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Abstract 

The application of machine learning to the field of finance has recently become the 
subject of active discussions. In particular, the deep learning is expected to 
significantly advance the techniques of hedging and calibration. As these two 
techniques play a central role in financial engineering and mathematical finance, the 
application to them attracts attentions of both practitioners and researchers. Deep 
hedging, which applies deep learning to hedging, is expected to make it possible to 
analyze how factors such as transaction costs affect hedging strategies. Since the 
impact of these factors was difficult to be assessed quantitatively due to the 
computational costs, deep hedging opens possibilities not only for refining and 
automating hedging operations of derivatives but also for broader applications in 
risk management. Deep calibration, which applies deep learning to calibration, is 
expected to make the parameter optimization calculation, which is an essential 
procedure in derivative pricing and risk management, faster and more stable. This 
paper provides an overview of the existing literature and suggests future research 
directions from both practical and academic perspectives. Specifically, the paper 
shows the implications of deep learning to existing theoretical frameworks and 
practical motivations in finance and identifies potential future developments that 
deep learning can bring about and the practical challenges. 
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1 Introduction
In recent years, deep learning has been applied in a variety of fields, including image and

natural language processing. The field of finance is no exception. Indeed, many innovative
methods using deep learning have been proposed to solve problems in financial engineering
and mathematical finance. In particular, research on hedging and calibration, which are cru-
cial in practical applications, has garnered attention both theoretically and practically. Given
this trend, this paper summarizes the application of deep learning in the field of finance,
with a focus on research related to hedging and calibration. It also discusses possible future
developments deep learning might bring to the field of finance.
One of the main objectives of finance theory is to guide decision-making of market partic-

ipants under uncertainty such as price fluctuation risks of financial assets. Among the promi-
nent concerns in the field of finance is how to price derivatives (financial products whose
payoffs depend on the future prices of underlying assets such as stocks or foreign exchange)
and manage their risk. Financial engineering and mathematical finance, which mainly focus
on these issues, have developed under strong influence of practical applicability. In partic-
ular, the problem of hedging, which addresses how to mitigate the future price fluctuation
risks of financial assets held, and calibration, which is the process of adjusting model param-
eters to ensure consistency between observed market prices and theoretical model prices, are
central research themes in financial engineering and mathematical finance.
Deep learning is expected to significantly advance techniques related to hedging and cal-

ibration. First, with regard to hedging, deep learning has the potential to derive hedging
strategies that take into account the impact of transaction costs and other actual market fric-
tions. While numerous theoretical studies have been conducted under the traditional frame-
work of risk-neutral valuation, in practice there are various constraints that prevent the full
implementation of hedging strategies that are derived theoretically. Recent approaches using
deep learning for hedging aim to overcome these constraints, potentially leading to more re-
fined hedging strategies and to the automation of hedging transactions. Second, with regard
to calibration, it has been pointed out that deep learning has the potential to significantly
accelerate the process of parameter adjustments, which would lead to faster and more stable
valuation of derivatives. In this paper, we summarize such prospects in the field of finance
and clarify the implications of deep learning to existing theoretical frameworks and practical
motivations.
The reminder of the paper is organized as follows: First, in section 2, we summarize

the concepts of financial engineering and mathematical finance related to the pricing and
risk management of derivatives, and formulate the problems of hedging and calibration. The
application of deep learning to hedging, on which we focus in this paper, is formulated under
a framework referred to as convex risk minimization. Since this framework differs from the
conventional risk-neutral valuation framework, it is beneficial to understand the relationship
between these two frameworks in order to understand the current trend of research on the
application of deep learning to financial engineering and mathematical finance. With this in
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mind, we summarize the history of the development of each framework and subsequently
formulate the hedging and calibration problems.
In section 3, we provide an overview of deep learning. A building block of deep learning is

the neural network, a system of functions in which linear and non-linear functions are alter-
nately composed. Deep learning is one of machine learning methods that involve deep layers
of neural networks and has achieved remarkable results in various fields in recent years. To
provide an overview of these recent developments, we discuss the positioning of deep learn-
ing within the broader machine learning field and explain its historical development. We
also provide brief explanations of the techniques used for efficiently training deep learning
models and of the theoretical characteristics of neural networks. Subsequently, the notation
adopted in the following sections is introduced.
In section 4, we review the literature on deep hedging, a technique that applies deep learn-

ing to the problem of hedging. As explained in section 2, the conventional approach in
current practice is built on the risk-neutral valuation framework, where hedging strategies
are derived based on the concept of the replication of derivatives. However, this approach
has difficulty in quantitatively incorporating real-world market frictions, such as transaction
costs, into pricing and hedging strategies because it assumes hypothetical frictionless mar-
kets. An alternative to the replication-based approach is the framework of convex risk min-
imization. In this approach, the agent seeks to minimize the risk associated with profit and
loss taking realistic elements such as transaction costs and hedging errors into consideration.
Deep hedging employs deep learning to perform the optimization calculations in the con-
vex risk minimization framework, making it practically feasible to derive effective hedging
strategies. Specifically, it derives optimal hedging strategies by describing a hedging strategy
using a neural network and training its parameters to minimize loss risk (measured based on
a convex risk measure) under given future market scenarios. Note that deep hedging is a
general method to derive portfolio management strategies that minimize profit and loss risk
and thus has potential applications beyond issues related to derivatives, such as asset liabil-
ity management. In section 4, after explaining the deep hedging framework, we summarize
current research trends and the outlook for potential future developments.
In section 5, we review the literature on deep calibration, a technique that applies deep

learning to calibration in derivative pricing. Calibration is a calculation to adjust model
parameters so that the model prices (the prices of the instruments based on risk-neutral valu-
ation) match the market prices of highly liquid financial instruments. Thus, it is an important
process to ensure that a model does not violate the no-arbitrage condition among instru-
ments, that is, to ensure that the pricing of illiquid complex financial instruments is consis-
tent with the prices of liquid instruments. Conventionally, iterative optimization methods
such as the Newton–Raphson method have been used in calibration; however, these meth-
ods come with computational challenges, especially when calibrating numerous financial
products. In contrast, deep calibration bypasses iterative calculations by pre-training the re-
lationship between model parameters and model prices using neural networks. Some studies
have reported that deep calibration accelerates and stabilizes derivative price calculations,
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and, accordingly, practitioners have been paying close attention to it, as it may open the
possibility of using computationally expensive pricing models. Deep calibration essentially
replaces the optimization calculations within the risk-neutral valuation framework with deep
learning techniques, aiming to improve the computational techniques within current deriva-
tive practices. In section 5, we describe the deep calibration framework, summarize current
research trends, and outline the practical advantages and challenges of the method.
To summarize, deep hedging focuses on the convex risk minimization framework, while

deep calibration applies deep learning within the risk-neutral valuation framework. The fact
that these two techniques are formulated under the two distinct frameworks indicates that
there is a following significant difference in terms of their impact on practice. Deep hedging
has the potential to significantly transform derivative practices in the long run, although
it requires further theoretical and practical studies as there are hurdles to use it in finance
practices, such as how to measure loss risk and how to generate future market scenarios.
On the other hand, deep calibration primarily targets improving computational techniques
within the risk-neutral valuation framework. Therefore, it is expected to provide promising
solutions to specific challenges in current derivative practices.
This paper can be read in various manners depending on the readers’ knowledge and inter-

est. Section 2 summarizes the background of the finance issues addressed in sections 4 and 5.
Thus, the readers familiar with financial engineering and derivative practices may choose to
skip it. Similarly, section 3 provides a basic discussion of the deep learning techniques used
in sections 4 and 5, and thus the readers familiar with deep learning may find it unnecessary
to read. Sections 4 and 5 can be read independently, so that the readers can select only the
content that matches their interest.

2 Derivative pricing and risk management: Hedging and
calibration

In this section, we summarize the conceptual framework of financial engineering and
mathematical finance related to derivative pricing and risk management, and then formu-
late the problems of hedging and calibration.
Historically, the conventional theories of financial engineering and mathematical finance

have evolved around the framework of risk-neutral valuation. On the other hand, deep hedg-
ing, one of main focuses of this paper, is formulated based on a framework known as convex
risk minimization. To understand the trend of applying deep learning to financial engineer-
ing and mathematical finance, it is important to understand the relationship between these
two frameworks.
To this end, in this section, we first summarize the historical development of the frame-

works of risk-neutral valuation and convex risk minimization, keeping in mind the issues of
derivative pricing and risk management. We subsequently address the specific issues related
to convex risk minimization and formulate the problem of deep hedging which is discussed
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in section 4. Using the Black–Scholes model as an example, we then outline the methods
based on risk-neutral valuation and formulate the calibration problems discussed later in sec-
tion 5. In the present section, our principal aim is to clarify the practical motivations behind
hedging and calibration. Therefore, we introduce each concept in an inductive way, start-
ing from practical motivations, taking an approach that differs from the usual explanations
provided in financial engineering and mathematical finance.
For standard explanations of topics in mathematical finance, such as the framework of

risk-neutral valuation, readers may refer to introductory books such as Björk [2009], Shreve
et al. [2004], and Baxter et al. [1996]. For literature featuring practical challenges, books
such as Andersen and Piterbarg [2010] and Hull [2014] are also useful references. Föllmer
and Schied [2016] provides a detailed explanation of the theory of incomplete markets, in
which the framework of convex risk minimization is covered.

2.1 Development history of derivative pricing and risk management

2.1.1 Framework of risk-neutral valuation

Financial engineering and mathematical finance, whose main topics include derivative
pricing and risk management, have evolved around two concepts: replication and no-arbitrage.
Replication refers to generating cash flows identical to a derivative by appropriately trading
the underlying assets. No-arbitrage means that one cannot profit without initial capital and
without bearing any risk of making losses. If the market satisfies the no-arbitrage condi-
tion and a derivative is replicable, then the fair value of that derivative is equivalent to the
initial cost required for replication. This is a fundamental principle in financial engineering
and mathematical finance.1 From a practical standpoint, the equivalence between replica-
bility and hedging of derivatives is crucial. Namely, if a derivative is replicable, taking an
opposite position through replication can fully eliminate the uncertainty in profit and losses
(P&Ls). Consequently, the trading strategy for replication (replication strategy) is identical
to a hedging strategy for the derivative.
The principles of replication and no-arbitrage were theoretically developed within the

framework of risk-neutral valuation. In this framework, the fair value of a derivative equals
the expected value of future cash flows under a probability measure called the risk-neutral
measure, discounted by the risk-free interest rate. The following is an intuitive explanation
of why derivatives with uncertain future cash flows can be priced by discounting them at the
risk-free interest rate. First, for a derivative that can be replicated or hedged, we can elimi-
nate the risks of underlying price fluctuations and construct a risk-free portfolio that consists
of the derivative and the hedging instrument. Moreover, if the no-arbitrage condition holds,

1For instance, if the price of a derivative exceeds the initial cost required to replicate it, selling the derivative
would enable one to make profit without bearing any risk through replication, thereby violating the no-arbitrage
condition. Similarly, it can be demonstrated that the opposite scenario also leads to the violation of the no-
arbitrage condition. Hence, it becomes evident that the price of the derivative must be equal to the initial cost
required for replication.
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the return rate on the risk-free portfolio must be equal to the risk-free interest rate. Thus,
based on these discussions of replication and no-arbitrage, derivatives can be priced under
risk-neutral valuation.
In the seminal work on the Black–Scholes model (Black and Scholes [1973]), the option

pricing formula was derived in a heuristic way based on the ideas of replication and no-
arbitrage. In section 2.3, we formulate the framework of risk-neutral valuation from this
perspective. Following the emergence of the Black–Scholes model, Harrison and Kreps
[1979] and Harrison and Pliska [1981] established a rigorous mathematical proof for the fact
that an arbitrage-free market admits risk-neutral valuation, specifically, that a risk-neutral
probability measure exists when the no-arbitrage condition is satisfied.
There are two reasons why the theoretical framework of risk-neutral valuation based on

the principles of no-arbitrage and replication has been accepted by practitioners in the fi-
nancial industry and developed further. First, in the risk-neutral valuation framework, one
can obtain replication strategies explicitly based on rigorous mathematical tools such as Itô
calculus. For instance, models in mathematical finance, including the Black–Scholes model,
describe asset prices using stochastic differential equations,2 which is the theoretical basis
for the techniques used in practice. Second, there is no need to estimate expected returns
on the underlying assets. The expected returns on financial assets are notoriously volatile
and challenging to estimate.3 Therefore, derivative models requiring estimates of expected
growth rates of underlying asset prices were impractical for pricing and risk management. In
contrast, within the risk-neutral valuation framework, the estimation of expected returns is
unnecessary, because observable risk-free interest rates are used for pricing. As elaborated
in section 2.3, complex derivative pricing relies on observable market prices of highly liquid
financial instruments. This implies that with risk-neutral valuation, one can derive pricing
and hedging strategies based solely on currently observable information (see Table 1 for a
comparison with deep hedging, which will be discussed in section 4). This is a significant
advantage in option pricing and risk management.

2.1.2 Framework of convex risk minimization

As mentioned above, while the framework of risk-neutral valuation has significant advan-
tages, there are also practical difficulties. Most theoretical models, including the Black–
Scholes model, are based on the assumption of an ideal financial market, where no market
frictions exist (e.g., risk-free assets can be borrowed and lent freely, and the underlying
asset can be bought or sold without any transaction cost). However, in a real market, trans-
action costs exist, and various constraints such as short-selling constraints and borrowing
constraints are present. Particularly, after the financial crisis of 2007-08, the impact of coun-
terparty credit risks and funding costs on transactions has become significant, making valu-

2For instance, in the Black–Scholes model, it is assumed that the price of the underlying asset follows a
stochastic process called geometric Brownian motion. Under this stochastic process, the price of the underlying
asset at a certain point in time follows a log-normal distribution.

3For example, see Cochrane [2011] and Martin [2016].
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ation adjustments like xVAs (x-Valuation Adjustments) crucial.4 These market frictions and
associated transaction terms affect optimal hedging strategies and also influence the pricing
of derivatives through their impact on hedging costs.
In situations where market frictions exist, replication and hedging errors are inevitable

as perfect replication is not possible, which induces uncertainty into the total P&L after
hedging. Therefore, it is necessary to consider frameworks other than risk-neutral valuation,
leading to numerous attempts to develop theories for incomplete markets, where factors such
as transaction costs prevent perfect replication. Leland [1985] extended the Black–Scholes
model to propose methods for modifying replication strategies according to the amount of
transaction costs and constraints such as trading frequency, demonstrating that the fair value
of derivatives remains within a certain range even when market frictions exist. Building on
this, Hodges and Neuberger [1989] incorporated the utility functions to formulate the op-
timality of hedging strategies, quantifying the uncertainty in total P&Ls after hedging.5 In
addition, Davis et al. [1993] refined the work of Hodges and Neuberger [1989] and formu-
lated a setting consistent with the Black–Scholes model, and many studies have examined
price behavior under this setting (e.g., Shreve [1995], Rogers [2004], Whalley and Wilmott
[1997], and Barles and Soner [1998]). More recently, Xu [2006] and Ilhan et al. [2009] in-
troduced the idea of minimizing a convex risk measure instead of maximizing utility. This
approach offers the advantage of providing a more realistic representation of trader prefer-
ences and a clearer relationship between price and hedging strategies, as described in section
2.3.1.
This paper employs the formulation by Hodges and Neuberger [1989], which deals with

the framework of convex risk minimization. Specifically, it aims to quantify the uncertainty
in total P&Ls after hedging using convex risk measures and seeks hedging strategies that
minimize this risk. For instance, when adopting expected shortfall (ES) as a convex risk
measure, the problem becomes that of minimizing the area under the distribution of total
losses (i.e., minimizing the potential for significant losses). In this framework, the derivative
price can be set as the price at which an agent has the same expected utility (or risk measure)
when trading the derivative and when not trading it, known as the indifference price.
Despite certain theoretical advancements, the derivation of hedging strategies considering

4xVAs are adjustments to the market price of derivatives that take into account various costs associated with
derivative trading, such as counterparty credit risks and funding costs.

5In the context of incomplete markets, the primary formulations for the fair pricing of derivatives include
approaches based on utility functions, dominant replication, and the minimal equivalent martingale measure
(MEMM). Dominant replication involves trading the underlying asset in such a way that the total P&Ls at
maturity are non-negative regardless of the outcome. The fundamental idea is to set the fair value of the
derivative as the minimum cost required to achieve dominant replication. However, strategies for dominant
replication often become trivial (for instance, holding one unit of the underlying asset from the start to replicate
a single call option), making this approach impractical due to resulting high fair prices (see Kramkov [1996]
and Föllmer and Kabanov [1997]). The MEMM approach involves searching for a measure within the set of
equivalent martingale measures (or risk-neutral probability measures) that minimizes hedging errors. However,
challenges arise, such as the lack of practically feasible hedging strategies under the identified measure (see
Föllmer and Schweizer [1991] and Miyahara [2001]). For a survey on the impact of transaction costs on
derivatives and other financial assets, Muhle-Karbe et al. [2017] is a valuable reference.
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transaction costs requires complex optimization calculations, preventing the practical appli-
cation of incomplete market theories for a long time. Thus, in derivative practices relying
on risk-neutral valuation as a benchmark, it is customary to make adjustments to cover er-
rors incurred from market frictions and numerical inaccuracies in model calculations. Since
most of these adjustment methods rely on simplified formulas and trader experience, more
objective methods based on incomplete market models have long been called for.
In this historical context, deep hedging, a hedging technique which utilizes deep learn-

ing, has been rapidly progressing from both theoretical and practical perspectives in recent
years. Deep hedging, proposed by Buehler et al. [2019a], performs optimization calculations
under the framework of an incomplete market such as convex risk minimization using deep
learning, allowing for pricing and risk management that considers transaction costs and other
factors.
There is a significant difference between deep hedging based on convex risk minimization

and hedging derived from risk-neutral valuation. In the latter approach, one does not need to
specify the traders’ risk preferences explicitly, because under the assumption that a complete
replication is possible, uncertainty in payoffs is eliminated and thus traders’ risk preferences
toward uncertainty do not matter. As a result, the hedge strategy is uniquely determined
irrespective of trader preference and utility function. On the other hand, deep hedging solves
the convex risk minimization problem by explicitly considering trader utility function (or
risk measure that quantifies loss risk). As mentioned above, it is necessary to specify how
traders evaluate uncertainty regarding possible losses in the case where complete replications
and hedges are not possible. One may regard deep hedging as a revival of conventional asset
pricing theory in the sense that it derives optimal trading strategies by taking the traders’
utility function (risk preference) into consideration.6

2.2 Formulation of hedging: Convex risk minimization problem

In this section, we formulate the hedging problem for derivatives as a convex risk mini-
mization problem. In derivative hedging, the objective is to mitigate the uncertainty of the
total P&L at maturity by trading hedging instruments (assets used for hedging) up to the
derivative’s expiration. Here, we formulate the P&L at maturity as a random variable. The
convex risk minimization problem aims to minimize the risk of the P&L at maturity, which
is quantified by a convex risk measure. Subsequently, following Buehler et al. [2019a], we
formulate this concept in a discrete-time model.

6Among the foundational results in modern finance theory, Markowitz [1952] portfolio selection theory
and the Capital Asset Pricing Model (CAPM) by Sharpe [1964]; Lintner [1965]; Mossin [1966] stand out.
Markowitz’s theory analyzes investors who optimally choose their portfolio based on mean-variance utility,
considering the expected return (mean) and risk (variance) of portfolios. CAPM identifies the determinants of
risk premiums for individual risky assets under the assumption of a representative investor maximizing expected
utility. Thus, research that assumes investors maximize expected utility (or minimize expected loss) has become
a primary approach in finance, providing insights into optimal investment behavior and asset pricing.
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2.2.1 P&L at maturity

Let t0 = 0 be the initial time and T be the maturity of a derivative. We assume that
market transactions are possible at times t0 < · · · < tk < · · · < tn = T . Let (Ω,F , P)
be a probability space and {Fk}k=0,...,n be a discrete filtration. For simplicity, we consider
only one underlying asset, and let its asset price {S k}k=0,...,n be an Fk-adapted real-valued
stochastic process. Furthermore, let the payoff ZT of the derivative be an Fn-measurable
real-valued random variable. For example, for a European call option with a strike price K,
ZT = max{S n − K, 0}.7
For simplicity, we consider a setting where only the underlying asset is used as a hedging

instrument.8 In this case, a hedging strategy is determined by the holding amounts of the
underlying asset at each time, which is an Fk-adapted real-valued stochastic process δ =
{δk}k=0,1,...,n. Moreover, the transaction costs determined by the trading volume of the hedging
instrument at each time tk are denoted as ck (δk − δk−1).9 For instance, if transaction costs are
proportional to trading volume, with a constant percentage ε of the transaction amount, then
ck(δk − δk−1) = ε|δk − δk−1|S k. Let p0 denote the current price of this derivative.
Given this setup, the P&L at maturity for an investor with a short position in the derivative

is as follows:

PL(ZT ,p0,δ) = p0 − ZT +

n−1∑
k=0

δk (S k+1 − S k) −
n∑

k=0

ck (δk − δk−1) . (1)

The first and second terms on the right-hand side represent the profit from selling the
derivative at the initial time t0 and the payoff that must be paid at maturity T , respectively.
The third term on the right-hand side represents the cumulative hedging profit or loss re-
sulting from the hedging transactions. The final term on the right-hand side represents the
cumulative transaction costs incurred for adjusting the hedge position at each possible trad-
ing point.10

2.2.2 Risk measurement of P&L

The P&L at maturity, formulated in the previous section, is a random variable. A real-
valued function that maps this random variable to a measurement of risk is simply called
a risk measure. Particularly in mathematical finance, convex risk measures that satisfy the

7The subsequent discussions also hold even when ZT is an Fn-measurable random variable, making them
suitable for cases of payoffs depending on other than S n, including path-dependent payoff cases. The frame-
work is also easily extendable to scenarios with multiple underlying assets.

8The approach can also be extended to settings where other assets serve as hedge instruments.
9Here, we set δ−1 = δn = 0, so that transaction costs for purchasing δ0 units of the hedge instrument at the

beginning of the hedge operation and selling δn−1 units at the maturity are reflected in the P&L.
10In Buehler et al. [2019a], the notation PLT (ZT , p0, δ) is used for the P&L at maturity. In this paper, since

the P&L at maturity is formulated as a random variable, we denote the P&L at maturity as PL(ZT ,p0,δ)(ω) for
ω ∈ Ω. Note that the arguments to be modified in subsequent discussions are (ZT , p0, δ), and given that only
the P&L at maturity are considered, we adopt the notation PL(ZT ,p0,δ).
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following definition are frequently considered. For a more detailed explanation of convex
risk measures, see Föllmer and Schied [2016].

Definition 1 (Convex risk measure). Let χ be the space of all random variables on Ω. A
function ρ : χ→ R is called a convex risk measure if it satisfies the following conditions:

1. Monotonic Decrease: For X1, X2 ∈ χ, if X1 ≥ X2, then ρ(X1) ≤ ρ(X2).

2. Convexity: For α ∈ [0, 1] and X1, X2 ∈ χ, ρ(αX1 + (1− α)X2) ≤ αρ(X1)+ (1− α)ρ(X2).

3. Cash Invariance: For X ∈ χ and c ∈ R, ρ(X + c) = ρ(X) − c.

The intuitive meaning of each condition for a convex risk measure is as follows: Firstly, a
monotonic decrease implies that if the P&L of portfolio 1, X1, is greater than or equal to the
P&L of portfolio 2, X2, then the risk measure of portfolio 1 will be less than or equal to that of
portfolio 2 (indicating that portfolio 1 is less risky). Secondly, convexity formulates what is
known as the diversification effect, stating that the risk of a portfolio formed by diversifying
between two portfolios is less than or equal to a weighted average of the individual portfolio
risks. Lastly, cash invariance means that a certain payoff c will reduce the risk measure by
the same amount. These properties are deemed essential for a risk measure, and convex risk
measures, including ES, have long been a topic of study in finance; see Föllmer and Schied
[2016].11

2.2.3 Convex risk minimization problem

Given the above setting, the convex risk minimization problem is formulated as follows.

Definition 2 (Convex risk minimization problem). Given a convex risk measure ρ, the convex
risk minimization problem for hedging a derivative with payoff ZT using a hedging instru-
ment S is defined as the problem of finding a hedging strategy δ∗ = {δ∗k}nk=0 that solves the
following minimization problem:

δ∗ = argmin
δ∈H̄
ρ
[
PL(ZT ,p0,δ)

]
. (2)

Here, the minimum is sought over the appropriate set of hedging strategies H̄ (a subset of
the space of real-valued stochastic processes).

Remark 1 (Exploration space of hedging strategies). In Definition 2, it was assumed that
within the appropriate set of hedging strategies H̄ , there exists a δ∗ that minimizes ρ

(
PL(ZT ,p0,δ)

)
.

However, the conditions for H̄ to satisfy this assumption are not trivial.12 Therefore, in

11The expected shortfall ESα(X) is defined as ESα(X) = −E [X | X ≤ VaRα(X)]. It is essential to note that
while Value at Risk (VaR) is a commonly used risk measure in financial practice, it does not satisfy convexity
(i.e., it is not a convex risk measure). For research examining the properties of risk measures, refer to works
such as Föllmer and Leukert [2000] and Föllmer and Schied [2002].

12Lemma 2.1 in Godin [2016] provides the conditions in the case of the ES risk measure.
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Buehler et al. [2019a], the authors defined the set of selectable hedging strategies H with-
out assuming the existence of a minimum and discuss the infimum infH ρ

(
PL(ZT ,p0,δ)

)
rather

than the minimum (refer to section 4.1). In formulating deep hedging, the existence of a δ∗

that minimizes ρ
(
PL(ZT ,p0,δ)

)
is not an issue. Hence, in this paper, we place strong assump-

tions on H̄ to explicitly formulate the convex risk minimization problem.

2.2.4 Utility-indifference price

Under the framework of convex risk minimization, it is common to price derivatives as
utility-indifference prices defined below. Here, the minimized risk quantity is denoted by
π(ZT , p0) = minδ∈H̄ ρ

(
PL(ZT ,p0,δ)

)
.

Definition 3 (Utility-indifference price). The utility-indifference price p∗0 for a derivative
with payoff function ZT satisfies

π(ZT , p∗0) = π(0, 0).

It is thus the case that the utility-indifference price is a price such that the risk quantity
when one does not trade the derivative at all equals the risk quantity when one trades the
derivative with an optimal hedging trade. Further, using equation (1) and the cash invariance
of the convex risk measure (Condition 3 of Definition 1), we can derive

π(ZT , p∗0) = min
δ∈H̄
ρ

p∗0 − ZT +

n−1∑
k=0

δk(S k+1 − S k) −
n−1∑
k=0

ck(δk − δk−1)


= −p∗0 +min
δ∈H̄
ρ

−ZT +

n−1∑
k=0

δk(S k+1 − S k) −
n−1∑
k=0

ck(δk − δk−1)


= −p∗0 + π(ZT , 0).

From Definition 3, it follows that

p∗0 = π(ZT , 0) − π(0, 0).

2.3 Formulation of calibration: Estimation of model parameters in risk-
neutral valuation

Calibration refers to the process of adjusting model parameters to ensure consistency be-
tween observed market prices and theoretical prices based on the model. In general deriva-
tives practice, after calibrating the model parameters to align with highly liquid financial
instruments whose prices are considered to be informative, models are used for pricing and
deriving hedging strategies for complex financial instruments that are not actively traded
in the market or have low liquidity. Therefore, the development of techniques that achieve
rapid and stable calibration is crucial for derivatives practice and risk management. In this
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paper, we focus on calibration within the framework of risk-neutral valuation. Specifically,
we address the problem of adjusting model parameters to ensure that the model prices (the
risk-neutral price) are consistent with market prices. In the following sections, we first dis-
cuss the intuitive concept of risk-neutral valuation, considering its relationship with convex
risk minimization. Subsequently, we formulate the calibration problem.

2.3.1 Derivation of risk-neutral valuation

In mathematical finance, risk-neutral valuation employs continuous-time models, often
under the assumption of an hypothetical frictionless market. This ideal setup postulates that
transactions, including short selling, can be executed at any time without incurring trading
costs. To distinguish the P&L in the discrete-time model, PL(ZT ,p0,δ), discussed in the previous
section, we denote the P&L in the continuous model as P̃L

(ZT ,pt ,δ)
t . Here, for t ∈ [0,T ],

P̃L
(ZT ,pt ,δ)
t represents the P&L from time t to T .13

In this notation, replication is formulated as a pair consisting of a risk-neutral price p(RN)t

and a corresponding replication strategy {̃δ(RN)u }u∈[0,T ] to hedge the uncertainty associated with
the derivative’s payoff that satisfies the following condition:

P
(
P̃L

(ZT ,p
(RN)
t ,̃δ(RN))

t = 0
)
= 1 for t ∈ [0,T ]. (3)

In other words, if replication is feasible, the uncertainty associated with the derivative’s
payoff can be eliminated through hedging, ensuring that the P&L at maturity T can be almost
surely guaranteed to be zero. Thus, replication serves as a method to eliminate loss risk
related to the derivative’s payoff without explicitly assuming a risk measure.
The pioneering work by Black and Scholes [1973] and Merton [1973] utilized Itô calculus

to formulate a specific replication technique for derivatives. The derivation approach pro-
posed by them differs somewhat from recent standard explanations in financial engineering
and mathematical finance. However, it is useful for understanding the relationship between
hedging and calibration, so we present an outline as follows. Consider a European option
based on an underlying asset price S̃ t. Namely, the payoff at maturity T is ZT = f (S̃ T ), where
f is a deterministic payoff function and S̃ T is the underlying asset price at maturity T . Let
us denote the option price at time t as pt. The underlying asset price follows the stochastic
differential equation:

S̃ t = S̃ 0 +

∫ t

0
µS̃ u du +

∫ t

0
σS̃ u dWu,

where Wt represents the standard Brownian motion under the probability measure P, and
µ and σ are constant parameters denoting drift and volatility, respectively. This stochastic
process is known as geometric Brownian motion, where the price of the underlying asset at a
fixed time follows a log-normal distribution. Then, the dynamics of the P&L are formulated

13In discrete-time models, PL(ZT ,p0,δ) represents the P&L occurring from time 0 to T .

11



as a stochastic process, with

P̃L
(ZT ,pt ,̃δ)
t = pt − ZT +

∫ T

t
δ̃u dS̃ u.

Let us assume that the option price pt at time t is expressed as a function of t and S̃ t as

pt = v(t, S̃ t).

The dynamics of P̃L
(ZT ,pt ,̃δ)
t with respect to t can be described using Itô formula as

dP̃L
(ZT ,pt ,̃δ)
t =

∂

∂t
v(t, S̃ t) dt +

∂

∂x
v(t, S̃ t) dS̃ t +

1
2
∂2

∂x2
v(t, S̃ t) dS̃ t · dS̃ t − δ̃t dS̃ t

=

(
∂

∂t
v(t, S̃ t) +

∂

∂x
v(t, S̃ t)µS̃ t +

1
2
∂2

∂x2
v(t, S̃ t)σ2S̃ 2

t − δ̃tµS̃ t

)
dt +

(
∂

∂x
v(t, S̃ t) − δ̃t

)
σS̃ t dWt.

Here, ∂
∂x represents partial differentiation with respect to the second argument S t of v. Then,

as a condition for eliminating the risk of this P&L process, that is, setting the diffusion term
to zero, we obtain the following:

δ̃Delt =
∂

∂x
v
(
t, S̃ t

)
.

This is the hedging strategy known as delta hedging. The right-hand side of the above equa-
tion is the sensitivity of the derivative price to changes in the price of the underlying asset.
Therefore, the intuitive idea behind delta hedging is to hold an amount of the underlying
asset equal to the sensitivity (delta) per one unit of the derivative, so that the price changes
in the underlying and hedge position completely offset each other.14.
Further, given that (1) a risk-free asset is traded, (2) the market is arbitrage-free, and (3)

the P&L at maturity are zero (P̃L
(ZT ,pt ,̃δ)
t = 0), it can be demonstrated that v satisfies the

Black–Scholes partial differential equation:
∂

∂t
v (t, x) + rx

∂

∂x
v (t, x) dS̃ t +

σ2x2

2
∂2

∂x2
v (t, x) = rv (t, x) ,

v(T, x) = f (x) .
(4)

Here, r represents the continuously-compounded risk-free interest rate of the risk-free assets.
For the solution v of this equation, setting pt = v

(
t, S̃ t

)
, we have

P
(
P̃L

(ZT ,pt ,̃δDel)
t = 0

)
= 1 for t ∈ [0,T ].

14If we assume more complex models for the underlying asset price S̃ t, this argument does not hold, and
thus condition (3) can fail. In such a case, one seeks a hedging strategy {̃δ(RN)u }u∈[0,T ] such that condition (3) is
approximately satisfied, taking into account delta, vega, gamma, and other higher-order greeks. Such a strategy
is referred to as greeks hedging or parameter hedging.
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Furthermore, v can be expressed in terms of expectation using the Feynman–Kac formula
as follows:

v(t, S̃ t) = e−r(T−t)EQ
[
f (S̃ T )

∣∣∣ S̃ t

]
. (5)

Here, the probability measure Q is the risk-neutral probability measure. Under this proba-
bility measure, S̃ t follows the stochastic differential equation

S̃ t = S̃ 0 +

∫ t

0
rS̃ u du +

∫ t

0
σS̃ u dWQ

u .

Equation (5) shows that the option value v is equal to the present value of the expected payoff
under the risk-neutral probability measure discounted by the risk-free interest rate. This is
called the risk-neutral valuation framework because derivative prices can be obtained based
on this equation.
When computing option prices based on risk-neutral valuation, it is essential to pre-

determine parameters like r andσ, which describe the fluctuations of S t under the probability
measure Q. Moreover, in models more complex than the Black–Scholes model, determining
multiple model parameters becomes necessary. This parameter determination is discussed in
the subsequent section on calibration.

2.3.2 Calibration problem

When pricing derivatives and deriving hedging strategies based on risk-neutral valuation,
it is necessary to determine the values of the parameters (for instance, r and σ in the Black–
Scholes model).
As mentioned at the beginning of section 2, the general approach in current derivative

practice for determining these parameters is to assume that the market prices of financial
instruments with high market liquidity (the instruments to be calibrated) are correct and to
set the parameters so that the theoretical model prices fit those market prices. Adjusting the
parameters of the model in this way is referred to as calibration in the theory of derivative
pricing. Using calibrated models, practitioners price more complex derivative instruments
whose market prices are unobservable. Such procedures allow for pricing complex deriva-
tives so as to be consistent with the market prices of highly liquid instruments; that is, there
is no-arbitrage between the complex derivatives and the highly liquid instruments. Thus,
accurate and efficient calibration is extremely important in derivative pricing and risk man-
agement.
Below, we formulate the calibration problem. First, consider the following three parameter

groups:

• Model parameters (parameters of the stochastic differential equation governing the
underlying asset price): σ ∈ RQ

• Product-specific parameters (such as maturity and strike price): τ ∈ Rp
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• External factors (e.g., risk-free interest rates): ϕ ∈ Rm

Under this framework, let QP(τ) denote the market price of a financial product with product-
specific parameters τ, and let MP(σ; τ, ϕ) represent the model price under risk-neutral valu-
ation.
Given R calibration target products with market prices {QP(τi)}i=1,...,R, the calibration prob-

lem can be formulated as a minimization problem to determine the model parameters:

σ∗ = argmin
σ∈RQ

Error
(
σ; {QP (τi)}i=1,...,R , ϕ

)
, (6)

where Error is an error function, that is, a function that penalizes the error between the market
price QP(τ) and the model price MP (σ; τ, ϕ). For example, the following function is used:

Error
(
σ; {QP (τi)}i=1,...,R , ϕ

)
=

R∑
i=1

(MP (σ; τi, ϕ) − QP(τi))2 .

A typical practical problem is to adjust about 10 model parameters for tens to hundreds
of calibration targets.15 For such high-dimensional optimization problems, methods like the
Newton–Raphson method are commonly employed. However, these optimizations are often
computationally expensive and may not necessarily converge. Especially when convergence
issues arise, it is difficult to determine whether the problem lies with the optimization algo-
rithm or the set of model parameters that can represent the market prices with in an accept-
able error range is empty. Hence, calibration stands as one of the most intricate stages in
the development of derivative pricing models. To address this, deep calibration, introduced
in section 5, aims to replace these optimization computations with deep learning techniques,
thereby eliminating the need for optimization calculations with each valuation, leading to
faster and more stable calculations.

3 Deep learning
In this section, we provide an overview of deep learning. Neural networks utilize a system

of functions with a vast number of parameters, composed alternately of linear and non-
linear functions. Machine learning methods that utilize functions with deep layers of neural
networks are referred to as deep learning. While deep learning has empirically proven to be
highly effective in numerous practical applications, recent studies have gradually elucidated
its theoretical foundations.
In section 3.1, we provide a brief overview of deep learning and recent research trends

in the field. In section 3.2, we introduce the notation used in the explanations in sections 4
and 5. For more detailed information on deep learning, see monographs such as Goodfellow
et al. [2016].

15A typical example of calibration in practice is a calibration of the volatility of a Hull-White model, which
has roughly 10 parameters, calibrated to tens to hundreds of swaptions data.
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3.1 Background of success

3.1.1 Classification of machine learning and the positioning of deep learning

Deep learning is a kind of machine learning. Therefore, to understand the characteristics
and potential applications of deep learning, it is beneficial to comprehend its positioning
within machine learning as a whole. In the following, we provide a general classification
of machine learning methods. We also provide detailed explanations of the positioning and
characteristics of deep learning within the broader context of machine learning.16

In machine learning, one first trains a statistical model, called a machine learning model,
using training data. These trained models are then employed for tasks such as decision-
making, classification, and prediction. Here, training refers to estimating the parameters of
a function system (statistical model) that links input and output data. Generally, machine
learning is said to offer a more inductive and precise understanding of the relationships be-
tween data points as compared to classical statistical models, especially when vast amounts
of data are used for training.
Given the above, machine learning can be classified from several perspectives. The first

axis of classification is the type of objective function set in the learning (i.e., parameter
estimation). In supervised learning, given a training dataset consisting of known output data,
the model parameters are trained to replicate the given outputs as closely as possible. Here,
for instance, a machine learning model might be trained with images of dogs and images of
animals that are not dogs, with each image correctly labeled (e.g., as a dog or not a dog).
The trained model is then used to judge whether a given arbitrary image is that of a dog.
In unsupervised learning, tasks like data clustering are performed without labeled output.
A third objective function-type category of machine learning is reinforcement learning. In
reinforcement learning, there is an agent who seeks to maximize the rewards that will be
receive in the future; the rewards depend on the agent’s actions and the state of the model,
which changes sequentially. The maximization result implies an optimal policy, which is
a mapping from the state to the agent’s optimal action. The second axis of classification
is the purpose of the machine learning. Machine learning models can be developed for
any number of purposes; for example, one might use a model to judge whether an email
is spam, to classify handwritten numbers as 0 to 9, or to predict future stock prices and
unemployment rates from various kinds of feature variables. The third axis of classification
is the function system employed in the model’s formulation. In machine learning, depending
on the objective function of the optimization and on the purpose of the model, a specific
function systemwith a suitable structure for the given model setup is employed. For example,
logistic regression is used to predict relatively simple phenomena, random forest and k-
nearest neighbor methods are used for classification and regression, and neural networks
(multilayer perceptrons) are used to describe more complex phenomena.

16Machine learning is a vast and rapidly evolving field that encompasses various models, learning ap-
proaches, and applications. Consequently, there might be instances where the definitions and classes are not
entirely clear.
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Deep learning is a category under the third axis, in which a function system with a very
large number of parameters that repeatedly synthesizes linear and nonlinear functions alter-
nately (e.g., neutral network) is used. In particular, deep reinforcement learning, which uses
neural networks in reinforcement learning, has solved many problems in recent years and is
attracting widespread attention.

3.1.2 History and current status of deep learning

The history of deep learning began in the 1950s, and is said to currently be in its third
wave of enthusiasm. The first boom (in the 1950s) was propelled by the development of
the perceptron (Rosenblatt [1958]), which is often considered to be the prototype of neural
networks. The perceptron modeled a nervous system, sparking high expectations for artificial
intelligence. However, by the late 1960s, Minsky and Papert [1969] had highlighted the
limitations of the perceptron in recognizing even simple shapes such as linearly separable
figures, leading to a decline in interest.
The second boom began in the 1980s with the introduction of backpropagation (Rumel-

hart et al. [1988]). As explained in detail later, backpropagation is a method for efficiently
performing the calculations required to update the parameters in the training of a multilayer
neural network. This technique made learning possible for neural networks with several
layers and greatly advanced the study of deep learning. Despite these advancements, how-
ever, issues like overfitting and the challenges in parameter updates led to another ebb in
enthusiasm.17

The ongoing third boom gained momentum when Hinton et al. [2006] successfully ap-
plied pre-training to multilayer neural networks. Multilayer neural networks have since at-
tracted widespread attention, leading to significant developments. For example, AlexNet
by Krizhevsky et al. [2017] achieved high performance in the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC), and further improvement ensued. Deep learning has
brought about breakthroughs such as AlphaGo’s victory over the Go world champion (Silver
et al. [2016]) and the development of data generation techniques (Goodfellow et al. [2020]).
These achievements indicate that deep learning has expanded its applications to now include
control problems and data generation tasks, in addition to traditional prediction and regres-
sion tasks.
Multiple reasons have been given for the success of deep learning in the current third

boom. First are the advancements in the techniques and algorithms used for learning. As
noted above, the second boom lost momentum because of the difficulties encountered in
multilayer neural network learning due to such problems as overfitting. In the third boom,
the development of breakthrough technologies that overcome this issue have played an im-
portant role. Second is rapid development of infrastructure to support numerical compu-
tations for deep learning. This includes the availability of powerful Graphics Processing

17Overfitting occurs when a learning model becomes overly tailored to the training data, leading to a decrease
in performance when applied to unknown data.
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Units (GPUs) and libraries like PyTorch and TensorFlow; these developments in hardware
and software make it possible to execute large-scale, computationally expensive numerical
calculations. Furthermore, accumulating experience in solving various problems with deep
learning has fostered a positive feedback loop, encouraging further exploration and innova-
tion. In other words, the accumulation of rules of thumb for solving problems using deep
learning has made it easier to generate ideas for solving new problems with deep learning.
Recent theoretical research has shed further light on why deep learning has been so success-
ful in practical terms. Specifically, as we will shortly discuss in section 3.1.4, it is becoming
clear that neural networks have theoretically desirable natural performance with respect to
learning and function representation. Such theoretical ground might serve to effectively dis-
tinguish deep learning from its machine learning predecessor.
This trend has led to a growing body of research on the application of deep learning to fi-

nancial engineering and mathematical finance. The main reasons for this are rooted in three
properties that are specific to problems in these fields. First, as discussed in section 2, the
problem of hedging derivatives is a control problem in that it requires a hedging strategy that
controls the uncertainty of a P&L. For this reason, empirical rules of reinforcement learn-
ing, which have developed rapidly in recent years, are useful.18 Second, derivative prices
and hedging strategies are often described by functions with nonlinearity due to nonlinear
payoff functions and other factors. Therefore, they are compatible with neural networks
that have high representational capacity for the functions of interest for estimation purposes.
Third, given that techniques in the derivatives domain are grounded in financial engineering
and mathematical finance theory, precise numerical calculations and theoretical assurances
are paramount. With recent advancements in deep learning technologies and infrastructure,
achieving the required precision for practical applications in the derivatives domain is be-
coming feasible, although it still requires careful validation, as discussed in sections 4 and
5.

3.1.3 Technique for learning

As previously discussed, in machine learning, a statistical model called a machine learning
model is first trained with appropriate data and then used for various tasks. Here, the term
training refers to solving an optimization problem to estimate the parameter θ in the function
y = f (x; θ) that connects the input data x to the output data y.
Specifically, parameter θ is estimated by minimizing the objective function, which is re-

ferred to as the loss function J. For instance, in supervised learning, where training data
comprising pairs of input data xi and corresponding output data yi denoted as {(xi, yi)}i=1,...,q
are provided, the error (difference) between the training data and the model’s output is cap-
tured as loss and the problem is formulated so as to minimize its value. If the loss function J

18Indeed, the deep hedging introduced in section 4 draws inspiration from the policy gradient method of
reinforcement learning.
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is defined in terms of the squared error, it can be expressed as follows:

J(θ) =
1
q

q∑
i=1

e (ωi; θ) , e (ωi; θ) = (yi − f (xi; θ))2 . (7)

For model learning for specific problems such as calibration or hedging, it is essential to set
an appropriate loss function.
The basic algorithm to solve the aforementioned minimization problem is to search for the

optimal solution θ∗ by iteratively updating the parameters and terminating the iteration when
the update in θi becomes smaller than a certain threshold. Specifically, the update is given by

θi+1 = θi + ∇J(θi).

Here, ∇J(θ) represents the gradient, defined by ∇J(θ) =
(
∂J(θ)
∂θ(1)
, . . . , ∂J(θ)

∂θ(k)

)
, where θ(k) repre-

sents the k-th element of θ. This approach follows the idea of the Newton–Raphson method,
where the gradient of the loss function is computed, and the parameters are updated in the
direction in which the loss decreases.
In machine learning, θ often becomes high-dimensional, ranging from thousands to tril-

lions of dimensions, making this iterative approach extremely challenging. For instance,
issues such as the computational burden of computing the gradient ∇J(θ) and convergence
to saddle points or local minima (gradient vanishing problem) frequently arise (Figure 1).

Figure 1: saddle point and optimal point

To address these challenges, various techniques have been proposed. The following three
are among the most prominent of these techniques:

1. Setting the learning rate: Multiplying ∇J(θ) by an appropriate constant νi prevents
getting stuck in local minima or making excessive updates.

2. Stochastic gradient descent (SGD): Rather than using all the training data to compute
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∇J(θ), SGD approximates it using a randomly sampled subset of the training data.19

Here, the amount of training data extracted is qB, referred to as the number of batches.
For example, if the loss function is given by equation (7), one stochastically samples
qB data points as

{
(xi( j), yi( j))

}
j=1,...,qB

⊂ {(xi, yi)}i=1,...,q, and then approximates as follows.

∇J(θ) = 1
q

q∑
i=1

∇e (ωi; θ) ≈
1
qB

qB∑
j=1

∇e
(
ωi( j); θ

)
. (8)

Note that in doing so, we take advantage of the fact that the loss function J(θ) can be
represented in terms of the sum of the errors e (ωi; θ) with respect to individual data
samples.20

3. Backpropagation: This is a method to efficiently compute ∇J(θ) using the fact that
neural networks are layered or composite functions. By using the chain rule of com-
posite functions, partial differential coefficients for each parameter can be efficiently
calculated in the order from the layer on the output side to the layer on the input side
(in the opposite direction of input-output). Note that, if the error e (ωi; θ) with respect
to individual training data samples is differentiable with respect to the parameter θ (i.e.,
if the analytical solution of the derivative exists), the method becomes more efficient.

Additionally, various techniques such as skip connections, momentummethods, automatic
learning rate adjustments, regularization layers, data augmentation, and dropout have been
introduced to address the issue of not converging to global optima. Notably, the Adam
method proposed by Kingma and Ba [2015] combines the principles of SGD, momentum,
and RMSprop, representing one of the most widely used learning algorithms. For detailed
insights, the readers are referred to the aforementioned literature.

3.1.4 Natural performance of neural networks

As discussed in section 3.1.2, theoretical research on neural networks has progressed in
recent years, gradually revealing the reasons why deep learning works so effectively. Specif-
ically, it has become evident that neural networks possess desirable properties in terms of
representation, optimization, and generalization abilities. This section provides an overview
of these properties.
Firstly, representation ability refers to how well a neural network can approximate the

function it aims to represent. Studies on representation ability have a long history, with the
universal approximation property of neural networks (i.e., functions that are important for ap-
plications can generally be approximated by neural networks) being particularly renowned.

19If one can select a sample of sufficient size from the training data, using only a subset of the training data
can significantly reduce the computational cost of ∇J(θ). Additionally, by stochastically sampling the training
data, the problem of vanishing gradients is less likely to occur.

20As mentioned in section 4.1.2, in deep hedging where the risk measure is learned as a loss function,
efficient learning can be achieved by representing the loss function as a sum over samples of the training data,
as given in equation (7), and applying techniques such as SGD and backpropagation.
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Recent research has highlighted the adaptive approximation capability of neural networks,
demonstrating that they can effectively adjust the resolution based on the input, thereby effi-
ciently approximating functions (Suzuki [2018]). Intuitively, adaptive approximation means
that the network can adjust its resolution depending on the input, especially increasing the
resolution where the function has large variations.
Secondly, optimization ability relates to the predictive power on training data and the ca-

pability to explore global solutions θ∗. As previously mentioned, J(θ) is a high-dimensional
function, making it susceptible to becoming stuck in local minima or saddle points. How-
ever, neural networks exhibit favorable properties in the shape of the objective function J(θ),
making such issues less likely. For instance, Garipov et al. [2018] experimentally demon-
strated the connectedness of regions containing optimal solutions, and Kawaguchi [2016]
theoretically showed that if the activation functions are restricted to linear functions, all lo-
cal minima are also global minima.
Lastly, generalization ability pertains to the predictive power on unseen data, ensuring that

the network does not overfit to training data and can adaptively represent functions based
on problem complexity. Neural networks are known to possess an implicit regularization
capability that adjusts model complexity based on problem complexity. Concrete examples
of this include norm minimization (Hastie et al. [2022]), flat minima (Soudry et al. [2018]),
and the lottery ticket hypothesis (Frankle and Carbin [2018]). This automatic adjustment is
realized, for instance, by certain parameters θ∗ approaching zero, effectively nullifying some
input values.

3.2 Neural network notation

Definition 4. Let L ∈ N with L ≥ 2 be the number of layers in a neural network, and let
N0,N1, . . . ,NL ∈ N denote the dimensions of the intermediate layers. Let Wl : RNl−1 → RNl

represent an affine transformation. In other words, there exist matrices Al ∈ RNl×Nl−1 and
vectors bl ∈ RNl such that Wl(x) = Alx+ bl. Further, let η : R→ R be an activation function.
Then, the composite function Fθ : RN0 → RNL defined by the following is referred to as a

(feed-forward) neural network:

Fθ(x) = WL ◦ FL−1 ◦ . . . ◦ F1,

where Fl = η ◦ Wl (with η applied element-wise). Here, θ represents the parameters of the
neural network, that is, the set of components of matrices Al and vectors bl for l = 1, . . . , L.

Figure 2 shows a schematic diagram of a neural network. Each layer is composed of
an affine function followed by a non-linear activation function. By stacking these layers L
times, the function operates on input data x by alternating between linear and non-linear
transformations, producing an output y.
Hereafter, we denote the set of feed-forward neural networks with input dimension N0,

output dimension NL, parameter dimension M as NNM;N0,NL , and the set of parameters as
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Figure 2: Neural Network

ΘM.21

4 Deep hedging
In this section, we introduce the framework of deep hedging presented by Buehler et al.

[2019a]. Deep hedging is a framework that utilizes deep learning to numerically solve con-
vex risk minimization problems. As mentioned in section 2, it bypasses risk-neutral valu-
ation and directly solves the convex risk minimization problem. This approach has gained
attention due to its ability to quantify the impact of market frictions such as trading costs.22

In section 4.1, we introduce the framework of deep hedging proposed by Buehler et al.
[2019a]. In section 4.2, we discuss the subsequent research trends in this area. In section
4.3, we conclude with future prospects.

4.1 Algorithm proposed in Buehler et al. [2019a]

Deep hedging consists of a series of algorithms to determine an appropriate hedging strat-
egy using a neural network. A hedging strategy is first modeled by a neural network. The
model is then trained to minimize the loss risk using deep learning. The learning results are
used to determine the hedging strategy. Using the notation introduced in section 2, we can
formulate this procedure as shown below. For simplicity, we consider an underlying asset
(hedging instrument) price process {S k}k=0,...,n−1 that is a Markov process; that is, the future
price depends only on the current price and not on past prices.

21The dimension M is given as M =
∑L

l=1 (Ni−1 × Ni + Ni) because it is the sum of the numbers of the
elements of matrix Al and vector bl for l = 1, . . . , L.

22According to Risk Magazine, an industry publication, some financial institutions appear to be actively
utilizing deep hedging. Furthermore, Hans Buehler (XTXMarkets), one of the authors of Buehler et al. [2019a],
was awarded Quant of the year 2022 for this achievement (Risk.net [2022]).
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Hedging strategies are modeled using the following neural network functions: δ̂θ0 = Fθ0 (0, S 0) ,

δ̂θk = Fθk
(
δ̂θk−1, S k

)
(k = 1, . . . , n − 1) .

(9)

Here, Fθk ∈ NNM;2,1 (with two inputs δ̂θk−1, S k and one output δ̂θk) typically consists of a
shallow neural network with two to three layers. We assume the parameters θk ∈ ΘM for each
neural network Fθk describing the hedging strategy are distinct for each period. The neural
network is trained using data across all periods. Furthermore, the parameters describing
the entire hedging strategy up to maturity are denoted as θ = (θ0, . . . θn−1) ∈

∏n−1
k=0 ΘM. In

essence, the hedging strategy of each period is modeled by a shallow-layer neural network
whose input data are the hedge strategy in the previous period and the current underlying
asset price (as shown in one block in Figure 3), and the strategy across periods is modeled by
a recursive deep-layer neural network (as shown in the entire Figure 3). In section 4.1.1, we
explain the validity (convergence) of modeling the hedging strategy by such a neural network
to minimize the loss risk.

Figure 3: Modeling of hedging strategies in deep hedging

Next, in the learning of parameters θ, given the future scenarios of {S k}k=0,...,n (probability
distribution and its realization values), {S k(ωi)}k=0,...,n

i=1,...,q
, the P&Ls

{
PL(ZT ,p0,δθ)(ωi)

}
i=1,...,q

for

scenarios i = 1, ..., q are calculated. Then, we calculate the optimal θ∗ that minimizes the

loss risk ρ
({
PL(ZT ,p0,δθ)(ωi)

}
i=1,...,q

)
. Here, the deep learning technique introduced in section

3.1.3 is used. Importantly, the loss function needs to be represented in an appropriate form,
which is discussed in section 4.1.2.
In the execution of the hedging, the realized asset prices {S k (ω̃)}k=0,...,n are sequentially fed

into the trained neural network Fθ
∗
k . Thus, we produce the hedging strategy

{
δ̂θ
∗

k

}
k=1,...,n−1

by
deep hedging as follows: δ̂θ

∗

0 = Fθ
∗
0 (0, S 0) ,

δ̂θ
∗

k = Fθ
∗
k

(
δ̂θ
∗

k−1, S k (ω̃)
)

(k = 1, . . . , n − 1) .
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4.1.1 Approximation theorem

In the framework described above, the process is described, for simplicity, for the case
where the asset price {S k}k=0,...,n follows a one-dimensional Markov process. In this subsec-
tion, following Buehler et al. [2019a], we discuss the validity (approximation theorem) of
modeling hedging strategies using neural networks for more general Fk-adapted Rd-valued
stochastic processes {S k}k=0,...,n.
Before presenting the approximation theorem, additional notation and assumptions are

required. Firstly, the transaction cost function ck in the PL(ZT ,p0,δ)(equation (1)) is assumed to
be right-continuous; that is, for x ∈ R, limx↓a ck(x) = ck(a) holds.23 Additionally, {Ik}k=0,...,n−1
represents market information at each time and Ik is assumed to generate Fk. Moreover, let
H be a subset of Rd-valued stochastic processes representing possible hedging strategies.24

HM is defined as the set of hedging strategies expressible by neural networks NNM;N0,N1 as
follows:

HM =

{{
δ̂θk

}
k=0,...,n−1

| δ̂θk = Fθk (δk−1, I0, . . . , Ik) , θk ∈ ΘM, Fθk ∈ NNM;r(k+1)+d,d

}
.

Note that when {S k}k=0,...,n is a Markov process, this definition aligns with equation (9). Let
X be an Fn-measurable random variable, and define

π (X) = inf
δ∈H
ρ
(
PL(X,0,δ)

)
, πM(X) = inf

δ∈HM

ρ
(
PL(X,0,δ)

)
.

Here, π(X) represents the risk when choosing the optimal hedging strategy from all possible
strategies, while πM(X) represents the risk when choosing the optimal strategy from the set
of strategies expressible by neural networks.

Theorem 1 (Approximation theorem for deep hedging).

lim
M→∞
πM (X) = π (X) .

The proof of Theorem 1 can be established using the universal approximation theorem of
neural networks under assumptions such as the right-continuity of ck. For more details, refer
to Proposition 4.2 in Buehler et al. [2019a]. It is worth mentioning that this theorem only
guarantees convergence; showing the precision or rate of convergence analytically remains
challenging.
Theorem 1 indicates that the risk πM(X) minimized within the hedging strategy HM ap-

proximated by a neural network converges to the risk π(X) minimized within the set of pos-
sible hedging strategiesH as the number of parameters M (parameters describing the neural
network for a one-period hedging strategy) increases. This observation suggests that model-

23In this case, S k for k = 0, . . . , n is considered as part of the market information ({S k}k=0,...,n generating a
σ-algebra contained within the σ-algebra generated by {Fk}k=0,...,n).

24In section 2.2 of Buehler et al. [2019a], the set of possible hedging strategies is defined, taking into account
the transaction constraints. For more details, refer to the original paper.
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ing hedging strategies using neural networks to minimize loss risk is a viable approach.25

4.1.2 A key in learning neural network weight parameters

To efficiently learn the weight parameters θ∗ that minimize the loss function J(θ), tech-
niques such as SGD and backpropagation, as introduced in section 3, are employed. It is
desirable that the loss function J(θ) be the sum of errors concerning a single training data
sample and that it be differentiable with respect to θ. Therefore, in the deep hedging, one con-
siders a class of risk measures for which the loss function can be represented as the expected

value of a random variable J(θ) = ρ
({
PL(ZT ,p0,δθ)(ωi)

}
i=1,...,q

)
.26

Attempts to represent risk measures such as ES as expected values began with Rockafellar
et al. [2000]; and were further developed by Ben-Tal and Teboulle [2007] through the in-
troduction of the concept of Optimized Certainty Equivalence (OCE).27 OCE is formulated
as follows: Let l : R → R be a continuous, non-decreasing, convex function, and for a
real-valued random variable X,

κ(X) = inf {w + E[l(−X − w)]} , w ∈ R.

Then, κ satisfies the definition of a convex risk measure and is called a risk measure with
OCE. For instance, ES can be expressed by setting l(x) = (1/(1 − α)) max {x, 0} as below,
and thus ES has the property of OCE:

ESα(X) = inf
w∈R

{
w + E

[
1

1 − α max {−X − w, 0}
]}
.

A risk measure with OCE can be efficiently learned. Namely, using the representations via
OCE, we transform the argument in optimization from θ to a two-dimensional variable θ×w.
Using the formulation of OCE, efficient learning is possible by transforming the variable of
the minimization problem from θ to θ × w:

inf
θ
ρ
(
PL(ZT ,p0,δ̂

θ)) = inf
θ
inf
w∈R

{
w + E

[
l
(
PL(ZT ,p0,δ̂

θ) − w
)]}

= inf
θ̄=θ×w

{
w + E

[
l
(
PL(ZT ,p0,δ̂

θ) − w
)]}
.

By this transformation, the loss function for learning is set as

J
(
θ̄
)
=

w + q∑
i=1

[
l
(
PL(ZT ,p0,δ̂

θ) (ωi) − w
)]
P(ωi)

 .
As mentioned in section 3.1.3, representing the loss function in this form allows the use of

25In Buehler et al. [2019a], it is not directly stated that the modeled hedge strategy
{
δ̂θk

}
k=0,...,n−1

converges to
the solution δ∗ of the convex risk minimization problem. As mentioned in Remark 1, the reason for this is to
avoid discussing the existence of hedge strategies that minimize risk.

26It is known that Value-at-Risk cannot be represented as the expectation of a random value.
27In decision theory, OCE was introduced as an extension of certainty equivalence.
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SGD. Moreover, if the derivative with respect to θ on the right-hand side is analytically avail-
able, it can be used to accelerate backpropagation (refer to Buehler et al. [2019a] Proposition
4.6).

4.1.3 Summary of numerical results

In section 5 of Buehler et al. [2019a], the authors provide empirical evidence of the validity
of the learning outcomes through numerical experiments. Here, we present a summary of
this evidence.
Setup

• Target option: European Call Option (1-month maturity, at-the-money strike) ZT =

max
{
S (1)
T − K, 0

}
, T = 30

365 .

• Distribution for hedging instruments: Heston model (Heston [1993])
dS̃ (1)

t =

√
S̃ (2)
t S̃ (1)

t dW (1)
t ,

dS̃ (2)
t = α

(
b − S̃ (2)

t

)
dt + σ

√
S̃ (2)
t

(
ρdW (1)

t +
√
1 − ρ2dW (2)

t

)
,(

S̃ (1)
0 , S̃

(2)
0

)
=

(
s(1)0 , s

(2)
0

)
,

(10)

with parameters set as α = 1, b = 0.04, ρ = −0.7, σ = 2, s(1)0 = 100, and s(2)0 = 0.04.

• Daily hedging: tk = k
365 , n = 30

• Risk measure: ES

• Generation of future scenarios: By discretizing equation (10) and using Monte Carlo
simulation, generate q future scenarios

{(
S (1)
i (ω j), S

(2)
i (ω j)

)}
i=1,...,n
j=1,...,q

.

• Learning neural network weights: Using a learning rate νi = 0.0005 and batch size

qB = 256, compute the optimal weights θ∗ that minimize ρ
({
PL(ZT ,p0,δθ)(ωi)

}
i=1,...,q

)
via

Adam optimization.

Results

1. Comparison of deep hedging and delta hedging (no transaction costs)
Figure 2 in Buehler et al. [2019a] shows the frequency distribution of the realized
P&Ls for both deep hedging and delta hedging in no-transaction-cost setting.28 Here,
the risk measure is set as 50%-ES. The graph shows that the behavior of the realized
P&Ls in deep hedging closely aligns with the P&Ls in delta hedging in the case of no

28This is the frequency distribution obtained from an out-of-sample test with a sample size q′ = 106, namely,
the frequency distribution of the P&Ls when applying the hedging strategy derived from the learning outcomes
under scenarios {S k (ω̃i)}k=0,...,n

i=1,...,q′
as distinct from those used for learning.
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transaction costs.29 In addition, the greeks are also closely align.30 This indicates the
validity of deep hedging in the case of no transaction costs.31

2. Impact of risk measure parameter setting on hedging strategy learning
Figure 7 in Buehler et al. [2019a] displays the frequency distribution of the realized
P&Ls for deep hedging when the risk measures are set as 50% and 99%-ES, respec-
tively. From the graph in the upper part of this figure, in the case of 50%-ES, the
distribution of the realized P&Ls is higher around the median; that is, the hedging
strategies are trained to avoid losses below the mean. The table at the bottom of the
figure also shows that in the case of 99%-ES, the distribution of the realized P&Ls is
smaller than the case of 50%-ES; that is, hedging strategies that avoid large losses are
learned. These facts indicate that the learning outcome of deep hedging changes as
expected depending on the parameter setting of the risk measure.

3. Impact on utility-indifference pricing due to transaction costs
Figure 11 in Buehler et al. [2019a] shows the utility-indifference prices pε for different
ε, setting transaction cost as ck(δk − δk−1) = ε

∑2
i=1

∣∣∣δ(i)k − δ(i)k−1∣∣∣ S (i)
k . The graph indicates

that
pε − p0 = O

(
ε0.71

)
holds. This is consistent with the theoretical results (Whalley and Wilmott [1997],
Rogers [2004]) for the case in which the price process of the underlying asset follows
a one-dimensional diffusion process such as the Black–Scholes model. This fact in-
dicates that the utility-indifference prices calculated through deep hedging vary with
respect to the transaction costs, as theoretically predicted, and that the hedging error
converges with a reasonable degree of accuracy.

4.2 Research trends

4.2.1 Future scenario generation

In section 4.1, we presented the framework of deep hedging, without specifying how the
future scenarios of the underlying assets (hedging instruments) are generated.32 Developing
methods for generating future scenarios is a central issue in the subsequent research on deep
hedging, since generating realistic future scenarios is essential for the practical implementa-
tion of deep hedging.

29The horizontal axis of this graph represents the hedging error as a percentage of one unit of the underlying
asset. As mentioned above, this is because the current price of the underlying asset is set to s(1)0 = 100.

30Refer to Figure 3 in Buehler et al. [2019a].
31As explained in section 2, in the case of no transaction costs, a delta hedge can eliminate hedging errors

through replication. However, due to minimal numerical computation errors, the frequency distribution of the
realized P&Ls from the delta hedge also has a slight spread.

32In Buehler et al. [2019a], future scenarios are generated using a stochastic differential equation with fixed
parameters.
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Among the various methodologies, techniques employing generative models based on
deep learning have been extensively investigated. For instance, Wiese et al. [2019] proposed
a method to generate future scenarios for vanilla options33 using Generative Adversarial Net-
works (GANs).34 When evaluated against the quasi-maximum likelihood method and vector
autoregressive models, the scenarios generated by GANs better captured the characteristics
of the given past data across multiple metrics. Additionally, Buehler et al. [2020, 2021a]
proposed an approach using a deep generative model called the variational autoencoder and
features termed signatures to generate future scenarios from limited market data.35

It is apparent that if we use a scenario that gives a hedging strategy where the expected
return genuinely becomes positive upon increasing the number of scenario samples, that is,
a statistical arbitrage strategy, the hedging strategy learned via deep hedging can be signif-
icantly influenced by this arbitrage strategy. This influence may result in a biased hedging
strategy, such as monotonically increasing the holdings of specific assets. Buehler et al.
[2022a, 2021b] extended the notion of risk-neutral valuation in the presence of transaction
costs and introduced a method to remove statistical arbitrage from future scenarios. Essen-
tially, this method transforms the given future scenarios to ensure the absence of hedging
strategies with genuinely positive expected returns. Moreover, numerical results demon-
strate that by eliminating statistical arbitrage from the future scenarios, the performance of
hedging strategies trained via deep hedging improves; that is, hedging errors are reduced.
Furthermore, in empirical studies, Zhang and Huang [2021] and Mikkilä and Kanniainen

[2021] reported numerical experiments using historical data for option prices to generate
future scenarios. Horvath et al. [2021b] discussed scenarios that follow non-Markovian
stochastic processes, that is, the rough volatility model (Gatheral et al. [2018]). Additionally,
Lütkebohmert et al. [2021] examined scenarios governed by stochastic differential equations
with uncertain coefficients.

4.2.2 Validation of deep hedging under different settings

In this paper, following the framework of Buehler et al. [2019a], we formulate the hedging
problem as a minimization problem of the risk quantified by convex risk measures of the
P&Ls at maturity, and use utility indifference pricing. In practice, it is essential to modify
and extend the formulation of the hedging problem depending on the specific situation or
objective.
Kolm and Ritter [2019] and Cao et al. [2021] formulated the risk measure using the mean

and variance of the P&Ls at maturity as an optimization objective. Additionally, Carbon-
neau [2021] incorporated hedge errors as the optimization objective without resorting to

33These are basic derivatives such as European options.
34This is the generative model of deep learning proposed by Goodfellow et al. [2020]. The method uses

neural networks to generate pseudo datasets with features similar to the input data. By training two networks
for generation and discrimination in competition, high-quality datasets can be generated.

35Signatures are features that generalize high-order correlation structures between the prices of multiple
assets.
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convex risk measures. The conditions of the derivatives change daily due to factors such as
shortening expiration times. Buehler et al. [2022b] considered this aspect and proposed a
framework to formulate the hedging problem using the Bellman equations and solve it using
the actor-critic method of reinforcement learning.
Moreover, Carbonneau and Godin [2021] discussed the concept of Equal Risk Pricing as

an alternative to utility indifference pricing (Definition 3).36

Note that even before Buehler et al. [2019a], researchers had explored the derivation of
hedging strategies using deep learning and reinforcement learning, under specific conditions
such as the absence of transaction costs. For instance, Halperin [2019] proposed a method
to derive hedging strategies under the Black–Scholes model in a cost-free setting using the
Q-learning framework.37 Specifically, the author formulated the replication via adjustments
in the portfolio, the basic idea of the Black–Scholes model, in a discrete time setting. Using
the Markov decision process in reinforcement learning, the author then proposed a method
for formulating a hedging strategy as a solution to the dynamic optimization problem and
calculating an optimal hedging strategy analytically. In Halperin [2019], the author discussed
the numerical computations for this method. Notably, research works such as Mikkilä and
Kanniainen [2021] and Buehler et al. [2019b] have adopted the formulation using Q-learning.

4.2.3 Numerical experiments for more complex derivatives

Whereas the numerical experiments in Buehler et al. [2019a] were conducted on relatively
simple short-dated derivatives, there are a number of studies on more complex derivatives.
For example, Carbonneau and Godin [2021] and Imaki et al. [2021] dealt with exotic deriva-
tives such as look-back options and Asian options. Carbonneau [2021] dealt with long-dated
derivatives. In another study, Shi et al. [2021] compared the method proposed in Buehler
et al. [2019a] with the method based on numerical solutions of forward-backward stochastic
differential equations (Weinan et al. [2017]), and concluded that the method in Buehler et al.
[2019a] is more effective for long-term optimization problems.

4.2.4 Modifications in modeling hedging strategies

In Buehler et al. [2019a], a method was introduced to model hedging strategies using
feedforward neural networks as described in equation (9). As discussed in section 4.2.3, it
is considered that this model can adequately learn hedging strategies for specific problems.
However, for more intricate problems, where an efficient derivation of hedging strategies is
required, it is beneficial to modify the hedging strategies model.

36This is the price formulated by Guo and Zhu [2017], where the risk amount for the seller of a derivative
equals that of the buyer. Generally, while utility indifference prices may differ between the seller and the buyer,
risk-equivalent prices are the same for both sides.

37Q-learning is a method in reinforcement learning that represents future cumulative rewards as a function
of the current environment’s state and action and estimates this function.
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Zhang and Huang [2021] presented a model using Long Short Term Memory Recur-
rent Neural Networks (LSTM-RNNs) that utilizes historical hedging strategy data to de-
termine future-period hedging strategies. Through numerical experiments, they verified that
the hedging error in P&Ls is improved, compared to classical methodologies like Leland
[1985]. Similarly, Carbonneau [2021] adopted the use of LSTM-RNNs and discussed long-
term hedging for derivatives in settings where the underlying asset price process includes
jumps.
Tawada and Sugimura [2020] proposed a technique using Gaussian Process Regression

(GPR) rather than neural networks for modeling hedging strategies. GPR offers the advan-
tage of high interpretability for the trained parameters, rendering the derived hedging strate-
gies more comprehensible. Making use of this property, the authors proposed a method to
transition to alternative hedge techniques (such as greeks hedging) when the scenarios used
for learning significantly deviate from the realized scenarios. Imaki et al. [2021] proposed a
model that includes the additional hypothesis that trading does not occur if the trading vol-
ume remains below a certain threshold and offered a method to estimate this threshold by
using deep learning. The authors not only theoretically demonstrated that the hedging strat-
egy under this model becomes optimal even with its approximation, but they also showed a
significant reduction in the computational costs required for learning hedging strategies in
numerical experiments. Additionally, Son and Kim [2021] conducted numerical experiments
utilizing various deep learning models, including regression neural networks and convolu-
tional neural networks, among others.

4.2.5 Application to general risk management

Since the convex risk minimization problem is a general optimization problem given P&L
measures, we can apply the same solution approaches not only to derivative hedging but also
to various risk management situations. Consequently, there is a growing number of discus-
sions on the application of deep hedging frameworks to broader risk management problems.
For instance, the application of deep hedging to risk management in the banking sector has
been discussed in Krabichler and Teichmann [2020], while its application to risk manage-
ment in insurance companies is explored in Fernandez-Arjona and Filipović [2022]. Addi-
tionally, Shimizu [1998] utilized neural networks within a supervised learning framework to
consider feedback effects in stress tests. It seems possible to conduct such stress tests based
on deep hedging.

4.3 Future prospects

4.3.1 Development potential

Deep hedging offers a framework for determining optimal trading strategies given the
amount of P&L risk. Due to its flexibility, it can be applied to a wide range of problems,
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including derivative hedging and risk management. Below, we summarize its development
potential in the field of derivatives and elsewhere.
In the field of derivatives, both the refinement and automation of hedging strategies are

expected. Regarding refinement, deep hedging makes it possible to incorporate market fric-
tions such as transaction costs. Additionally, by considering information other than financial
market observations—for example, news—in generating future scenarios for hedging instru-
ments, we can reflect such information in the hedging strategy. Importantly, by setting risk
measures according to the risk preference of the entity hedging the derivative, a strategy tai-
lored to that risk preference can be derived. These could represent new analytical methods
in derivative risk management. The automation of hedging operations may also be advanced
by the refinement of hedging strategies. As discussed in section 2.1.2, in hedging strategies
derived via risk-neutral valuation, adjustments such as additional cost charges are usually ap-
plied to cover inevitable errors in replicating the derivative. Such price adjustments are one
of the main obstacles to automating hedging operations, as the size of the price adjustments
are often determined in an ad hoc manner based on the subjective judgements of the traders.
On the other hand, by virtue of deep hedging, such qualitative adjustments become unnec-
essary because deep hedging can directly take into account market frictions, thus making the
automation of hedging operations more feasible. Additionally, by using deep learning mod-
els for future scenario generation, it becomes possible to repeatedly perform the learning of
hedging strategies and scenario generation, which opens the possibility of deriving hedging
strategies purely from data without any model dependency.
Outside the field of derivatives, as discussed in section 4.2.5, applications to general risk

management and broader decision-making based on data such as corporate management
strategy become feasible. However, compared to the hedge problems in the field of deriva-
tives, the formulation and validation of such broader problems represent a bigger challenges.
Thus, it would seem appropriate that we first develop the techniques of deep hedging for
derivatives.

4.3.2 Practical challenges

As noted above, discussions of the challenges associated with deep hedging is ongoing,
as the method is still quite novel. Below, we summarize the practical challenges of deep
hedging by categorizing the problem settings of deep hedging and the technical nature of
deep learning.
As discussed in section 4.2.2, for the practical use of deep hedging, expanding or modi-

fying the problem settings according to the specific situation or purpose is necessary. Espe-
cially since there is no established method for setting the parameters of the risk measures,
comparing strategies learned under different risk measure parameters would seem practi-
cally useful for risk management. Moreover, when calculating derivative prices using deep
hedging (especially for counterparty transactions or fair value calculations), one needs to be
careful since external parameters (like risk measure parameters) can significantly affect the
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price.
In addition to the extension and modification of the problem settings mentioned in section

4.2.2, there are other settings closely related to the practical application of deep hedging. For
instance, optimizing not only the risk amount at maturity T of the derivative but also the risk
amount at intermediate points t ∈ [0,T ] is, in practice, considered essential. Additionally,
incorporating value adjustments called xVAs, which have become important in derivative
practices post the 2007-08 financial crisis, into the framework of deep hedging is another
significant challenge. Operationally, it is crucial to re-evaluate the hedging strategy after
significant changes in one’s portfolio or market environment.
Regarding deep learning techniques, as mentioned in section 3, compared to established

financial engineering techniques such as the Monte Carlo method, there is no theoretical
guarantee regarding numerical behavior, such as the accuracy of learning. Hence, we should
be careful in practical applications. Moreover, similar to applying deep learning in other
fields, enhancing the speed and stability of learning and increasing the interpretability of
results present serious challenges.
In summary, while deep hedging has significant development potential, it also poses nu-

merous challenges. Thus, it is crucial that we explore how best to utilize deep hedging by
comparing it with the already established hedging approach based on risk-neutral valuation.
Especially when one takes a model-based approach in practical applications, it is critically
important to understand the underlying data and calculation principles and to use the model-
derived results cautiously. Table 1 summarizes the relationship between deep hedging and
hedging based on risk-neutral valuation.

Table 1: Comparison of deep hedging and risk-neutral valuation

Deep hedging
Hedging via risk-neutral valuation

(Greeks hedging)

Principle
Convex risk minimization
(Incomplete market)
— Physical measure

Replication / No-arbitrage
(Risk neutral valuation)

— Risk neutral measure

Main
inputs

1. Future market scenario
2. Risk preference (Risk measure)

Information on
the current market environment

(Market prices of liquid assets)

5 Deep calibration
In this section, we introduce deep calibration (Hernandez [2017], Horvath et al. [2021a],

etc.). As noted in section 2.3, the calibration process is computationally intensive and prone
to problems such as with convergence issues in the optimization calculations. Deep calibra-
tion is an algorithm that trains a neural network to learn the relationship between the model
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parameters and model prices in advance, and then replaces the optimization calculations of
the model parameters which are a step in the pricing calculations (risk-neutral valuation).
This approach is expected to accelerate and stabilize the pricing calculations.
In section 5.1, we introduce the deep calibration algorithm proposed in Hernandez [2017].

In section 5.2, we discuss the trends in subsequent research. We then summarize, in section
5.3, the practical advantages and challenges.

5.1 Algorithm proposed in Hernandez [2017]

Deep calibration is executed in the following two steps: First, a neural network is trained
by taking the model prices of the calibration target products as the input and the model
parameters as the output. Then, in the daily pricing tasks, the market prices of the calibration
target products are input into the trained neural network to approximate the model parameters
(Figure 4). Using the notation from section 2.3, we describe the algorithm below. Note that
the algorithm belongs to the supervised learning classification as described in section 3.1.1.

Figure 4: Process of deep calibration

Here, we consider the problem of determining model parameters σ ∈ RQ with given R
calibration target product market prices {QP(τi)} for i = 1, ...,R.

1. Training data generation
Randomly generate external factors ϕ̂ j ∈ Rm and model parameters σ̂ j ∈ RQ.38 Next,
compute the model price

{
MP

(
σ̂ j; τi, ϕ̂ j

)}
i=1,...,R

. Repeat this q times to generate train-

ing data
{
σ̂ j, ϕ̂ j,MP

(
σ̂ j; τi, ϕ̂ j

)}
i=1,...,R
j=1,...,q

.

2. Learning

Train Kθ ∈ NN θM;m+R,Q with inputs
(
ϕ̂ j,

{
MP

(
σ̂ j; τi, ϕ̂ j

)}
i=1,...,R

)
∈ Rm+R for i = 1, ...,R

and output σ̂ j. For instance, minimize the loss function defined as

J(θ) =
q∑
j=1

(
σ̂ j − Kθ

(
ϕ̂ j,MP

(
σ̂ j; τi, ϕ̂ j

)))2
to determine θ∗.

38When generating external factors and model parameters randomly, upper and lower bounds are determined
by referencing past model parameters and market data.
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3. Application
In the daily valuation of derivatives, given the market price

{
QPi

}
i=1,...,R of the cali-

bration target product and external factors ϕ ∈ Rm, use Kθ
∗ (
ϕ,

{
QPi

}
i=1,...,R

)
as model

parameters.

Hernandez [2017] applied the above algorithm to the Hull-White model (with swaptions
as calibration targets) and compared it with conventional calibration methods using historical
data. For the setup of this numerical experiment, refer to Table 2. Additionally, Hernandez
[2017] reported that in the generation of pairs ϕ̂ j, σ̂ j, the calculations become stable if the
correlations between model parameters and external factors using past data are taken into
account.

Table 2: Numerical examples of deep calibration

Reference Model
Calibration
targets

Setting of
neural networks

Acceleration

Hernandez
[2017]

Hull–White model
- Num params.
Q = 2

Swaption
6M-Libor
- Num targets

R = 200

Num layers L = 5
(4 interm. layers)

Dim of interm. layers
Nl = 64

Num training data
q = 150, 000

Around
225

times faster

Horvath et
al. [2021a]

(Rough) Bergomi
model

- Num params.
Q = 8

Volatility surface
- Num targets

R = 88

Num layers L = 5
(4 interm. layers)

Dim of interm. layers
Nl = 30

Num training data
q = 68, 000

Around
9,000 to 16,000
times faster

Note: For more details, refer to the indicated references.

5.2 Research trends

5.2.1 Improvements in the algorithm

Horvath et al. [2021a], Bayer et al. [2019], and Liu et al. [2019a] proposed a method,
called here the two-step method, to enhance the speed and stability of the algorithm in Her-
nandez [2017]. This method consists of an algorithm that trains a neural network to learn
the forward function MP(·; τi, ϕ) of the model price and then calibrates the model parameters
using conventional optimization methods. According to Horvath et al. [2021a] and Bayer
et al. [2019], the primary advantage is that by training the neural network on the forward
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function of the model price, the results are easier to validate and interpret relative to the case
where the inverse function is trained.39

Subsequently, Itkin [2020] modified a part of the algorithm in Hernandez [2017] by intro-
ducing a method that uses the forward function of the model price for training data gener-
ation, akin to the two-step method. Itkin [2020] pointed out that by using a method which
ensures that the function maintains the no-arbitrage condition and smooth greeks during the
learning of the price function’s forward function, stable and rapid calibration becomes feasi-
ble.
Furthermore, Horvath et al. [2021a] and Bayer et al. [2019] discussed methods to minimize

errors across various maturities and strikes by carefully designing the error function. These
methods are useful for swaptions and the volatilities of foreign exchange rates among other
products, as the calibration targets of these products can be seen as a multi-dimensional
matrix of maturities and strikes.

5.2.2 Applications to various models

Various numerical experiments have been conducted with the aim of putting these algo-
rithms into practice. In particular, in Horvath et al. [2021a], the calibration of the rough
volatility model using the two-step method was discussed．For the setting of the numerical
experiments in Horvath et al. [2021a], refer to Table 2.
Calibration problems for other models have also been discussed, including the Heston

model in Dimitroff et al. [2018], the SABR model in Lokvancic [2020], the interest rate
models in Sabbioni et al. [2021], and the general HJM model in Benth et al. [2020]. In
addition, in Liu et al. [2019b], the generation of training data for deep calibration under the
Black–Scholes and Heston models is discussed. In Brigo et al. [2021], the interpretability of
deep calibration under the Heston model is addressed.

5.3 Practical advantages and challenges

Deep calibration offers several desirable features for practical operations. Firstly, it op-
erates within a supervised learning framework. This is advantageous for enhancing and
verifying the stability of learning because one can prepare as much training data and test
data as needed by randomly generating the model parameters and associated model prices.
Moreover, several studies reported that deep calibration can achieve satisfactory accuracy at
a relatively modest computational expense. In addition, by validating the learned function,
one can verify the attainable range of the calibration targets’ prices and the behavior of the

39Note that research on learning model prices with neural networks began with Hutchinson et al. [1994]
and has been extensively studied since then. In particular, Garcia and Gençay [2000] and Dugas et al. [2009]
have presented methods for learning model prices using neural networks by considering important conditions
in finance such as the absence of arbitrage as constraint conditions. Ruf and Wang [2020], a review paper,
provides a summary of these studies.
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greeks prior to the daily valuations, which can render the calibration more robust compared
to existing optimization methods.40

It should be noted that it is crucial to regularly inspect the results obtained by deep calibra-
tion. In particular, if the market environment undergoes significant changes, the relationship
structure between the model parameters and external factors may also change significantly,
therefore changing the shape of the learned function. In such cases, prompt validation of the
model or switching to existing optimization methods may be required.

6 Concluding remarks
This paper provides an overview of the trends in research related to deep hedging and

deep calibration, which are applications of deep learning in the field of finance, from both
practical and academic perspectives. Deep hedging applies deep learning to solve convex risk
minimization problems, thereby making it possible to solve problems that were not wholly
solvable analytically and to quantify the impact of market frictions such as transaction costs
on derivative pricing and hedging strategies. On the other hand, deep calibration makes the
calculations in calibration faster and more stable, which is a part of the derivative pricing
process under the risk-neutral valuation framework. As such, deep learning has the potential
to advance a variety of techniques in the field of finance over both the short and long term.
Beyond the applications to hedging and calibration which are discussed in this paper,

there have been extensive discussions of other potential applications of deep learning in fi-
nance. Many problems in finance, including hedging, are formulated as control problems,
which seek optimal actions under given constraints. The compatibility of control problems
with reinforcement learning has inspired numerous reinforcement learning-based methods to
solve problems such as portfolio optimization (Jiang et al. [2017]), optimal execution (Ning
et al. [2021]), market-making (Spooner et al. [2018]), and algorithmic trading (Deng et al.
[2016]). In addition, studies on predicting asset prices (Patel et al. [2015]) and generat-
ing financial time series data using Generative Adversarial Networks (Wiese et al. [2020])
have been progressing. There have also been studies on the application of deep learning
to general computational problems, including applications to forward-backward stochastic
differential equations (Weinan et al. [2017]) and optimal stopping problems (Becker et al.
[2019]). The former study (application to forward-backward stochastic differential equa-
tions) has direct applications in finance, including the calculation of adjustments to credit
valuation adjustment (CVA) and initial margin (Henry-Labordère [2020]), as well as xVA
calculations (Gnoatto et al. [2020]). Several survey papers have discussed the application
of machine learning and deep learning in finance, including Hambly et al. [2021], Ruf and
Wang [2020], Emerson et al. [2019], Warin [2021], and Mashrur et al. [2020].
As both deep learning and finance are fast-developing research fields, it is crucially im-

portant to keep up with the most current cutting-edge discussions in these fields.

40For instance, if anomalies are detected in the process of calibration, it becomes easier to identify the cause.
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