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1 Introduction

In this paper, we theoretically analyze the so-called deflationary equilibrium of the New

Keynesian model with an effective lower bound (ELB) constraint on nominal interest rates.

In particular, we explore how uncertainty about the future course of the economy affects

allocations under the deflationary equilibrium, paying particular attention to the steady-

state allocation. The steady state of a model without uncertainty is often referred to as

the deterministic steady state, whereas the steady state of a model with uncertainty is often

referred to as the risky steady state (Coeurdacier, Rey, and Winant (2011)). It is well known

that the deterministic steady state of the deflationary equilibrium features the binding ELB

constraint and a below-target rate of inflation (Benhabib, Schmitt-Grohe, and Uribe (2001)

and Bullard (2010)). We are interested in examining how the risky steady state of the

deflationary equilibrium differs from its deterministic steady state.

We find that the rate of inflation is higher at the risky steady state than at the determin-

istic steady state in the deflationary equilibrium. This result arises because the distribution

of future inflation is asymmetric if the variance of shocks driving fluctuations in the model

is sufficiently large. When a negative shock hits the economy under the deflationary equilib-

rium, inflation declines, but the policy rate remains at the ELB. When a positive shock hits

the economy under the deflationary equilibrium, inflation increases. If the size of the positive

shock is sufficiently large, the policy rate also increases and partially offsets the increase in

inflation. This asymmetry breaks the certainty equivalence and creates a discrepancy be-

tween the risk steady state and the deterministic steady state. Interestingly, this effect of

uncertainty on the steady state of the deflationary equilibrium is the opposite of that on the

steady state of the targeted equilibrium examined in Hills, Nakata, and Schmidt (2019).

We propose a novel concept, the risk-adjusted Fisher relation, to visualize the effect of

uncertainty on the steady-state inflation rate and the policy rate. The standard Fisher

relation is the relationship between the rate of inflation and the policy rate implied by the

Euler equation in the absence of any exogenous shocks. The risk-adjusted Fisher relation

is the relationship between the rate of inflation and the policy rate implied by the Euler

equation when there are exogenous shocks in the economy but their realized values are zero.

That is, even though realized shock values are zero, agents in the model are aware that shocks

can hit the economy in the future and form expectations accordingly. The risky steady states

are given by the intersection of the risk-adjusted Fisher relation and the truncated Taylor

rule, whereas the deterministic steady states are given by the intersection of the standard

Fisher relation and the truncated Taylor rule. We show that the risk-adjusted Fisher relation

lies below the standard Fisher relation, which implies the result described in the previous

paragraph.

When the target rate of inflation set by the central bank is positive, our result implies that

the rate of inflation can be—somewhat paradoxically—positive at the risky steady state of



the deflationary equilibrium if the degree of uncertainty is sufficiently large. This situation is

consistent with the Japanese economy in the 2010s when the rate of inflation hovered around

a slightly positive level while the policy rate was constrained at the ELB.

We also find that the policy rate can be positive at the risky steady state of the deflation-

ary equilibrium, contrary to the conventional image associated with the steady state of the

deflationary equilibrium featuring the binding ELB constraint. We also find that the ELB

constraint can bind at the risky steady state of the targeted equilibrium, contrary to the

conventional image associated with the steady state of the targeted equilibrium featuring a

positive policy rate. All in all, our conventional images about the deflationary and targeted

equilibria may not be valid once we take uncertainty into account.

We use a New Keynesian model with a three-state shock in the main body of the paper.

We derive both analytical and numerical results. However, all the qualitative results also

hold in the model with an AR(1) shock. The results from the model with an AR(1) shock

are discussed in the Appendix.

The steady-state inflation analysis is important because we still do not know much about

the determinants of the long-term behavior of inflation. For example, in the U.S., inflation

was persistently below the target rate of 2 percent in the 2010s. Even when the economy

was strong and the unemployment rate was hovering below 4 percent in the last few years of

the 2010s, the rate of inflation struggled to move up to the target rate, making policymakers

concerned about the possibility that the long-term inflation expectations were anchored at

a level below the target rate of 2 percent. This concern eventually led to the adoption of

the flexible average inflation targeting framework in the summer of 2020 after the Federal

Reserve concluded its first Strategic Review.

As another example, in Japan, the rate of inflation hovered well below the target rate of

2 percent in the 2010s even with a highly accommodative monetary policy and a sustained

period of low unemployment rates. Such economic development led to the concern that long-

term inflation expectations had become firmly anchored at around zero percent in Japan, a

concern that has been dispelled only by strong inflationary pressures in the aftermath of a

once-in-a-century-type pandemic.

In the standard New Keynesian model without uncertainty, the rate of inflation eventually

returns to either the target rate set by the central bank—if the economy is in the targeted

equilibrium—or a negative rate consistent with the inverse of the subjective discount factor of

the household—if the economy is in the deflationary equilibrium. Thus, the standard model

is unsatisfactory in explaining the long-term trend in inflation observed in some advanced

economies—even if the theory is often useful in explaining the deviation of inflation from

the long-run trend. Our paper shows that uncertainty can help bridge the gap between the

model and reality in terms of the long-term trend of inflation.

Our paper is related to the literature analyzing the interaction of uncertainty and the

ELB. See, for example, Basu and Bundick (2017), Evans, Fisher, Gourio, and Krane (2015),



Nakata (2016), Nakata (2017), Plante, Richter, and Throckmorton (2018), among others.

Adam and Billi (2007) and Nakov (2008) also discussed the interaction of uncertainty and

the ELB in their early prescient work on optimal policy—though that was not their main

focus. Our paper is closest to Hills, Nakata, and Schmidt (2019) who analyze how uncertainty

affects the steady state of the targeted equilibrium. They find that the rate of inflation at the

risky steady state of the targeted equilibrium is lower than that at the deterministic steady

state—which corresponds to the target rate of inflation set by the central bank—and showed

that the model can quantitatively explain the below-target rate of inflation in the U.S. in

the second half of 2010s. Our paper is different from these papers because we study the

interaction of uncertainty and the ELB in the deflationary equilibrium. We also formalize a

novel concept—the risk-adjusted Fisher relation—which was only casually alluded to in Hills,

Nakata, and Schmidt (2019).

We contribute to the literature on the deflationary equilibrium in the New Keynesian

model. Some researchers analyze what policies may (or may not) eliminate this LT (Alstad-

heim and Henderson (2006); Armenter (2017); Benhabib, Schmitt-Grohe, and Uribe (2002);

Coyle and Nakata (2020); Nakata and Schmidt (2022); Schmidt (2016); Schmitt-Grohe and

Uribe (2013); Sugo and Ueda (2008); and Tamanyu (2022)). Others focus on the dynamics

in and out of this LT (Aruoba, Cuba-Borda, and Schorfheide (2018); Bilbiie (2022); Cuba-

Borda and Singh (2019); Hirose (2007); Hirose (2020); Mertens and Ravn (2014); Mertens

and Williams (2021); Schmitt-Grohe and Uribe (2017). Our paper differs from these pa-

pers because we focus on the interaction of uncertainty and the ELB in the deflationary

equilibrium.

Our analysis shares the same spirit of—and complements—the analysis of Takahashi and

Takayama (2025). They point out that the lack of (sizable) deflation in Japan while the ELB

was binding is inconsistent with the deflationary steady state of the standard New Keynesian

model and show that a perpetual-youth monetary model can help bridge the gap between the

model and the data. We point out that a positive inflation rate in Japan during the 2010s

is inconsistent with the standard deflationary steady state and show that the introduction of

uncertainty can help bridge the gap between the model and the data.

We also contribute to the empirical literature measuring the long-term or underlying

trend in inflation. Examples include Bryan and Cecchetti (1994), Chan, Clark, and Koop

(2018), Clark and Doh (2014), Cogley, Primiceri, and Sargent (2010), Chan, Koop, and Potter

(2013), Kozicki and Tinsley (2012), Mertens (2016), Nason and Smith (2021), Rudd (2020),

and Stock and Watson (2016), among many others. These papers often find a persistent

deviation of the long-run trend in inflation from the target rate set by the central bank or

the inverse of the household’s discount factor. We contribute to this literature by providing

a theoretical model that can account for such a persistent deviation.

The rest of the paper is organized as follows. Section 2 presents the model and defines

key concepts. Section 3 discusses the main results. Section 4 defines and analyzes the risk-



adjusted Fisher Relation. Section 5 discusses a few interesting configurations of inflation and

the policy rate at the risky steady state. Section 6 concludes.

2 Model and Key Concepts

2.1 Model

We use a standard New Keynesian model formulated in discrete time with an infinite horizon

(Woodford (2003) and Gaĺı (2015)). We work with the equilibrium conditions of the model

in a loglinear form, except for the nonlinearity associated with the ELB constraint in the

policy rate. The use of this semi-loglinear form allows us to derive analytical results and to

emphasize that the effect of uncertainty analyzed is solely driven by the ELB constraint, not

by other nonlinear features of the original New Keynesian model. The equilibrium conditions

of the model are given by:

yt = Et[yt+1]− σ [it − Et[πt+1]− (r∗ + δt)] (1)

πt = κyt + βEt[πt+1] (2)

it = max [0, r∗ + φππt] (3)

yt, πt, and it are the output gap, the inflation rate, and the nominal interest rate on the

one-period risk-free government bond. We will refer to this interest rate as the policy rate.

Equation (1) is the Euler equation, equation (2) is the Phillips Curve, and equation (3) is

the truncated Taylor Rule.

β ∈ (0, 1) denotes the subjective discount factor of the representative household. σ > 0

is the intertemporal elasticity of substitution in consumption; κ is the slope of the New

Keynesian Phillips Curve; r∗ is the long-run natural rate of interest; φπ is the coefficient

on inflation in the truncated Taylor Rule. δt is an exogenous shock. We assume that the

distribution of δt is symmetric so as to analyze the effect of a mean-preserving spread of the

shock on the economy. In the main analysis, we assume that δt is i.i.d. and takes three

values. Specifically, it takes the values of c, 0, and −c in the high, middle, and low states,

respectively:

δH = c, δM = 0, δL = −c (4)

The assumption of i.i.d. means that the transition probabilities are given by the following:



Prob (δ = c) =
1− pM

2
(5)

Prob (δ = 0) = pM (6)

Prob (δ = −c) =
1− pM

2
(7)

2.2 Targeted and Deflationary Equilibria

The recursive equilibrium of the model is defined in the standard way as a set of policy

functions for the output gap, the inflation rate, and the policy rate satisfying the Euler

equation, the Phillips curve, and the truncated Taylor Rule. These policy functions are

functions of the exogenous variable. We use {i(·), π(·), y(·)} to denote them. In the model

where the exogenous shock takes three values, the recursive equilibrium is given by a vector,

{yH , πH , iH , yM , πM , iM , yL, πL, iL}, which satisfies the Euler equation, the Phillips curve,

and the truncated Taylor rule in H, M, and L states.

Given that there are three states and that the ELB either binds or does not bind in

each of the three states, there are eight potential equilibria. As we will show later, the

number of equilibria is either zero, one, or two, depending on the parameter values. In our

paper, our focus is on situations where there are two equilibria. Comparing the inflation

rate across the two equilibria, one equilibrium features a higher inflation rate than the other

equilibrium. We will call the equilibrium with a higher inflation rate the targeted equilibrium

and the equilibrium with a lower inflation rate the deflationary equilibrium. We will denote

the targeted equilibrium by {iTE(·), πTE(·), yTE(·)} and the deflationary equilibrium by

{iDE(·), πDE(·), yDE(·)}. In the three-state model, we will also denote them by {yTE
H , πTE

H ,

iTE
H , yTE

M , πTE
M , iTE

M , yTE
L , πTE

L , iTE
L } and {yDE

H , πDE
H , iDE

H , yDE
M , πDE

M , iDE
M , yDE

L , πDE
L , iDE

L }.

2.3 Deterministic and Risky Steady States

Deterministic Steady State: Generically speaking, a deterministic steady state of the model

is where the economy is at in the absence of any exogenous shocks. In our model with the

three-state shock, a deterministic steady state of the model is given by the output gap, the

inflation rate, and the policy rate if c = 0. If c = 0, the values of these variables are identical

in all three states. To highlight the difference with the risky steady state, it is useful to

characterize a deterministic steady state as {yM , πM , iM} when c = 0.

When there are two equilibria, there are two deterministic steady states: one associated

with the targeted equilibrium and one associated with the deflationary equilibrium. We will

denote the deterministic steady state associated with the targeted equilibrium by {yTE
DSS ,

πTE
DSS , i

TE
DSS}. We will denote the deterministic steady state associated with the deflationary

equilibrium by {yDE
DSS , π

DE
DSS , i

DE
DSS}. Because the deterministic steady state is identical to

the value of the model’s variables in the middle state, we can also state that the deterministic



steady states associated with the targeted and deflationary equilibria are given by {yTE
M , πTE

M ,

iTE
M } and {yDE

M , πDE
M , iDE

M } when c = 0.

Risky Steady State: Generically speaking, a risky steady state of the economy is a point

at which the economy eventually converges when exogenous shocks exist and are at its steady

state values (Coeurdacier, Rey, andWinant (2011)). The key difference with the deterministic

steady state is that even though the exogenous shocks are at their steady-state values, agents

in the model are aware of the possibility that they may take other values in the next period

and optimize accordingly. In a model in which there is no endogenous state variable, a risky

steady state of the model is given by policy functions evaluated at exogenous shocks taking

their steady-state values. In our model, that means the output gap, the inflation rate, and

the policy rate in the M state when δ = 0 ({yM , πM , iM}).
When there are two equilibria, there are two deterministic steady states: one associated

with the targeted equilibrium and one associated with the deflationary equilibrium. We will

denote the risky steady state associated with the targeted equilibrium by {yTE
RSS , π

TE
RSS , i

TE
RSS}.

We will denote the risky steady state associated with the deflationary equilibrium by {yDE
RSS ,

πDE
RSS , i

DE
DSS}. Because the risky steady state is identical to the value of the model’s variables

in the middle state, we can also write the deterministic steady states associated with the

targeted and deflationary equilibria by {yTE
M , πTE

M , iTE
M } and {yDE

M , πDE
M , iDE

M }.

3 Results

3.1 Allocations without Uncertainty

When there is no uncertainty, it is straightforward to compute allocations for the targeted

and deflationary equilibria—which correspond to the deterministic steady states of those two

equilibria. The allocations in the targeted equilibrium are given by

yTE
DSS = 0, πTE

DSS = 0, iTE
DSS = r∗ (8)

and the allocations in the deflationary equilibrium are given by

yDE
DSS = −r∗(1− β)

κ
, πDE

DSS = −r∗, iDE
DSS = 0 (9)

3.2 Allocations with Uncertainty

We now examine the effect of uncertainty on steady-state allocations by comparing allocations

with varying degrees of uncertainty.

The upper panels in Figure 1 show the policy functions for the output gap, inflation, and

the policy rate in the deflationary equilibrium. Solid black and dashed blue lines represent

the case of low and high uncertainty, respectively.



Figure 1: Policy functions: Moderate φπ

When the degree of uncertainty is low, the policy functions are symmetric. The magni-

tudes of the increases in output and inflation when δ rises from 0 to c are the same as those

when δ declines from 0 to −c. This symmetry arises because the policy rate remains at the

ELB in all three states. The policy rate is still at the ELB even in the high state because

the increase in inflation is small when c is small. As a result, the allocations in the middle

state—the risky steady state allocations—are identical to those in the deterministic steady

state, which are indicated by thin black horizontal lines. Note that the expected inflation is

identical to the actual inflation when the economy is in the middle state in this symmetric

case.

When the degree of uncertainty is high, the policy functions are asymmetric. When δ rises

from 0 to c, output and inflation increase. If the increase in inflation is sufficiently large, the

Taylor rule implies a positive policy rate. Thus, the policy rate also increases and partially

offsets the increase in inflation. When δ declines from 0 to −c, output and inflation decline.

Because the policy rate is bounded below by the ELB in the middle state, the declines in

output and inflation are not met by a reduction in the policy rate no matter how large the

shock size is.

Due to this asymmetry, certainty equivalence breaks down. In particular, all else equal,

the introduction of a high degree of uncertainty pushes down the expected inflation in the



middle state. In the deflationary equilibrium, a decline in the expected inflation—somewhat

paradoxically—increases the actual inflation, as pointed out by Bilbiie (2022), Mertens and

Ravn (2014), and Nakata and Schmidt (2022). In a rational-expectations equilibrium, an

increase in the actual inflation pushes up inflation expectations, which further pushes up the

actual inflation. All told, the rate of inflation in the middle state—which is equivalent to the

rate of inflation at the risky steady state—is higher than that at the deterministic steady

state in the deflationary equilibrium.

This effect of uncertainty in the steady-state inflation in the deflationary equilibrium is the

opposite of that in the targeted equilibrium analyzed by Hills, Nakata, and Schmidt (2019).

As shown in the lower panels of Figure 1—which shows the policy functions for the targeted

equilibrium—the introduction of a high degree of uncertainty breaks certainty equivalence:

When δ rises from 0 to c, output and inflation increase. However, their increases are partially

offset by the corresponding increase in the policy rate. When δ declines from 0 to −c, output

and inflation decline. If the decline in inflation is sufficiently large, the policy rate faces the

ELB constraint. This asymmetry pushes down the expected inflation, which in turn lowers

the actual inflation rate in the targeted equilibrium.

We can also theoretically prove these effects of uncertainty on the state-state inflation

numerically described above.

Proposition 1. When c is sufficiently small, the rate of inflation at the risky steady state

coincides with that at the deterministic steady state in the deflationary equilibrium. When

c is sufficiently large, the rate of inflation is higher at the risky steady state than at the

deterministic steady state in the deflationary equilibrium.

Proposition 2. When c is sufficiently small, the rate of inflation at the risky steady state

coincides with that at the deterministic steady state in the targeted equilibrium. When c is suf-

ficiently large, the rate of inflation is lower at the risky steady state than at the deterministic

steady state in the targeted equilibrium.

The proofs for these propositions are in Appendix B.

4 Risk-adjusted Fisher Relation

4.1 Heuristics

It is common to visualize the deterministic steady states of the New Keynesian model using

the Fisher relation and the truncated Taylor rule (Benhabib, Schmitt-Grohe, and Uribe (2001)

and Bullard (2010)). The Fisher relation is a relationship between the rate of inflation and

the policy rate in the absence of uncertainty. If there is no uncertainty in our three-state

model, the Euler equation in the middle state is given by



yM = EM [y]− σ [iM − EM [π]− r∗] (10)

In the absence of uncertainty, the expected output gap and the expected rate of inflation are

identical to yM and πM , respectively. As a result, the Euler equation above can be written

as

iM = r∗ + πM (11)

We call this relationship the Fisher relation. The intersections of the Fisher relation and the

truncated Taylor rule are the model’s deterministic steady states.

If we take uncertainty into account and if the degree of uncertainty is sufficiently large,

the policy functions are asymmetric. As a result, the expected output gap and the expected

rate of inflation are no longer identical to the output gap and the rate of inflation in the

middle state. Lets denote the wedge between expected output (inflation) and actual output

(inflation) as

hy := (1− pM )

(
yH + yL

2
− yM

)
(12)

hπ := (1− pM )

(
πH + πL

2
− πM

)
(13)

Due to this wedge, a relationship between the rate of inflation and the policy rate is different

from the Fisher relation described above. Specifically, the Euler equation becomes

yM = EM [y]− σ [iM − EM [π]− r∗]

= pMyM + (1− pM )
yH + yL

2
− σ

[
iM −

(
pMπM + (1− pM )

πH + πL
2

)
− r∗

]

= hy + yM − σ [iM − (hπ + πM )− r∗]

iM = r∗ + πM +
1

σ
hy + hπ (14)

We call this relationship between πM and iM as the risky-adjusted Fisher relation. The risky

steady states of the model are given by the intersections of the risk-adjusted Fisher relation

and the truncated Taylor rule.

To formally define the risk-adjusted Fisher relation is a bit complicated. The Fisher

relation—whether standard or risk-adjusted—gives us possible combinations of πM and iM

that can constitute a steady state. It has to be defined for all values of πM . Except for one or

two values of πM , all other values are not consistent with either the targeted or deflationary

equilibrium. Yet, to compute the wedge between the actual and expected rates of inflation

and the wedge between the actual output gap and the expected output gap, we need to



compute policy functions for inflation and output that are consistent with values of πM that

do not materialize in equilibrium. Because the policy functions depend on the value of πM ,

the wedge term in the risk-adjusted Fisher relation also depends on the value of πM .

In what follows, we formally define the risk-adjusted Fisher relation, examine its proper-

ties, and illustrate it numerically.

4.2 Definition

The risk-adjusted Fisher relation is defined as follows:

iM = r∗ + πM + σ−1
(
E[yh,πM (δ′)|δ = 0]− yM

)
+
(
E[πh,πM (δ′)|δ = 0]− πM

)
(15)

yh,πM (·) and πh,πM (·) are hypothetical policy functions for output and inflation that would

prevail if πh,M (δ = 0) = πM—that is, if the rate of inflation at the risky steady state is πM—

and that satisfies the relative Euler equation—relative to the Euler equation in the middle

state—the Phillips curve. The relative Euler equation is defined for all x �= 0 and is given by

yh,πM (δ = x)− yh,πM (δ = 0)

= E[yh,πM (δ′)|δ = x]− E[yh,πM (δ′)|δ = 0]− σ[ih,πM (δ = x)− ih,πM (δ = 0)]

+ σ
(
E[πh,πM (δ′)|δ = x]− E[πh,πM (δ′)|δ = 0]

)
− x (16)

In other words, the relative Euler equation is what we obtain when we subtract the Euler

equation at δ = 0 from the Euler equation at δ �= 0.

4.3 Properties

We can analytically show that the risk-adjusted Fisher relation takes the form of a piecewise

linear function:

Proposition 3. The risk-adjusted Fisher relation is the following piecewise linear function:

iM =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r∗ + πM if πM < πLB

r∗ +A+BπM if πLB ≤ πM ≤ πB

r∗ + C +DπM if πB ≤ πM ≤ πUB

r∗ + πM if πUB < πM

(17)

where

πLB := −r∗ + κφπσc

φπ
, πB := − r∗

φπ
, πUB := −

r∗
φπ

+ κσ(r∗ − c)

κσφπ + 1

and



A =
1

2
(pM − 1)

(
r∗ + κσc+

κσ(1− φπ)(r
∗ − c)

1 + κσφπ

)

B =
1

2

(
pM + 1− (φπ − 1)(1− pM )

1 + κσφπ

)

C =
1

2
(1− pM )(1 + κσ)

(
r∗ − κσφπ

1 + κσφπ
c

)

D =
1

2
φπ(1− pM )(1 + κσ) + 1

Proof. See Appendix C.

Note that πB is the rate of inflation at which the policy rate implied by the Taylor rule is

exactly zero.

According to this proposition, when πM is sufficiently away from this πB, the risk-adjusted

Fisher relation is identical to the standard Fisher relation. This result arises for the following

reasons. Given an arbitrary shock size, c, if πM is sufficiently below πB, then a positive

realization of the shock would not push the rate of inflation by a sufficiently large amount

to cause the policy rate to become positive. Thus, the distribution of future inflation is

symmetric. Thus, the expected inflation and output terms in the Euler equation are the same

as the inflation and output in the middle state, making the risk-adjusted Fisher relation the

same as the standard Fisher relation.

Similarly, if πM is sufficiently above πB, a negative shock would not push down inflation by

a sufficiently large amount to cause the policy rate to face the ELB, implying the symmetric

distribution in future inflation and output. Accordingly, the risk-adjusted Fisher relation is

the same as the standard Fisher relation.

When πM is sufficiently close to πB, the risk-adjusted Fisher relation diverges from the

standard Fisher relation. When πM is below πB but above πLB, the policy rate is at the ELB

in the middle and low states, but above the ELB in the high state, if the size of the shock—

c—is sufficiently large. This asymmetry in the policy function for the policy rate means

asymmetry in the policy functions for output and inflation. Thus, the expected output and

inflation differ from output and inflation in the middle state. Accordingly, the risk-adjusted

Fisher relation diverges from the standard Fisher relation.

Similarly, when πM is above πB but below πUB, the policy rate is above the ELB in

the middle and high states, but at the ELB in the low state if the size of the shock—c—is

sufficiently large. This asymmetry breaks certainty equivalence, making the expected output

and inflation differ from output and inflation in the middle state. Accordingly, the risk-

adjusted Fisher relation diverges from the standard Fisher relation.



4.4 Numerical Illustration

Figure 2 shows the risk-adjusted Fisher relation with various degrees of uncertainty—various

values for c—together with the truncated Taylor rule—shown by the solid red lines. When

there is no uncertainty—when c = 0—the risk-adjusted Fisher relation is identical to the

standard Fisher relation, as shown by the solid black line. The risky steady states are identical

to the deterministic steady states in this case, as shown by the red and black diamonds in the

figure. With c = 0.005, the risk-adjusted Fisher relation diverges from the standard Fisher

relation, but only near the threshold value of π, as shown by the dashed black line. In this

case, the risky steady states are also identical to the deterministic steady states.

Figure 2: Risk-adjusted Fisher Relation

With c = 0.01, the risk-adjusted Fisher relation shifts down further—shown by the dah-

dotted line—from the standard Fisher relation. In this case, the risky steady states are no

longer identical to the deterministic steady states. In particular, the risky steady state of

the deflationary equilibrium—denoted by the black diamond—features a higher inflation rate

than the deterministic steady state of the deflationary equilibrium. The risky steady state of

the targeted equilibrium—denoted by the red diamond—features a lower inflation rate than

the deterministic steady state of the targeted equilibrium. These results are consistent with

the analytical results discussed in the previous section.

With c = cmax, the risk-adjusted Fisher relation touches the truncated Taylor rule at the

threshold value of πM . In this case, there is only one equilibrium in the model. If c increases

further, the risk-adjusted Fisher relation does not intersect the truncated Taylor rule at all,

which corresponds to the case with no equilibrium.



5 Interesting Cases

5.1 Positive Inflation in the Deflationary Equilibrium

The graphical illustration based on the risk-adjusted Fisher relation suggests that the risky

steady state inflation rate of the deflationary equilibrium may take any values between −r∗

and πB—the “bottom part” of the truncated Taylor rule. In models where the target rate of

inflation is positive, the threshold value can be positive. As a result, if the degree of uncer-

tainty is sufficiently large, the risky-steady-state inflation rate of the deflationary equilibrium

becomes—somewhat paradoxically—positive.

Figure 3: Risk-adjusted Fisher Relation with Positive Inflation Target

Figure 3 describes this case. In this example, the target rate of inflation is set to 2

percent, which is consistent with a positive threshold value of the inflation rate. Thus, with a

sufficiently high degree of uncertainty, the inflation rate at the risky steady state is positive.

The policy rate is still at the ELB, as in the standard example demonstrated in the previous

section.

This configuration of the inflation rate and the policy rate is consistent with the Japanese

economy in the 2010s. Since the late 1990s when the Bank of Japan first lowered the policy

rate to the ELB, the Japanese economy has been described as being stuck in the deflationary

equilibrium (Bullard (2010)). Such a description might have been adequate in the 2000s, but

might not have been so in the 2010s. As shown by Figure 4, various measures of inflation rates

in Japan hovered around a level slightly above zero percent in the 2010s, while it hovered

around a level slightly below zero percent in the 2000s.

Figure 5 shows the scatter plot of the inflation rate and the policy rate together with the

risk-adjusted Fisher relation and the truncated Taylor rule. Here, in computing these two

theoretical constructs, we set r∗ to 0.25 percent (annualized)—close to the upper estimate of

the neutral rate in Nakano, Sugioka, and Yamamoto (2024). This figure reinforces the idea



Figure 4: Inflation in Japan: 2000s and 2010s
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Figure 5: Risky Steady States and Inflation in Japan

that the fluctuation around the risky steady state of the deflationary equilibrium—the black

dot—may be a better description of the Japanese economy than the fluctuation around the

deterministic steady state of the deflationary equilibrium—the red dot.

5.2 Positive Policy Rate in the Deflationary Equilibrium

Not only the target rate of the inflation examined above, the responsiveness of the policy rate

to the inflation rate in the truncated Taylor rule—captured by the coefficient on inflation—

affects the inflation rate of the risky steady state in interesting ways.

Figure 6 shows the case in which the coefficient on inflation is low. In this case, when the

degree of uncertainty is sufficiently large, the risky steady state of the deflationary equilibrium

can be at the part of the truncated Taylor rule featuring a positive policy rate and a below-



target rate of inflation. We often associate the deflationary steady state with the binding

ELB constraint. This example suggests that such an association is not warranted.

Figure 6: Risk-adjusted Fisher Relation:
Positive Policy Rate in the Risky Steady State of the Deflationary Equilibrium

It is interesting to note that the risky steady state of the targeted equilibrium typically

features the positive policy rate and a below-target rate of inflation, as discussed in detail

by Hills, Nakata, and Schmidt (2019) and reiterated in Section 3. Thus, the configuration

of a positive policy rate and a below-target rate of inflation itself does not tell whether the

economy is at the targeted equilibrium or the deflationary equilibrium.

5.3 Binding ELB in the Targeted Equilibrium

The example above uncovered an interesting configuration of the policy rate and the inflation

rate at the risky steady state of the deflationary equilibrium when the policy rate does not

strongly respond to the rate of inflation. An interesting configuration can also emerge for the

risky steady state of the targeted equilibrium when the policy rate strongly responds to the

rate of inflation.

Figure 7 shows the case in which the coefficient on inflation is high. In this case, when the

degree of uncertainty is sufficiently large, the risky steady state of the targeted equilibrium

can be at the bottom part of the truncated Taylor rule featuring the binding ELB constraint

and a below-target rate of inflation. We often associate the steady state of the targeted

equilibrium with a positive policy rate. This example suggests that such an association is

not warranted.

The risky steady state of the deflationary equilibrium typically features the binding ELB

constraint and a below-target rate of inflation, as discussed in Section 3. Thus, the configura-

tion of the binding ELB constraint policy rate and a below-target rate of inflation itself does

not tell whether the economy is at the targeted equilibrium or the deflationary equilibrium.



Figure 7: Risk-adjusted Fisher Relation:
Binding ELB in the Risky Steady State of the Targeted Equilibrium

6 Conclusion

In this paper, we analyzed how uncertainty about the future course of the economy affects

allocations under the deflationary equilibrium, paying particular attention to the steady-state

allocation. We find that the rate of inflation is higher at the risky steady state than at the

deterministic steady state in the deflationary equilibrium. When the target rate of inflation

set by the central bank is positive, our result implies that the rate of inflation can be—

somewhat paradoxically—positive at the risky steady state of the deflationary equilibrium if

the degree of uncertainty is sufficiently large. This situation is consistent with the Japanese

economy in the 2010s when the rate of inflation hovered around a slightly positive level while

the policy rate was constrained at the ELB. Along the way, we also proposed a novel concept,

the risk-adjusted Fisher relation, to visualize the effect of uncertainty on the steady-state

inflation rate and the policy rate.

The long-run trend rate of inflation is either the target rate set by the central bank or

the inverse of the subjective discount factor of the household in the New Keynesian model

if we abstract away from uncertainty. Many researchers find that the long-run trend rate of

inflation can deviate persistently from these two possibilities in reality. Our analysis shows

that uncertainty can help bridge the gap between the model and reality in terms of the

long-term trend of inflation.
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Technical Appendix for Online Publication

A Proofs Related to Equilibrium Existence

A.1 Equilibrium Conditions: State-by-State

Before we proceed to various proofs, it is useful to spell out the equilibrium conditions of our
three-state model state-by-state.

yH = E[yt+1]− σ [iH − r∗ − E[πt+1]− c] (A1)

yM = E[yt+1]− σ [iM − r∗ − E[πt+1]] (A2)

yL = E[yt+1]− σ [iL − r∗ − E[πt+1] + c] (A3)

πH = κyH + βE[πt+1] (A4)

πM = κyM + βE[πt+1] (A5)

πL = κyL + βE[πt+1] (A6)

iH = max [0, r∗ + φππH ] (A7)

iM = max [0, r∗ + φππM ] (A8)

iL = max [0, r∗ + φππL] (A9)

where E[xt+1] :=
1−pM

2 xH + pMxM + 1−pM
2 xL and x ∈ {y, π}.

A.2 Candidate Equilibria

There are 8 (= 23) possible equilibria in our model because the ELB constraint either binds
or does not bind in each of the three states.

Definition A.1. Let the equilibrium 1 be an equilibrium in which the ELB does not bind in
any state.

Definition A.2. Let the equilibrium 2 be an equilibrium in which the ELB binds only in the
low state.

Definition A.3. Let the equilibrium 3 be an equilibrium in which the ELB binds only in the
middle state.

Definition A.4. Let the equilibrium 4 be an equilibrium in which the ELB binds only in the
high state.

Definition A.5. Let the equilibrium 5 be an equilibrium in which the ELB binds in the low
and middle state but does not bind in the high state.

Definition A.6. Let the equilibrium 6 be an equilibrium in which the ELB binds in the low
and high state but does not bind in the middle state.



Definition A.7. Let the equilibrium 7 be an equilibrium in which the ELB binds in the
middle and high state but does not bind in the low state.

Definition A.8. Let the equilibrium 8 be an equilibrium in which the ELB binds in all three
states.

A.3 Non-existence of Some Equilibria

Proposition A.1. Candidate equilibria 3, 4, 6, and 7 do not exist for any c ≥ 0.

Proof. To begin, we can rewrite our system of nine equations and nine unknowns into a
system of three equations and three unknowns. Our three unknowns will be {πH , πM , πL}.
To do so, rewrite the Phillips Curve as

yj =
πj − βE[πt+1]

κ

for j ∈ {H,M,L}. Substitute the above equation and the Taylor rule into the Euler equation.
We now have a system of three equations and three unknowns. To check if this is a valid
equilibrium, we will construct the shadow policy rate as follows.

ishadowj = r∗ + φππ
∗
j .

where π∗
j is the solution to the system of linear equations. If ishadowj is at odds with the

equilibrium condition we assumed, then this cannot be a valid equilibrium.
In the remainder of the proof, we will consider these four candidate equilibria one by one.

Equilibrium 3

By solving a system of linear equations defining the model’s equilibrium conditions, inflation
in Equilibrium 3 is given by

πL =
−σ (pMσ (r∗ + c)κ+ (r∗ + c) pM − c)κφπ − σ (pMr∗ + c)κ− pMr∗

(1 + (κpMσ + pM − 1)φπ) (κφπσ + 1)

πM = −(κφπσ + σ (pM − 1)κ+ pM ) r∗

1 + (κpMσ + pM − 1)φπ

πH =
−σκ (pMσ (r∗ − c)κ+ (r∗ − c) pM + c)φπ − σ (pMr∗ − c)κ− pMr∗

(1 + (κpMσ + pM − 1)φπ) (κφπσ + 1)

and the shadow policy rate evaluated at c = 0 is given by:

ishadowL = − r∗ (φπ − 1) (κφπσ + 1)

(1 + (κpMσ + pM − 1)φπ) (κφπσ + 1)

ishadowM = − r∗ (φπ − 1) (κφπσ + 1)

1 + (κpMσ + pM − 1)φπ

ishadowH = − r∗ (φπ − 1) (κφπσ + 1)

(1 + (κpMσ + pM − 1)φπ) (κφπσ + 1)



Suppose that (κpMσ + pM − 1)φπ + 1 > 0. Then, ishadowL (c = 0) < 0. We can show that

∂ishadowL

∂c
= − κφπσ

κφπσ + 1
< 0

Thus, ishadowL < 0 for any c, which contradicts the equilibrium condition that ELB does not
bind in L state.

Suppose that (κpMσ + pM − 1)φπ + 1 < 0. Then, ishadowM (c = 0) > 0. We can show that

∂ishadowM

∂c
= 0

Thus, ishadowM > 0 for any c, which contradicts the equilibrium condition that ELB binds in
the M state.

Equilibrium 4

By solving a system of linear equations defining the model’s equilibrium conditions, inflation
in Equilibrium 4 is given by

πL =
−σ2φπ (r

∗ + 2c) (pM − 1)κ2 − σ (((r∗ + 2c) pM − r∗)φπ + pMr∗ − r∗ − 2c)κ− r∗ (pM − 1)

(κφπσ + 1) (σφπ (pM − 1)κ− 2 + (pM + 1)φπ)

πM = − (pM − 1) (κσ (r∗ + c)φπ + r∗) (σκ+ 1)

(κφπσ + 1) (−2 + ((pM − 1)σκ+ pM + 1)φπ)

πH =
− ((−2r∗ − 2c)φπ + (pM + 1) r∗ + 2c)σκ− r∗ (pM − 1)

σφπ (pM − 1)κ− 2 + (pM + 1)φπ

and the shadow policy rate evaluated at c = 0 is given by:

ishadowL =
2 (φπ − 1) r∗

((pM − 1)σκ+ pM + 1)φπ − 2

ishadowM =
2 (φπ − 1) r∗

((pM − 1)σκ+ pM + 1)φπ − 2

ishadowH =
2r∗ (φπ − 1) (κφπσ + 1)

((pM − 1)σκ+ pM + 1)φπ − 2

Suppose ((pM − 1)σκ+ pM + 1)φπ−2 > 0. Then, ishadowH (c = 0) > 0. We can show that

∂ishadowH

∂c
=

2 (φπ − 1)κφπσ

((pM − 1)σκ+ pM + 1)φπ − 2
> 0

Thus, ishadowH > 0 for any c, which contradicts the equilibrium condition that ELB binds in
H state.

Suppose that ((pM − 1)σκ+ pM + 1)φπ−2 < 0. Then, ishadowM (c = 0) < 0. We can show
that

∂ishadowM

∂c
= − (σκ+ 1) (pM − 1)κσφ2

π

(−2 + ((pM − 1)σκ+ pM + 1)φπ) (κφπσ + 1)
< 0



Thus, ishadowM < 0 for any c, which contradicts the equilibrium condition that ELB does not
bind in the M state.

Equilibrium 6

By solving a system of linear equations defining the model’s equilibrium conditions, inflation
in Equilibrium 6 is given by

πL =
−c σ2φπ (pM − 1)κ2 − ((cpM − r∗)φπ + pMr∗ − c)σκ− r∗ (pM − 1)

σφπ (pM − 1)κ+ pMφπ − 1

πM = − r∗ (σκ+ 1) (pM − 1)

−1 + (σ (pM − 1)κ+ pM )φπ

πH =
c σ2φπ (pM − 1)κ2 − ((−cpM − r∗)φπ + pMr∗ + c)σκ− r∗ (pM − 1)

σφπ (pM − 1)κ+ pMφπ − 1

and the shadow policy rate evaluated at c = 0 is given by:

ishadowL =
r∗ (φπ − 1) (κφπσ + 1)

−1 + (σ (pM − 1)κ+ pM )φπ

ishadowM =
r∗ (φπ − 1)

−1 + (σ (pM − 1)κ+ pM )φπ

ishadowH =
r∗ (φπ − 1) (κφπσ + 1)

−1 + (σ (pM − 1)κ+ pM )φπ

Suppose that (σ (pM − 1)κ+ pM )φπ − 1 > 0. Then, ishadowH (c = 0) > 0. We can show
that

∂ishadowH

∂c
= κφπσ > 0

Thus, ishadowH > 0 for any c, which contradicts the equilibrium condition that ELB binds in
H state.

Suppose that (σ (pM − 1)κ+ pM )φπ − 1 < 0. Then, ishadowM (c = 0) < 0. We can show
that

∂ishadowM

∂c
= 0

Thus, ishadowM < 0 for any c, which contradicts the equilibrium condition that ELB does not
bind in the M state.

Equilibrium 7

By solving a system of linear equations defining the model’s equilibrium conditions, inflation



in Equilibrium 7 is given by

πL =
−σ (pMr∗ + 2c+ r∗)κ− r∗ (pM + 1)

σφπ (pM + 1)κ+ 2 + (pM − 1)φπ

πM =
σ (cσ (pM − 1)κ+ pMc− 2r∗ − c)κφπ − r∗ ((pM − 1)σκ+ pM + 1)

2 + (σ (pM + 1)κ+ pM − 1)φπ

πH =
2c κ2pMφπσ

2 − σ ((−2pMc+ 2c+ 2r∗)φπ + pMr∗ − r∗ − 2c)κ− r∗ (pM + 1)

σφπ (pM + 1)κ+ 2 + (pM − 1)φπ

and the shadow policy rate evaluated at c = 0 is given by:

ishadowL = − 2r∗ (φπ − 1)

2 + (σ (pM + 1)κ+ pM − 1)φπ

ishadowM = − 2r∗ (φπ − 1) (κφπσ + 1)

2 + (σ (pM + 1)κ+ pM − 1)φπ

ishadowH = − 2r∗ (φπ − 1) (κφπσ + 1)

2 + (σ (pM + 1)κ+ pM − 1)φπ

Suppose that 2+(σ (pM + 1)κ+ pM − 1)φπ > 0. Then, ishadowL (c = 0) < 0. We can show

∂ishadowL

∂c
= − 2κφπσ

2 + (σ (pM + 1)κ+ pM − 1)φπ
< 0

Thus, ishadowL < 0 for any c, which contradicts the equilibrium condition that ELB does not
bind in the L state.

Suppose that 2 + (σ (pM + 1)κ+ pM − 1)φπ < 0. Then, ishadowM (c = 0) > 0. It can be
shown that

∂ishadowM

∂c
=

σκφ2
π (σκ+ 1) (pM − 1)

2 + (σ (pM + 1)κ+ pM − 1)φπ
> 0

Thus, ishadowM > 0 for any c, which contradicts the equilibrium condition that ELB binds in
the M state.

A.4 Existence of Other Equilibria

Unless otherwise noted, we will assume that φ
π
< φπ < φπ where

φ
π
:=

2

σκpM − σκ+ pM + 1

φπ :=
−2

σκpM + σκ+ pM − 1

We will also assume that pM > (σκ− 1) /(σκ+ 1).

Proposition A.2. Equilibrium 1 exists when c ≤ c where

c =
r∗ (κφπσ + 1)

κφπσ



Proposition A.3. Equilibrium 2 exists when c ≤ c ≤ c̃ where c is defined in the previous
proposition and

c̃ =
2r∗ (φπ − 1) (κφπσ + 1)

κ (σκ+ 1) (1− pM )σφ2
π

Proposition A.4. Equilibrium 5 exists when c ≤ c ≤ c̃ where c̃ is defined in the previous
proposition and

c =
r∗ (φπ − 1)

κφπσ

Proposition A.5. Equilibrium 8 exists when c ≤ c where c is defined in the previous propo-
sition.

Proposition A.6. There are two equilibria when c < c̃. There is one equilibrium when c = c̃.
There is no equilibrium when c > c̃.

Proof of Proposition A.2.: By solving a system of linear equations defining the model’s
equilibrium conditions, inflation in Equilibrium 1 is given by

πL = − κσ

κφπσ + 1
c

πM = 0

πH =
κσ

κφπσ + 1
c

When c = 0, πH = πM = πL = 0. According to the truncated Taylor rule, iH = iM = iL = r∗.
Thus, Equilibrium 1 exists when c = 0. when c > 0, πL < πM < πH . Accordingly, to find the
maximum value of c for which this equilibrium exists, we only need to check when ishadowL is
at odd with our equilibrium condition.

ishadowL consistent with πL above is given by

ishadowL = − κσφπ

κφπσ + 1
c+ r∗

If we find the value of c such that ishadowL = 0, that is the maximum degree of uncertainty
consistent with this equilibrium. Accordingly, Equilibrium 1 exists when c ≤ c.

Proof of Proposition A.3.: By solving a system of linear equations defining the model’s
equilibrium conditions, inflation in Equilibrium 2 is given by

πL =
(κσ (r∗ − c)φπ + r∗) (σκ+ 1) (1− pM )

((pM − 1)σκ+ pM + 1)φπ − 2
+ κσ(r∗ − c)

πM =
(κσ (r∗ − c)φπ + r∗) (σκ+ 1) (1− pM )

(κφπσ + 1) (((pM − 1)σκ+ pM + 1)φπ − 2)

πH = πM +
κσc

1 + κσφπ

When c > 0, πM < πH . Thus, to find the minimum and maximum on c which can be
supported by this equilibrium, it suffices to find the value of c where ishadowL = 0 and ishadowM =



0, respectively. ishadowL and ishadowM consistent with πL and πM above are given by

ishadowL =
2 (φπ − 1) (κσ (r∗ − c)φπ + r∗)
((pM − 1)σκ+ pM + 1)φπ − 2

ishadowM =
κ (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)σφ2

π + (2r∗ − 2κr∗σ)φπ − 2r∗

(((pM − 1)σκ+ pM + 1)φπ − 2) (κφπσ + 1)

If we find the value of c such that ishadowL = 0, that is the minimum degree of uncertainty
consistent with this equilibrium. If we find the value of c such that ishadowM = 0, that is the
maximum degree of uncertainty consistent with this equilibrium. Accordingly, Equilibrium
2 exists when c ≤ c ≤ c̃.

Proof of Proposition A.4.: By solving a system of linear equations defining the model’s
equilibrium conditions, inflation in Equilibrium 5 is given by

πL = πM − κσc

πM =
− (cσ (pM − 1)κ+ pMc+ 2r∗ − c)σκφπ − (σ (pM − 1)κ+ pM + 1) r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

πH =
πM − κσ(r∗ − c)

1 + κσφπ

When c > 0, πL < πM . Thus, to find the minimum and maximum on c which can be
supported by this equilibrium, it suffices to find the value of c where ishadowM = 0 and ishadowH =
0, respectively. ishadowM and ishadowH consistent with πM and πH above are given by

ishadowM =
− (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)κσφ2

π + (2κr∗σ − 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

ishadowH =
(2cσκ− 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

If we find c such that ishadowM = 0, that is the maximum degre of uncertainty consistent
with this equilibrium. If we find c such that ishadowH = 0, that is the minimum degree of un-
certainty consistent with this equilibrium. Accordingly, Equilibrium 5 exists when c ≤ c ≤ c̃.

Proof of Proposition A.5.: By solving a system of linear equations defining the model’s
equilibrium conditions, inflation in Equilibrium 8 is given by

πL = −r∗ − κσc

πM = −r∗

πH = −r∗ + κσc

When c = 0, πH = πM = πL = −r∗. According to the shadow policy rate, ishadowH =
ishadowM = ishadowL = 0. Thus, Equilibrium 8 exists when c = 0. When c > 0, πL < πM < πH .
Accordingly, to find the maximum value of c for which this equilibrium exists, we only need
to compute when ishadowL is at odds with our equilibrium condition.

ishadowH consistent with πH above is given by

ishadowH = (κσc− r∗)φπ + r∗



If we find c such that ishadowH = 0, that is the maximum degree of uncertainty consistent with
this equilibrium.

Proof of Proposition A.6.: When φ
π
< φπ, c < c holds. By Proposition A.2 to Proposition

A.5, c < c < c̃. According to Proposition A.2-A.5, Equilibrium 1 and Equilibrium 8 exist
when c ≤ c, Equilibrium 1 and Equilibrium 5 exist when c ≤ c ≤ c, Equilibrium 2 and
Equilibrium 5 exist when c ≤ c ≤ c̃. When c = c̃, Equilibrium 2 and Equilibrium 5 coincide.
Accordingly, there is one equilibrium. When c > c̃, there is no equilibrium.

B Proofs of the Main Propositions

Proposition 1. When c is sufficiently small, the rate of inflation at the risky steady state
coincides with that at the deterministic steady state in the deflationary equilibrium. When
c is sufficiently large, the rate of inflation is higher at the risky steady state than at the
deterministic steady state in the deflationary equilibrium.

Proposition 2. When c is sufficiently small, the rate of inflation at the risky steady state
coincides with that at the deterministic steady state in the targeted equilibrium. When c is suf-
ficiently large, the rate of inflation is lower at the risky steady state than at the deterministic
steady state in the targeted equilibrium.

In what follows, we will denote πM in Equilibrium 2 and Equilibrium 5 as πL
M and πLM

M ,
respectively.

Proof of Proposition 1 : By Proposition A.6, Equilibrium 1 and Equilibrium 8 exist when
c ≤ c. Then, Equilibrium 8 is the deflationary equilibrium. Thus, rate of inflation at the
risky steady state coincides with that at the deterministic steady state when c ≤ c.

By Proposition A.6, Equilibrium 1 and Equilibrium 5 exist when c ≤ c ≤ c, Equilibrium
2 and Equilibrium 5 exist when c ≤ c ≤ c̃. When c = c̃, Equilibrium 2 and Equilibrium 5
coincide. Accordingly, Equilibrium 5 is deflationary equilibrium when c < c ≤ c̃.

πLM
M evaluated at c = c is −r∗, which coincides with the rate of inflation at the determin-

istic steady state. It can be shown that

∂πLM
M

∂c
=

(σκ+ 1)(1− pM )κσφπ

2 + (σ(pM + 1)κ+ pM − 1)φπ
> 0

Therefore, the rate of inflation is higher at the risky steady state than at the deterministic
steady state in the deflationary equilibrium when c < c < c̃.

Proof of Proposition 2 : By Proposition A.6, Equilibrium 1 and Equilibrium 8 exist when
c ≤ c, Equilibrium 1 and Equilibrium 5 exist when c ≤ c ≤ c. Then, Equilibrium 1 is the
targeted equilibrium when c ≤ c. Thus, the rate of inflation at the risky steady state coincides
with that at the deterministic steady state when c ≤ c.

By Proposition A.6, Equilibrium 2 and Equilibrium 5 exist when c ≤ c ≤ c̃. When
c = c̃, Equilibrium 2 and Equilibrium 5 coincide. Accordingly, Equilibrium 2 is the targeted
equilibrium when c < c < c̃.



πL
M evaluated at c = c is 0 which coincides with the rate of inflation at the deterministic

steady state. It can be shown that

∂πL
M

∂c
=

κ(σκ+ 1)(pM − 1)σφπ

(κφπσ + 1) (((pM − 1)σκ+ pM + 1)φπ − 2)
< 0

Therefore, the rate of inflation is lower at the risky steady state than at the deterministic
steady state in the targeted equilibrium when c < c < c̃.

C Proofs Related to the Risk-Adjusted Fisher Relation

Proposition 3. The risk-adjusted Fisher relation is the following piecewise linear function:

iM =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r∗ + πM if πM < πLB

r∗ +A+BπM if πLB ≤ πM ≤ πB

r∗ + C +DπM if πB ≤ πM ≤ πUB

r∗ + πM if πUB < πM

(17)

where

πLB := −r∗ + κφπσc

φπ
, πB := − r∗

φπ
, πUB := −

r∗
φπ

+ κσ(r∗ − c)

κσφπ + 1

and

A =
1

2
(pM − 1)

(
r∗ + κσc+

κσ(1− φπ)(r
∗ − c)

1 + κσφπ

)

B =
1

2

(
pM + 1− (φπ − 1)(1− pM )

1 + κσφπ

)

C =
1

2
(1− pM )(1 + κσ)

(
r∗ − κσφπ

1 + κσφπ
c

)

D =
1

2
φπ(1− pM )(1 + κσ) + 1

Proof. As discussed in Section 4, given πM , we need to compute the risk-adjustment term
based on hypothetical policy functions that would prevail if πh,πM (δ = 0) = πM and that
satisfy the relative Euler equations, the Phillips curve, and the truncated Taylor rule.

For any given πM , we will first solve for such hypothetical policy functions and then
compute the risk-adjusted Fisher relation consistent with them. We will do so separately for
each of the four ranges of πM : (i) πM < πLB, (ii) πLB ≤ πM ≤ πB, (iii) πB ≤ πM ≤ πUB,
and (iv) πUB < πM .

(i) πM < πLB

We construct the hypothetical policy functions consistent with πM in the following four steps.

Step 1: Construct the hypothetical policy function of inflation.



Substituting the Phillips Curve and the truncated Taylor rule into the relative Euler equation,
we obtain

πh,πM (δ = c) = πM + κσc

πh,πM (δ = −c) = πM − κσc

πh,πM (δ = 0) is given by

πh,πM (δ = 0) = πM

Step 2: Express the expected inflation as a function of πM .

Using πh,πM (δ = c) and πh,πM (δ = −c), we obtain

E[πh,πM (δ′)|δ = 0] :=
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)

=πM

Step 3: Construct the hypothetical policy function of output gap.

Substituting πh,πM (δ = c), πh,πM (δ = −c), and E[πh,πM (δ′)|δ = 0] into rearranged Philips
curves, we obtain

yh,πM (δ = c) =
πh,πM (δ = c)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM + σc

yh,πM (δ = 0) =
πh,πM (δ = 0)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM

yh,πM (δ = −c) =
πh,πM (δ = −c)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM − σc

Step 4: Construct the hypothetical policy function of policy rate.

According to the truncated Taylor rules, the policy function of the policy rate is given by

ih,πM (δ = c) = 0

ih,πM (δ = 0) = 0

ih,πM (δ = −c) = 0

To summarize, the hypothetical policy functions are given by



πh,πM (δ = c) = πM + κσc

πh,πM (δ = 0) = πM

πh,πM (δ = −c) = πM − κσc

yh,πM (δ = c) =
1− β

κ
πM + σc

yh,πM (δ = 0) =
1− β

κ
πM

yh,πM (δ = −c) =
1− β

κ
πM − σc

ih,πM (δ = c) = 0

ih,πM (δ = 0) = 0

ih,πM (δ = −c) = 0

By construction, they satisfy the relative Euler equation, the Phillips curve, and the truncated
Taylor rule and πh,πM (δ = 0) = πM

Now that we have obtained the hypothetical policy functions consistent with πM such
that πLB ≤ πM ≤ πB, we can compute the risk-adjusted Fisher relation.

iM = r∗ + πM + σ−1
(
E[yh,πM (δ′)|δ = 0]− yM

)

+
(
E[πh,πM (δ′)|δ = 0]− πM

)

= r∗ + πM + σ−1

(
1− pM

2
yh,πM (δ = c) + pMyh,πM (δ = 0) +

1− pM
2

yh,πM (δ = −c)− yM

)

+

(
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)− πM

)

= r∗ + πM + (yM − yM ) + (πM − πM )

= r∗ + πM

(ii) πLB ≤ πM ≤ πB

We first construct the hypothetical policy functions consistent with πM in the following four
steps.

Step 1: Construct the hypothetical policy function of inflation.

Substituting the Philips curve and the truncated Taylor rule into the relative Euler equation,
we obtain

πh,πM (δ = c) =
πM − κσ(r∗ − c)

1 + κσφπ

πh,πM (δ = −c) = πM − κσc



πh,πM (δ = 0) is given by

πh,πM (δ = 0) = πM

Step 2: Express the expected inflation as a function of πM .

Using πh,πM (δ = c) and πh,πM (δ = −c), we obtain

E[πh,πM (δ′)|δ = 0] :=
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)

=
1

2

(
1− pM
1 + κσφπ

+ 1 + pM

)
πM − 1− pM

2

(
κσ(r∗ − c)

1 + κσφπ
+ κσc

)

Step 3: Construct the hypothetical policy function of output gap.

Substituting πh,πM (δ = c), πh,πM (δ = −c), and E[πh,πM (δ′)|δ = 0] into rearranged Philips
curves, we obtain

yh,πM (δ = c) =
πh,πM (δ = c)− βE[πh,πM (δ′)|δ = 0]

κ

=

(
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
− σφπ

)
πM

+
(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)
− σ(r∗ − c)

yh,πM (δ = 0) =
πh,πM (δ = 0)− βE[πh,πM (δ′)|δ = 0]

κ

=
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
πM +

(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)

yh,πM (δ = −c) =
πh,πM (δ = −c)− βE[πh,πM (δ′)|δ = 0]

κ

=
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
πM +

(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)
− σc

Step 4: Construct the hypothetical policy function of policy rate.

Substituting πh,πM (δ = c) into the truncated Taylor rule, we obtain

ih,πM (δ = c) = r∗ + φππ
h,πM (δ = c)

= r∗ + φπ

(
πM − κσ(r∗ − c)

1 + κσφπ

)

According to the truncated Taylor, ih,πM (δ = 0) and ih,πM (δ = −c) are given by

ih,πM (δ = 0) = 0

ih,πM (δ = −c) = 0

To summarize, the hypothetical policy functions are given by



πh,πM (δ = c) =
πM − κσ(r∗ − c)

1 + κσφπ

πh,πM (δ = 0) = πM

πh,πM (δ = −c) = πM − κσc

yh,πM (δ = c) =

(
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
− σφπ

)
πM

+
(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)
− σ(r∗ − c)

yh,πM (δ = 0) =
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
πM +

(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)

yh,πM (δ = −c) =
1

κ

(
1− β

2

(
1− pM
1 + κσφπ

+ 1 + pM

))
πM +

(1− pM )βσ

2

(
r∗ − c

1 + κσφπ
+ c

)
− σc

ih,πM (δ = c) = r∗ +
φπ (πM − κσ(r∗ − c))

1 + κσφπ

ih,πM (δ = 0) = 0

ih,πM (δ = −c) = 0

By construction, they satisfy the relative Euler equation, the Phillips curve, and the truncated
Taylor rule and πh,πM (δ = 0) = πM .

Now that we have obtained the hypothetical policy functions consistent with πM such
that πLB ≤ πM ≤ πB, we can compute the risk-adjusted Fisher relation.

iM = r∗ + πM + σ−1
(
E[yh,πM (δ′)|δ = 0]− yM

)

+
(
E[πh,πM (δ′)|δ = 0]− πM

)

= r∗ + πM + σ−1

(
1− pM

2
yh,πM (δ = c) + pMyh,πM (δ = 0) +

1− pM
2

yh,πM (δ = −c)− yM

)

+

(
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)− πM

)

= r∗ + πM + σ−1

(
yM − (1− pM )σ

2

(
r∗ +

φπ (πM − κσ(r∗ − c))

1 + κσφπ

)
− yM

)

+
1

2

(
1− pM
1 + κσφπ

+ 1 + pM

)
πM − (1− pM )κσ

2

(
r∗ − c

1 + κσφπ
+ c

)
− πM

= r∗ +
1

2
(pM − 1)

(
r∗ + κσc+

κσ(1− φπ)(r
∗ − c)

1 + κσφπ

)
+

1

2

(
pM + 1− (φπ − 1)(1− pM )

1 + κσφπ

)
πM

= r∗ +A+BπM

(iii) πB ≤ πM ≤ πUB

We construct the hypothetical policy functions consistent with πM in the following four steps.



Step 1: Construct hypothetical policy functions of inflation.

Substituting the Philips cure and the truncated Taylor rule into the relative Euler equation,
we obtain

πh,πM (δ = c) = πM +
κσc

1 + κσφπ

πh,πM (δ = −c) = (1 + κσφπ)πM + κσ(r∗ − c)

πh,πM (δ = 0) is given by

πh,πM (δ = 0) = πM

Step 2: Express the expected inflation as a function of πM .

Using πh,πM (δ = c) and πh,πM (δ = −c), we obtain

E[πh,πM (δ′)|δ = 0] :=
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)

=

(
1 +

1− pM
2

κσφπ

)
πM +

1− pM
2

(
κσr∗ − κ2σ2φπc

1 + κσφπ

)

Step 3: Construct the hypothetical policy function of output gap.

Substituting πh,πM (δ = c), πh,πM (δ = −c), and E[πh,πM (δ′)|δ = 0] into rearranged Philips
curves, we obtain

yh,πM (δ = c) =
πh,πM (δ = c)− βE[πh,πM (δ′)|δ = 0]

κ

=

(
1− β

κ
− (1− pM )βσφπ

2

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)
+

σc

1 + κσφπ

yh,πM (δ = 0) =
πh,πM (δ = 0)− βE[πh,πM (δ′)|δ = 0]

κ

=

(
1− β

κ
− (1− pM )βσφπ

2

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)

yh,πM (δ = −c) =
πh,πM (δ = −c)− βE[πh,πM (δ′)|δ = 0]

κ

=

(
1− β

κ
− (1− pM )βσφπ

2
+ σφπ

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)
+ σ(r∗ − c)

Step 4: Construct the hypothetical policy function of policy rate.

Substituting πh,πM (δ = c) into the truncated Taylor rule, we obtain

ih,πM (δ = c) = r∗ + φππ
h,πM (δ = c)

= r∗ + φπ

(
πM +

κσc

1 + κσφπ

)



According to the truncated Taylor rule, ih,πM (δ = 0) and ih,πM (δ = −c) is given by

ih,πM (δ = 0) = r∗ + φππM

ih,πM (δ = −c) = 0

To summarize, the hypothetical policy functions are given by

πh,πM (δ = c) = πM +
κσc

1 + κσφπ

πh,πM (δ = 0) = πM

πh,πM (δ = −c) = (1 + κσφπ)πM + κσ(r∗ − c)

yh,πM (δ = c) =

(
1− β

κ
− (1− pM )βσφπ

2

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)
+

σc

1 + κσφπ

yh,πM (δ = 0) =

(
1− β

κ
− (1− pM )βσφπ

2

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)

yh,πM (δ = −c) =

(
1− β

κ
− (1− pM )βσφπ

2
+ σφπ

)
πM +

(1− pM )βσ

2

(
κσφπc

1 + κσφπ
− r∗

)
+ σ(r∗ − c)

ih,πM (δ = c) = r∗ + φπ

(
πM +

κσc

1 + κσφπ

)

ih,πM (δ = 0) = r∗ + φππM

ih,πM (δ = −c) = 0

By construction, they satisfy the relative Euler equation, the Phillips curve, and the truncated
Taylor rule and πh,πM (δ = 0) = πM .

Now that we have obtained the hypothetical policy functions consistent with πM such
that πB ≤ πM ≤ πUB, we can compute the risk-adjusted Fisher relation.

iM = r∗ + πM + σ−1
(
E[yh,πM (δ′)|δ = 0]− yM

)

+
(
E[πh,πM (δ′)|δ = 0]− πM

)

= r∗ + πM + σ−1

(
1− pM

2
yh,πM (δ = c) + pMyh,πM (δ = 0) +

1− pM
2

yh,πM (δ = −c)− yM

)

+

(
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)− πM

)

= r∗ + πM + σ−1

(
yM +

1− pM
2

(
σφππM + σ(r∗ − c) +

σc

1 + κσφπ

)
− yM

)

+

(
1 +

1− pM
2

κσφπ

)
πM +

1− pM
2

(
κσr∗ − κ2σ2φπc

1 + κσφπ

)
− πM

= r∗ +
1

2
(1− pM )(1 + κσ)

(
r∗ − κσφπ

1 + κσφπ
c

)
+

(
1

2
(1− pM )(1 + κσ)φπ + 1

)
πM

= r∗ + C +DπM

(iv) πUB < πM



We construct the hypothetical policy functions consistent with πM in the following four steps.

Step 1: Construct the hypothetical policy function of inflation.

Substituting the Philips curve and the truncated Taylor rule into the relative Euler equation,
we obtain

πh,πM (δ = c) = πM +
κσc

1 + κσφπ

πh,πM (δ = −c) = πM − κσc

1 + κσφπ

πh,πM (δ = 0) is given by

πh,πM (δ = 0) = πM

Step 2: Express the expected inflation as a function of πM .

Using πh,πM (δ = c) and πh,πM (δ = −c), we obtain

E[πh,πM (δ′)|δ = 0] :=
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)

=πM

Step 3: Construct hypothetical policy functions of output gap.

Substituting πh,πM (δ = c), πh,πM (δ = −c), and E[πh,πM (δ′)|δ = 0] into rearranged Philips
curves, we obtain

yh,πM (δ = c) =
πh,πM (δ = c)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM +

σc

1 + κσφπ

yh,πM (δ = 0) =
πh,πM (δ = 0)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM

yh,πM (δ = −c) =
πh,πM (δ = −c)− βE[πh,πM (δ′)|δ = 0]

κ

=
1− β

κ
πM − σc

1 + κσφπ

Step 4: Construct the hypothetical policy function of policy rate.

Substituting the hypothetical policy functions of inflation into the truncated Taylor rules, we



obtain

ih,πM (δ = c) = r∗ + φππ
h,πM (δ = c)

= r∗ + φπ

(
πM +

κσc

1 + κσφπ

)

ih,πM (δ = 0) = r∗ + φππM

ih,πM (δ = −c) = r∗ + φππ
h,πM (δ = −c)

= r∗ + φπ

(
πM − κσc

1 + κσφπ

)

To summarize, the hypothetical policy functions are given by

πh,πM (δ = c) = πM +
κσc

1 + κσφπ

πh,πM (δ = 0) = πM

πh,πM (δ = −c) = πM − κσc

1 + κσφπ

yh,πM (δ = c) =
1− β

κ
πM +

σc

1 + κσφπ

yh,πM (δ = 0) =
1− β

κ
πM

yh,πM (δ = −c) =
1− β

κ
πM − σc

1 + κσφπ

ih,πM (δ = c) = r∗ + φπ

(
πM +

κσc

1 + κσφπ

)

ih,πM (δ = 0) = r∗ + φππM

ih,πM (δ = −c) = r∗ + φπ

(
πM − κσc

1 + κσφπ

)

By construction, they satisfy the relative Euler equation, the Phillips curve, and the truncated
Taylor rule and πh,πM (δ = 0) = πM

Now that we have obtained the hypothetical policy functions consistent with πM such
that πUB < πM , we can compute the risk-adjusted Fisher relation.



iM = r∗ + πM + σ−1
(
E[yh,πM (δ′)|δ = 0]− yM

)

+
(
E[πh,πM (δ′)|δ = 0]− πM

)

= r∗ + πM + σ−1

(
1− pM

2
yh,πM (δ = c) + pMyh,πM (δ = 0) +

1− pM
2

yh,πM (δ = −c)− yM

)

+

(
1− pM

2
πh,πM (δ = c) + pMπh,πM (δ = 0) +

1− pM
2

πh,πM (δ = −c)− πM

)

= r∗ + πM + (yM − yM ) + (πM − πM )

= r∗ + πM

D Proofs Related to Positive Inflation Target

The model with a positive inflation target can be written in the following way.

yt = Et[yt+1]− σ [it − Et[π̂t+1]− (r∗ + π∗)− δt] (D10)

π̂t = κyt + βEt[π̂t+1] (D11)

it = max[0, r∗ + π∗ + φππ̂t] (D12)

where

π̂t = πt − π∗ (D13)

Equation (D10) is the consumption Euler equation, equation (D11) is the standard New
Keynesian Phillips Curve, and equation (D12) is the truncated Taylor rule.

Proposition D.1. Let

c̃targ = −2(π∗ + r∗)(φπ − 1)(κσφπ + 1)

κφ2
πσ(κσ + 1)(pM − 1)

There are two equilibria when c < c̃targ. There is one equilibrium when c = c̃targ. There is
no equilibrium when c > c̃targ

Proof. By equation D10 to D13, the system of equations with a positive inflation target is
identical to that with a zero inflation target, with πt and r∗ being replaced by π̂t and r∗+π∗,
respectively. Accordingly, this proposition is identical to A.6.

Proposition 3: Suppose that π∗ > r∗
φπ−1(> 0). If c is sufficiently large, inflation at the risky

steady state in the deflationary equilibrium is positive.

Proof. Similar to the model with a zero inflation target, we define ctarg as the maximum value
of c for the existence of equilibrium 1. By Proposition D.1, Equilibrium 8 is deflationary



equilibrium when c ≤ ctarg. Thus πM = −r∗ < 0. By Proposition D.1, Equilibrium 5 is
deflationary equilibrium when ctarg ≤ c ≤ c̃targ. πM evaluated at ctarg is:

πM = −r∗ < 0

πM evaluated at c̃targ is:

πM = π∗ − π∗ + r∗

φπ
> 0

It can be shown that

∂πM
∂c

=
(σκ+ 1)(1− pM )κσφπ

2 + (σ(pM + 1)κ+ pM − 1)φπ
> 0

Accordingly, if c is sufficiently large, inflation at the risky steady state in deflationary
equilibrium is positive.

E Proofs Related to Low φπ

In this section, we will assume that φπ < φ
π
. Key propositions from this subsection are as

follows.

E.1 Existence of Equilibria: Low φπ

Proposition E.1. Equilibrium 1 exists when c ≤ c where c is defined in Section A.

Proposition E.2. Equilibrium 2 exists when c̃ ≤ c ≤ c where c̃ and c are defined in Section
A.

Proposition E.3. Equilibrium 5 exists when c ≤ c ≤ c̃ where c̃ and c are defined in Section
A.

Proposition E.4. Equilibrium 8 exists when c ≤ c where c is defined in Section A.

Proposition E.5. There are two equilibria when c < c. There is one equilibrium when c = c.
There is no equilibrium when c > c.

Proof of Proposition E.1.: By Proposition A.2, the existence of Equilibrium 1 does not de-
pend on the value of φπ. Accordingly, Equilibrium 1 exists when c ≤ c.

Proof of Proposition E.2.: By Proposition A.3, it suffices to find the value of c where ishadowL =
0 and ishadowM = 0, respectively. ishadowL and ishadowM are given by

ishadowL =
2 (φπ − 1) (κσ (r∗ − c)φπ + r∗)
((pM − 1)σκ+ pM + 1)φπ − 2

ishadowM =
κ (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)σφ2

π + (2r∗ − 2κr∗σ)φπ − 2r∗

(((pM − 1)σκ+ pM + 1)φπ − 2) (κφπσ + 1)



Note that the sign of the denominator is the opposite: when φ
π
< φπ < φπ and when φπ < φπ.

If we find the value of c such that ishadowL = 0, that is the maximum degree of uncertainty
consistent with this equilibrium. If we find the value of c such that ishadowM = 0, that is the
minimum degree of uncertainty consistent with this equilibrium. Accordingly, Equilibrium 2
exists when c̃ ≤ c ≤ c.

Proof of Proposition E.3.: By Proposition A.4, it suffices to find the value of c where ishadowM =
0 and ishadowH = 0, respectively. ishadowM and ishadowH are given by

ishadowM =
− (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)κσφ2

π + (2κr∗σ − 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

ishadowH =
(2cσκ− 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

Note that the sign of the denominator is the same in both cases: when φ
π
< φπ < φπ and

when φπ < φπ. If we find c such that ishadowM = 0, that is the maximum degree of uncertainty
consistent with this equilibrium. If we find c such that ishadowH = 0, that is the minimum
level of uncertainty consistent with this equilibrium. Accordingly, Equilibrium 5 exists when
c ≤ c ≤ c̃.

Proof of Proposition E.4.: By Proposition A.5, the existence of Equilibrium 8 does not de-
pend on the value of φπ. Accordingly, Equilibrium 1 exists when c ≤ c.

Proof of Proposition E.5.: When φπ < φ
π
, c < c̃ < c holds. According to Proposition

E.1-Proposition E.4, Equilibrium 1 and Equilibrium 8 exist when c ≤ c, Equilibrium 1 and
Equilibrium 5 exist when c ≤ c ≤ c̃, Equilibrium 1 and Equilibrium 2 exist when c̃ ≤ c ≤ c.
When c = c, Equilibrium 1 and Equilibrium 2 coincide. Accordingly, there is one equilibrium.
When c > c, there is no equilibrium.

E.2 Proof of Main Proposition: Low φπ

Proposition E.6. Suppose that φπ < φ
π
. If c is sufficiently large, the policy rate at the risky

steady state in the deflationary equilibrium is positive.

Proof. By Proposition E.5, Equilibrium 8 is the deflationary equilibrium when c < c. Equi-
librium 5 is the deflationary equilibrium when c ≤ c ≤ c̃. Accordingly, iM = 0 when c ≤ c̃.
When c̃ ≤ c ≤ c, Equilibrium 2 is the deflationary equilibrium. Accordingly, the policy rate
at the risky steady state in the deflationary equilibrium is positive when c̃ ≤ c ≤ c.

F Proofs Related to High φπ

In this section, we will assume that φπ < φπ. Key propositions from this subsection are as
follows.

F.1 Existence of Equilibria: High φπ

Proposition F.1. Equilibrium 1 exists when c ≤ c where c is defined in Section A.



Proposition F.2. Equilibrium 2 exists when c ≤ c ≤ c̃ where c̃ and c are defined in Section
A.

Proposition F.3. Equilibrium 5 exists when c̃ ≤ c ≤ c where c̃ and c are defined in Section
A.

Proposition F.4. Equilibrium 8 exists when c ≤ c where c is defined in Section A.

Proposition F.5. There are two equilibria when c < c. There is one equilibrium when c = c.
There is no equilibrium when c > c.

Proof of Proposition F.1.: By Proposition A.2, the existence of Equilibrium 1 does not de-
pend on the value of φπ. Accordingly, Equilibrium 1 exists when c ≤ c.

Proof of Proposition F.2.: By Proposition A.3, it suffices to find the value of c where ishadowL =
0 and ishadowM = 0, respectively. ishadowL and ishadowM are given by

ishadowL =
2 (φπ − 1) (κσ (r∗ − c)φπ + r∗)
((pM − 1)σκ+ pM + 1)φπ − 2

ishadowM =
κ (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)σφ2

π + (2r∗ − 2κr∗σ)φπ − 2r∗

(((pM − 1)σκ+ pM + 1)φπ − 2) (κφπσ + 1)

Note that the sign of the denominator is the same in both cases: when φ
π
< φπ < φπ and

when φπ < φπ. If we find c such that ishadowL = 0, that is the minimum degree of uncertainty
consistent with this equilibrium. If we find c such that ishadowM = 0, that is the maximum
degree of uncertainty supported by this equilibrium. Accordingly, Equilibrium 2 exists when
c ≤ c ≤ c̃.

Proof of Proposition F.3.: By Proposition A.4, it suffices to find the value of c where ishadowM =
0 and ishadowH = 0, respectively. ishadowM and ishadowH are given by

ishadowM =
− (cσ (pM − 1)κ+ (pM − 1) c+ 2r∗)κσφ2

π + (2κr∗σ − 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

ishadowH =
(2cσκ− 2r∗)φπ + 2r∗

2 + (σ (pM + 1)κ+ pM − 1)φπ

Note that the sign of the denominator is opposite: when φ
π
< φπ < φπ and when φπ < φπ.

If we find c such that ishadowM = 0, that is the minimum degree of uncertainty consistent with
this equilibrium. If we find c such that ishadowH = 0, that is the maximum degree of uncer-
tainty consistent with this equilibrium. Accordingly, Equilibrium 5 exists when c̃ ≤ c ≤ c.

Proof of Proposition F.4.: By Proposition A.5, the existence of Equilibrium 8 does not de-
pend on the value of φπ. Accordingly, Equilibrium 1 exists when c ≤ c.

Proof of Proposition F.5.: When φπ < φπ, c < c holds. By Proposition F.1 to Proposition
F.4, c < c̃ < c.

According to Proposition F.1-Proposition F.4, Equilibrium 1 and Equilibrium 8 exist
when c ≤ c, Equilibrium 2 and Equilibrium 8 exist when c ≤ c ≤ c̃, Equilibrium 5 and
Equilibrium 8 exist when c̃ ≤ c ≤ c. When c = c, Equilibrium 5 and Equilibrium 8 coincide.
Accordingly, there is one equilibrium. When c > c, there is no equilibrium.



F.2 Proof of Main Proposition: High φπ

Proposition F.6. Suppose that φπ < φπ. If c is sufficiently large, the policy rate at the risky
steady state in the targeted equilibrium is 0.

Proof. By Proposition F.5, Equilibrium 1 is the targeted equilibrium when c < c. Equilibrium
2 is the targeted equilibrium when c ≤ c ≤ c̃. Accordingly, the policy rate at the risky steady
state in the targeted equilibrium is positive when c ≤ c̃. When c̃ ≤ c ≤ c, Equilibrium 5 is the
targeted equilibrium. Accordingly, the policy rate at the risky steady state in the targeted
equilibrium is zero when c̃ ≤ c ≤ c.

G Model with an AR(1) Shock

In this section, we consider the model with an AR(1) shock process:

δt = ρδt−1 + εt (G1)

A recursive equilibrium for this stylized, semi-loglinear model is given by a set of policy func-
tions {y(·), π(·), i(·)} that satisfies the Euler equation, the Phillips curve, and the truncated
Taylor rule, as described in Section 2.

In solving the model, we approximate the AR(1) process of the exogenous shock using
Markov chains via the Rouwenhorst approximation method. With this approximation, the
model can be solved with linear algebra.

G.1 Solution Method for Policy Functions

Recall that the problem is to find a set of {y(·), π(·), i(·)} that satisfies the equilibrium
conditions:

yt = Et[yt+1]− σ [it − Et[πt+1] + δt] (G2)

πt = κyt + βEt[πt+1] (G3)

it = max [iELB, r
∗ + φπ(πt)] (G4)

Consider an n-state discretization of an AR(1) shock approximated via the Rouwenhorst
method. The Rouwenhorst approximation method will yield an n × 1 vector of grid points
[δ1, . . . , δn] and an n× n matrix, T , of transition probabilities:

T =

⎡
⎢⎢⎢⎣
p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n
...

...
. . .

...
pn,1 pn,2 . . . pn,n

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
t1
t2
...
tn

⎤
⎥⎥⎥⎦ (G5)

where ti is the ith row of T .
Given this n-state discretization, we are left with a series of n equations and n unknowns

to solve for:



y1 = E1[yt+1]− σ [i1 − r∗ − E1[πt+1] + δ1]

...

yn = En[yt+1]− σ [in − r∗ − En[πt+1] + δn]

π1 = κy1 + βE1[πt+1]

...

πn = κyn + βEn[πt+1]

i1 = max [iELB, r
∗ + φππ1]

...

in = max [iELB, r
∗ + φππn]

Here, Ei[·] is the conditional expectation of our policy function, given state i. It is formally
defined as the ti · z, where z = [z1, · · · , zn]T , for a given policy function.

Notice that, absent the ELB constraint, we are left with a linear-system of equations and
can be solved for using basic matrix algebra. Let A be a matrix of coefficients, x be a vector
of variables, b be a vector of coefficients, where

A =

⎡
⎣A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎦ x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1
...
yn
π1
...
πn
i1
...
in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ(r∗ − δ1)
...

σ(r∗ − δn)
0
...
0
r∗
...
r∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

A1,1 = In − T A1,2 = −σ · T A1,3 = σ · In
A2,1 = −κ · In A2,2 = β(In − T ) A2,3 = 0 · In
A3,1 = 0 · In A3,2 = −φπ · In A3,3 = In

Here, In is the identity matrix of dimension n.
There are two algorithms to consider: one for the targeted equilibrium and the other for

the deflationary equilibrium.
The algorithm to solve for the policy functions in the targeted equilibrium is as follows.

Start by assuming that the ELB does not bind in any period and solve the linear system of
equations. If in < 0 then assume that in = 0 and resolve the system of equations. If in−1 < 0
then assume that in−1 = 0 and resolve the system of equations. Continue this process until
for all j ∈ (1, . . . , n), ij ≥ 0.

The algorithm to solve for the policy functions in the deflationary equilibrium is as follows.
Start by assuming that the ELB binds in all periods and solve the linear system of equations.



If the implied policy rate, iimp
1 ≡ r∗ + φππ1 is higher than iELB, assume that ii �= iELB and

resolve the system of equations. If i2 > iELB, then assume that iimp
2 > iELB and resolve the

system of equations. Continue this process until for all j ∈ (1, . . . , n), iimp
j > 0.

G.2 Solution Method for the Risk-adjusted Fisher Relation

In this section, we present the details on how to solve for the risk-adjusted Fisher relation
given a continuous AR(1) shock approximated using Markov chains via the Rouwenhorst
method.

Again, consider an n-state discretization—where n is odd—of an AR(1) shock approxi-
mated via the Rouwenhorst method. There will be an n× 1 vector of grid points [δn1 , . . . , δ

n
n ]

and an n×n matrix, T , of transition probabilities, where T is defined in the same way above.
To solve for the risk-adjusted Fisher relation, given the candidate πRSS , we need to

compute the risk-adjustment term based on hypothetical policy functions. These hypothetical
policy functions must satisfy the following conditions: (i) πh,πM (δ = 0) = πRSS , (ii) the
truncated Taylor rule, (iii) the Phillips curve, and (iv) the relative Euler equations. Unlike
the three-state shock case, we will not present a full algebraic derivation, as the goal is to
develop a general solution method for an n-state discretized shock. The goal is to re-frame
the problem in terms of a system of equations, thus allowing us to take advantage of basic
linear algebra techniques to solve for the hypothetical policy functions and the risk-adjusted
Fisher relation.

Let xM be the value a given policy function takes in the “middle state,” where M is the
(n+ 1)/2th position of our grid. Notice that by construction, the middle state is identical to
the risky steady state, because the (n+1)/2th position of our vector of grid points is 0. Given
this, observe that by rewriting the system in the following way we satisfy our conditions:

y1 − yM = E1[yt+1]− EM [yt+1]− σ [i1 − iM − E1[πt+1]− EM [πt+1] + δ1]

...

yj − yM = Ej [yt+1]− EM [yt+1]− σ [ij − iM − Ej [πt+1]− EM [πt+1] + δj ]

...

yn − yM = En[yt+1]− EM [yt+1]− σ [in − iM − En[πt+1]− EM [πt+1] + δn]

π1 = κy1 + βE1[πt+1]

...

πn = κyn + βEn[πt+1]

i1 = max [iELB, r
∗ + φππ1]

...

in = max [iELB, r
∗ + φππn]

for j �= M . Ei[·] is defined as above. Absent the ELB constraint, we are left with a linear
system of equations that can be solved using matrix algebra.Let A be a matrix of coefficients,
x be a vector of variables, b be a vector of coefficients, where



A =

⎡
⎣A

(M)
1,1 −AyM ,1 A

(M)
1,2 −AyM ,2 A

(M)
1,3 −AyM ,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

⎤
⎦ x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 − yM
...

yj − yM
...
yn
π1
...
πn
i1
...
in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σδ1
...

−σδj
...

−σδn
0
...
0
r∗
...
r∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for j �= M . A
(M)
1,1 , A

(M)
1,2 , and A

(M)
1,3 are matrices of dimension n− 1× n. We use the notation

A
(M)
i,j to represent the matrix Ai,j where M

th row has been removed. Similarly, AyM ,1, AyM ,2,
and AyM ,3 are matrices of dimension n− 1× n that take on the form:

AyM ,1 = [A1,1,M ,
×N−1· · · · · ·, A1,1,M ]′

AyM ,2 = [A1,2,M ,
×N−1· · · · · ·, A1,2,M ]′

AyM ,3 = [A1,3,M ,
×N−1· · · · · ·, A1,3,M ]′

We use the notation Ai,j,M to denote the M th row of Ai,j . Here, the M th row of Ai,j has
been repeated n− 1 times.

A1,1, A1,2, A1,3, A2,1, A2,2, A2,3, A3,1, A3,2, and A3,3 are defined as before.

G.2.1 Algorithm for the risk-adjusted Fisher relation

The algorithm to solve for the risk-adjusted Fisher relation is as follows. For the candidate
πRSS = πh,πM (δ = 0), start by assuming that the ELB does not bind in any period and solve
the linear system of equations. If in < 0 then assume that in = 0 and resolve the system
of equations. If in−1 < 0 then assume that in−1 = 0 and resolve the system of equations.
Continue this process until for all j ∈ (1, . . . , n), ij ≥ 0.

Upon the completion of this algorithm, given the candidate πM , the hypothetical policy
functions that have been solved for satisfy the following conditions needed to calculate the
risk-adjustment term: (i) πh,πM (δ = 0) = πM , (ii) the truncated Taylor rule, (iii) the Phillips
curve, and (iv) the relative Euler equations. From here, it is straightforward to compute the
risk-adjustment term and the risk-adjusted Fisher relation.

G.3 Numerical Results

Table 1 lists the parameter values used for the numerical analysis.
Figure 8 presents the policy functions for output, inflation, and the policy rate. In the
figure, the top and bottom rows are policy functions for the targeted and deflationary equi-



Table 1: Parameter Values for the Stylized Model

Parameter Description Parameter Value

β Discount rate 1
1+0.0025

σ Inverse intertemporal elasticity of substitution 1
κ Slope of Phillips Curve 0.02
400r∗ Annualized Natural Rate of Interest 1%
φπ Coefficient on inflation in the Taylor rule 4
iELB Effective lower bound 0
ρ AR(1) coefficient for the demand shock 0.80
σε standard deviation of shocks to demand shock [0, σmax

ε ]

libria, respectively. Consistent with the model with a three-state shock, uncertainty increases
(decreases) the rate of inflation at the risky steady state in the deflationary (targeted) equi-
librium. Figure 9 presents the risk-adjusted Fisher relation associated with this model.

Figure 8: Policy Functions for the Model with an AR(1) Shock



Figure 9: Risk-adjusted Fisher Relation for the Model with an AR(1) Shock


