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ABSTRACT

Systemic risk management is a crucial issue for regulators. An extensive
global information network has been widely set up, and the shock of
defaults spreads instantaneously all over the world. This paper describes
how a banking system is affected by the shock of defaults according to the
mixture of well- or under-capitalized banks. The author has developed a
two-dimensional model to simulate the “Domino Effect of Defaults” as the
energy transfer of systemic shock through the banking system using the
physical process of advection and diffusion. Finite difference
approximations are used in the computation. The experimental results
show; 1) if all banks are well-capitalized, the banking system is quite
stable, 2) if all banks are under-capitalized, the banking system is very
unstable, and 3) if both well- and under-capitalized banks are present, the
stability of the banking system is conditional. The author examines the
rationality of “Too Big to Fail,” “Prompt Regulatory Actions” and “Least
Cost Resolution” policies based on the simulation results.
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Abstract

Systemic risk management is a crucial issue for regulators. An extensive global information
network has been widely set up, and the shock of defaults spreads instantaneously all over the
world. This paper describes how a banking system is affected by the shock of defaults according
to the mixture of well- or under-capitalized banks. The author has developed a two-dimensional
model to simulate the "Domino Effect of Defaults” as the energy transfer of systemic shock
through the banking system using the physical process of advection and diffusion. Finite
difference approximations are used in the computation. The experimental results show; 1) if all
banks are well-capitalized, the banking system is quite stable, 2) if all banks are under-capitalized,
the banking system is very unstable, and 3) if both well- and under-capitalized banks are present,
the stability of the banking system is conditional. The author examines the rationality of "Too Big
to Fail", "Prompt Regulatory Actions" and “Least Cost Resolution” policies based on the
simulation results.



" 1. Introduction

Since the 80's, financial business has become deregulated rapidly, and the cfﬁciency of banking
business has improved dramatically. The deregulation enhanced the competition of banking
business, and depositors and borrowers enjoy high and low interest rates’ environment
respectively. On the bankers’ side, the competition forwarded by the deregulation makes it clear
that who are the winners and who are the losers. Because the losers generate turbulent:e, such as
defaults, on the banking system, regulators should be aware that this negative impact is the trade-
off of the benefits of the deregulation.

In the 80's, the US regulators faced serious problems and experienced a chaotic situation, mainly
caused by the defaults of S&Ls. The author points out that this is one of the negative impact of the
deregulation that drove S&Ls into a corner, taking unmanageably large risk because of the
competition against the banks. Based on this experienced, the US regulators designed a resolution
scheme, and succeeded to legislate FDICIA in 1991. In other countries, regulators are now facing
similar problems, although the seriousness might be different, and it will require to construct a
resolution scheme, like FDICIA.

In terms of resolution scheme, regulators need to know a specific bank's default impact on the
banking system. For example, the resolution cost by Pay-off can be estimated only if the banking
system would not be affected by the default. So, if the Pay-off causes the "Domino Effect of
Default", regulators should not take the action. As a consequence, regulators need to evaluate the
magnitude of damage intensity of defaults on the banking system quantitatively. To achieve this
goal, the total exposure and its sensitivity of each banks including off-balance contracts must be
captured.

In this paper, the author introduces a simple quantitative model which emulates the "Domino
Effect of Defaults" using physical process of advection and diffusion. Based on the simulation
results, the author evaluates the rationality of "Too Big to Fail", "Prompt Regulatory Action", and
"Least Cost Resolution" policies. The author believes that further progress of this type of research,
together with the further disclosure of the banks, will rationally show that what type of regulatory
action is a better scheme stabilizing the banking system and minimizing the resolution cost for a .
specific case of bank default.



2. The Systemic Shock Wave Model

In this paper, the author assumes the energy transfer of the systemic shock wave through the
banking system can be described using the physical process of advection and diffusion as a model.
The governing equations of the two-dimensional systemic shock wave model can be written as
follows. '

The momentum equations :
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The continuity equation :
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where u: velocity component in the x-direction
v: velocity component in the y-direction
& : energy surface elevation of systemic shock wave with respect to the datum plane
H: energy height of systemic shock wave
g : gravitational acceleration
C: coefficient of roughness
h : height between the datum plane and the bottom
t :time

These equations are basically used for the study of circulation and transport phenomena in
estuaries, bays and harbors. The model solves depth average momentum and continuity equations
in terms of velocity and water surface elevation.



Figure 1 shows an imaginary two-dimensional model of a banking system. As shown, this is a
simplified grid system in the x-y plane. Figure 2 represents a schematic view of a systemic shock
wave and a bank. The systemic shock wave is driven by the default of banks . If the shock wave
exceeds the threshold of the bank, the total energy of the bank will generate a new shock wave and
it will be released. Figure 3 explains the mechanism of the systemic shock wave transfer.

In this model, the distance between banks, the height of the threshold and the total energy of the
bank are the critical parameters. The distance between banks represents the net exposure between
two banks. If the distance is small, the net exposure is high. Because of the dumping of the
energy, the effect of the systemic shock wave on the banks gradually decreases. The threshold
and the total energy represent the capital and the total exposure of the banks respectively. If the
threshold is high, the bank is well-capitalized. And if the total energy is high, the bank is large-
scale, so the magnitude of the released energy is large. '



Figure 1. Two-Dimensional Model of a Banking System
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3. Finite Difference Equations

Finite difference approximation is a very useful method to solve complicated models. To simulate
the energy transfer of the systemic shock wave through the banking system, the finite difference
technique is almost the only technique because of the complicated boundary and initial conditions
of the model.

The finite difference equations corresponding to the partial difference equations of (1), (2) and (3)
are expressed in the Alternating Direction Implicit form, known as ADI, on a staggered grid in
Figure 4. The formulas are known as central-difference approximations, and have the second order
error terms on the assumption that each function is reasonably well approximated by an
interpolating polynomial.

The method breaks the integration time step into two half time steps. For the first direction,
velocity components in the x-directionu and energy surface elevation & are solved implicitly for
every j-value from equations (1) and (3). The time steps of u and & are from » to n+1 and from n

to n+1/2, respectively.
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For the second direction, velocity component in the y-directionv and energy surface elevation are
solved implicitly for every i-value from equations (2) and (3). The time steps of v and £ are from n
to n+1 and from n+1/2 to n+1, respectively.
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The scheme uses a “time splitting” technique to linearize the advection terms in the momentum
equations. The finite difference equations form a system of linear algebraic equations of the form
Ax=Db , where the A matrix is tridiagonal. This system is solved using a rapid Gauss Elimination
Back Substitution routine specifically designed to take computational advantage of the structure of
banded matrices.

Turbulent shear stress has been lumped into the bottom friction terms of the model’s momentum
equations using coefficient of roughness C. This is the only mechanism for dissipating the
momentum of the energy.
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4, Simulation Results

In this paper, four types of hypothetical banks are considered, as shown in Table 1, and six cases of
different conditions of the initial shock and mixture of the bank types are simulated, as shown in
Table 2. In Cases 3 to 6, different types of banks are randomly distributed in the banking system.
The 51 x 51 grid banking system was used, and the total number of banks is 2,601 in the x-y plane.
In Cases 5 and 6, the zoned banking system was considered, as explained in Figure 5. For all the
cases, the initial shock of default is given as occurring at the center of the banking system, and the
parameters of equations (4), (5), (6) and (7) are given as follows; az =0.2sec, ax = 500ft,

ay = 500ft, h=10ft, g = 32.2ft/sec2 and C = 60 ft1/2/sec.

Cases 1 and 2 represent the situations that the banks are all well-capitalized and large-scale, all
under-capitalized and large-scale, respectively. The stability of a banking system under different
capitalization levels is examined by comparing these two cases.

In Cases 3 and 4, the mixture of well- and under- capitalized banks and large- and small-scale
banks is the same but the magnitude of the initial shock is different. The stability of a banking
system under different magnitudes of initial shock is examined by comparing these two cases.

In Cases 5 and 6, the zoned structure is used to stabilize the banking system. In these cases, the
well-capitalized large-scale banks are mostly set up in the central zone, and the mixture of banks in
the outer zone is the same as in Cases 3 and 4. The difference between Case 5 and 6 is the
percentage of Type A and B Banks in the central zone.

The simulation results of the systemic shock wave and the defaulting banks after different period
of time have elapsed are shown in Figures 6 to 8. In Cases 1 and 3, the height of the systemic
shock wave dumps gradually after the initial default; therefore, the banking system is stable. In
contrast, the systemic shock wave is transferred to the neighboring banks in Cases 2 and 4 by the
mechanism explained in Figure 3; therefore, the banking system is unstable. This could be called
as the “Domino Effect of Defaults”. The conditions of the simulation differ between Cases 2 and
4 because of the different mixture of types of banks. Since the mixture of Case 4 is random, the
shape of the systemic shock wave is not uniform. In Case 5, the banking system is stable because
of the zoned structure. However, the banking Systcm is not stable in Case 6 because its percentage
of Type A Banks in the central zone is less than in Case 5.
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Case 1
- Case2
Case 3
Case 4
Case 5

Case 6

Type A Banks
Type B Banks
Type C Banks
Type D Banks

Table 1. Height of Threshold and Total Energy

Threshold

0.4 ft
0.2 ft
0.2 ft
0.1 ft

Total Energy Note
1.0 ft Well-Capitalized Large-Scale Banks
0.5 ft Well-Capitalized Small-Scale Banks
1.0 ft Under-Capitalized Large-Scale Banks
0.5 ft Under-Capitalized Small-Scale Banks

Table 2. Conditions of Initial Shock and Mixture of Types of Banks

Initial Shock
1.0 ft

1.0 ft
0.5 ft
1.0 ft
1.0 ft

1.0 ft

Zone Type A Banks
N.A. 100 %
N.A. 0%
N.A. 50 %
N.A. 50 %

Central 80 %

Outer 50 %

Central 70 %
Outer 50 %

N.A. = Not Applicable

12

Type B Banks Type C Banks Type D Banks

0% 0% 0%
0% 100 % 0%
5% 40 % 5%
5% 40 % 5%
20 % - 0% 0%
5% 40 % 5%
30 % 0% 0%
5% 40 % 5%



51 Banks

51 Banks

Outer Zone

Figure 5. Zoned Banking System in Cases 5 and 6
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Case 1 Case 2

‘ Systemic

_ 71 Shock

t=Osec Wave
Defaulting
Banks

t= 120 sec

Figure 6 (1). Comparison of Simulation Results of Cases 1 and 2
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Case 3 Case 4

| Systemic
- Oscc Shock
Wave
Defaulting
Banks
t=120sec |

Figure 7 (1). Comparison of Simulation Results of Cases 3 and 4
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Case 3 | Cased
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Wave

Defaulting
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t= 360 sec ;-

Figure 7 (2). Comparison of Simulation Results of Cases 3 and 4
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Case 5 Case 6

Systemic
Shock
= Osec Wave
Defaulting
Banks
t= 120 sec

Figure 8 (1). Comparison of Simulation Results of Cases 5 and 6
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Case 5
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Shock
Wave
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Banks
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Figure 8 (2). Comparison of Simulation Results of Cases 5 and 6
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5. Conclusions and Discussions

Before the legislation of FDICIA came into effect in 1991, “Too Big to Fail” was one of the most
important policies to stabilize the banking system in the US. The simulation results of Cases 3 and
4 show how the banking system is affected by the magnitude of an initial shock. If the magnitude
of the initial shock is large, the “Domino Effect of Defaults” will occur. Therefore, the regulators
should take action using “Too Big to Fail” policy to rescue the banking system. This could be
supported as a rational action based on the simulation results. However, the invocation of “Too
Big to Fail” has been prohibited, in principle, since FDICIA legislation because the policy would
decrease market discipline and cause a moral hazard. Since then, instead of “Too Big to Fail”,
“Prompt Regulatory Actions™ has been used as the major regulatory action in the US.

The effect of “Prompt Regulatory Actions™ could be interpreted as the zoned structure as shown in
Figure 5. The idea of the policy is that if the bank does not have an adequate capital ratio, some of
the management decisions and the business actions should be restricted. In terms of the model, if
the bank does not have an adequate capital ratio, it should be set far away from the center of the
two-dimensional banking system. The effectiveness of “Prompt Regulatory Actions” is clearly
shown in the simulation results of Cases 5 and 6.

The author believes that “Too Big to Fail” is still a necessary policy even after the implementation
of “Prompt Regulatory Actions”. The reason is that without it, the banking system would be
unstable if the magnitude of the initial shock is large. The simulation result of Case 6 shows that
the “Domino Effect of Defaults” still occurs even with adoption of the zoned banking system.
This is because the absolute value of the capital, which is treated as the threshold in the model,
determines whether default occurs or not. Therefore, the resistance to default of Type B Banks,
well-capitalized small-scale banks, is the same as Type C Banks, under-capitalized large-scale
banks, and Type B Banks would be the trigger of the “Domino Effect of Defaults”. So, if the
percentage of well-capitalized large-scale banks is not high enough in the central zone, as in Case
6, the banking system is unstable.

To avoid the “Domino Effect of Defaults”, the total exposure, which is treated as the total energy
in the model, should be considered as the determining factor for “Prompt Regulatory Actions”.
This is because if the total exposure is large, the magnitude of the impact on the banking system is
serious. Thus, the business of large-scale banks should be restricted more severely than that of
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small-scale banks. The idea of the new rule is that large-scale banks should have a higher capital
ratio than small-scale banks. The effect of this type of rule is to ensure that most banks in the
central zone are not only well-capitalized but also large-scale, as in Case 5, because only well-
capitalized banks can be permitted to be large-scale. In other words, under-capitalized banks
cannot be permitted to be large-scale, and cannot be permitted to be in the central zone. By doing
this, the probability of occurrence of the “Domino Effect of Defaults” could be decreased. Until
this type of rule is implemented, the regulators should consider invoking “Too Big to Fail” to
stabilize the banking system.

The author is very clear that “Least Cost Resolution” without consideration of the “Domino Effect
of Defaults” is a naive policy. The reason is obvious from the simulation results. If regulators
neglect the “Domino Effect of Defaults”, the calculated cost of resolution would not be guaranteed
to be the minimum. Therefore, the invocation of “Least Cost Resolution” should be limited to
small-scale banks. | ‘

Further research should be carried out into how this model could be applied to analyze the stability
of the actual banking system. To achieve this goal, the theoretical parameter determination of the
distance between banks, the height of the threshold and the total energy, and the posting of banks
in the x-y plane are the crucial issues. Therefore, the further expansion and substantiality of
disclosure of banks should be considered by the regulators to enhance the stability of the banking
system. Especially, knowing the net exposure between banks and the total exposure of individual
banks including off-balance contracts would be helpful for the progress of this type of research.
For example, the VAR could be a valuable source for estimating these parameters. |
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Appendix: Boundary Conditions and Matrix Forms of ADI

The boundary conditions for the model can be provided either as the energy surface elevation or as
the velocity of the systemic shock wave. For this simulation, the boundary condition should be
provided as the energy surface elevation through the boundary being zero because the two-
dimensional banking system should imaginary be open ended. Under the conditions, the systemic
shock wave would pass through the boundary with velocity component.

The boundary conditions in the x-direction could be written as follows;

n+l
e“z.i S 2 0 0 Wi b“z.i
n+1/2
d"zi egli £, L] 0 0 2, Il bfzi
n+
0 dgu € f 1 0 0 U,j b“x;
0 0 0 0 =1... (A1)
0 0 dﬁ:-z.i Yy f S 0 ul'-:ll ¥ j |
n+l1/2
0 0 0, ef:-u f . l-':lj $1y
0 0 dft—l.i e"l.i u;‘ ;l u;
H*
where d, =——1% : continuity at &; ; node
i AX
2
€, = : continuity at &, ; node
H: .
Fun, = %;‘L : , : continuity at &; ; node
2 .ll‘ Hln n Hlll- v .
bfu = ft‘" irj Vioj LY b MY e’ : continuity at § node
8y
d, = -£ : momentum at ¥, ; node
i-1,j AX '
2 =n \2 %
e = £+ i1 M L 4 {( )+ ) } : momentum at u, ; node
“ T at 2ax C*H*, ' W
1Y}
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2u} - u, j+1 —u; -1
b, =—L-V"— . : momentum at ¥, ; node
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The boundary conditions in the y-direction éould be written as follows;

(!]

cocoo‘g\a

where
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dg, = -£ : momentum at v; ; node
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— 21/
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