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A slowdown in population growth causes a decline in business dynamism by 
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Quantitatively, this effect is significant across balanced growth paths for the United 
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1 Introduction

In developed countries, there is an increasing concern that slowing population

growth may lead to a decline in economic growth.1 Figure 1 shows the estimated

trends for the United States and Japan, the countries that we will consider in our

quantitative exercises. At the beginning of our data in 1900, or in the 1970s when

the baby boomers entered the job market, the trend in US labor force growth in the

US was close to 2.2%. In contrast, current forecasts estimate that in 2060, it will

be less than 0.3%. The fall is more dramatic in Japan, and it started earlier. While

trend labor force growth was close to 1.5% in 1950, it is expected to be below -1.3%

in the 2040s.

Figure 1: Labor force growth rate

United States Japan

Source: See appendix B.1.

Several recent studies (Karahan, Pugsley and Sahin, 2019; Peters and Walsh,

2021; Hopenhayn, Neira and Singhania, 2022) demonstrated that a slowing in pop-

ulation growth in the United States led to a decline in business dynamism by in-

creasing the share of old businesses. But how does this shift in population and

business demographics affect productivity growth? We aim to provide an answer

1Although we usually refer to it as population growth, the driving force in our study is labor
force growth.
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to this specific question.

This paper incorporates population growth and endogenous productivity growth

into a business dynamics model to achieve this goal. As in Hopenhayn (1992),

businesses begin with low productivity and increase their productivity throughout

their life cycle. However, the productivity of younger businesses is determined by

the intensity of innovation within the business, which is endogenous. A business

innovation improves on previous innovations, as in Romer (1990) and Aghion and

Howitt (1992). This innovation is the first driver of growth in our model. Older

businesses’ productivity also increases with age. This productivity growth repre-

sents the second growth engine in our model and captures technology advance-

ments made by mature, successful businesses. Therefore, for our model to dis-

play balanced growth, one of these two forces—innovation by young businesses

or technological advancements by established and successful businesses—must be

present. In addition, every period, some incumbent businesses exit, and new busi-

nesses enter.2

The main theoretical result is that in comparing BGPs, the shape of the busi-

nesses’ life-cycle profile determines the sign and magnitude of the impact of pop-

ulation growth on productivity growth. In particular, we identify a “sufficient

statistic”—namely, the growth rate of surviving old businesses. If the growth rate

of the size of surviving old businesses is negative, a fall in the population growth

rate will result in a decrease in the rate of aggregate productivity growth. Two

components make up the mechanism for this result. First, as population growth

declines, so does the growth rate in the number of businesses; otherwise, the av-

erage firm size will diverge. As a result, an economy with a lower population

growth rate will have a lower proportion of young businesses as a small number

of new businesses relative to existing businesses implies that most businesses are

old. The second element of the mechanism underlying the aforementioned result is

2We assume exit is exogenous for the theoretical characterization of the model, but we relax
this assumption in a subsequent section.
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based on the productivity growth of old businesses relative to overall productivity

growth. The “sufficient statistic” is precisely a measure of these two growth rates.

If the size of surviving old businesses decreases over the life cycle, their produc-

tivity is expanding at a slower rate than the average productivity of the economy.

Thus, putting these two factors together, as the labor force expands more slowly

and the proportion of old businesses grows, if the productivity growth of old busi-

nesses is lower than the average, the total productivity growth will be lower.

These theoretical results are feasible because there is a fully elastic supply of

startups, entrants’ innovation is constant, and we assume that survival rates and

the growth rate of productivity of successful businesses are exogenous. Subse-

quently, we examine computer-solved versions of the model that relax these as-

sumptions. The main quantitative findings are based on comparing BGPs with

different population growth rates in the US and Japan. For these exercises, we

consider not only the model analyzed in the theoretical section of the paper. Our

benchmark model for all the quantitative exercises is a model extended to incor-

porate congestion at entry and spillovers from new to old businesses’ productivity

growth. However, we also analyze the impact of extending the model to incor-

porate endogenous exit and endogenous innovation by mature businesses on the

BGP analysis. We conclude that population growth has a significant impact on

productivity growth. In the benchmark case, a drop in population growth, as pro-

jected for the US for 1970-2060, implies a long-run decline in productivity growth

of about 0.3 percentage points. Similarly, for Japan, the predicted drop in popula-

tion growth for 1950-2060 implies, in the long run, a 0.6 percentage point reduction

in productivity growth.

Next, we compute transitional dynamics for the economies calibrated to the US

and Japan. Since computing a transition is computationally challenging, we focus

primarily on the benchmark model extended to include congestion at entry and

spillovers from new to old businesses’ productivity growth. The main experiment
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involves giving the model time series for the trend in labor force growth and sim-

ulating the evolution of total productivity (TFP) growth. An essential result of the

impact of population growth on TFP growth is that it takes a long time to occur.

We also investigate why the response of TFP growth is sluggish and discover two

significant factors: a labor-reallocation effect and a level-vs-growth effect. Both ef-

fects fade in the long term, leading to our main result comparing BGPs; however,

in the meantime, they partially offset the drop in TFP growth.

The paper’s final section validates the mechanism proposed here. The dynamic

correlation between labor force growth and productivity growth produced by the

model is very similar to the correlation found in data for US states. This result,

obtained using local projections, supports the proposed mechanism and its quan-

titative significance. Furthermore, instrument variable regressions suggest a causal

effect of labor force growth on productivity growth.3

A recent paper, Alon, Berger, Dent and Pugsley (2018), is related to our re-

search since it investigates how declining business entry and aging incumbent

businesses—the exact mechanism studied here—affect aggregate productivity growth.

They employ a highly pertinent dataset, the Census Bureau’s Revenue-enhanced

Longitudinal Business Database, to characterize business growth throughout its

life cycle. They have two significant findings in connection to our research. First,

they show that productivity growth is downward-sloping and convex throughout

the business’ life cycle. Second, they found that these profiles stay unchanged over

time. Using these findings, they compute counterfactuals and show that declining

firm entry and aging established businesses had a cumulative drag on aggregate

productivity of 3.1% since 1980.

There are two main differences between their research and our work. First,

we use establishment-level data to calibrate our model because establishments are

more connected to the idea of innovation we intend to capture. However, their

3Additionally, in section 7.3, we show that the model generates the recent slowdown in busi-
ness dynamism in the United States, which has been examined in several recent papers.
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findings for firm-level data are reassuring that this choice does not drive our re-

sults and make our and their findings complementary. Second, our analysis uses

an equilibrium structural model that allows for endogenous forces (innovation, en-

try, exit) and prices (wages, interest rates) to change as we perform counterfactuals

(balanced growth paths and transitional dynamics). This choice makes our work

more related to two recent papers studying the relationship between population

growth and business dynamism using similar firm dynamics models. According

to Karahan, Pugsley and Sahin (2019) and Hopenhayn, Neira and Singhania (2022),

the slowing of labor force growth has resulted in a startup deficit, which can ex-

plain what is widely known as a reduction in business dynamism.4 These papers

share several characteristics of our framework. As a validation exercise, we show

that our model can also reproduce the reduction in business dynamism in the US.

However, we focus on the impact of the same driving force on TFP growth rather

than on business dynamism.5

Peters and Walsh (2021) also focuses on the relationship between population

growth and business dynamism, but it is more associated with our work because

it also displays endogenous growth. While we purposely abstract away from

scale effects to focus on our new mechanism, they use a semi-endogenous growth

model.6 Their research supplements ours by exploring the role of product variety.

They don’t investigate the mechanism discussed here because they assume a

business’s innovation is independent of its age. We bring an original and quan-

tifiable mechanism relating population growth to TFP growth that complements

their work by focusing on business growth over the lifecycle. In short, Peters and

Walsh (2021) argues that a slowdown in population growth reduces productivity

growth by slowing down the growth of product variety, while our contention is

4Related, Engbom (2018) focuses on the age of workers and the dynamism of businesses.
5Although it is not the focus of Engbom (2018)’s analysis, the transitional dynamics shown in

that paper’s figure 10 reveal a slight decline in growth between 1970 and 2050.
6For a survey on the importance of scale effects, see Jones (2022). In Section 8, we argue that

the magnitude of our results is smaller but comparable to the scale effects described there.
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that productivity growth slows down even when there is only one product in the

economy. Importantly, our model’s mechanism does not conflict with Peters and

Walsh (2021), so we can integrate these two mechanisms into a unified model, re-

sulting in the combined effect on productivity growth.7

There are two recent studies linking population growth to productivity growth.

First, Jones (2020) investigates the extreme case of long-run negative population

growth in the context of models of ideas, which include a variety of endogenous

and semi-endogenous growth models. He discovers that negative population growth

leads to stagnant living standards as the population vanishes. Recently, Kalyani

(2022) finds a negative association between inventors’ creativity and age and ar-

gues that a larger proportion of older workers in the labor force will result in lower

productivity growth because inventors are, on average, less creative.

2 Model

The economy is made up of businesses and households. Households own busi-

nesses and make decisions about consumption and investment. Businesses are the

most important part of the framework since they innovate, hire workers and rent

capital. In equilibrium, slower labor-force growth reduces the number of startups.

This will change business demographics, which is critical for determining the re-

lationship between population growth and productivity growth.

7Several other papers have been written about the importance of population growth to eco-
nomic prosperity. For example, Cooley, Henriksen and Nusbaum (2019) investigate this demo-
graphic change’s impact on output growth via capital accumulation and labor productivity. Van-
denbroucke (2021) investigates the slowdown in output-per-worker growth in the 1960s and 1970s.
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2.1 Household

A representative household populates the economy and solves

max
{ct},{kt}

∞

∑
t=1

(βgMt)
t−1c1−ϵ

t
1 − ϵ

(1)

subject to

ct + gM,t+1kt+1 = wt + st − et + rtkt + (1 − δ)kt,

where kt ≡ Kt/Mt is capital per person, st ≡ ∑i Si,t/Mt is business surplus per

person, et ≡ Et/Mt is the initial cost of starting businesses per person, δ is depre-

ciation rate, β is discount factor, and gM,t+1 is population growth rate. Note that

this representative household also owns the businesses.

2.2 Businesses

There are Nt businesses in the economy. They have decreasing returns to scale

and solve

Si,t(xi,t, wt, rt) = max
ki,t,li,t

{xζ
i,tk

α
i,tl

1−α−ζ
i,t − wtli,t − rtki,t}, (2)

taking as given wages wt and capital rental rate rt. The solutions for li,t, ki,t, and

yi,t are linear in productivity,

li = xi

[(α

r

)α
(

1 − α − ζ

w

)1−α
] 1

ζ

, ki = xi

[(α

r

)α+ζ
(

1 − α − ζ

w

)1−α−ζ
] 1

ζ

,

yi = xi

[(α

r

)α
(

1 − α − ζ

w

)1−α−ζ
] 1

ζ

.

Also, the average productivity in the economy is X ≡ 1
N ∑i xi. When average pro-

ductivity is combined with the expressions above, we get useful expressions for

aggregate variables that we will use later to define the economy’s equilibrium.

8



Therefore, output, labor, and capital can be written as

L =

[(α

r

)α
(

1 − α − ζ

w

)1−α
] 1

ζ

NX, K =

[(α

r

)α+ζ
(

1 − α − ζ

w

)1−α−ζ
] 1

ζ

NX,

Y =

[(α

r

)α
(

1 − α − ζ

w

)1−α−ζ
] 1

ζ

NX.

2.3 Innovation

Innovators use the ideas of successful businesses to generate their own new

ideas at any given time. A new technology takes one period to start production.

Let χ be the average productivity of successful businesses, which will be precisely

defined later. An innovator will then choose an innovation step size, g, which

measures the difference between the innovator’s potential productivity, x̂, and the

reference productivity, χ. Thus, the cost of research for generating x̂ is propor-

tional to how far ahead of the pack the project is, R(x̂/χ) = 1
zR

(
x̂
χ

)ι
, with ι > 2.

Although we assume that this cost is paid entirely at the innovation stage, one pe-

riod before the firm’s birth, the growth caused by R&D realizes stochastically over

time. Since there are no financing frictions, this cost could be the expected dis-

counted investment costs paid over time with no significant change in the model.8

After the research stage, innovators develop ideas to start their businesses. The

probability of entering the market (σ) hinges on the amount of money spent on

developing the project, D(σ) = σ2/(2zD).9

The value of a project started with potential productivity x̂ is

I(x̂; {wt}, {rt}) =
∞

∑
t=1

β̂tEx̂[S(xt; wt, rt)|x̂],

8Similarly, since there are no financing frictions, we could alternately interpret that a share of
unsuccessful businesses that exit at each age a are unsuccessful businesses that choose again R&D
at each age a as they would choose the same innovation step size as new businesses.

9The option choice of σ by innovators, which resembles Greenwood, Han and Sanchez (2022),
is unimportant for our results, but it simplifies some of the expressions.
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where β̂t is the market discount factor.10 At the time of innovation, an innovator

chooses σ and x̂ to maximize its payoff,

V({wt}, {rt}, χt) = max
σt,x̂t

σt I(x̂t; {wt}, {rt})︸ ︷︷ ︸
Revenue from project

− wtR(x̂t/χt)︸ ︷︷ ︸
Research cost

− wtD(σt)︸ ︷︷ ︸
Development cost

. (3)

In partial equilibrium, solving this problem yields the innovator’s chosen step

size of innovation, g∗, the probability of starting the project, σ∗, and the maximized

payoff, V∗. The value V∗ is important because the household is willing to start a

business if this value covers the initial fixed cost. As a result, in equilibrium with

entry, the following free-entry condition must be met:

Vt ≤ wtcE. (4)

The assumption that the entry cost increases one-to-one with wages makes the

model tractable and is common in growth models (e.g. Klette and Kortum, 2004).

The assumption is also supported by the data presented in Klenow and Li (2022).

2.4 Life-cycle profile of productivity

This section slightly simplifies the productivity process that we use in the quan-

titative section to replicate various empirical facts on business dynamics.

Let us consider a project with gχ potential productivity. If the project succeeds

at age=1, its productivity will equal gχ; if it is unsuccessful, it will equal θgχ,

where θ < 1. Each period, a fraction λ of unsuccessful projects succeed, and their

productivity increases from θgχ to gχ. While unsuccessful, the project’s productiv-

ity remains constant. On the other hand, the productivity of successful initiatives

grows at a constant pace gS. The survival rates sS and sU for successful and un-

successful businesses are different. Specifically, we assume that sS > sU represents

the larger exit rate of unsuccessful businesses compared to successful businesses.

Although we do not impose this condition in the calibration section, we find that

successful businesses are more likely to survive than unsuccessful businesses to

10Specifically, β̂t = ∏t
j=1

1
(1+rj−δ)

.
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capture the growth over the life-cycle of average business size and size of surviv-

ing businesses. Figure 2 depicts a three-period example of the business lifecycle.

Figure 2: A business’s life-cycle (example up to age 3)

Startups
choose
x̂ = gχ

Age 1
x = θgχ

1 − λ

Exit

1 − sU

Age 2
x = θgχ

sU

Exit

1 − sU

Age 3
x = θgχ

sU

Exit

1 − sU

Age 1
x = gχ

λ

Exit
1 − sS

Age 2
x = gSgχ

sS

Exit
1 − sS

Age 3
x = g2

Sgχ

sS

Exit
1 − sS

Age 2
x = gχ

λ

Exit
1 − sS

Age 3
x = gSgχ

sS

Exit
1 − sS

Age 3
x = gχ

λ

Exit
1 − sS

Successful businesses Unsuccessful businesses

The reason for this simplified structure for productivity is that it allows us to

construct some useful expressions for a business life-cycle. The businesses born

a years ago (i.e., those age a today) can be divided into businesses that today are

(i) out of business, (ii) unsuccessful, and (iii) successful. The next two expressions

represent the contribution of the last two groups to the average productivity of age

a businesses relative to their potential productivity. Of course, the contribution of

businesses that are currently out of business is zero.
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For unsuccessful businesses, the expression is simply

ΛU,a ≡ θ(1 − λ)a(sU)
a−1,

where the first part, θ, is included because unsuccessful businesses’ productivity is

θ of the potential productivity, and this term is written relative to potential produc-

tivity. The second term is the probability that businesses remain unsuccessful until

age a, and the last term is the probability that the business does not exit before age

a.

The same expression for successful businesses is more involved,

ΛS,a(gS) ≡
a

∑
j=1

[
gS

j−1(sU)
a−j(1 − λ)a−jλ(sS)

j−1
]

.

But also, in this case, the first part, gj−1
S , is in place to adjust the productivity rela-

tive to potential productivity. Thus, for businesses that became successful j years

ago, the adjustment factor is gj−1
S , to account for the productivity growth rate since

they became successful. The next four terms together make the probability that a

business survived and remained unsuccessful until age a − j, it became successful

at age a − j and survived as a successful business from age a − j until a.

Why is this notation useful? We can use it to compute the average productiv-

ity based on potential productivity, x̂t, and the number of new businesses, nt. In

particular, for age 1 businesses, average productivity is simply

X1,t =
sum prod of age-1 businesses

number of age-1 businesses
=

x̂t (ΛS,1(gS) + ΛU,1) nt

(ΛS,1(1) + ΛU,1/θ) nt
= x̂t (λ + (1 − λ)θ) .

Similarly, for age 2 businesses, average productivity is simply

X2,t =
x̂t−1 (ΛS,2(gS) + ΛU,2) nt−1

(ΛS,2(1) + ΛU,2/θ) nt−1

=
x̂t−1 (sU,1(1 − λ)λ + gSsS,1λ + θsU,1(1 − λ)(1 − λ))

(sU,1(1 − λ)λ + sS,1λ + sU,1(1 − λ)(1 − λ))
.

Note that we can also compute the average productivity of the pool of age-1 and
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age-2 businesses as

X1−2,t =
sum prod of age-1 and age-2 businesses

number of age-1 and age-2 businesses

=
x̂t (ΛS,1(gS) + ΛU,1) nt + x̂t−1 (ΛS,2(gS) + ΛU,2) nt−1

(ΛS,1(1) + ΛU,1/θ) nt + (ΛS,2(1) + ΛU,2/θ) nt−1
.

Following this logic, the average productivity of all businesses in the economy is

Xt =
∑∞

a=1 x̂t−a+1 (ΛS,a(gS) + ΛU,a) nt−a+1

∑∞
a=1 (ΛS,a(1) + ΛU,a/θ) nt−a+1

. (5)

This equation is crucial to solving the model since it depends on two key equilib-

rium variables: potential productivity x̂t and number of entrants nt.

Similarly, the expected productivity at age a of entrants whose potential pro-

ductivity is x̂ is

E[xa|x̂] = (ΛS,a(gS) + ΛU,a)x̂, (6)

and the survival probability up to age a is

ΛS,a(1) + ΛU,a/θ. (7)

2.5 Law of motion for the number of projects

We can write the law of motion for the number of projects (by type and total)

given the number of entrants nt at a given time t as

NU,t = ∑
a

nt−aΛU,a/θ, (8)

NS,t = ∑
a

nt−aΛS,a(1). (9)

Nt = NU,t + NS,t. (10)

2.6 Market-clearing conditions

To close the model, three market-clearing conditions must be met. The labor-

market-clearing condition implies that population equals the sum of labor for pro-

13



duction, entry, research and development, which is

Mt = Lt +
nt

σ

(
cE +

1
zR

gι
t +

1
2zD

σ2
t

)
. (11)

Likewise, the capital-market-clearing condition is

Kt =

[(
α

rt

)α+ζ (1 − α − ζ

wt

)1−α−ζ
] 1

ζ

Nt × Xt (12)

where Kt = ktMt. Finally, the goods-market-clearing condition is

Yt = Ct + It, (13)

where Ct = ctMt and It = Kt+1 − (1 − δ)Kt.

2.7 Equilibrium

We now define the notion of equilibrium in the economy.

Definition 1. Given a sequence for labor supply {Mt}, an equilibrium is a se-

quence of prices {wt, rt}, business choices {li,t, ki,t, gt, σt}, household choices {ct, kt},

a measure of entrants {nt}, and the number of projects, {Nt,S, Nt,U, Nt}, such that:

(a) ct and kt solve the optimization problem of a household (1), (b) li,t and ki,t solve

the business’s static problem (2), (c) σt and gt are the innovation choices that re-

sults from problem (3), (d) The free entry condition (4) is satisfied, (e) Nt,S, Nt,U,

and Nt are in accordance with the laws of motion (8), (9), and (10), (f) The clearing

conditions for the labor market (11), the capital market (12) and the goods market

(13) are satisfied.

2.8 The equilibrium step size of innovation

The optimal step size of innovation is obtained by solving (3). When we incor-

porate the free entry condition (4) into the solution for the step size of innovation,

we find that the step size of innovation is constant in equilibrium. The next lemma

presents this result. All proofs are in appendix A.1.
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Lemma 1 (Step size of innovation). The equilibrium step size of innovation is constant,

g∗ =
(

2cEzR

ι − 2

) 1
ι

. (14)

This lemma implies that the step size of innovation is determined by only three

parameters: the slope of the cost of innovation, the entry cost, and research effi-

ciency. The free entry condition is crucial to this result. Many important aspects of

the economy influence income levels, but not the size of innovation, as in Atkeson

and Burstein (2010).11 This result simplifies the analysis because it implies that the

productivity growth rate of young businesses, determined by g∗, and that of old

businesses, determined by gS, will be constant.

One may think that a model with constant g∗ and gS cannot capture what hap-

pens in reality. However, it is worth highlighting that Alon et al. (2018), Karahan,

Pugsley and Sahin (2019), and Hopenhayn, Neira and Singhania (2022) found that

there are minimal changes in the life-cycle profile of business dynamics statistics

like the exit rate and average size in the US since there is available data, which is

consistent with small changes in g∗ and gS over time in our model. For robustness,

our quantitative exercises include cases in which g∗ and gS are not constant.

3 Balanced growth path

In this section, we characterize a balanced growth path for this economy and

investigate how it is impacted by changes in the constant population growth rate

gM. The following lemma characterizes the economy’s BGP equilibrium.

Lemma 2 (Characterization of the balanced growth path). Given a constant growth

rate of the labor supply greater than the old businesses’ survival rate, gM > sS,∞, there

is a unique BGP equilibrium in which the following occurs: (a) Aggregate variables Y, K,

and C grow at constant rates, (b) Wages grow at the same rate, gw = (gX)
(1−α)/ζ , (c)

The interest rate is fixed at r = (gw)ϵ

β − (1 − δ), (d) The step size g and the probability

11Technically, having a constant step size requires that expected profit be a monomial function
of potential productivity x̂.
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of starting business σ are constant, (e) Business size is constant because the number of

businesses grows at the same rate as the labor in production and population, gN = gL =

gM, and (f) Average productivity and successful business productivity grow at the same

rate, gX = gχ.

In the BGP described above, the average productivity of all projects, X, is a

function of the potential productivity of new projects today, x̂1, and other parame-

ters:

X =
x̂1 ∑∞

a=1

(
1

gX gN

)a−1
(ΛS,a(gS) + ΛU,a)

∑∞
a=1

(
1

gN

)a−1
(ΛS,a(1) + ΛU,a/θ)

, (15)

where the growth rate of the number of businesses, gN, is used to account for

the increase in the number of businesses over time. Similarly, χ, which is today’s

reference productivity for innovators, is

χ =
x̂1 ∑∞

a=1

(
1

gX

)a−1 (
1

gN

)a−1
ΛS,a(gS)

∑∞
a=1

(
1

gN

)a−1
ΛS,a(1)

. (16)

Because potential productivity today x̂0 = gX x̂1 equals the step size of innovation

multiplied by the average productivity of successful projects; i.e., x̂0 = gχ, we can

derive an equation that defines the relationship between the step size g, produc-

tivity growth rate gX, and the number of businesses growth rate gN. This equation

implies that gX solves

g =
∑∞

a=1

(
1

gM

)a
ΛS,a(1)

∑∞
a=1

(
1

gX gM

)a
ΛS,a(gS)

. (17)

We can immediately see in equation (17) the two sources of growth determining

gX: gS and g. We can also see the potential role of population growth gM, which

will be the focus of the next subsection.

To gain more intuition on the workings of the model, consider for a moment

a case in which all new businesses become successful at age 1 (λ = 1). The cost

of this simplification is that in this simpler case, we can distinguish only between
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entrants and incumbents (not between young and old businesses), and all incum-

bents’ productivity growth and exit rates will be the same.

In this case, however, we can find a closed-form solution for gX as a function of

g, gS, and the share of incumbent businesses. In particular, we find that

share of incumbent =
(sS/gM)× n + (sS/gM)2 × n + ...

n + (sS/gM)× n + (sS/gM)2 × n + ...
=

sS

gM
,

and total productivity growth is simply

gX = gS × (sS/gM) + g∗ × (1 − sS/gM). (18)

This equation makes it immediately clear that there will be positive total pro-

ductivity growth (gX > 1) even if only successful businesses have positive produc-

tivity growth (gS > 1, g = 1) or if only new businesses have positive innovation

(g > 1, gS = 1). In addition, note that this result is regardless of the value of

population growth (as long as gM > s).

3.1 The “sufficient statistic”

Before studying the impact of population growth on productivity growth, we

show that the employment-size growth rate of surviving old businesses converges

to the simple ratio of productivity growth rates, gS/gX.

Lemma 3 (Growth rate of the size of surviving old businesses). In a balanced growth

equilibrium, the employment growth rate of surviving businesses converges monotonically

to gS/gX as the age→ ∞.

As we will show below, this variable will be a “sufficient statistic” for charac-

terizing the influence of population growth on productivity growth.

3.2 The impact of population growth on TFP growth

TFP is measured as in the data by

TFP ≡ Y
Kα̃M1−α̃

,
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where the share of capital α̃ is simply

α̃ ≡ 1 − labor share of income = 1 − wM
Y

.

Note that α̃ is different from α, and it is constant in a BGP but may vary along a

transition and across BGPs.

Starting from the definition of TFP, we can obtain

TFP =

(
L
M

)1−α̃ (Y
L

) α̃
α−1 (NX

L

) ζα̃
α

=

(
L
M

)1−α̃ (α

r

) α−α̃
1−α

(
NX

L

) ζ(1−α̃)
1−α

.

Given the equality among total labor force growth, labor force for production, and

the growth in the number of businesses (gM = gL = gN) and constancy of interest

rate (gr = 0) along a BGP, growth in TFP along a BGP can be written as

gTFP = g
ζ(1−α̃)

1−α
X .

Therefore, the main question for understanding the impact of population growth

on TFP is how population growth affects average productivity growth, or dgX
dgM

. The

following lemma, which is the paper’s main theoretical result, employs equation

(17) to characterize the impact of gM on gX.12

Lemma 4 (The sign of the impact of population growth on productivity growth).

In a balanced growth equilibrium, if the growth rate of the size of surviving old businesses

is negative, then an increase in the labor force growth rate gM raises average productivity

gX; i.e., if gS/gX < 1 ⇒ dgX/dgM > 0.

We explain this result after we present the next result, which describes how the

same “sufficient statistic” determines the size of the impact of population growth

on productivity growth.

12As the share of capital α̃ varies across BGPs, dα̃/dgM is a non-zero value. Specifically, it is
most likely negative, thereby amplifying the effect of population growth on TFP growth. Further
discussion on this topic can be found in appendix A.2.
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Lemma 5 (Magnitude of the impact of population growth on productivity growth).

Suppose the growth rate of the size of surviving old businesses is negative. Suppose there

are two economies with the same average productivity growth (gX) and the same labor force

growth (gM), but the growth rate in the size of old businesses decreases faster in one than

in the other.13 Then the impact of population growth on productivity growth, dgX/dgM,

is larger in the economy in which the growth rate in the size of old businesses decreases

faster.

These findings are better understood by considering that there are two mecha-

nisms. First, recall that the growth in the number of businesses must be equal to

the growth rate in the number of new businesses. Therefore, an increase in gM (and

consequently in gN) reduces the share of old businesses. Second, total productivity

growth equals the weighted average of productivity growth of businesses of vari-

ous ages. As a result, if the productivity growth of old businesses is lower than the

average, a decline in gM (and an increase in the share of old businesses) will have

a negative effect on total productivity growth. Because the ratio of the average

productivity growth rate to the productivity growth rate of old businesses equals

the growth rate of the size of surviving old businesses, we referred to this variable

as a ”sufficient statistic,” as it is the only information required to identify the sign

of the impact of population growth on productivity growth.

To see this logic more clearly in an equation, recall the case in which all new

businesses become successful at age 1 (λ = 1). There, total productivity growth is

given by equation (18). Clearly, productivity growth (gX) is the weighted average

of incumbent businesses’ productivity growth (gS) and the step size of innovation

by new businesses (g). Decreasing population growth increases the weight on in-

cumbents (s/gM), and it has a negative impact on total productivity growth (gX) as

long as the size of incumbent businesses declines over their life-cycle (what hap-

13Although productivity growth is endogenously determined in this model, we can set produc-
tivity growth arbitrarily by adjusting zR.
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pens if gS/gX). These findings also imply that the calibration of the productivity

life-cycle profile is crucial for the quantitative results presented in the next sections

of this paper.

This section’s results are achievable because there is a perfectly elastic supply

of new businesses, entrants’ innovation is constant, and we assume that survival

rates and the growth rate of productivity of successful businesses are exogenous.

In the following sections, we study versions of the model in which we allow for

congestion at entry, non-constant entrants’ innovation, and endogenous exit and

innovation by successful businesses. Our quantitative analysis reveals that these

forces amplify the effects discussed in this section.

4 Quantitative model

4.1 Entry congestion and innovation spillovers

Before proceeding to the quantitative analysis of the model, we add two realis-

tic features to the model presented in the previous section: congestion of entering

businesses and spillovers to older businesses. These extensions will depend on

two key parameters: ϕ and γ. By setting ϕ = γ = 0, these two extensions can be

removed. This exercise will assess the importance of these features in terms of our

quantitative results.

First, we modify the free entry condition (4) to account for potential “conges-

tion.” According to Hopenhayn (1992), the working assumption in the model de-

scribed above is that as long as the free entry condition is satisfied, the number of

entrants is perfectly elastic, so nt can be chosen to scale up or down the number

of businesses and clear the labor market. We modify the free entry as in Kara-

han, Pugsley and Sahin (2019) to add a more realistic response of the number of

businesses to economic conditions. In particular, we replace cE with cE(ñt/M̃t)ϕ,

where ñt = nt/n̄t and n̄t represents the number of entrants in normal times (i.e.,

our reference period 1980-1999), and M̃t is defined analogously. Now, the modified
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free entry condition is Vt ≤ wtcE(ñt/M̃t)ϕ, which means that in order to increase

the number of entrants into the economy, the value of entry must also increase.

The key parameter is ϕ, which we will calibrate based on previous estimates.

The main implication of this feature is that the step size of innovation is no

longer independent of the growth rate of the population. Because of congestion,

equation (14) is replaced by g∗ =
(

2cE(ñ/M̃)ϕzR
ι−2

) 1
ι . Now, the share of entry in the

population, n/M, affects the innovation intensity, g∗. Therefore, there is another

channel through which the population growth rate, gM, affects the economy’s pro-

ductivity growth gX.14

Second, we consider that the productivity growth of successful projects, gS,

may be a function of the last previous productivity growth of successful busi-

nesses. This equation captures the idea that successful businesses may benefit

(with some delay) from younger businesses’ innovation. Thus, the productivity

growth rate of already-successful businesses is

gSt = ḡS + γ(gχt−1 − ḡχ), (19)

where ḡS is a constant representing the productivity growth rate of successful busi-

nesses in normal times and ḡχ is a constant growth rate for successful businesses’

productivity in normal times. The key parameter is γ, which we will estimate us-

ing data on the relationship between employment growth by mature businesses

and overall productivity growth (more on this in the calibration section).

Since the productivity growth of successful projects gS depends on gχ, which

is equal to gX along a balanced growth path, expected productivity for successful

projects ΛS,a(gS) will depend on gX; i.e., ΛS,a(gS(gX)). Thus, equation (17), which

determines the growth rate of productivity in the economy, is replaced by

(
2cEzR

ι − 2

) 1
ι

=
∑∞

a=2

(
1

gN

)a−1
ΛS,a(1)

∑∞
a=2

(
1

gX gN

)a−1
ΛS,a(gS(gX))

.

If spillover is positive, this extension will amplify the effect of gM on gX.
14The full expression for n/M is included in the online appendix (B.2).
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Although this will be our benchmark quantitative model for the rest of the

paper, at the end of this section, we add two more features to the BGP analysis:

endogenous exit and endogenous choice of innovation by successful businesses.

Incorporating these features substantially complicates the model, but their effect

is limited, and if anything, they amplify the results implied by our benchmark

model.

4.2 Calibration

We calibrate the model to aggregate statistics and business dynamics data for

the United States and Japan. The model can reproduce key stylized facts with rel-

atively few parameters. What is important for our results is not the micro-level

information about firm dynamics but aggregate moments about business dynam-

ics by age.15 In particular, the model should reproduce the average size of all age-a

businesses (defined as total employment over total number of age-a businesses)

and the transition rates from age a to age a + 1, which will be given by the percent

of age-a businesses that exit (i.e., the exit rate) and the change in the average size

of businesses between age a and a + 1 restricted to businesses that are in operation

at both ages a and a + 1 (i.e., the growth rate of the size of surviving businesses).

We calibrate the model to reproduce the average from 1980 to 1999. The cal-

ibrated parameters based on previous papers or obtained directly from data are

shown in the top panel of Table 1. We assign values to the remaining parameters,

which are shown in the bottom panel of Table 1, in order to reproduce key stylized

facts such as establishment size, life-cycle profiles, and exit rates.16

Thus, the value of gM in the US, 1.0143, and in Japan, 1.0103, are the aver-

ages for the years 1980-1999. The exponent of the research cost function, ι, is set

15We could add more heterogeneity by adding iid productivity shocks, and it would not change
the results as long as we reproduce business dynamics by age.

16We use establishment-level data to capture product or project-level activity, which is more in
line with the process of innovation that we model. Establishment-level data are frequently used
as a proxy of project-level analysis, assuming that one establishment produces one product (e.g.,
Klenow and Li (2020) and Garcia-Macia, Hsieh and Klenow (2019)).
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Table 1: Parameters’ values and targets of calibration

Parameter Value Basis

Entry cost, cE 1 Normalization

Decreasing returns, ζ 0.2 Standard

Capital share, α 0.32 Standard

Depreciation rate, δ 0.07 Standard

Risk aversion, ϵ 2 Standard

Discount factor, β 0.96 Standard

Labor force growth rate, gM (1.0143, 1.0103) Average gM 1980-1999

Research cost exponent, ι 2.56 GHS

Convexity of aggregate entry cost, ϕ 0.55 KPS

Elasticity of gS to gχ, γ 0.342 See appendix A.3.

Research cost slope, zR (0.933, 1.762) Average prod. growth

Development cost slope, zD (2.413, 1.417) Average estab. size

Jump of prod. at success, 1/θ (16.5, 28.1) Average size by age

Success probability, λa See Figure 9 Growth of estab.

Productivity growth of successful estab., ḡS (1.054, 1.023) Growth of old estab.

Survival of successful estab., sS (0.965, 0.973) Exit rate of old estab.

Survival of unsuccessful estab., sU,a See Figure 9 Life-cycle profile of exit rate

Note: The parameters with different values for the United States and Japan are shown in
parenthesis, with the United States representing the first number and Japan representing the
second. GHS is an abbreviation for Greenwood, Han and Sanchez (2022), and KPS is an
abbreviation for Karahan, Pugsley and Sahin (2019).

to the same value as in Greenwood, Han and Sanchez (2022). They estimated it

to be equivalent to the impact of innovation expenditures on a firm stock market

value. Similarly, the parameter ϕ that determines the degree of congestion is set

as in Karahan, Pugsley and Sahin (2019). The parameter γ, which influences the

diffusion of innovation from new to old businesses, is calibrated using the value es-

timated in appendix A.3. There, we compare various specifications for regressing

current old-establishment productivity growth on the economy’s past productivity

growth.
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We now discuss the rationale behind the selection of the parameters that match

specific targets. To start, it should be mentioned that since all parameters’ values

are determined during the process of matching moments, there isn’t a one-to-one

link between parameters and targets.

First, because the value of productivity for research, zR, affects the growth rate

of average productivity in the economy, we calibrate the BGP to replicate the aver-

age productivity growth in the United States and Japan from 1980 to 1999.

Second, note that the jump in productivity when businesses become success-

ful, governed by θ, is a normalization.17, We choose θ so that successful businesses

employ, on average, around 80 workers, whereas unsuccessful businesses employ,

on average, about 5 workers. Then, we calibrate the success probability λa for ages

a ≥ 2 by assuming it changes exponentially with age in order to minimize the

number of parameters to search on. Thus, all that is required are the starting prob-

ability and the decay constant. Figure 9 shows the resulting life-cycle profile of

success probability. Both the United States and Japan have extremely low success

probabilities. As a result, successful businesses are uncommon. In addition, note

that we find that λa is decreasing in age a, which is consistent with Greenwood,

Han and Sanchez (2022)’s finding that the odds of success by venture capital fund-

ing round decreases with the age of the project.

Third, old businesses’ employment growth is gS/gX as discussed in Lemma 3.

As a result, we calibrate gS so that the model accurately reproduces the employ-

ment growth for old establishments in the data.

Finally, we calibrate the parameters that determine the survival probability life-

cycle profile. We assume that the probability of successful businesses surviving

is constant. The resulting survival probability, 0.97, is very similar for the United

States and Japan and reflects the fact that the exit rate of old establishments is quite

17The success probability would decrease if we increase the value of θ. In other words, if suc-
cessful businesses are larger, the calibration would indicate that there are fewer of them to match
the growth rate of surviving businesses. This trade-off has a limited impact on the results: as shown
in Table 7, the effect of the change in λ and θ are relatively small in opposite directions.
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low in both countries’ data. Because successful businesses are rare in the model,

the resulting life-cycle profile of survival probabilities for unsuccessful businesses

is closely related to the survival probability for establishments in the data.18 The

resulting profiles for sS and sU for the United States and Japan are also shown in

Figure 9 in appendix A.4.19

As a result, we calibrate 10 parameters using 32 moments (31 bars in Figure 3

and average productivity growth) for the US and 20 moments (19 bars and average

productivity growth) for Japan. They are targeted with an equal weight.

Figure 3 depicts the fit of calibration targets.20 Figure 3’s left panel shows how

well the model matches the exit rate life-cycle patterns for the US and Japan. Exit

rates in both countries fall with age, and exit rates in the US are greater than in

Japan, especially for newer establishments. The model accurately predicts these

trends, which is critical for determining the relative relevance of young and old

businesses.

The middle panel of Figure 3 depicts the fit of the life-cycle profile of establish-

ment size as measured in employment. For the plot, we normalize employment

by the employment of age-one establishments such that the plot starts at one. Two

facts are important. First, the model accurately reproduces the profiles for the US

and Japan. Second, Japan’s profile is much lower than that of the US. While estab-

lishments 27 years or older in the US are approximately 3.5 times larger than those

one-year-old, the same ratio for establishments 29 years or older in Japan is 1.5.

18In the same manner as the choice of success probability, we calibrate the survival probability
sU,a using an exponential decay function while allowing it to converge to a non-zero value. Hence,
the initial probability, long-run probability, and decay constant are calibrated.

19We show in Figure 8 that the model also reproduces well the share of young businesses, which
could be expected given the fit of the exit rates.

20The source of data for the United States is the Business Dynamics Statistics (BDS), which the
United States Census Bureau produces. In Figure 3, the average of 1980-2019 is taken for all three
measures. The data source for Japan is the Economics Census and Establishment and Enterprise
Census conducted by the Statistics Bureau. The exit rate and growth of surviving establishments
by age are based on data from 2004, as these measures are only available in 2004 compared with
the data from 2001. For the employment size, we have extracted the year-of-birth fixed effect as the
life-cycle profile for Japan, unlike the one for the US, is influenced by the year of birth. More on
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Figure 3: Fit of life-cycle profiles

Finally, Figure 3’s right panel shows the growth of surviving businesses. Con-

trary to the average establishment size by age, these profiles are unaffected by

business selection into exit. Thus, the differences between the middle panel and

the right panel help identify the differences in survival rates of successful and un-

successful businesses.21 As our theoretical analysis showed, it is very important

to reproduce the growth of surviving businesses. Critically, there is a diminishing

growth profile with respect to age, and old businesses experience a decline in size

on average. Recall this was our “sufficient statistic” described in Lemma 3. The

patterns in the data indicate that a drop in population growth will lead to a fall

in aggregate productivity growth along the BGP, as stated by our Lemma 4. Also,

the decline in the size of surviving old businesses is faster in Japan than in the US.

Given the finding in our Lemma 5, we are likely to find a larger impact of labor

force growth on productivity growth in Japan than in the US. In terms of the cali-

data sources in the online appendix B.1.
21In particular, if the growth rate of average employment size is equal to the growth rate of

average employment size of surviving businesses, then the exit rate of successful and unsuccessful
businesses should be equal.
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bration, the growth rate of the size of surviving old businesses is the prime target

for calibrating gS. Consequently, we obtain gS = 1.054 for the US and gS = 1.023

for Japan.

5 Balanced growth path analysis

This section shows how variations in the population growth rate impact the

productivity growth rate along the BGP.

5.1 Results using the benchmark model

We first offer the benchmark findings before showing how spillovers and con-

gestion affect the results. The exercise is straightforward. We take the model’s BGP

calibrations for the US and Japan from 1980 to 1999, modify gM, and find the new

value of gX, which is proportional to gTFP in the BGP. This exercise is repeated for

various values of gM. Figure 4 shows the results for the US (left panel) and Japan

(right panel).

Figure 4: Impact of population growth on TFP (comparison across BGPs)

The calibrated point is indicated by the stars in Figure 4, and the lines depict

how gTFP changes as gM increases. Additionally, vertical lines represent historical

times of high labor force growth and the labor force growth projections for the
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years 2050 to 2060.22 Using these time frames as examples, we illustrate how drops

in labor force growth imply major shifts in the pace of productivity growth of the

economy. Our model predicts a 0.3-percentage-point drop in productivity growth

for the US as a result. For Japan, population growth declined by more than 3

percentage points between the indicated 100 years (1950-1960 to 2050-2060), which

implies a 0.6 percentage point reduction in productivity growth.

5.2 Role of key model’s features

What role do the key characteristics of the model play in the outcomes shown

in Figure 4? To address this, we compare our benchmark model (column A) results

with those for three alternative models in Table 2. The findings of a model with no

congestion (ϕ = 0), a model with no spillovers (γ = 0), and the simplest model

with neither congestion nor spillovers (ϕ = γ = 0) are shown in columns B, C, and

D, respectively.

The results in Table 2 show that congestion and spillovers are important, al-

though around 65% of the impact would still be seen absent them. The overall

impact for the US decreases from 0.30 percentage points to 0.19 percentage points

when both factors are removed. Japan’s decrease falls from 0.60 to 0.39 percent-

age points. As a consequence, we conclude that the impact is a reduction of about

0.08-0.12 percentage points of productivity growth for every percentage point re-

duction in the US population growth and between 0.14 and 0.21 percentage points

of productivity growth for every percentage point reduction in Japan’s population

growth.

Why do these features amplify the impact on TFP growth? First, congestion

reduces the entry cost when the population growth rate decreases because there

are fewer entrants. This declining entry cost discourages innovation efforts, as

entrants can compensate for the entry cost with lower productivity. Consequently,

22The labor force growth projections are taken from the Bureau of Labor Statistics (BLS) for the
US and the Cabinet Office (CAO) for Japan.
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Table 2: The role of key features on the impact of population growth on TFP along
the BGP

Data’s growth Model’s implied growth in TFP in the BGP, %

in labor (A) (B) (C) (D)

Periods force, % Benchmark No congestion No spillover Simplest

United States

1900-1910 2.60 1.35 1.31 1.32 1.29

1980-1999 1.43 1.20 1.20 1.20 1.20

2050-2060 0.25 1.05 1.08 1.08 1.10

Difference in pp -2.35 -0.30 -0.23 -0.24 -0.19

Japan

1950-1960 1.94 1.08 1.05 1.03 1.01

1980-1999 1.03 0.89 0.89 0.89 0.89

2050-2060 -0.95 0.48 0.53 0.58 0.62

Difference in pp -2.89 -0.60 -0.52 -0.45 -0.39

congestion increases the effect through smaller innovation. Second, the impact of

spillovers is more straightforward: the decline in population growth leads to lower

productivity growth, resulting in smaller spillovers to the productivity growth of

existing businesses, which is also part of overall productivity growth.

In addition, Table 7 in online appendix B.3 presents the results of a sensitivity

analysis for the size of the impact of gM on gTFP. We find that the most impor-

tant parameters affecting the size of the impact are the survival of successful busi-

nesses, sS, and their productivity growth, gS. We find that an increase in sS or a

decrease in gS would increase the size of the impact of gM on gTFP significantly.

Note that the last result is in line with Lemma 5.

5.3 Incorporating endogenous exit

In this section, we consider an extension of the model incorporating endoge-

nous exit. To give businesses a reason to exit, we incorporate a fixed cost shock

cawε to the profits of unsuccessful businesses that depend on the age of the busi-
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ness.23 If the pre-fixed costs expected discounted profits Ia is larger than the fixed

cost, they pay the fixed costs and continue their businesses. If not, they exit the

market.

We also keep an exogenous exit probability at the exit rate level for very old

unsuccessful businesses in the original calibration, sU,∞. Thus, the survival prob-

ability for unsuccessful businesses is now given by sU,a = sU,∞ Pr(cawε ≤ Ia) =

sU,∞ × F(Ia/(wca)), where F is the distribution of ε. For tractability, we assume

that F is Type III extreme value (or Weibull) distribution; i.e., ε ∼ Weibull(1, ϑ).

With this assumption, the survival probability for unsuccessful businesses is given

by

sU,a = sU,∞

[
1 − exp

(
−
(

Ia

wca

)ϑ
)]

,

where ϑ is a parameter of the distribution. In addition, we incorporate the expected

fixed cost in expected profits given survival. We calibrated ca to get the same age

profile of the exit rate as the exogenous exit case. Also, we chose ϑ = 0.74 such that

the effect of population growth on the economy’s exit rate across BGPs coincides

with the effect in Hopenhayn, Neira and Singhania (2022).24

Figure 5 shows how the effect of the population growth rate on TFP growth

compares between the model introduced in section 2 and the model with endoge-

nous exit. The effect is very small for the US and Japan’s calibrations. Why is

the amplification so small? Because there are two counterbalancing forces. First,

a decline in population growth produces an increase in survival rate for each age

because wages grow slower. This effect on the survival rate for every age increases

the share of old businesses, which magnifies the effect on productivity growth due

23Successful businesses could also have to pay a fixed cost, but we assume it is negligible com-
pared to their revenue, so they would not exit for this reason (they are still subject to the exogenous
probability of survival).

24In particular, we match that when population growth declines from 2.66% to 0.78%, the exit
rate declines by 0.88 percentage points. As a reference, with exogenous exit, the composition effect
due to firms getting older would imply a decline of 0.72 percentage points.
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to the growth composition effect. Second, there is also a change in the step size of

innovation, g. Given that the survival rates increase endogenously for each age,

businesses find it beneficial to innovate more.

Figure 5: Endogenous exit and successful businesses innovation

5.4 Incorporating endogenous innovation by successful businesses

In this section, we incorporate endogenous productivity growth by successful

businesses, gS into the model.

Denote Ia(x) be the value of a successful business at age a. It satisfies the fol-

lowing Bellman equation:

Ia(x, X, w) = S(x, X, w) +
s

1 + r − δ
max

gS
[Ia+1(gSx, gXX, gww)− CS(gS)w] , (20)

where CS(gS) is the cost function of achieving productivity growth of gS. We con-

sider a general case for CS(gS) that allows for the cost of productivity growth to

depend on the distance of the business productivity to the frontier (i.e., the average

of successful businesses, χ) and to the average productivity of the economy (i.e.,

X). In particular, we assume

CS(gS) = cSgι
S

( x
X

)ξ
(

x
χ

)1−ξ

, (21)
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and let ξ determine which distance is more relevant. In this case, we find that the

endogenous innovation by successful businesses is

gS =


(

X
χ

)ξ ( cE
D
) ι−2

2ι − θ L
N
( χ

X
)1−ξ ζ

1−α−ζ

(
∑∞

a=1 β̂a

(
gw
gX

)a
Λu,a

)
cSξ ∑∞

a=1 β̂a

(
gw
gX

)a
Λu,a

λa
1−λa


1

ι−1

, (22)

where

D = z
ι

ι−2
D

(zR

ι

) 2
ι−2
(

ι − 2
2ι

)
(23)

is a constant value. To obtain quantitative results, we calibrate two parameters: cS

and ξ. We calibrate cS to have the same gS in the reference period (1980-1999) as in

our benchmark quantitative model, and ξ to have the elasticity of gS to gX consis-

tent with the result in Table 6 when comparing between the averages for 1980-1999

and 2000-2019. We find that innovation by successful businesses is hump-shaped

in population growth; as a consequence, the effect of population growth on TFP

growth is larger for the low-population growth states and smaller for the high-

population growth states compared with the simplest case. This implies that the

effect on TFP growth can be larger in the future than the main analysis, as the

population growth is slowing down.

6 Transitional Dynamics

The concern that declining population growth will have an influence on TFP

growth is clearly long-term. However, we address several interesting questions by

computing transitional dynamics. In this section, we compute transitional dynam-

ics and use the results to answer three questions. The first question is: How im-

portant has population growth been for the slowdown in TFP in the US and Japan

in the last 40 years? We show that the share accounted for population growth is

significant, but it is a fraction of the differences among BGPs. This result suggests

that the transition is slow, and a significant part of the impact of the decline in pop-

ulation growth on TFP growth will occur in the future. Thus, a natural question is:
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How much of this effect will be observed in the future? Finally, we ask: What are

the causes of the TFP growth’s sluggish reaction to population growth changes?

We show that the interplay of level-vs-growth and labor-reallocation effects is par-

tially responsible for this.

6.1 Impact on TFP growth in the last 40 years

We use transitions between BGPs to compare the drop caused by the decline in

population growth with data for the United States and Japan.

We select as the starting BGPs those that correspond to labor force growth in

the first years that we observe a significant decline in the trend of the growth rate

of the labor force (1950 for Japan and 1970 for the US).25 We utilize the BGPs corre-

sponding to the value of gM in 2020 for the final BGP in both countries.26 The entire

transitions for the main variables are shown in Figure 10 in the online appendix.

Table 3 describes the changes in the last 40 years, focusing on two sub-periods.27,

respectively. The numbers for the “slowdown” in TFP growth are the difference

in TFP growth (in percentage points) between the average trend growth in 1980-99

and 2000-19. For instance, TFP trend growth in the US was 1.195% in 1980-99 and

1.010% in 2000-19, so the difference is 0.185 pp. The decline in TFP growth was

more severe in Japan: on average, it was 0.763% in 1980-99 and 0.345% in 2000-19,

so the difference is 0.418 pp.

How much of the drop in TFP growth can be attributed to the slowdown in

population growth? To answer this question, we take the simulated transitions

25The Christiano and Fitzgerald (2003) filter is used to extract the slow-moving trend of labor
force growth. We chose this filter because it allows us to choose the parameters to capture the long-
run movement in the labor force. We set the parameters at 2 and 40 and also consider the changes
using other values.

26In a later section, we show the amplification obtained by including forecasts for gM until 2060.
27We begin the analysis in 1980 since other circumstances, such as World War II and the high

economic growth period in Japan in the post-war period would likely be influential in previous
decades. Recall that in the previous section, we calibrated the model to have a balanced growth
rate of TFP equal to the average growth of TFP between 1980 and 1999. To facilitate the comparison
with data, for the transitions, we recalibrated zR for the US and Japan to make sure that the average
growth in the period 1980-1999 is equal in the model in the data. Only very small changes were
necessary; the new values are 0.886 and 1.622 for the US and Japan
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Table 3: TFP growth slowdown since 1980-99 to 2000-19, data-model comparison

United States Japan

Change in gTFP Share Change in gTFP Share

1980-99 − 2000-19 accounted for 1980-99 − 2000-19 accounted for

Data 0.185 − 0.418 −

Benchmark 0.088 47.5% 0.073 17.4%

No congestion 0.078 42.0% 0.064 15.4%

No spillover 0.073 39.3% 0.052 12.4%

Simplest 0.067 36.2% 0.046 11.0%

given the evolution of the trend in population growth and compute the average

growth in TFP in the period 1980-1999 and 2000-2019 as we did in the data. Using

the benchmark model, we find that the drop in population growth accounts for

47.5% of the decline in TFP growth in the US. If we abstract away from congestion,

this share is reduced by about one-tenth, while removing spillovers decreases it

by less than one-fifth. In the simplest scenario, the drop in population growth

explains 36.2% of the decline in TFP growth in the US over that time period. The

analysis is similar in Japan. The benchmark model accounts for roughly 17.4%

of the drop in TFP growth, whereas the simplest model (without congestion and

spillovers) accounts for around 11%.

6.2 Future decline in productivity

The results in Table 3 together with BGP analysis shown in Figure 4 suggest

that the transition between BGPs is slow and, as a consequence, part of the effect

of population growth on productivity growth will occur in the future. The top

panel of Table 4 shows the expected decline in TFP growth between 2020 and 2050

and between 2020 and 2100. The expected changes for these subperiods in the US

are -0.05 and -0.05 percentage points, respectively. Note that this implies that the

impact of population growth on productivity growth will increase by almost 50%

in the future (it was -0.088 between the average of 1980-1999 and 2000-2019). The
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expected change in productivity in Japan is much larger: -0.19 and -0.24 percentage

points between 2020 and 2050 and between 2020 and 2100, respectively. The faster

labor force growth decline in Japan than in the US between 2005 and 2020 causes

this result.

To complete the analysis of expected TFP growth, we re-computed the transi-

tions, incorporating the forecast for the decline in labor force growth until 2060.

The bottom panel of Table 4 shows the results. Since labor force growth is ex-

pected to continue decreasing, the impact is larger, particularly between 2020 and

2100. For that period, the expected change in productivity growth is -0.08 for the

US and -0.35 for Japan.

Table 4: Expected change in TFP growth as a consequence of the decline in the
growth of the labor force (percentage points)

Country United States Japan

Benchmark

Between 2020 and 2050 -0.05 -0.19

Between 2020 and 2100 -0.05 -0.24

Including forecast for gM

Between 2020 and 2050 -0.05 -0.27

Between 2020 and 2100 -0.08 -0.35

6.3 Why is the response so slow? Two counterbalancing factors

Why is there a slow reaction of gTFP to gM, as mentioned in the preceding sub-

section? To answer this question, we evaluate the economy’s response to a one-

time change in population growth. We carry out this experiment in the model

calibrated for the US.
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Recall that TFP is given by

TFP =

(
L
M

)1−α̃ (α

r

) α−α̃
1−α

(
NX

L

) ζ(1−α̃)
1−α

.

So, in a transition, TFP growth is not just equal to growth in average productivity

X. As long as the share of workers in the production sector, L/M, the interest rate,

r, and the average firm size, N/L, are changing, they will cause changes in TFP

growth. These three drivers of TFP growth in the transition are absent in the BGP

because they are constant. It turned out that the most important of these three

components is L/M, which should not be surprising because it has the largest

exponent.

Figure 6 depicts the economy’s response to the change in population growth

rates that we feed into the model. The shock is a permanent fall in population

growth from 2% to 1% in the year designated as zero.28 The values displayed are

relative to the values in the BGP with population growth equal to 2%.

First, note that in the period the shock is realized, population growth (top left

panel) is half of the original value, and the growth in the number of businesses

(top middle panel) also falls quickly, although a bit more slowly. The decline in

the growth rate of the number of businesses generates a slow fall in the share of

young businesses (top right panel), which takes more than 20 years to reach the

value of the new BGP. As discussed previously, in the long run, this generates

a decline in average productivity growth (bottom left panel). However, during

the shock period and for a few years afterward, average productivity growth is

larger than in the original BGP. This is referred to as the level-vs-growth effect.

The long-run decline in average productivity growth is due to a rise in the propor-

tion of older businesses in the economy, which have lower productivity growth

than the average. However, on impact, a higher proportion of older businesses

28For simplicity, we assume agents learn about the shock only one period before it occurs. This
assumption allows for the growth in a number of businesses to fall in the same period as population
growth, as the decision to enter is made one period in advance.

36



Figure 6: Response to a permanent decline in population growth

positively influence average productivity growth because younger businesses are

less productive than older businesses. Thus, in the short run, younger businesses’

lower productivity level outweighs their greater productivity growth, and average

growth productivity rises. The decline in the entry rate captured by the drop in the

growth rate of the number of businesses (shown in the top middle panel) generates

a decline in employment in the innovation sector of the economy, so a larger share

of workers are employed in the production sector (L/M increases in the bottom

middle panel). This effect, which we refer to as the labor-reallocation effect, is the

second driver of the short-run increase in TFP growth after a decline in the growth

rate of the population.

The labor-reallocation and level-vs-growth effects operate together to drive TFP

growth (panel F) in the short run in the opposite direction that it moves in the long

run as population growth changes. As a result, these forces partially counterbal-

ance the short-run effect on TFP growth and create its sluggish response to changes

in population growth.
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We also study the sensitivity of the speed of convergence to the model’s param-

eters in Table 7 in the online appendix B.3. The most important parameters are sS,

sU, gS, and β. We find that declines in sS, sU, gS, and β would significantly increase

convergence speed.

7 Validation using US state-level data

As mentioned in the introduction, there is vast empirical literature document-

ing the impact of population growth on productivity growth.29 In this section,

we offer new evidence using state-level US data.30 The purpose is to validate the

proposed mechanism as closely as possible.

First, we study the impact of population growth on productivity growth through-

out US states using local projections. The focus is on studying if the dynamics after

a change in population growth described in the previous section are present in the

data. Second, we consider the possibility of endogeneity in the regressions us-

ing an instrumental variable approach. The results in the instrumental variable

approach resemble those in the natural experiment studied by Peters (2022).

For the analysis in this section, we would ideally need a lengthy time series of

state-level TFPs, which are not available in the US. As a result, we use real GDP

per worker, which is referred to as labor productivity. Our real GDP per worker

and labor force data range from 1977 to 2019. To keep the analysis comparable, we

also use labor productivity from the model, which is calculated using the following

expression: log(gprod,t) = 1/(1 − α̃)× log(gTFP,t)− α̃/(1 − α̃)× log(gr,t). We run

an anticipated transition from 1900 to 2060 for the ten largest US states to generate

a simulated time series from the model.31

29See Peters (2022) and references therein.
30A concern about using state-level data is that there may be knowledge spillover across states.

Note that if the spillover is positive, meaning that faster growth in one state generates higher
growth in other states, then the coefficient in our regression will be downward biased.

31Not surprisingly, the estimates are very comparable if we use simulated aggregate US data or
the simulation for only two states.
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7.1 Local projections

A difficulty with the analysis of the relationship between changes in produc-

tivity growth and labor force growth is that, as shown in the previous section, it is

not monotonic. Productivity growth rises at first and then falls due to a slowdown

in labor force growth, as shown in Figure 6. This pattern suggests that we should

estimate a dynamic model. As a result, we follow Jordà (2005) and employ local

projections.

Our left-hand-side variable is the change in labor productivity growth rate be-

tween i years after the shock and the year before the shock, for each state s,

∆(gprod)
s
t+i,t−1 = gs

prod,t+i − gs
prod,t−1.

We regress this variable on the change in the growth rate of the labor force,

∆(gprod)
s
t+i,t−1 = βi

0 + βi
1 × ∆(gM)s

t,t−1 + controls,

for i = 0, 1, ..., 6. Note that these are seven different regressions, one for each value

of i. The controls included are four lags of ∆(gM)s
t,t−1, four lags of ∆(gprod)

s
t,t−1,

and a quadratic polynomial in year.

Figure 7: Change in labor productivity growth after a 1pp decline in labor force
growth

Note: The shaded areas represent one (darker) and two (lighter) standard error bands.

Figure 7 depicts the outcome of estimating local projections in data for US

states. The shape of the response resembles the results generated with the model

39



in Figure 6. A reduction in labor force growth has a positive (0.137) and significant

(at 1%) effect on labor productivity growth. Then it decreases and becomes nega-

tive (-0.083) and significant (at 10%) two years after the shock, and it continues to

be negative (-0.141, -0.188, -0.228) and significant (at 1%) three, four, and five years

after the shock.

7.2 Cross-sectional IV regressions

Although in the previous subsection analysis, the data and model show sim-

ilar correlations between labor force growth and labor productivity growth, this

analysis does not allow us to determine the causal impact of labor force growth on

labor productivity growth. For example, one possible explanation for our result is

that workers relocate to states with greater expected labor productivity growth.

Nonetheless, our mechanism for the effect of labor force growth on labor pro-

ductivity growth is quite specific, as it is based on a decrease in the number of

new businesses. Karahan, Pugsley and Sahin (2019) validates this mechanism by

demonstrating a causal relationship between labor force growth and the number

of startups or the startup rate. In particular, they identify that a 1-percentage-

point decrease in the working-age population growth rate roughly translates to

a nearly 1-percentage-point decrease in the startup rate. Because our model was

constructed using a firm-dynamics model similar to Karahan, Pugsley and Sahin

(2019)’s framework, it is not surprising that we attain the same kind of relationship,

as shown in Figure 6 panels (A) and (D).

Karahan, Pugsley and Sahin (2019), inspired by Shimer (2001), used a past birth

rate as an instrumental variable for labor force growth. This variable is a powerful

instrument because, as previous research has shown, there is a close connection

between current labor force growth and the birth rate some 20 years ago. Further-

more, in our scenario, the birth rate many years ago is unlikely to directly impact

current labor productivity growth. Unfortunately, we find that this instrument is

too weak to be used for the yearly dynamics across states examined above using
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local projections. Lagged state-level birth rate, on the other hand, is a significant

predictor of differences in labor force growth after averaging state data over a 30-

year span. This fact enables us to use cross-sectional regressions in an attempt to

identify the causal effect of labor force growth on labor productivity growth.

For the 30 years from 1990 to 2019, we average labor productivity growth, gprod,

and labor force growth, gM. We use the birth rate pushed back 15 years as an in-

strument for gM, so the average is from 1975 to 2004.32 We control by two poten-

tially important variables. First, we control by the state’s initial income per capita

(average from 1986 to 1989) because state convergence would suggest a negative

link between the initial level of development and future growth. Second, we in-

clude the state’s population (average from 1990 to 2019), as many growth theories

indicate that scale effects may exist.

The findings of six specifications are presented in Table 5. The first three columns

show the results of OLS regressions, while the next three columns show the results

of Instrumental Variable (IV) regressions. The three alternative specifications for

each approach differ in how state-level observations are weighted. In the first in-

stance, all observations are weighted equally. The weight in the second case is the

logarithm of the state’s population, and the weight in the third case is the state’s

population.

Table 5, regardless of specification, demonstrates that labor force growth has an

effect on labor productivity of around 0.2 percentage point change in labor produc-

tivity growth for every 1-percentage-point change in labor force growth. It should

be noted that these estimates are comparable to the effect estimated in the local

projections for the years following the shock. In general, the estimates in the OLS

regressions are more significant than in the IV regressions, though all of the coeffi-

cients for the effect of gM on gprod are significant at a 5% level. Furthermore, except

when states are weighted by population, the F statistics of the first-stage regres-

32We also perform the analysis using the average between 1975 and 1989 to avoid period overlap
for the averages, and the results are very similar.
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Table 5: Impact of labor force growth on labor productivity growth, cross-sectional
regressions for US states

OLS IV, lagged birth rate

Dependent variable state’s weight state’s weight

Average gprod Equal log(Population) Population Equal log(Population) Population

Average gM 0.182 0.190 0.232 0.202 0.194 0.243

( 0.000) ( 0.000) ( 0.000) (0.044) (0.042) (0.018)

log(Initial income pc) 0.007 0.007 0.006 0.007 0.007 0.006

(0.026) (0.026) ( 0.010) (0.019) (0.019) (0.012)

log(Population) -0.001 -0.000 -0.000 -0.001 -0.000 -0.000

(0.239) (0.276) (0.814) (0.227) (0.267) (0.776)

R-squared 0.310 0.312 0.424 0.308 0.312 0.423

First-stage reg F stat − − − 31.788 28.821 5.218

Observations 49 49 49 49 49 49

Note: There is also a constant in each regression, and the values in parenthesis are the p-values corresponding to robust
standard errors. The states include all US states except Alaska, Hawaii, and the District of Columbia.

sions show that the lagged birth rate is a very powerful instrument. Note also that

the magnitudes are comparable, although slightly smaller, than those estimated by

Peters (2022) using forced population expulsions in post-war Germany.

7.3 The decline in US business dynamism

In this section, we examine how this model predicts the decline in business

dynamism in the United States. Since we do not use trend data for the variables

we compare, it may be challenging for the model to reproduce the US decline in

business dynamism once we feed it the labor force trend. In that sense, the exercise

in this section serves as a model validation exercise.

We use the calibration in the previous section to compute the model’s tran-

sitional dynamics. To begin, we compute a new BGP based on 1970 population

growth. Then, we compute a transition in which the agents are aware of the change

in gM exactly 100 years in advance. Thus, agents can predict the change—this ap-

pears appealing because low-frequency population size changes are predictable.

Since we have gM data until 2020, we assume that after that, gM remains constant

at the 2020 level.
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Figure 8: Decline of business dynamism in the US

Because the time series for these variables in the US begins around 1980, the

three plots in Figure 8 begin with the model’s prediction in 1970. Overall, Figure

8 shows that the model, at least to some extent, captures the decline in business

dynamism in the US. The model predicts the decline in the exit rate, the entry rate,

and the proportion of young establishments.33 It also predicts a slight increase

in the average business size. Note that it is reassuring that the model performs

reasonably well in this dimension. The mechanism is straightforward, and it is

similar to that described in Karahan, Pugsley and Sahin (2019) and Hopenhayn,

Neira and Singhania (2022). Because fewer establishments enter the market (bot-

tom left panel) as population growth slows, the share of young establishments

(bottom right panel) decreases. Then, since older establishments are less likely to

exit and larger, the exit rate falls (top right panel), and the average business size

increases (top left panel). Previous research has shown a link between population

growth and business dynamism, so our interest in business dynamism is only a

validation exercise.
33We define young establishments as age 5 or younger.
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8 Dicussion: Our mechanism vis-à-vis scale effects

We have abstracted away from scale effects on growth up to this point by ex-

tending the firm-dynamics model of Hopenhayn (1992). However, those models

have a long history, as elegantly explained by Jones (2022). In this section, we

briefly discuss a particular kind of model with scale effects, a model in which each

business produces a different type of good or variety.

Assume the technology for a project of productivity xi, capital ki and labor li is

yi = xikα
i l1−α

i and the final consumption good is a CES combination of goods or

varieties according to

Y =

[
N

∑
i=1

y
σ̃−1

σ̃
i

] σ̃
σ̃−1

,

where N is the number of firms, each producing a different variety as in Peters and

Walsh (2021). These expressions give the following formula for total output,

Y = N
1

(σ̃−1) X̃KαM1−α,

where X̃ ≡
(

∑i
1
N xσ̃−1

i

) 1
σ̃−1 is the CES aggregation of productivity and N is the

number of goods or varieties (K and M are total capital and labor force, as before).

Therefore, the growth in TFP is

gTFP = gX̃ +
1

σ̃ − 1
gN.

This equation implies that TFP growth is proportional to the growth of average

productivity across firms and the growth in the number of businesses/varieties gN.

Recall that for comparisons of balanced-growth paths, in our benchmark model,

gTFP is proportional to gX, so the last term is the key difference when considering

new varieties.

In a BGP, the growth rate in the number of varieties, gN, must equal the growth

rate of the population, gM. Thus, this equation implies that, unlike in our model,

in this model, there is a direct effect of population growth on TFP growth across
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BGPs. The magnitude of this effect is given by the parameter σ̃. Calibrating σ̃ = 4

such that it is consistent with the “degree of diminishing returns” calibrated in

Jones (2022), this equation says that for each 1-percentage-point decline in pop-

ulation growth, there would be a 0.33 percentage point decline in productivity

growth. This number is larger but comparable with the numbers we found for

the change in gX: 0.13 for the US’s calibration and 0.21 for Japan’s calibration.

Thus, the new mechanism introduced in this paper would increase the impact of

population growth on productivity growth between 40-60% (from 0.36 to 0.42-0.54

percentage points). Similarly, Peters and Walsh (2021) finds that in the long run,

for each point of decline in population growth, productivity growth declines by

about 0.23 percentage points. They also report that almost all of that is because of

the decline in the number of varieties, which is the term highlighted in this sec-

tion. Thus, the impact we find for our new mechanism would increase their effect

on productivity growth in the US by 56% (from 0.23 to 0.36 percentage points).

9 Conclusions

At least since Solow (1957), the persistent improvement in living standards

around the globe has been largely attributed to TFP growth. However, the trend

growth in TFP has recently slowed in industrialized economies (Cette, Fernald and

Mojon, 2016; Fernald et al., 2017). On the other hand, population growth has de-

clined in most developed economies, and this trend d is projected to continue in the

next decades. In fact, the latest United Nations projections suggest that the world’s

population could reach zero growth during the 2080s (UN, 2022). Therefore, fig-

uring out the possible impact of population growth on TFP growth is crucial. We

offer a theory that ties these two trends together. According to our theory, the slow-

down in population growth has been, and will likely continue to be, a drag on TFP

growth in the coming decades due to the projected slowing population growth.
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A Appendix

A.1 Proofs

While we assume in section 2 that the success probability λ and survival rate of

unsuccessful businesses sU are constant, all the lemmas are proven under a more

generalized case here. Specifically, we assume that they are weakly decreasing in

age, which is consistent with the calibration in section 4.2.

A.1.1 Proof of Lemma 1

First, the value of a project with potential productivity x̂t is

It(x̂t; {wt}, {rt}) =
∞

∑
j=t+1

β̂ jEx̂t [S(xj; wj, rj)|x̂t].

Note that using equation (2), we have that

St = ζxt

[(
α

rt

)α (1 − α − ζ

wt

)1−α−ζ
] 1

ζ

,

so we can rewrite It as

It(x̂t; {wt}, {rt}) =
∞

∑
j=t+1

β̂ jζ

( α

rj

)α(
1 − α − ζ

wj

)1−α−ζ
 1

ζ

E[xj|x̂t] = Γ(wt, rt)x̂t,

where

Γ(wt, rt) = ζα
α
ζ (1 − α − ζ)

1−α−ζ
ζ

∞

∑
j=t+1

β̂ j(ΛS,j−t(gS) + ΛU,j−t)(rj)
− α

ζ (wj)
− 1−α−ζ

ζ .

using equation (6) to substitute for E[xj|x̂t].

Then, we can solve equation (3). This equation is altered to

V({wt}, {rt}, χt) = max
σt,gt

σtΓ(wt, rt)gtχt −
1

zR
(gt)

ιwt −
σ2

t
2zD

wt, (24)

where gt ≡ x̂t/χt is the step size of innovation. Note that the FOCs with respect to
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σt and gt are

∂Vt

∂σt
= Γ(wt, rt)gtχt −

wt

zD
σt = 0,

∂Vt

∂gt
= Γ(wt, rt)σtχt −

ιwt

zR
gι−1

t = 0.

The solutions are

g∗t =

(
zRzD

ι
Γ(wt, rt)

2
(

χt

wt

)2
) 1

ι−2

, (25)

σ∗
t =

zDΓ(wt, rt)

wt
χtg∗t . (26)

Substituting equations (25) and (26) into (24), we obtain

Vt =
ι − 2
2zR

(
zRzD

ι
Γ(wt, rt)

2
(

χt

wt

)2
) ι

ι−2

wt =
ι − 2
2zR

(g∗t )
ιwt. (27)

Finally, we replace equation (27) into the free entry condition (equation (4)),

Vt =
ι − 2
2zR

(g∗t )
ιwt = cEwt,

which determines the step size g∗,

g∗ =
(

2cEzR

ι − 2

) 1
ι

.

Since this solution is equal to equation (14), this concludes the proof of Lemma 1.

A.1.2 Proof of Lemma 2

Let ·′ denote values in the next period. Suppose that gM > sS,∞ and {σ, g, c, k, N}

solves the old problem. The existence of a balanced growth path will be shown

when {σ, g, gwc, gwk, gMN} solves the new one for M′ = gM M.

First, the Euler equation derived from equation (1), (gw)ϵ = β(1+ r− δ), shows

r is constant, and so β̂′
t = β̂t.

Second, when we observe N′ = gMN, we will get a certain value of gX from

equation (17). Note that the right-hand side of equation (17) is a monotonic (in-

creasing) function of gX and limgX→0 RHS → 0 and limgX→∞ RHS → ∞ for any

gM ∈ (0, ∞). Given the LHS is positive, we have a unique gX for every gM.

Third, the low of motion of the number of businesses, equations (8)-(10), shows
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n′ = gNn.

In addition, equations (15) and (16) give χ′ = gXχ and x̂′ = gX x̂. Equation (25)

gives w′ = (gX)
ζ

1−α w, and it gives L′ = gML, from the equation for labor demand.

To see the firm side, from equation (2), S(x̂′, w′, r′) = gwS(x̂, w, r), and so

I(x̂′, w′, r′) = gw I(x̂, w, r). Therefore, the objective function for the value of projects

in equation (3) inflates by the factor gw. Note that R(x̂′/χ′) = R(x̂/χ) and D(σ′) =

D(σ). Also, both sides of equation (4) inflates by gw, so the new solution still satis-

fies the free entry condition.

Regarding market clearing conditions, all labor, capital, and goods markets

hold in the new problem at the conjectured solution: both sides of equation (11)

inflate by gM, equation (12) by gwgM, and equation (13) by gwgM.

Lastly, consider the budget constraint in equation (1). At the conjectured solu-

tion, both sides inflate by the factor gw. As such, the budget constraint also holds

with the new solution.

Thus, by canceling out this factor of proportionality, the new problem reverts

back to the old one, and we have shown that it is a BGP.

Finally, we show that population growth must be higher than the old busi-

nesses’ survival rate, gM > sS,∞ to have a BGP. For this, note that the lower bound

for the growth in the number of businesses is sS,∞. This is the case because (i)

in that lower bound, the number of entrants is at its lower bound (zero), and (ii)

we assumed that successful firms live longer than unsuccessful ones, sS,∞ ≥ sU,∞.

Hence, if gM < sS,∞, then the population growth rate is lower than the growth rate

of the number of businesses, gM < gN, which contradicts the condition gM = gN

that should hold in any balanced growth path.

A.1.3 Proof of Lemma 3

This proof consists of two parts: (i) Prove that gX > gS if and only if the employ-

ment growth rate of surviving successful businesses is negative, and (ii) prove that

the employment growth rate of surviving old businesses is asymptotically equiva-
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lent to that of surviving successful businesses.

First, the employment of a business i at time t is

li,t = xi,t

[(
α

rt

)α (1 − α − ζ

wt

)1−α
] 1

ζ

.

Given that the business is successful at time t and surviving at time t + 1, the

business’s employment at time t + 1 is written as

li,t+1 = gSxi,t

[(
α

rt+1

)α (1 − α − ζ

wt+1

)1−α
] 1

ζ

.

Since rt+1 = rt and wt+1 = (gX)
ζ

1−α wt in a BGP, the employment growth surviving

of successful businesses li,t+1/li,t = gS/gX.

Next, to show the asymptotic equivalence between the employment growth

rate of surviving old businesses and that of surviving successful businesses, recall

that we assume that old successful businesses are more likely to survive than old

unsuccessful businesses, sS,∞ ≥ sU,∞. It implies that the share of unsuccessful

businesses converges to zero, so the employment growth rate of old businesses

becomes equivalent to that of surviving businesses. This concludes the proof of

Lemma 3.

We can see this step algebraically by considering the expression for the employ-

ment growth rate of surviving businesses of all ages:

surviving growth =
gS

gX
(1 − ∆a) + ∆a

(
(1 − λa) +

λa
θ

gX

)
,

where ∆a is the employment share of unsuccessful businesses. Note that it depends

on the employment share, not the business share. Since successful businesses are

larger than unsuccessful businesses, the employment share converges faster than

the business share.
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A.1.4 Proof of Lemma 4

Combining equations (14) and (17) and arranging it gives an equilibrium ex-

pression for the relationship between gM and gX:(
2cEzR

ι − 2

)− 1
ι

=
∑∞

a=1

(
1

gM

)a ( gS
gX

)a ΛS,a(gS)
(gS)aΛS,a(1)

ΛS,a(1)

∑∞
a=1

(
1

gM

)a
ΛS,a(1)

.

The right-hand side can be interpreted as the weighted average of

x̃a ≡
(

gS

gX

)a ΛS,a(gS)

(gS)aΛS,a(1)

with weights (1/gM)a−1ΛS,a(1); i.e.,(
2cEzR

ι − 2

)− 1
ι

=
∞

∑
a=1

(x̃a)×
((1/gM)aΛS,a(1))

∑∞
a=1(1/gM)aΛS,a(1)

. (28)

Now, x̃a is decreasing in gX for all a ≥ 1. As such, ceteris paribus, the increase in gX

decreases the right-hand side of equation (28). Also, if gS < gX, x̃a is decreasing

in age a since ΛS,a+1(gS)/ΛS,a(gS) ≤ gSΛS,a+1(1)/ΛS,a(1). Therefore, we need

larger weights on young businesses to increase the right-hand side of equation

(28) if gS < gX, which means that we need to increase gM.

To put them together, if gS < gX, an increase in gM must increase gX to keep the

right-hand side of equation (28) constant, which concludes the proof of Lemma 4.

A.1.5 Proof of Lemma 5

Start with equation (17). Totally differentiating it by gM and reorganizing it

gives

1

1 + gM
gX

dgX
dgM

∑∞
a=1

(
1

gM

)a
ΛS,a(1)a

∑∞
a=1

(
1

gM

)a
ΛS,a(1)

=
∑∞

a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)a

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)

. (29)

Therefore, for given gM and gX, dgX/dgM is larger if the right-hand side of equa-

tion (29) is smaller. Note that only the right-hand side depends on gS. Since the

growth rate in the size of old businesses decreases faster in the economy with
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smaller gS, we need to show

d
dgS

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)a

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)

> 0.

Arranging it gives

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)a

Λ
′
S,a(gS)

ΛS,a(gS)

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)a

>
∑∞

a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)

Λ
′
S,a(gS)

ΛS,a(gS)

∑∞
a=1

(
1

gM

)a (
1

gX

)a
ΛS,a(gS)

, (30)

where Λ
′
S,a(gS) ≡ dΛS,a(gS)/dgS. Note that both sides of equation (30) can be

interpreted as weighted averages of Λ
′
S,a(gS)/ΛS,a(gS). Since LHS of equation (30)

has more weights on older ages, a sufficient condition for this equation to hold is

Λ
′
S,a(gS)/ΛS,a(gS) is increasing in age a.

Now, using the definition of ΛS,a(gS), we can write Λ
′
S,a(gS)/ΛS,a(gS) as

Λ
′
S,a(gS)

ΛS,a(gS)
=

∑a
j=1(j − 1)ωa,j

∑a
j=1 ωa,j

,

where ωa,j ≡ gS
j−1
(

∏
a−j−1
k=0 (1 − λk)

) (
∏

a−j
k=1 sU,k

) (
∏a−1

k=a−j+1 sS,k

)
λa−j. Notice

that the subscript j represents how many periods have passed since each business

becomes successful, so wa,j is the aggregate productivity of successful businesses

at age a that succeeded at age a − j + 1. Therefore, what we want to show gets to

∑a+1
j=1 (j − 1)ωa+1,j

∑a+1
j=1 ωa+1,j

>
∑a

j=1(j − 1)ωa,j

∑a
j=1 ωa,j

(31)

for all ages a. Using a property ωa+1,j+1 = gSsS,aωa,j, we can transform equation

(31) into

∑a
j=1 ωa,j

ωa+1,1/gSsS,a
>

∑a
j=1(j − 1)ωa,j

∑a
j=1 ωa,j

. (32)

Since we assume that the survival probability for successful businesses is higher

than that for unsuccessful sS,a > sU,a for all ages and the successful probability λa
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decreases in age a, ωa,j+1 > ωa,j because

ωa,j+1

ωa,j
=

gSsS,a−jλa−j−1

(1 − λa−j−1)sU,a−jλa−j
.

Under these assumptions, we can prove equation (32):

(LHS) =
∑a

j=1 ωa,j

ωa+1,1/gSsS,a
>

∑a
j=1 ωa,j

ωa,1
>

∑a
j=1 ωa,j

∑a
j=1 ωa,j/a

= a >
∑a

j=1(j − 1)ωa,j

∑a
j=1 ωa,j

= (RHS).

Hence, dgX/dgM is larger in the economy in which the growth rate in the size

of old businesses decreases faster.

A.2 Effect of population growth on the share of capital α̃

Starting since the definition of α̃, note that since wL/Y = 1 − α − ζ from the

definition of technology, we an obtain

α̃ = 1 − (1 − α − ζ)
M
L

,

On the business side, the following equation holds:

Y = rK + wL + S, (33)

Note that rK = αY, wL = (1 − α − ζ)Y, and S = ζY.

Conversely, on the household side, we have

Y = rK + wM + S − E. (34)

Note that w(M − L) = E because entry, research, and development require only

labor.

Combining equations (33) and (34), we derive

M
L

= 1 +
ζ

1 − α − ζ

E
S

,

so the ratio of E to S affects the share of workers α̃ through the ratio of M to L.

Additionally, in the context of the free entry condition, the initial cost of starting

a business E equals the expected future profit that entrants will earn until they exit.

Therefore, the ratio E/S represents the ratio of expected future profit to current
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profit. Along a BGP, this ratio transforms into:

E
S
=

∑∞
t=1

(
gw

(1+r−δ)gX

)t
(ΛS,t(gS) + ΛU,t)

∑∞
t=1

(
1

gMgX

)t
(ΛS,t(gS) + ΛU,t)

=

∑∞
t=1

 β

g
ζ(ϵ−1)

1−α
+1

X

t

(ΛS,t(gS) + ΛU,t)

∑∞
t=1

(
1

gMgX

)t
(ΛS,t(gS) + ΛU,t)

.

Given that dgX/dgM is substantially smaller than one both from model and empir-

ical results, an increase in gM decreases the denominator more than the numerator,

as long as ζ(ϵ−1)
1−α is not large. Consequently, dα̃/dgM is likely negative, amplify-

ing the effect of population growth on TFP growth, although extreme parameter

values can alter this relationship.

A.3 Spillovers calibration

In this section, we estimate the value of γ for equation (19). To obtain a mea-

sure of gS, we use BDS data and the following procedure. Use the data to con-

struct the share of old establishments (Nold/N) and the share of workers in old

establishments (Lold/L), where we consider an establishment as old if it is 16 years

old or older. Then, note that from the equation for aggregate labor in produc-

tion L, we can construct data on log([Xold/X]t) as it is equal to log([Lold/L]t) −

log([Nold/N]t). Finally, we obtain gS as gS = ∆ log([Xold/X]t) + ∆ log(Xt) =

∆ log([Xold/X]t) + gX.

The OLS estimation of equation (19) is in the first column of Table 6. That is

the coefficient we use in our benchmark model. The second column is the same

regression but adds a linear trend. It yields similar results.
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Table 6: Estimates for calibration of spillovers

Regression for gs OLS Instrumental Variables

gx,t−1 0.342* 0.304* 0.384* 0.387* 0.458** 0.466**

(0.186) (0.199) (0.207) (0.200) (0.205) (0.196)

Trend no yes no yes no yes

R squared 0.124 0.138 0.108 0.092 0.115 0.093

First stage statistic F - - 14.380 11.930 25.190 21.540

Hansen’s χ2, p value - - 0.128 0.144 0.168 0.194

Instruments - - VC VC VC & entry VC & entry

Observations 23 23 23 23 23 23

Note: “VC” stands for lag growth rate of (i) VC total investment, (ii) early stage investment, (iii)
seed investment, and (iv) expansion stage investment. Similarly, “Entry” stands for lag growth
rate in the entry rate.

One may be concerned that overall productivity growth in t − 1 may be af-

fected by the productivity of the old businesses in period t. Ideally, we want the

variation in gX that is independent of the productivity growth of already success-

ful businesses. We chose it as an instrument of gX venture capital (VC) investment

because it should affect gX through innovation by new firms. And VC investment

should not directly affect the productivity growth of already successful businesses.

Using this IV approach, we find slightly larger estimates.

Finally, it may be that old businesses’ productivity growth causes VC invest-

ment. For example, if entrants learn from incumbents and VCs respond to the

amount of spillover from incumbents to entrants. This relationship will break,

however, if we consider VC investment that is lagged with respect to aggregate

productivity growth. Although is not reported, we also consider a first stage in

which 3 to 8 lags of seed-stage VC investment are the instruments for aggregate

productivity growth. The first stage F is 13.34, and our coefficient of interest is

0.502, close to the estimates in the last columns of Table 6.
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A.4 Profiles of survival and success probabilities

Figure 9: Probability of survival and success over the life-cycle
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B Online Appendix

B.1 Data sources

B.1.1 US data

Civilian labor force. Civilian labor force data come from the Bureau of Labor

Statistics (BLS) Current Population Survey from 1949 to 2019 and from Lebergott

(1966) from 1900 to 1948. The civilian labor force definition in BLS includes the

population 16 years of age and over, while the definition in Lebergott (1966) in-

cludes the population 10 years of age and over. The labor force growth projections

are taken from the Bureau of Labor Statistics (BLS) "A look at the future of the U.S.

labor force to 2060," published in September 2016.

Establishment data. Establishment data come from the U.S. Census Bureau’s Busi-

ness Dynamics Statistics (BDS). It provides annual measures of establishment open-

ings and closings, and job creation and destruction by age group, which allows

computing life-cycle patterns of establishment that we use as targets in Figure 3

and other dynamism in Figure 8. The data are available since 1978. An establish-

ment is a fixed physical location where economic activity occurs. A firm may have

one establishment or many establishments.

Total factor productivity. Total factor productivity (TFP) data are calculated using

Penn World Table (PWT) 10.0. While the value of TFP is directly available in PWT,

we compute TFP from real GDP, number of persons engaged, and capital stock by

assuming a Cobb-Douglas function. It ignores the effect of the change in human

capital, which makes the data more consistent with our model. The data have been

available since 1950.

Venture capital investment. Venture capital investment data are from the PwC/CB

Insights MoneyTree™ Report.
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B.1.2 Japan data

Labor force. Labor force data come from the Statistics Bureau of Japan (SBJ) Labor

Force Survey from 1953 to 2019 and the National Institute of Population and Social

Security Research (IPSS) from 1920 to 1952. The definition includes the population

15 years of age and over. The labor force growth projections are taken from the

Ministry of Internal Affairs and Communications (MIC) "Information and Com-

munications in Japan 2022," published in July 2022. It offers only a projection

of the working-age population, so we assume the ratio of the labor force to the

working-age population has remained constant since 2020.

Establishment data. Establishment data come from SBJ’s Establishment and En-

terprise Census from 1981 to 2006 and from Economics Census from 2009 to 2021.

They provide the number of establishments and employment by age group while

they are not annual data (available only in 1981, 1986, 1991, 1996, 2001, 2004, 2006,

2009, 2012, 2014, 2016, and 2021). The number of establishments and employ-

ment by both age groups and three kinds of status (existing, newly organized, and

closed) are only available in 2004, so the exit rate and growth of surviving estab-

lishments by age group, which are targets, are calculated based on the data in 2004

by comparing with the data in 2001. Accurately, the calculation will not give the

annual exit rate and growth but a three-year average. Therefore, the fittings for

these targets in Figure 3 are based on this three-year average at an annual rate.

We have extracted the birth-year-fixed effect for employment size by age, an-

other target value. The life-cycle profile for Japan is largely influenced by the birth

year, while it remains very stable over time in the United States. In particular, we

first assume that all ages in the same age group grow their establishment size at

the same rate over the year. (For example, the establishment size for the age group

between 3 and 7 grew by 1.2% annually from 2001 to 2004; we assume age 3, 4, 5, 6,

and 7 establishments in 2001 increased their size by 1.2% every year between 2001

and 2004.) Then, we regress establishment size growth on fixed effects of age a and
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year t: Establishment size growtha,t = ua + vt + ϵa,t, and extract ua to get average

establishment size growth by age. Please note that with age a and year t, the born

year is identically defined by t − a + 1.

Total factor productivity. TFP data are calculated using PWT 10.0, as in the US

case.

B.1.3 US data (state-level)

Civilian labor force. Civilian labor force data come from the BLS Current Popu-

lation Survey for the years 1976 to 2019 and from Historical Statistics of the United

States, Colonial Times to 1970 issued by the Census Bureau for the years 1900 to

1950. We interpolate the data between 1950 and 1976. The projections for 2030 are

taken from the Projections Managing Partnership (PMP), which is based on em-

ployment. We use only data between 1976 and 2019 to estimate empirical data,

where yearly data are available, while we use the full data to estimate simulated

data to reproduce TFP growth.

Real GDP and total nonfarm employees. Real GDP data come from the Bureau of

Economic Analysis (BEA) Gross Domestic Product by State and Personal Income

by State. Total nonfarm employees for the corresponding years are from the BLS.

We use these statistics to derive labor productivity.

Population. Population data are from the Census Bureau. This is one of the control

variables in the cross-sectional regressions for US states.

Real income per capita. Real income per capita data, another control variable for

the cross-sectional regressions, come from the BEA Real Personal Income for States

and Metropolitan Areas between 2008 and 2019, and from the Census Bureau’s Sta-

tistical Abstract of the United States from 1975 to 2007.
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B.2 More on BGP for the benchmark case

Section 3 shows the balanced growth path without two extensions and adds

two features (congestion and spillover) thereafter. However, these two features

somewhat change the property of the balanced growth path.

First, since the productivity growth of successful projects gS depends on gχ,

which is equal to gX along a balanced growth path, due to spillover, expected

productivity for successful projects ΛS,a(gS) will depend on gX. Let it denote as

ΛS,a(gS(gX)). As such, the RHS of the equation for the step size g∗ (17) is written

in this form:

g∗ =
∑∞

a=1

(
1

gM

)a
ΛS,a(1)

∑∞
a=1

(
1

gX gM

)a
ΛS,a(gS(gX))

. (35)

Next, because of congestion, the LHS of equation (17) (or equation (14)) is al-

tered to

g∗ =
(

2cE(ñ/M̃)ϕzR

ι − 2

) 1
ι

, (36)

so we need to specify n/M. Using the equation for labor demand, we can derive

N
L

=
w

1−α
ζ

X

(α

r

)− α
ζ
(1 − α − ζ)−

1−α
ζ . (37)

Also, from equation (25),

w
1−α

ζ =χ(g∗)−
ι−2

2

(zRzD

ι

) 1
2

ζ
(α

r

) α
ζ
(1 − α − ζ)

1−α−ζ
ζ ×

∞

∑
t=1

β̂t(ΛS,t(gS) + ΛU,t)

(
1

gw

) 1−α−ζ
ζ (t−1)

. (38)

Note that

Γ(w, r) = ζ
(α

r

) α
ζ

(
1 − α − ζ

w

) 1−α−ζ
ζ ∞

∑
t=1

β̂t(ΛS,t(gS) + ΛU,t)

(
1

gw

) 1−α−ζ
ζ t
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along a balanced growth path. Therefore, from equations (37) and (38),

N
L

=
χ

X
(g∗)−

ι−2
2

(zRzD

ι

) 1
2 ζ

1 − α − ζ

∞

∑
t=1

β̂t(ΛS,t(gS) + ΛU,t)

(
1

gw

) 1−α−ζ
ζ t

. (39)

Since

N = n

(
∞

∑
a=1

(
1

gM

)a

(ΛS,a(1) + ΛU,a/θ)

)
from equations (8) and (9), and

χ

X
=

(
∑∞

a=1

(
1

gM

)a−1
(ΛS,a(1) + ΛU,a/θ)

)(
∑∞

a=1

(
1

gX gM

)a−1
ΛS.a(gS(gX))

)
(

∑∞
a=1

(
1

gM

)a−1
ΛS,a(1)

)(
∑∞

a=1

(
1

gX gM

)a−1
(ΛS,a(gS(gX)) + ΛU,a)

)
from equations (15) and (16), equation (39) gives this equation:

n
L
=(g∗)−

ι−2
2

(
∑∞

a=1

(
1

gX gM

)a
ΛS.a(gS)

)
(

∑∞
a=1

(
1

gM

)a
ΛS,a(1)

) (
∑∞

a=1

(
1

gX gM

)a
(ΛS,a(gS) + ΛU,a)

)×
(zRzD

ι

) 1
2
(

ζ

1 − α − ζ

) ∞

∑
t=1

 β

gw
1−α−ζ

ζ

t

(ΛS,t(gS) + ΛU,t)

 .

Substituting g∗ for the RHS of equation (17) and gw for (gX)
ζ

1−α , we can derive the

following expression for n/L:

n
L
=
(zRzD

ι

) 1
2
(

ζ

1 − α − ζ

)
×

∑∞
a=1

(
1

gX gM

)a
ΛS.a(gS(gX))

∑∞
a=1

(
1

gM

)a
ΛS,a(1)


ι
2

× (40)


∑∞

t=1

(
β

gX
1+ ζ(ϵ−1)

1−α

)t

(ΛS,t(gS(gX)) + ΛU,t)

∑∞
a=1

(
1

gX gM

)a
(ΛS,a(gS(gX)) + ΛU,a)

 . (41)
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Also, from equations (4), (11), (25), (26), and (27),

M
L

= 1 +
ζ

1 − α − ζ


∑∞

t=1

(
β

gX
1+ ζ(ϵ−1)

1−α

)t

(ΛS,t(gS(gX)) + ΛU,t)

∑∞
a=1

(
1

gX gM

)a
(ΛS,a(gS(gX)) + ΛU,a)

 . (42)

Therefore, from equations (41) and (42), the step size g∗ is influenced by gM and

gX through the number of entrants per capita. These equations and the equation

for the step size

(
2cE(n/M)ϕzR

ι − 2

) 1
ι

=
∑∞

a=2

(
1

gM

)a−1
ΛS,a(1)

∑∞
a=2

(
1

gX gM

)a−1
ΛS,a(gS(gX))

define the equilibrium gX for each gM.

B.3 Sensitivity analysis

We simulate a shock of gM from 1.02 to 1.01 to gTFP using the US calibration as

a benchmark case. The impact size is the change in gTFP, in the long run, resulting

from that change. The elasticity of "Impact Size" represents the elasticity of the

impact of gM on gTFP to a change in a parameter value. Specifically, an "Impact

Size" elasticity equal to X means that a 1% change in the parameter results in an

X% increase in the response of gM to gTFP.

"Convergence Speed" is the share of the change in gTFP that occurred 20 peri-

ods after the gM shock (relative to the long-run impact). The “Convergence Speed”

elasticity equal to Z means that a 1% change in the parameter results in a Z% in-

crease in the explained share of gTFP change 20 periods after the shock.

Finally, note that for the parameters that vary over age, the exact change to λ

and sU is applied to all ages.
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Table 7: Role of parameters for the impact size and the convergence speed

Elasticity

Impact Convergence

Parameter Size Speed

Survival rate of successful businesses, sS 12.819 -2.479

Survival rate of unsuccessful businesses, sU 2.384 -3.180

Decreasing returns, ζ 1.039 1.142

Capital share, α 0.571 0.972

Spillover elasticity, γ 0.244 0.293

Entry cost exponent, ϕ 0.184 0.129

Success probabilities, λ 0.043 0.083

Depreciation rate, δ 0.016 0.276

Risk aversion, ϵ 0.000 -0.160

Inverse of Jump in prod at success, θ -0.052 -0.086

Research cost exponent, ι -0.182 0.128

Discount factor, β -0.241 -0.364

Productivity growth old businesses, gS -31.031 -26.141

B.4 Computational Details

In this section, we describe how we compute the model.

B.4.1 Balanced Growth Path

We first solve for a BGP using the 1980-1999 population and productivity growth

averages as targets. Substituting these target values for gM and gX in equation (35)

gives the step size g∗ for the reference periods. We then derive the initial produc-

tivity growth to define the BGP state before the population growth shock. Given

the step size and the discussion in the online appendix B.2, we can find an equation

for gX as a function of the exogenous value gM. Since an analytical solution does

not exist, we use Newton’s method. We can also derive the other variables using

the properties of the BGP as described in Lemma 2.
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B.4.2 Transitional Periods

After computing the BGP, we compute the transitional dynamics in two steps.

First, we guess the growth rate of the number of entrants {gnt} and solve for

the equilibrium set of prices {gwt , rt} using the capital, goods, and labor market

clearing conditions. We then derive {gnt} using the free entry condition. Each

step requires finding the roots numerically, so our code has a nested structure of

two Newton’s method computations. Importantly, we solve all periods simultane-

ously, not sequentially; innovators stand on the shoulders of previous innovators,

which requires solving the model from the past to the future. However, they must

also choose the step size of productivity, taking expected profits into consideration,

which requires solving the model from the future to the past.

In the first step, we derive the number of businesses by age given the conjec-

tured {gn} and the values in the initial BGP. We can also determine the produc-

tivity by age since the step size satisfies equation (36) even during transitional

periods. Next, we guess the interest rate {rt}. As the number of businesses Nt and

average productivity Xt are already known, {gwt} can be derived easily by the la-

bor market clearing condition (11) given {rt}. With this set of prices {gwt , rt}, we

solve the household and business optimization problems. Lastly, we fix {rt} using

Newton’s method using capital and goods market clearing conditions.

In the second step, we compute the expected profits for entrants and, therefore,

the value of businesses. Since it should equal the entry cost, we adjust {gnt} using

Newton’s method. Since changes in {gnt} affect {rt}, we return to the first step for

every repetition. When the value of businesses minus the entry cost converges to

zero sufficiently (< 10−6), the computation is finished.

B.5 Full transitions

This section shows the full transitions computed for the US and Japan. As

mentioned in the main text, the transition’s input is the labor force growth trend,
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which is shown with a black line in Figure 10.

Figure 10: Full Transitions

United States Japan
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