any theoretical arguments, it is useful to analyze dynamic relations
as well as a simultaneous relation between volatility and volume.

In this model, the simultaneous relation between volatility and volume is
obtained from the covariance between wy; and wsy, that is, o12(= 021). The
estimated value of oy is 0.405. The LR test statistic for the null hypothesis
that o12 = g2 = 0 is 220.2. This result provides strong evidence for a
simultaneously positive relation between volatility and trading volume.

Next, let us examine the dynamic relation between volatility and volume.
On one hand, the estimated value of by; is 0.686. The LR statistic for the
null hypothesis that by; = 0 is 42.3. Therefore, the conclusion must be that
there is a significantly positive relation between the previous volatility and
present volume. On the other hand, the estimated value of b3 is -0.551. The
LR statistic for the null hypothesis that ;2 = 0 is 18.5. This result suggests
that the effect of the previous volume on present volatility is also significant.

Finally, let us check which model fits data better between the latent
common factor model and the VAR model. While the likelihood of the
VAR model is -11369.5, that of the latent common factor model is -11210.0.
Since these two models have the same number of unknown parameters, the
conclusion must be that the common factor model fits data better than the
VAR model.

5.4 Specification Tests

In our latent common factor model, we have assumed that the common factor
and two idiosyncratic noises are mutually independent and have no lead and
lagged relations. Now, let us test whether these assumptions hold true. To
do so, we rewrite the latent common factor model as follows:

* | Tyt ) . |
FARERI IR

T3t
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& = exp(ve/2) ~ N(0,1)

-

Tt b bz bis T1t-1 Wi
Zog | = | b baz bas ZTog1 | + | wor |, (36)
T34 1 ba1 ba2 bs3 | | T321 W3

Wit 0] [on1 o012 013

wy | ~N ( 0 ] y| 021 022 023 )

W3t 0] | 031 o032 033

where we assumed that the following parameters are equal to zero.

bi2, b13, bo1, baz, ba1, baz, 012 (= 021), 013(= 031), 023(= 032)

To test whether each of these parameters is zero, we conduct Lagrange Mul-
tiplier (LM) tests. Table 6 reports LM test statistic for each parameter.
The parameters that are statistically significant at 5 % significance level are
by and o3(= 032). At 10 % significance level, by; is also significant. o793
represents a simultaneous relation between two idiosyncratic noises. bg is
a dynamic relation from the idiosyncratic noise of trading volume to that
of volatility and bs; is a dynamic relation from the idiosyncratic noise of
volatility to the common factor. The VAR model provides evidence for a
bidirectional causality as well as a simultaneous relation between volatility
and volume. : : :

The results of LM tests show that none of these causal relations can fully
be explained by the latent common factor model and that there is still some
room for improving the simple common factor model presented in this paper
by introducing these causal relations. Of course, theoretical arguments are
also required to explain the dynamic relation between volatility and volume.
The causality from volatility to volume can easily be explained by the pres-
ence of liquidity traders and feedback traders who rebalance their portfolio
after large price changes. It is, however, difficult to expalin the causality
from volume to volatility. If there certainly exists the causality from volume
to volatility, intraday trading volume may provide useful information for fi-
nancial risk management. Unfortunately, most of the previous work on the
return-volume relation have focused on the contemporaneous relations and
have not analyzed the lead and lagged relations extensively. (See Karpoff
(1978).) Exceptions are Rogalski (1978), Jain and Joh (1988), and Gallant,
Rossi, and Tauchen (1992). None of these authors have found a strong evi-
dence of causality from volume to volatility. '
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6 Conclusions

This paper analyzed the relation between return volatility and trading vol-
ume using intraday data from the JGB Futures using the latent common
factor model. Although we obtained some interesting results, further re-
search is required to confirm our results. Our results are consistent with
Locke and Sayers (1993) who used intraday data and is inconsistent with
Lamoureux and Lastrapes (1990) who used daily data. It is, hence, an inter-
esting problem whether our results are specific to intraday data. Although
not presented here, we conducted the same analysis using 10-minute and 15-
minute time intervals and we did not find any major changes in the above
results. We also conduct the same analysis using the unadjusted data and
did not find any major changes either. It is worthwhile to conduct the same
analysis using data with other frequencies such as daily data.
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TABLE 1
Unadjusted 5-Minute Returns and Log Volume for the JGB Futures

A. Summary Statistics

Sample Period: March 3-May 31 1995
Number of Observations: 3234

Statistics  Returns (%) Log Volume

Mean 0.003 6.52
St.Dev. 0.063 0.848
Skewnesst 1.70 0.288
Kurtosistt 25.0 1.16
Maximum 0.867 9.67
Minimum -0.537 1.61
LB(6)} 15.35 2186.0
LB(12)“ 19.77 2416.4

B. Correlation Coefficients

RILV) (RLV.) (Ra,LV)

0.097 0.080 0.048
(IR,LV) (IR|,LV_:) (IR-l,LV)
0.493 0.321 0.279

tSkewness=0 for a normal (Gaussian) distribution. The standard errors of this statistic
is 1/6/T = 0.043, where T =sample size.
T Kurtosis=0 for a normal (Gaussian) distribution. The standard errors of this statistic
is \/24/T = 0.086.
The critical values for LB(6) are: 10.64 (10%), 12.59 (5%), 16.81 (1%).
HThe critical values for LB(12) are: 18.55 (10%), 21.03 (5%), 26.22 (1%).
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TABLE 2
Adjusted 5-Minute Returns and Log Volume for the JGB Futures

A. Summary Statistics

Statistics  Returns (%) Log Volume

Mean -0.002 -0.001
St.Dev. 0.989 0.991
Skewness! -0.095 -0.203
Kurtosis't 2.53 0.38

Maximum 6.87 3.27

Minimum -5.61 -5.63
LB(6)* 22.7 1592.5
LB(12)# 37.2 2156.4

B. Correlation Coefficients

(R,LV) (R,LV.)) (R..,LV)

0.017 0.002 0.003
(IRI’LV) (IRl’LV—l) (|R—1|aLV)

0.392 0.170 0.254

tSkewness=0 for a normal (Gaussian) distribution. The standard errors of this statistic
6/T = 0.043, where T =sample size.
* Kurtosis=0 for a normal (Gaussian) distribution. The standard errors of thls statistic
24/T = 0.086.
The critical values for LB(6) are: 10.64 (10%), 12.59 (5%), 16.81 (1%).
HThe critical values for LB(12) are: 18.55 (10%), 21.03 (5%), 26.22 (1%).
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TABLE 3.A
Stochastic Volatility Model without Volume:

y; = h; +v, & =exp(v:/2) ~ N(0,1)

hy = bhy_y +cLV; +wy, we ~ N(0,02)

Parameter Coefficient Standard Error

b 0.983 0.022
o2 0.022 0.00002

Log-likelihood ~ -7192.2

TABLE 3.B
Stochastic Volatility Model with Volume:

W =Rk 4w, &=exp(u/2)~N(O,1)

hy = bhi_y +cLV; +wr, 1w ~N(0,0%)

Parameter Coefficient Standard Error

b 0974 0.002
c 0.027 -0.002
ol 0.149 0.00001
Log-likelihood -7184.9

LR(1)* for Hp: ¢ =0 14.6

*The critical values are: 2.71 (10%), 3.84 (5%), 6.64 (1%).
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TABLE 4
Latent Common Factor Model:

x Tt
Y a1 0 ! Ut
EAREHIEIRk)

T3t
e = exp(v/2) ~ N(0,1)

T1z bnu 0 O T1t-1
2. | =] 0 bp O Top-1 | +
T3y 0 0 by T34-1

W3z

wie
wat |,

Wiz 0 1 0 0

Wt ~N 0 ’ 0 o 22 0

w3z 0 0 0 @ 33
Parameter Coefficient Standard Error
21 0.599 0.0005
22 0.843 0.0013
b11 0.294 0.0076
b2 0.991 0.0011
b33 0.980 0.0011
022 0.009 9.619e-06
033 0.008 1.273e-05
Log-likelihood - -11210.0

LR(l)* for Ho: O — 0 175.1
LR(l)* for Hy: 033 =0 144.2

*The critical value is: 2.71 (5%).
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TABLE 5
VAR Model;

v | _| A v
EANEIEN!

e = exp(v/2) ~ N(0,1)
hi |_[bd1 b hi_, 4|
| LV ba1 b2 Lv;:, wo |’

(] ~n([0] [ o))

Parameter Coefficient Standard Error
b 1.33 0.008
bao -0.077 0.004
bio , -0.551 0.002
bo1 0.686 0.006
011 0.240 0.005
0922 0.722 0.017
0'12(= 0'21) 0.405 0.010
Log-likelihood -11369.5

LR(1)* for Hp: b2 =0 18.5

LR(I)* for Hy: by =0 42.3

LR(I)* for Ho! 012 = 0921 = 0 220.2

*The critical values are: 2.71 (10%), 3.84 (5%), 6.64 (1%).
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TABLE 6
Specification Tests for the Common Factor Model Based on LM Statistics

T1g
y: — 21 10 ! ‘ Uy
[Lv;]'—[@ 0 IHHOJ
T3,

& = exp(ve/2) ~ N(0,1)

Zig [ b1 b1z b3 ZT14-1 Wyt
ZTog | = | b bao bos Tog—1 | + | wos |,
T34 | b3 b3z b33 Z3,4-1 W3y

W 0 o1 012 013
wer | ~N| |0 |,] 021 022 023
Wat | 0 031 O3 033

Null Hypothesis LM Statistics

b12 = 0 0272
biz =0 0.111
b1 =0 2.81
b3 =0 22.5
b33 =0 0.021
bs2 =0 241
012 = 021 = 0 0458
013 — 031 = 0 1.96
- O93 = 032 = 0 14.0
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