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1 Introduction

The global financial crisis (GFC) of 2007-08 crystalized the potential for calamity inher-

ent in the financial system. Policymakers around the world responded by reforming the

regulatory framework and established Basel III. The objective of Basel III reforms is to im-

prove the banking sector’s ability to absorb shocks, thereby reducing the risk of spillovers

from the financial sector to the real economy (Basel Committee on Banking Supervision,

2010b), where spillovers from the financial system culminate in financial crises. The bank-

ing sector’s shock-absorbing capacity has to do with bank fundamentals. Hence, simply

put, the goal of Basel III is to reduce the probability of a financial crisis by enhancing bank

fundamentals.

A key challenge facing policymakers and economists is to understand the relationship

between the probability of a financial crisis and bank fundamentals. The empirical liter-

ature has found that credit growth is a significant precursor of banking crises and severe

downturns (Schularick and Taylor, 2012; Aikman et al., 2019). It has also found that most

banking crises feature bank runs (Reinhart and Rogoff, 2009; Gorton, 2012) including the

GFC (Bernanke, 2018). The theoretical literature has developed various dynamic models

of financial crises and, in light of the empirical observations, Gertler and Kiyotaki (2015)

and Gertler et al. (2020b) have made substantial progress by developing dynamic bank run

models. In these models, however, a bank run is sunspot driven and thus bank-run-led

crisis probability is indeterminate, leaving some questions still open. Specifically, how do

bank fundamentals such as bank leverage affect the probability of a crisis? What could

be the potential mechanism underlying the empirical evidence that credit growth predicts

financial crises?

This paper tackles these questions by developing a dynamic general equilibrium model

that features bank runs in a global game framework. The contribution of the paper is

three-fold. First, the model that we have developed explains a close link between crisis

probability and bank fundamentals in an infinite horizon economy. Incorporating a global

game allows the model to determine bank-run-led crisis probability endogenously. The

analytical solution leads to crisis probability as a function of bank leverage – key funda-

mentals of the banking sector. The model thereby articulates the idea underlying Basel III

reforms: enhancing bank fundamentals, and bank leverage in particular, can reduce crisis

probability. Second, the model provides a unified framework for bridging two empirical

facts: procyclical leverage and credit growth as a precursor of financial crises. The model
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generates procyclical leverage – a crucial feature of banking that exacerbated the GFC as

pointed out by Adrian and Shin (2010). Combined with endogenous crisis probability as a

function of leverage, the model replicates the seminal empirical finding by Schularick and

Taylor (2012) that credit growth tends to precede financial crises. Third, the paper sheds

light on the role of countercyclical macroprudential policy in reducing crisis probability and

improving social welfare.

The basic framework of the model is a standard real business cycle (RBC) model,

modified to incorporate banks that channel funds from households to firms. Each household

consists of a large number of family members, each of whom is either a banker or a depositor.

Bankers and depositors manage banks and deposits, respectively. Into this model, a bank

run global game is incorporated. Depositors receive private information about bank asset

returns and make a binary choice whether to run on banks (withdraw deposits early)

or stay. This problem is formulated as a global game among depositors, as studied by

Rochet and Vives (2004), with the game working as an equilibrium selection device. In this

environment, the probability of bank default is endogenously determined as a function of

bank fundamentals such as leverage.

Banks take this feedback effect of leverage on the default probability into account and

choose leverage to maximize the expected profits. And so the banks balance risk and

return: the higher probability of default generated by increased leverage balanced with the

higher return generated by leveraging lending. Thus, the risk of bank runs disciplines bank

behavior to some extent and helps determine the leverage without any binding constraints.

The endogenous leverage in turn affects the probability of bank runs and resulting bank

default, and thus the leverage drives the resilience of the banking system.

Leverage may be excessive and the crisis probability may be too high in a laissez-faire

economy. In the model, the crisis probability is reflected in the deposit interest rate, but

it is not priced on margin. The model assumes that neither bank leverage nor risk is

observable to creditors as in Acharya (2009) and Mendicino et al. (2020). Bank leverage is

not contractible and thereby banks maximize the expected profits given the deposit interest

rate in the competitive market. Banks ignore the effect of their choice of risk – leverage –

on the interest rate. This leads to bank risk shifting similar in spirit to that described by

Jensen and Meckling (1976) and possibly to excessive leverage.

After the leverage is chosen today, should, at the beginning of the next period, a negative

shock to the bank asset return be greater than the resilience level, a bank run occurs

and bank capital is wiped out. The banking sector receives capital injection from the
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government and restarts its operation. Should, on the other hand, the negative shock be

small so that a bank run does not occur, banks distribute some profits as dividends, retain

the remaining profits, and operate banking in the next period. This process, along with

household and firm decisions as in the standard RBC model, is repeated every period.

The model is calibrated to the United States economy and solved globally. The cali-

brated model generates procyclical leverage during normal and boom periods, consistent

with the empirical evidence reported by Adrian and Shin (2010). Specifically, a change in

bank assets is mainly driven by a change in bank debt or leverage. What drives the pro-

cyclical leverage is the assumption of no equity issuance and low contribution of retained

earnings to bank capital, which makes bank capital sticky. A parameter that governs the

contribution of retained earnings plays a critical role in generating procyclical leverage.

Just as bank run probability increases as leverage increases, so procyclical leverage

implies that the probability of banking crises increases as credit expands. Indeed, the model

simulation shows that banking crises tend to occur during booms with high levels of leverage

and bank credit. In such credit booms, reflecting macro-financial linkages embedded in the

model, output, investment, and consumption are also booming. But, at the same time,

the banking system becomes vulnerable to negative shocks. If the banking system is hit

by a negative shock that exceeds the resilience level of the banking system, a bank-run-led

crisis ensues. The banking system collapses and becomes dysfunctional as bank capital

plummets. Because rebuilding bank capital takes time, the real economy goes through a

severe recession and the recovery is slow.

The dynamic nature of the model allows it to be tested against the seminal empirical

finding by Schularick and Taylor (2012): credit growth tends to precede banking crises. The

model is simulated and the simulated data are taken to banking crisis regressions, which

are exactly the same specifications as in Schularick and Taylor (2012). The regression

result shows that credit growth in the few years run-up to a crisis is a significant predictor

of that crisis, consistent with their empirical finding. In addition, the regression result

entails economic significance as well as statistical significance. The result implies that a one

standard deviation increase in credit growth in the past three years raises the probability of

a crisis occuring in the next year by 1.8 percentage points (pp). Since the crisis probability

in the stochastic steady state is 5 percent, the increase of 1.8pp is substantial, albeit

lower than the 2.8pp reported in Schularick and Taylor (2012). Procyclical leverage and

endogenous crisis probability are underlying drivers of these results. However, if leverage

were countercyclical instead, the results would break down: the significance of credit growth
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as a precursor of crises would disappear.

The tendency for vulnerability in the banking system to rise during credit booms may

warrant introducing macroprudential policy. The model simulation shows that imposing

countercyclical leverage restrictions, which suppress leverage during normal and boom pe-

riods but allow for high leverage during crises and downturns, can lower crisis probability

substantially. Although this would decrease output and consumption during normal times,

the countercyclicality of such policy is critical for managing crises. But, if the restriction

imposed is flat rather than countercyclical, output and investment drop even more during

crises when bank capital is scarce i.e., when leverage is needed to expand credit to the real

economy. Thus, releasing leverage by loosening the restrictions during crises supports the

real economy and makes the crises less severe.

To focus on endogenous crisis probability in a dynamic framework, the model abstracts

away some important features of banking. Specifically, the model assumes a single type

of bank for simplicity. Thus, banks in the model correspond to any financial institutions,

including shadow banks, that are subject to bank runs. The model also abstracts away

deposit insurance. But the model’s main results hold as long as deposit insurance is imper-

fect, that is deposits are not 100 percent protected as is indeed the case in practice. Ikeda

(2018), for example, uses a version of the two-period model with bank runs, and finds that

imperfect deposit insurance makes excessive leverage even more excessive due to other risk

shifting similar to Kareken and Wallace (1978).

Related literature This paper contributes to the literature on bank runs in a macroe-

conomic framework. The literature has been recently advanced by Gertler and Kiyotaki

(2015), who characterize runs as self-fulfilling rollover crises, following the sovereign debt

crisis models of Calvo (1988) and Cole and Kehoe (2000).1 Gertler et al. (2020b) extend

the Gertler and Kiyotaki model by embedding it into a New Keynesian framework with

investment. Using the extended model, Gertler et al. (2020a) study the nature of crises

and the role of macroprudential policy. Many extensions have emerged, including Gertler

et al. (2016) and Poeschl (2020) who incorporate shadow banking, Aoki et al. (2019) who

focus on the low interest rate environment, Paul (2020) who incorporates long-term loans,

Faria-e-Castro (2020) who studies the role of countercyclical capital buffers, and Mikkelsen

1Other types of bank runs in a dynamic model include Ennis and Keister (2003) and Martin et al.
(2014), both of whom build on Diamond and Dybvig (1983), and Angeloni and Faia (2013), who extend
Diamond and Rajan (2000).
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and Poeschl (2020) who focus on macroeconomic uncertainty.

This paper critically differs from these papers in that bank run probability is not in-

determinate but endogenously determined by introducing a global game, as in Rochet and

Vives (2004). The global game, introduced as an equilibrium selection device, provides a

link between agent actions and economic fundamentals. The game has been adopted to

study binary decision problems such as currency attacks (Morris and Shin, 1998) and bank

runs (Rochet and Vives, 2004; Goldstein and Pauzner, 2005; Vives, 2014). Our contribution

to this literature is to incorporate a static global game bank run problem into a dynamic

general equilibrium model.

Broadly, this paper is positioned in the literature on macroeconomic models with finan-

cial crises that occur nonlinearly. In addition to the bank run papers in a macroeconomic

framework, the literature explores occasionally binding collateral constraints (Mendoza,

2010; Brunnermeier and Sannikov, 2014; Akinci and Queralto, 2017; He and Krishnamurthy,

2019), focusing on the role of collateral in borrowing; and adverse selection and market shut-

down (Kurlat, 2013; Bigio, 2015; Boissay et al., 2016), focusing on financial markets. Our

paper is complementary to these strands of literature as it focuses on financial institutions

vulnerable to runs.

Finally, this paper is related to the literature on time-varying tools of macroprudential

policy in a dynamic general equilibrium model, including, in addition to those already

mentioned, Bianchi (2011), Karmakar (2016), Bianchi and Mendoza (2018), Elenev et al.

(2018), and Davydiuk (2019).

2 The Model

The model is based on a standard RBC model, extended to incorporate banking and bank

runs in a global game framework. Time is discrete and its horizon is infinite. There

is a single type of good, which can be used as either consumption or investment. The

economy consists of households, firms, banks, and a government. Banks channel funds from

households to firms, subject to bank run risk. The mechanism of bank runs is based on

the global game of Rochet and Vives (2004), modified to endogenize lending and borrowing

interest rates, and bank behavior, especially a choice of leverage. Section 2.1 presents the

standard part of the model. Sections 2.2, 2.3, and 2.4 present the novel parts of the model,

namely, run decisions, bank runs in a global game, and bank behavior, respectively. Section

2.5 defines an equilibrium.
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2.1 Standard Part of the Model

Household There is a representative household, which consists of a continuum of family

members with measure unity. Each family member, indexed by j ∈ [0, 1], is either a

depositor or a banker. Depositors manage deposits and make run decisions, while bankers

manage banks and lend to firms. As family members, both depositors and bankers work at

firms, earn wage income, and bring that income back to the household. The population of

depositors and bankers is fixed at 0 < ζ < 1 and 1−ζ, respectively. Depositors and bankers

switch their occupations with an exogenous probability in a way that each population stays

constant over time.

Each family member has GHH preferences (Greenwood et al., 1988) over consumption

cj,t and hours worked hj,t in period t = 0, 1, 2, ..., given by

E0

∞∑
t=0

βt log

cj,t − ψ h1+ 1
ν

j,t

1 + 1
ν

 , (1)

where 0 < β < 1 is a preference discount factor, ν > 0 is the Frisch labor supply elasticity,

ψ > 0 is a coefficient on the disutility of labor, and E0 is an expectation operator conditional

on information in period t = 0. GHH preferences are employed to help incorporate a global

game bank run problem into the dynamic model as will be discussed in Section 2.3.

The representative household has a leader who collects all resources at hand, allocates

resources as consumption to its family members, and decides the amount of saving. The

only means of saving or investment is assumed to be bank deposits dt. In addition, the

leader decides how much labor each family member should supply.2 Accordingly, the house-

hold leader chooses {cj,t}1j=0, {hj,t}1j=0, and dt to maximize the expected sum of household

member utility (1) over j ∈ [0, 1],

E0

∞∑
t=0

βt
∫ 1

0

log

cj,t − ψ h1+ 1
ν

j,t

1 + 1
ν

 dj, (2)

2The result would be equivalent to another setting where each family member chooses labor supply. In
this case, each member chooses cj,t and hj,t to maximize the periodic GHH utility subject to the budget
constraint cj,t = wthj,t + Θj,t, where Θj,t is a lump-sum transfer from the household leader to achieve the
consumption allocation explained below.

7



subject to the flow budget constraint, given by

ct + dt ≤ Rtdt−1 + wtht + Θt, (3)

where ct ≡
∫ 1

0
cj,tdj is the household’s total consumption, Rt is the deposit interest rate,

wt is the wage, ht ≡
∫ 1

0
hj,tdj is the household’s total hours worked, and Θt is the sum of

lump-sum taxes imposed by the government and the net lump-sum transfer from banks,

which includes the value of the assets liquidated and sold by banks to households during

bank runs as will be explained in Section 2.3. The deposit interest rate is state-contingent,

given by

Rt =

R̄t−1 if no bank default

vtR̄t−1 if bank default

In the case of no bank default, the bank pays the non-contingent interest rate R̄t−1 to

depositors. In the case of bank default, the bank is able to pay only a fraction 0 ≤ vt < 1

of the promised interest rate.

Consumption can be heterogeneous across family members of the household as will be

explained in Section 2.2, but we focus on a special case in which such heterogeneity vanishes

asymptotically as will be shown in Section 2.5. Then, the household leader’s choice of the

aggregate variables {ct, ht, dt} is obtained by maximizing utility (1), with index j omitted,

subject to the budget constraint (3). The first-order conditions of the problem yield the

consumption Euler equation and the labor supply curve, given respectively by

1 = Etβ

 ct − ψ h
1+ 1

ν
t

1+ 1
ν

ct+1 − ψ
h
1+ 1

ν
t+1

1+ 1
ν

 vt+1R̄t, (4)

wt = ψh
1
ν
t . (5)

Since GHH preferences abstract from income effects, the labor supply curve (5) does not

depend on consumption, and thereby hj,t = ht for all j ∈ [0, 1]. The allocation of individual

consumption {cj,t}1j=0 will be discussed in the following subsections.
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Firm There is a representative firm, which produces output yt by combining physical

capital kt and labor ht using a Cobb-Douglas production technology, given by

yt = Atk
α
t h

1−α
t , 0 < α < 1, (6)

where At is the total factor productivity (TFP) and at ≡ log(At) follows an AR(1) process

at = ρaat−1 + εa,t, 0 ≤ ρa < 1, (7)

with εa,t ∼ N(0, σ2
a). The productivity shock εa,t is an only aggregate shock in the economy.

The firm does not own physical capital, so that it has to borrow funds from banks to rent

physical capital. Perfect competition leads to factor prices for physical capital and labor,

rkt and wt, given respectively by

rkt = αAt

(
kt
ht

)α−1
, (8)

wt = (1− α)At

(
kt
ht

)α
. (9)

Because no friction is assumed between the firm and the banking sector, the marginal

return rkt becomes equal to the bank asset return – what banks receive in return for lending

to the firm.

Market clearing Let it denote investment – the amount of goods used as new physical

capital. For simplicity, the model assumes full capital depreciation. Then, the newly

installed physical capital in period t is given by

kt+1 = it. (10)

With full capital depreciation, the gross return on investment is reduced to rkt , making

the return more volatile than would otherwise be the case. This feature is useful for

incorporating bank runs as will be discussed in Section 2.3. Finally, the good market

clearing condition is

yt = ct + it. (11)
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2.2 Run Decisions

Timing of events The role of depositors is to make a binary decision – run or stay. At

the end of period t− 1, the household leader makes deposits into a bank and delegates the

management of deposits to the depositors. Each depositor oversees an identical amount of

deposits dt−1/ζ, where ζ is the population of depositors. Deposits can be withdrawn early

at the beginning of each period.

As described in Figure 1, events unfold as follows. At the very beginning of period t,

an aggregate shock εa,t is realized. But, at this point, no one knows the realized value. At

the same time, before εa,t becomes common knowledge, each depositor j receives a private

signal, sj,t, about the log of the bank asset return, r̂kt ≡ log(rkt ), given by

sj,t = r̂kt + εj,t, (12)

where εj,t is a noise that follows the normal distribution: εj,t ∼ N(0, σ2
ε ). Using the private

information, each depositor decides whether to run or stay. After run decisions are made,

the aggregate shock εa,t and thereby the realized bank asset return rkt become common

knowledge. But the run decisions cannot be overturned. Depending on the size of a run –

the amount of deposits withdrawn early, the bank may default.

In the rest of period t, events unfold differently depending on whether the bank defaults

or doesn’t default. In the case of bank survival, the bank pays the promised interest rate

R̄t−1 per unit of deposits withdrawn early. Production takes place, where both depositors

and bankers supply labor. The bank receives the asset return rkt per unit of lending. The

bank then pays the promised interest rate R̄t−1 per unit of deposits withheld for a whole

period. After that, job switches between depositors and bankers occur, and the bank capital

in period t is determined. Finally, decisions on consumption, saving, and bank lending are

made.

In the case of bank default, the bank liquidates assets and distributes resources at

hand to depositors. Specifically, the amount paid back to an individual depositor differs

depending on the withdrawal decision made: those who withdrew early receive more, and

those who stayed receive less. For example, the following repayment rule generates such an

outcome. The bank liquidates assets as much as it can to pay the promised interest rate

R̄t−1 to depositors who withdrew early; whatever remains at the bank after the payment

is distributed equally among the remaining depositors. After that, events unfold as in
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Figure 1: Timing of events in each period

the case of bank survival: production takes place, job switches occur, and decisions on

consumption, saving, and bank lending are made.

Costly withdrawals We assume that it is costly for depositors to withdraw deposits

early. The costs reflect transaction costs in switching between banks (Klemperer, 1987)

or changing portfolios (Constantinides, 1986; Duffie and Sun, 1990). The model captures

these costs by assuming that depositors incur utility cost κ if they withdraw deposits early.

Specifically, when depositor j runs on a bank, the periodic utility is given by

ln

cj,t − ψ h1+ 1
ν

j,t

1 + 1
ν

− κ, (13)

for given {cj,t, hj,t}.

Imperfect insurance The utility function (2) implies that the household leader would

seek to distribute consumption equally among the household members. We assume that

nothing prevents such perfect insurance when the bank survives, i.e. in a normal state of

the economy. Hence, in this case, cj,t = ct holds for all j ∈ [0, 1]. However, we also assume

that there is a limit to perfect insurance when the bank defaults, i.e. during a crisis. Let

cs,t, cw,t, and cb,t denote consumption for depositors who stayed, those who withdrew, and

bankers, respectively. It is assumed that, in the case of bank default, bankers and depositors

who withdrew early are perfectly insured, cb,t = cw,t, but depositors who stayed are not.
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The consumption of these depositors, cs,t, is given by

cs,t − ψ
h
1+ 1

ν
t

1 + 1
ν

= θ

(
cw,t − ψ

h
1+ 1

ν
t

1 + 1
ν

)
, (14)

where 0 < θ < 1 governs the degree of imperfect insurance. Depositors who stayed are

paid less by the defaulted bank than those who withdrew early, as explained above. This

income difference is not perfectly insured, giving rise to lower consumption in those who

stayed as in equation (14).

Imperfect insurance in the form of (14) aims to capture the fact that depositors who did

not withdraw their deposits lose a part of their deposits when the bank defaults. Jacewitz

and Pogach (2018) show that depositors recovered only 55% of their uninsured deposits

on average from defaulting banks in 2007–2014 in the United States. Egan et al. (2017)

develop a structural empirical model of the US banking sector and argue that uninsured

deposits are frequently impaired in the case of bank default and these deposits are therefore

potentially prone to runs.

Run decision rules Given this environment, at the beginning of each period, each de-

positor j decides whether to run or stay by using a private signal about the bank asset

return. Let Fj,t denote a distribution function about the log of bank asset return r̂kt , per-

ceived by depositor j with private information sj,t. As derived in the next subsection, there

is a unique threshold, r̂k∗t , below which the bank defaults. Then, the expected periodic

utility if depositor j withdraws is given by

uj,t(run) ≡
∫ r̂k∗t

−∞

[
ln

(
cw,t − ψ

h
1+1/ν
t

1 + 1/ν

)
− κ

]
dFj,t +

∫ ∞
r̂k∗t

[
ln

(
ct − ψ

h
1+1/ν
t

1 + 1/ν

)
− κ

]
dFj,t,

where cw,t, ct and ht depend on the realization of the bank asset return. The expected

periodic utility when depositor j stays is given by

uj,t(stay) ≡
∫ r̂k∗t

−∞

[
ln θ + ln

(
cw,t − ψ

h
1+1/ν
t

1 + 1/ν

)]
dFj,t +

∫ ∞
r̂k∗t

[
ln

(
ct − ψ

h
1+1/ν
t

1 + 1/ν

)]
dFj,t.

The periodic utilities from period t + 1 onward are independent of a run choice in period

t. Hence, depositor j decides to run if and only if uj,t(run) > uj,t(stay), giving rise to the
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simple run decision rule:

run⇐⇒ Pj,t >
−κ
ln θ
≡ γ, (15)

where Pj,t ≡ Fj,t(r̂
k∗
t ) is the probability of bank default, perceived by depositor j. We

assume that the costs of early withdrawal, captured by κ, are small enough to satisfy

0 < γ < 1.

2.3 Bank Runs

Banks intermediate funds from the household, which has funds but lacks an investment

opportunity, to the firm, which has an investment (production) opportunity but needs

funds for investment. Without loss of generality, a representative bank is considered. The

bank is managed by bankers. In this subsection, we describe how bank runs cause bank

default. By doing so, we derive bank-run led default (crisis) probability as a function of

bank fundamentals.

Bank balance sheet and asset return In period t after family members switch occu-

pations, the bank equity (or bank capital) nt is determined. Given the equity, the bank

offers a deposit contract with the promised interest rate R̄t, and takes in deposits dt from

the household. The bank combines the equity and deposits nt + dt and lends to the firm,

which uses the resources as physical capital. Thus, the bank balance sheet is written as

kt+1 = nt + dt = Ltnt, (16)

where Lt = (nt + dt)/nt is the bank leverage. The left-hand side of (16), kt+1, is the bank

asset and the right-hand side, nt + dt, is the bank liability. The log return of bank lending

r̂kt+1 follows a normal distribution, thanks to GHH preferences of the household (1) and the

aggregate shock process (7), as shown in the following lemma.

Lemma 1 (Bank asset return) The log of bank asset return follows the normal distri-

bution, r̂kt+1 ∼ N(µt,k, σ
2
k), where

µt,k =
(1− α)ν

αν + 1
log

(
α

(
1− α
ψ

))
+

1 + ν

αν + 1
ρaat −

1− α
αν + 1

log(kt+1),

σk =
1− α
αν + 1

σa.
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Proof. Appendix A.1.

The normality of the log bank asset return implies the normality of the private signal

sj,t received by each depositor j from equation (12). This feature will be useful for deriving

the probability of bank default perceived by depositor j, Pj,t, which is critical for bank

runs, as indicated by the run decision rule (15).

Costly liquidation and bank default probability In the beginning of period t + 1,

some depositors may withdraw funds from the bank. In response, the bank has to liquidate

its assets by terminating some lending to the firm. But such an early liquidation is costly.

The assets are liquidated by selling to the household at a discounted value of only a fraction

1/(1 + λ) of the bank asset return rkt+1, where λ ≥ 0 governs the degree of the discount.

This costly liquidation captures the idea of fire sales and the illiquidity of bank assets.

Let xt+1 ∈ [0, 1] denote the size of a bank run – a fraction of deposits withdrawn. Then,

the bank defaults if and only if it cannot pay the promised interest rate R̄t to the depositors:

rkt+1(nt + dt)− (1 + λ)xt+1R̄tdt < (1− xt+1)R̄tdt. (17)

The left-hand side of the inequality (17) is what the bank has after liquidating some assets

early and the right-hand side is the liability to the remaining depositors who stayed. The

default condition (17) can be rewritten in terms of the bank asset return as

rkt+1 < R̄t

(
1− 1

Lt

)
(1 + λxt+1) . (18)

Given the interest rate R̄t, the leverage Lt, and the run size xt+1, the bank defaults when

its realized return rkt+1 is low enough to satisfy condition (18). Even in the case of no run

with xt+1 = 0, the bank can still fail if rkt+1 < R̄t(1− 1/Lt) ≡ rkt+1. This case corresponds

to fundamental default or insolvency. Bank failure in the case of rkt+1 > rkt+1 corresponds

to illiquidity default.

The bank default condition (18) in terms of the bank asset return, which follows the

log normal distribution from Lemma 1, suggests that the probability of default perceived

by depositor j can be derived as

Pj,t+1 = Pr

(
r̂kt+1 < log

[
R̄t

(
1− 1

Lt

)
(1 + λxt+1)

] ∣∣∣∣sj,t+1

)
, (19)
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where Pr(z|s) is the probability of z conditional on information s, r̂kt+1 ∼ N(µk,t, σ
2
k) from

Lemma 1, and sj,t+1 = r̂kt+1 + εj,t+1 with εi,t+1 ∼ N(0, σ2
ε ) from equation (12).

Threshold strategy In this environment with the depositors’ run decision rule (15), as

shown by Rochet and Vives (2004), there is a unique equilibrium in which depositor j runs

if and only if

sj,t+1 < s∗t+1 (20)

for some common threshold s∗t+1 among depositors, if the standard deviation of the signal,

σe, is small relative to the standard deviation of the log bank asset return, σk. Given such

a threshold strategy, by using the signal equation (12), the run strategy (20) can be written

as εj,t+1 < s∗t+1 − r̂kt+1. Since the signal is normally distributed, the run size xt+1 is given

by

xt+1 = x(r̂kt+1, s
∗
t+1) = Φ

(
s∗t+1 − r̂kt+1

σε

)
, (21)

where Φ(·) is the standard normal distribution function. Then, the probability of default

perceived by depositor j, (19), can be written as

Pj,t+1 = Pr
(
r̂kt+1 < r̂k∗t+1|si,t+1

)
, (22)

where the threshold of the log bank asset return r̂k∗t+1, below which the bank fails with the

log return r̂kt+1, is a solution to

r̂k∗t+1 = log

[
R̄t

(
1− 1

Lt

)(
1 + λΦ

(
s∗t+1 − r̂k∗t+1

σε

))]
. (23)

To solve for a pair of thresholds, s∗t+1 and r̂k∗t+1, consider a marginal depositor j∗ whose

signal coincides with the threshold: sj∗,t+1 = s∗t+1. Such a depositor has to be indiffer-

ent between withdrawing and staying. Then, from the depositor’s decision rule (15), the

perceived bank default probability has to be just equal to the threshold probability:

Pr(s∗t+1) = Pr(r̂kt+1 < r̂k∗t+1|s∗t+1) = γ. (24)

Equations (23) and (24) can be jointly solved for the thresholds s∗t+1 and r̂k∗t+1 under the

uniqueness assumption about the threshold strategy. The detail of the assumption can be

found in Appendix A.2.
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Crisis probability Since the log bank asset return r̂kt+1 follows the normal distribution

as shown in Lemma 1, and the bank defaults – a banking crisis erupts – when the return

falls below r̂k∗t+1, the probability of a crisis can be derived as

Pt = Φ

(
r̂k∗t+1 − µt,k

σk

)
. (25)

As implied by equation (23), the threshold r̂k∗t+1 is affected especially by leverage Lt, and

so is the crisis probability through the threshold. The following lemma clarifies the impact

of leverage on the thresholds including s∗t+1.

Lemma 2 (Thresholds and leverage) Let s∗t+1 = s∗(Lt) and r̂k∗t+1 = r̂k∗(Lt) denote a

solution to equations (23) and (24) as a function of leverage Lt. Then, the thresholds,

s∗(Lt) and r̂k∗(Lt), are both increasing in leverage.

Proof. Appendix A.2.

The corollary of Lemma 2 is that the crisis probability Pt is also increasing in lever-

age. Another corollary is that the run size, given by equation (21), is also increasing in

leverage. These results highlight endogenous crisis probability: it is neither exogenous

nor indeterminate but determined as a function of bank fundamentals, bank leverage in

particular.

2.4 Bank Behavior

So far bank leverage and capital have been taken as given. This subsection describes how

they are determined by considering bank behavior.

Bank problem The objective of bankers is to maximize the bank’s expected profits in

each period.3 In period t, the bank chooses leverage Lt to maximize the expected profits

taking into account the effects of its chosen leverage on the run size and accompanying

costs of early liquidation:

max
{Lt}

∫ ∞
r̂k∗(Lt)

{
er̂
k
t+1Lt − R̄t

[
1 + λx

(
r̂kt+1, s

∗(Lt)
)]

(Lt − 1)
}
ntdFt(r̂

k
t+1),

3The assumption that banks, or borrowers in general, maximize their expected profits is also adopted
by Bernanke et al. (1999), Christiano et al. (2014), and Mendicino et al. (2020).
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subject to the technical constraint Lt ≤ Lmax, where x(·) denotes the run size, given by

equation (21), and Ft denotes a normal distribution function with mean µt,k and standard

deviation σk, given by Lemma 1. The first term in the integral is the gross return on bank

assets. The second term captures the interest rate cost of deposits and the costs associated

with early liquidation. In equilibrium, the technical constraint is non-binding as Lmax is set

high enough, although it does help exclude an ‘uninteresting’ solution, as will be explained

in the next subsection.

The equilibrium level of leverage is characterized by the first-order condition, given by∫ ∞
r̂k∗t+1

er̂
k
t+1dFt(r̂

k
t+1) = R̄t(1− Pt) + λR̄t

∫ ∞
r̂k∗t+1

[
xt+1 +

∂xt+1

∂s∗t+1

∂s∗t+1

∂Lt
(Lt − 1)

]
dFt(r̂

k
t+1), (26)

where Pt is the probability of bank default, given by equation (25). The optimality condition

(26) equates the expected bank asset return – the left-hand-side of (26) – with the expected

deposit interest rate payment plus the expected marginal cost of early liquidation with

respect to leverage – the right-hand-side of (26). Given a unique solution to (26), the

solution also satisfies the second-order condition, as summarized in the following lemma.

Lemma 3 (Optimality) Assume that the first-order condition (26) has a unique interior

solution, Lt < Lmax. Then, the solution also satisfies the second-order condition if the mean

bank asset return is greater than the deposit interest rate:

eµt,k+
σ2k
2 > R̄t. (27)

Proof. Appendix A.2.

Assumption (27) implies that there is a positive spread between the mean bank asset re-

turn and the deposit interest rate. Under this assumption, the marginal profit with respect

to leverage is positive at no borrowing of Lt = 1. The bank can increase the expected prof-

its by increasing leverage until the leverage satisfies the first-order condition (26). Beyond

that point, bank leverage becomes so high that the cost of early liquidation outweighs the

benefits of borrowing. In this problem, bank leverage is determined endogenously without

any binding constraint. The effects of leverage on the run size and the associated costly

liquidation, summarized in Lemma 2, refrain banks from choosing leverage that is too high.
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Bank capital The bank is assumed to distribute profits to the household following a

certain rule. Specifically, it remits a fraction 1− χ0 of net profits, if any, to the household.

The net profits are given by

πbt = rktLt−1nt−1 − R̄t−1(1 + λxt)(Lt−1 − 1)nt−1 − nt−1, (28)

where the run size xt is given by equation (21). If the net profits are negative, the bank

does not pay any dividend. Parameter χ0, which governs this rule of thumb, plays a critical

role in generating procyclical leverage as will be discussed in Section 3.1.

After the remittance, a fraction 1 − χ1 of bankers become depositors and take home

their portion of bank capital to the household. The same number of depositors become

bankers and receive an exogenous equity n0 > 0 from the household in aggregate. Then,

the bank capital evolves according to

nt =

χ1

[
χ0π

b
t + (1− χ0)π

b
t1{πbt<0} + nt−1

]
+ n0 if no default, r̂kt ≥ r̂k∗t

n̄ if default, r̂kt < r̂k∗t

(29)

where 1{πbt<0} is an indicator function taking unity if πbt < 0 and zero otherwise. In the

case of bank runs and resulting bank failure, the bank capital is wiped out and the banking

sector needs new capital to resume its operations. It is assumed that, in the case of bank

failure, new bank capital n̄ > 0 is injected into the bank from the government, which

finances the capital injection by lump-sum taxes on the household.

2.5 Equilibrium

Limit equilibrium To make the depositors’ run decision and the bank problem analyt-

ically tractable, as in the standard global game literature, we focus on a limiting case in

which the accuracy of the private information becomes infinite, 1/σε → ∞, or σε → 0.

Then, the thresholds s∗t+1 and r̂k∗t+1, characterized by equations (23) and (24), have an an-

alytical solution, and the optimality condition of the bank problem (26) is simplified as

summarized in the following proposition.

Proposition 1 (Limit equilibrium) Consider the limiting case of σε → 0. Then, a
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solution to equations (23) and (24) is given by

s∗t+1 = r̂k∗t+1 = log

[
R̄t

(
1− 1

Lt

)
(1 + λ(1− γ))

]
. (30)

In addition, the optimality condition of the bank problem (26) is reduced to

∫ ∞
r̂k∗t+1

er̂
k
t+1dFt(r̂

k
t+1) = R̄t(1− Pt)− λ(1− γ)

R̄t

Lt

1√
2πσk

e
− 1

2

(
r̂k∗t+1−µt,k

σk

)2

. (31)

Proof. Appendix A.2

In the limiting case, all depositors run on the bank if the realized log bank asset return

is low enough to satisfy r̂kt+1 < r̂k∗t+1, and no depositors run on the bank otherwise. Because

of a full-scale run in which all depositors withdraw funds, the bank defaults, giving rise to

a bank-run-led financial crisis in the case of r̂kt+1 < r̂k∗t+1. This binary feature – run (default)

or no run – helps the model to keep a representative framework, as explained shortly, and

facilitates numerical analyses in Section 3.

The threshold solution (30) and the simplified optimality condition (31) shine light on

the importance of the non-binding technical constraint, Lt ≤ Lmax, in the bank problem.

The threshold solution (30) implies that r̂k∗t+1 < ∞ even in the case of Lt → ∞. Then,

the optimality condition (31) suggests that the bank can make more profits by increasing

leverage indefinitely Lt → ∞. The technical constraint, with an unrealistically high up-

per bound, e.g. Lmax = 100, can exclude such an uninteresting solution. The technical

constraint can therefore be interpreted as the upper limit on leverage, imposed by bank

business models.

Representative agent framework In general, the model has heterogeneity in deposi-

tors’ consumption, cw,t > cs,t, as implied by equation (14), due to imperfect insurance in

the case of bank default, but such heterogeneity vanishes in the limiting case of σε → 0. To

see this, the total consumption ct can be written, by using cw,t = cb,t and equation (14), as

ct ≡
∫ 1

0

cj,tdj =ζ(1− xt)cs,t + ζxtcw,t + (1− ζ)cb,t,

= [1− ζ(1− xt)(1− θt)] cw,t + ζ(1− xt)(1− θt)
h
1+1/ν
t

1 + 1/ν
, (32)
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where xt is the run size, given by equation (21), and θt = θ < 1 in the case of bank

default and θt = 1 in the case of bank survival. In the case of bank default, as the noise

of the private information vanishes, i.e. as σε → 0, equation (32) implies cw,t → ct since

(1 − xt)(1 − θt) → 0. In the limit equilibrium, cj,t = ct holds for all j, as all depositors

make a correct decision by running on the bank only when the bank defaults later. Hence,

combined with the assumption of perfect insurance in the case of no default, heterogeneity

in consumption vanishes. This is another benefit of considering the limiting case from the

perspective of model simplicity.

In the limiting case of σε → 0, the household problem features a representative agent

framework, which was assumed in deriving the household optimality conditions (4) and (5).

The objective function for the household leader, (2), can be written, by using equations

(13) and (14), as

E0

∞∑
t=0

βt
∫ 1

0

log

cj,t − ψ h1+ 1
ν

j,t

1 + 1
ν

 dj

=E0

∞∑
t=0

βt

{
ln

(
ct − ψ

h
1+1/ν
t

1 + 1/ν

)
+ ζ [(1− xt) ln θt − xtκ]

}
, (33)

where cw,t → ct was imposed in the second equality. Since the terms in the square brack-

ets are outside the control of the household leader, the leader maximizes the expected

discounted sum of the log utility subject to the budget constraint (3) as in a standard

representative agent model.

Competitive equilibrium The model is closed by deriving the recovery rate vt+1 that

appears in the Euler equation (4). In response to a full-scale run, the bank liquidates all

assets and defaults. Then, the recovery rate is given by

vt+1 =

1 if no default, r̂kt+1 ≥ r̂k∗t+1

rkt+1R̄
−1
t

(
1− 1

Lt

)−1
− λ if default, r̂kt+1 < r̂k∗t+1.

(34)

Under the assumption of the limiting case of σε → 0, a competitive equilibrium for this

economy is characterized by the following system of equations: the household optimality

conditions (4) and (5); the production technology (6) and the shock process (7); the firm

optimality conditions (8) and (9); the market clearing conditions (10) and (11); the bank
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balance sheet (16) and the bank optimality conditions (30) and (31); and the law of motion

for bank capital (29) and the recovery rate equation (34), with twelve endogenous variables

{ct, ht, R̄t, vt, r
k
t , wt, kt+1, yt, it, Lt, r̂

k∗
t , nt} and one exogenous shock at.

3 Numerical Analyses

This section presents the main results of the paper by analyzing the model numerically. In

Section 3.1 we set the parameter values of the model and then solve the model globally

using a parameterized expectation algorithm, with the details of the solution method in

Appendix B. Section 3.2 studies two key features of the model, namely, procyclical leverage

and endogenous bank run probability. Section 3.3 analyzes the dynamics of the model

during a time of crisis. Section 3.4 examines the model by running crisis regressions à la

Schularick and Taylor (2012) using the data simulated from the model. Finally, Section 3.5

studies the role of macroprudential policy in addressing bank-run-led crises.

3.1 Parameterization

Each period in the model represents a quarter. The model parameters are divided into two

sets: parameters that are standard in the RBC literature and banking sector parameters

that are specific to the model. The model is calibrated to broadly represent the US economy.

Standard parameters The preference discount factor β is set to β = 1.03−1/4, implying

the annual risk-free interest rate of 3 percent in steady state where there is no TFP shock.

The coefficient for labor disutility ψ is set so that the labor supply in steady state is

normalized to unity. The labor supply elasticity ν is set to 2, which is consistent with

estimates in the literature reviewed in Keane and Rogerson (2012). The capital share in

production α, TFP shock persistence ρa, and its standard deviation σa are also set in line

with the RBC literature, such as King and Rebelo (1999).

Banking sector parameters The liquidation cost parameter λ is set to 0.1765, so that

the liquidated value of one unit of bank asset is 15 percent lower than it would be were

the asset held to maturity. This discount rate is identical to that used by Gertler and

Kiyotaki (2015). The amount of capital injection after a bank run, n̄, is set to 30 percent of
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Table 1: Parameter values

Parameter description Value Target/Source

Standard parameters

β Preference discount factor 0.9926 Steady state risk-free rate of 3%

ψ Labor disutility coefficient 0.3830 Steady state labor supply of unity

ν Labor supply elasticity 2 Keane and Rogerson (2012)

α Capital share in production 0.33 Standard RBC literature

ρa TFP shock persistence 0.95 Standard RBC literature

σa TFP shock standard deviation 0.01 Standard RBC literature

Banking sector parameters

λ Liquidation cost 0.1765 Liquidation discount by 15%

n Capital injection during a crisis 0.0055 30% of steady state bank capital

γ Threshold default probability 0.5349 Crisis probability of annual 5%

n0 New banker endowment 0.00085 Leverage of 10

χ1 Law of motion for bank capital 0.95 Gertler and Kiyotaki (2015)

χ0 Degree of retained earning 0.025 Leverage procyclicality

bank capital in the stochastic steady state.4 This amount is consistent with Gertler et al.

(2020b), who use a similar value in light of the evidence that bank equity measured by the

XLF index dropped by 70 percent from 2007Q3 to 2008Q4. The threshold bank default

probability γ and new banker endowment n0 are jointly set for the model to hit bank-run-

led crisis probability of 5 percent annually and leverage of 10, both in the stochastic steady

state. The target value of the crisis probability is consistent with historical experience

that in any given country, banking crises occur on average once every 20 to 25 years,

i.e. the average annual crisis probability of 4 to 5 percent (Basel Committee on Banking

Supervision, 2010a). The leverage of 10 is chosen following Gertler and Kiyotaki (2015).5

Also, again following Gertler and Kiyotaki (2015), the survival probability of bankers χ1 in

the law of motion for bank capital is set to 0.95. Finally, parameter χ0, which governs the

fraction of net profits that the bank keeps at hand and adds to its own net worth, is set to

χ0 = 0.025 in order to capture the procyclical bank leverage observed in the data, which

4The stochastic steady state is the state of the economy that is reached when agent behavior takes
stochastic TFP shocks into account, but where the shocks never materialize and stay at zero.

5Laux and Rauter (2017) report that the average leverage over 934 US banks is around 10 during the
period from 1990Q3 to 2013Q1.
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Figure 2: Procyclical leverage: US investment banks before the GFC

Note: Each data point is the weighted average of the following five major investment banks in the US
before the GFC: Bear Stearns, Goldman Sachs, Lehman Brothers, Merrill Lynch, and Morgan Stanley.
The sample period is 1994Q2-2007Q3, where the starting period is chosen so that data for at least three of
the five investment banks are available, and the end period corresponds to one period ahead of the Great
Recession in the US. The recession periods of 2001Q1-2001Q4 are excluded to focus on ‘normal’ periods.
β̂ indicates a linear regression coefficient in each panel. The data source is Bloomberg.

will be further explored in Section 3.2. Parameter values are summarized in Table 1.

Procyclical leverage in the data Leverage has been procyclical for investment banks

and commercial banks in the US, as pointed out by Adrian and Shin (2010, 2011) and

later confirmed by Laux and Rauter (2017) in a larger sample. They argue that US banks

managed balance sheet size by actively adjusting debt and leverage but keeping bank equity

almost unchanged. Such bank behavior led to procyclical leverage. Figure 2 reproduces

their results for major US investment banks during the periods before the GFC. The left

panel shows that a change in assets on the bank balance sheets is driven mainly by a change

in liabilities. It also shows little change in bank equity, indicating sticky bank equity (Adrian

and Shin, 2011). The right panel shows that the asset growth is positively correlated with

the leverage growth. These results indicate that the leverage was procyclical in the run-up

to the GFC. Procyclical leverage especially during booms brings an important implication

for our model as high leverage makes the banking system vulnerable to negative shocks

that may trigger a bank run.

3.2 Key Features of the Model

Procyclical leverage We set parameter χ0 in the law of motion for bank capital (29)

in a way that the model replicates the facts about procyclical leverage, shown in Figure
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2, during ‘normal’ periods, including boom periods. Here, a ‘normal’ period is defined as

that where no bank run has occurred in the past 12 periods and where bank net profits are

non-negative.6 We focus on these periods in the model for two reasons. First, procyclical

leverage during booms is critical in explaining credit booms, increases in bank vulnerability,

and resulting increases in crisis probability, as highlighted by Schularick and Taylor (2012).

Second, in this type of model, including Gertler and Kiyotaki (2015), during bank-run-led

crises or fundamental hardships where bank net profits become negative, the bank capital

drops sharply so that the bank leverage inevitably increases and becomes countercyclical.

We simulate the model and plot the same variables as in Figure 2. The two left panels

in Figure 3 present the results in the model with our parameter choice of χ0 = 0.025. The

upper left panel shows that a change in the bank assets is mostly driven by a change in the

bank borrowing (red plots) while the bank equity is almost flat (blue plots), consistent with

the empirical evidence presented in Figure 2 and Adrian and Shin (2010, 2011). The lower

left panel plots the same fact from a different perspective by plotting a percentage change

in leverage against a percentage change in bank assets as in Figure 2 and Laux and Rauter

(2017). The regression coefficient is 0.72, which implies a high degree of procyclicality in

leverage, consistent with the empirical estimate of 0.71 reported in Figure 2 for US invest-

ment banks and the estimate of 0.69 reported by Laux and Rauter (2017) for US banks.

These results indicate that our baseline model with χ0 = 0.025 captures the dynamics of

bank balance sheets observed in the data well.

The value of χ0 = 0.025 implies a 97.5 percent dividend payout ratio in ‘normal’ periods.

In light of empirical evidence that the dividend payout ratio was 40 percent or above during

the periods from the late 1990s through 2006 for US banks (Floyd et al., 2015), is χ0 = 0.025

too low? What drives this discrepancy lies in the asset growth trend observed in the data

(Figure 2) but missed in the model (Figure 3). In the data, the average growth rate in

assets is about 12 percent annually and the average return on equity (ROE) is just below

20 percent. This implies that, with a 40 percent dividend payout ratio, the bank capital

would increase by 12 (= 20 × (1 − 0.4)) percent, keeping the leverage unchanged, as the

assets also grow at the same rate. In our model, this situation corresponds to almost no

retained capital – the value of χ0 close to zero. Our model abstracts away such an asset

growth trend, but captures banks’ stable propensity to pay dividends (Floyd et al., 2015),

making bank capital sticky relative to bank assets.

The right two panels in Figure 3 point to a critical role of χ0 in generating procyclical

6Consistent with this notion, the sample data used in Figure 2 exclude periods of recession.
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Figure 3: Balance sheet dynamics

χ0 = 0.025 χ0 = 1

Note: The left panels correspond to the model with our parameter choice of χ0 = 0.025. The right panels
correspond to the model with χ0 = 1. In the top panels, β̂ is the regression coefficient of changes in deposit
against changes in bank assets.

leverage by plotting the simulated data with χ0 = 1 instead. The case of χ0 = 1 is

commonly used in the recent dynamic bank-run models such as Gertler and Kiyotaki (2015)

and financial friction models such as Bernanke et al. (1999) and Christiano et al. (2014).

In this case, bank capital would become much more volatile as shown in the upper panel.

In addition, the lower panel shows that the regression coefficient of percentage changes in

bank assets on percentage changes in leverage would turn to be negative, which makes a

stark contrast to the empirical evidence of the corresponding coefficient of 0.71 mentioned

earlier. With χ0 = 1, high profits during booms increase bank capital and in turn lower

leverage, making leverage countercyclical.7 The analyses here show that a low value of χ0

7The case of χ0 = 1 is similar to what Adrian and Shin (2010) call “passive” financial intermediaries,
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Figure 4: Bank run probability as a function of bank fundamentals

Leverage Deposit interest rate

Note: The horizontal axis is leverage in the left panel and the deposit interest rate in the right panel. The
vertical axis is the run probability in both panels.

is important in quantitatively capturing the observed dynamics of banks’ balance sheets

and procyclical leverage.

Endogenous crisis probability The salient feature of our model is endogenous banking

crisis probability. In the model, all endogenous variables can be written as a function of

state variables. As detailed in Appendix B, the state variables consist of physical capital

kt, bank capital nt−1, and the deposit interest rate R̄t−1 as well as the productivity shock.

The leverage is given by kt/nt−1. Hence, the crisis probability can be written as a function

of these variables.

Figure 4 plots the crisis probability as a function of bank fundamentals, namely leverage

and the deposit interest rate. The left panel shows that the crisis probability is monotoni-

cally increasing in leverage in a convex way, where a change in leverage is driven by a change

in bank assets kt with other state variables fixed at their stochastic steady state values.

The right panel shows that the crisis probability is increasing in the deposit interest rate.

As analytically shown in equation (30), leverage and the interest rate both increase the

run threshold, which in turn raises the crisis probability. This analytical feature also holds

for the numerically solved policy function for the crisis probability. As leverage and the

interest rate increase, the banks become more vulnerable to negative shocks, and thereby

which do not adjust leverage actively, and letting their leverage decline during a boom through an increase
in bank capital. However, it appears that this does not apply to US banks, where leverage has been
procyclical as argued by Adrian and Shin (2010).

26



the crisis probability increases.

3.3 Crisis Dynamics

We next turn to the crisis dynamics in the model. To this end we simulate the calibrated

model for 100,000 periods with stochastic shocks and drop the first 1,000 periods. In this

simulated sample, we identify a banking crisis, which is defined as a bank run such that 3

years (12 periods) or more have passed since the previous bank run, if any. This definition

is similar in spirit to Laeven and Valencia (2013), whose empirical study defines the end of

a banking crisis as the point at which two consecutive years of output and credit growth has

occurred. In addition, the empirical studies such as those of Schularick and Taylor (2012)

and Aikman et al. (2019) suggest a build-up of vulnerabilities in the financial system in the

three to five years leading up to a financial crisis. Our definition of a banking crisis aims

to capture such crises in practice.

We pick up all banking crises thus defined from the 99,000-period simulation. We now

analyze the dynamics of the real economy and the banking sector around banking crises,

and consider the effects that bank runs exert beyond exogenous negative shocks.

Real economy The simulation shows that a typical banking crisis occurs when the real

economy is booming, and causes a severe recession afterwards. Figure 5 plots the average

dynamics of the real economy (thick lines) around banking crises that occur in period 0 in

the horizontal axis with the 10th and 90th percentiles of the dynamics (dashed lines). All

the variables are expressed in percentage deviations from the sample mean. The average

dynamics show a typical boom-bust cycle: before a crisis, output, investment, consumption,

and hours worked are all booming, well above the sample mean. When a banking crisis

erupts, all the variables drop sharply and a persistent recession ensues. The lower middle

panel shows the average path of the TFP that triggers this boom-bust cycle. In the run-up

to a typical banking crisis the TFP increases and it becomes more than 1% higher than its

sample average just before the crisis. The negative TFP shock at period 0, which draws

down the TFP level by 2%, triggers a bank run, resulting in a severe recession.

Banking sector The simulation reveals a build-up of banking sector vulnerabilities in

the run up to the crises. Figure 6 plots the average dynamics of the banking sector around

the crises in the simulation. During the two years preceding a typical crisis, the bank
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Figure 5: Crisis dynamics of the real economy

Output Investment Hours worked

Consumption TFP shock

Note: The solid lines are the average path of each variable around banking crises. The dashed lines are
the 10th and 90th percentiles of the dynamics. All variables are expressed in percentage deviations from
the sample mean.

liabilities – borrowing from the household sector – expand and attain a much higher level

than its sample mean (upper left panel). The bank capital also expands (upper middle

panel), reflecting strong bank profits in the boom periods. The increases in bank liabilities

and capital feed into an increase in the supply of credit to the real economy and boost

investment as shown in Figure 5. During this credit boom, the credit spread – the difference

between the expected return on bank assets and the deposit interest rate (Etr
k
t+1 − R̄t) –

is suppressed relative to its stochastic mean (upper right panel) as the marginal return

on physical capital remains low due to an increase in physical capital. Furthermore, the

leverage is higher than its stochastic steady state level (dot dashed line) by more than 2

(lower left panel). As a result, the average run probability climbs to about 13 percent

annually, which is much higher than its stochastic steady state level of 5 percent annually

(lower right panel). Together with the result on the real economy shown in Figure 5, Figure
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Figure 6: Crisis dynamics of the banking sector

Bank liabilities Bank capital Credit spread (bps)

Leverage Run probability

Note: The solid lines are the average path of each variable around banking crises. The dashed lines are the
10th and 90th percentiles of the dynamics. Bank liabilities and bank capital are expressed in percentage
deviations from the stochastic mean. Credit spread is expressed in a difference from the stochastic mean
in basis points (bps). Leverage and run probability are expressed in actual values.

6 indicates that a boom in the real economy preceding a crisis is fueled by credit expansion

and high bank leverage. This is consistent with the empirical literature, which documents

that credit expansion is a robust precursor of banking crises. We will discuss this point in

more detail in the next subsection.

A banking crisis makes the banking system even more vulnerable to negative shocks in

the aftermath of the crisis. Once a crisis erupts, bank leverage shoots up as bank capital

plummets. The bank has to restart its operations with the small amount of bank capital n̄

injected by the government. Because of such a low level of bank capital, the bank leverages

its lending substantially, but the amount of lending stays subdued and only recovers slowly.

The crisis probability shoots up in accordance with the increase in leverage and stays high

for a while from the start of the crisis. The persistently high leverage and run probability

reflect the effects of many possible bank runs repeatedly happening after the initial run in
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Figure 7: The effects of bank runs on the real economy

Output Investment Hours worked

Note: All lines are expressed in percentage deviations from the stochastic steady state values.

period 0 in Figure 6. The path of bank capital shows this point more clearly. The flat

line of the bottom 10th percentile in bank capital indicates that bank runs can happen

repeatedly, keeping bank capital at n̄ potentially for three years or even longer. These

repeated bank runs slow down the rebuilding of bank capital, which in turn slows down

the economic recovery following a banking crisis.

Effects of bank runs In the model, a bank run is triggered by a negative shock. How

large, beyond the effect of a negative shock, is the effects of a bank run on the severity

of a following recession? To address this question, we compare the crisis dynamics in

the following three cases. The first case corresponds to run dynamics where the negative

TFP shock, which is just large enough to trigger a bank run, hits the economy at the

stochastic steady state. The second case corresponds to no run where a negative shock

that is marginally smaller than the initial shock hits the economy at the stochastic steady

state. In this case, a run is not triggered although the size of the shock is essentially the

same. The third case corresponds to the dynamics of the RBC model, which abstracts

away the banking sector from the model presented in Section 2, in response to the same

negative shock.

Comparison of the three cases reveals that a bank run and financial friction have sub-

stantial negative effects beyond the negative shock itself. Comparing the RBC case and

the no-run case shines light on the role of the banking sector as an amplifier. Figure 7

shows that the banking sector in the model amplifies the effects of a negative shock on
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the economy and prolongs the effects, but to a limited extent. By contrast, a bank run

substantially amplifies the effects of the shock. In the run case, output and hours decrease

twice as much and investment drops more than double the amount that occurs in the RBC

case. This comparison shows that a bank run plays a crucial role in shaping the dynamics

of our model.

3.4 Credit Growth and Crisis Probability

The empirical literature on banking crises has found that credit expansion is a significant

precursor of banking crises. In their influential paper, Schularick and Taylor (2012), using

extensive data covering 14 countries over more than 100 years, show that a credit boom is

a significant and robust indicator of a high risk of banking crises.8

To test the empirical performance of our model, we run regressions similar to those in

Schularick and Taylor (2012) using artificial data generated from the model simulation.

Specifically, we use observations in the 99,000-period stochastic simulation of our model

and run two types of regressions. The first specification is a simple OLS regression, given

by

pt = β0 + β1
dt−1 − dt−5

dt−5
+ β2

dt−5 − dt−9
dt−9

+ β3
dt−9 − dt−13

dt−13
+ εt,

where εt is an error term that is i.i.d. with mean zero. The dependent variable pt takes 1

if a banking crisis happens within a year (four quarters), and 0 otherwise, given by

pt =

 1 if a banking crisis occurs in the period from t to t+ 3

0 if no crisis

where a banking crisis is identified following the definition given in Section 3.3. The three

explanatory variables are the annual growth rate of deposits in the past three years. To

be consistent with the empirical analyses in Schularick and Taylor (2012), who use annual

data, we transform our quarterly model observations into annual data by using time-t

observations with t being a multiple of four.

8Gourinchas and Obstfeld (2012) also show empirically that a credit boom precedes financial crises both
in advanced and emerging economies.
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Table 2: Schularick and Taylor (2012) banking crisis regressions

OLS Logit ∂pt/∂xt

1 year ago 0.120∗∗∗(0.044) 1.255∗∗∗(0.457) 0.119

2 years ago 0.160∗∗∗(0.044) 1.672∗∗∗(0.460) 0.159

3 years ago 0.187∗∗∗(0.043) 1.952∗∗∗(0.450) 0.185

Note: ∗∗∗ denotes a 1% significance. Parentheses show standard deviations. ∂pt/∂xt denotes the marginal
effects of the logit specification.

The second specification is a logit regression, given by

pt =
1

1 + exp
(
−
(
β0 + β1

dt−1−dt−5

dt−5
+ β2

dt−5−dt−9

dt−9
+ β3

dt−9−dt−13

dt−13

)) + εt,

where the variables are defined similarly as in the OLS specification. The logit specification

guarantees that the right-hand side takes at value between 0 and 1. Using these two

regressions, we test whether a credit expansion in the past three years can predict a banking

crisis in the next year.

Table 2 presents our results. In both specifications, all the explanatory variables are

significant at 1% with a positive sign, implying that a credit expansion indicates a signifi-

cantly high probability of a banking crisis in the next three years. The last column in the

table evaluates the marginal effects of the credit growth in the past three years in the logit

regression by using the unconditional probability of banking crises. These numbers suggest

that the marginal effects are very similar in both specifications. In addition, the sum of the

coefficients is about 0.47, which is very close to the 0.40 in Schularick and Taylor (2012).

We further follow Schularick and Taylor (2012) and study the impacts of credit growth

on the probability of a banking crisis. In our model simulation, the standard deviation of

the average annual credit growth over three years is 4 percent.9 This implies that a one

standard deviation increase in credit growth in the past three years raises the probability

of a crisis in the next year by 1.8 percentage points (pp). Since the crisis probability in

the stochastic steady state is 5 percent, the increase of 1.8pp is substantial, albeit lower

than the 2.8pp reported in Schularick and Taylor (2012). Overall, our model successfully

replicates the stylized facts about credit expansion and crisis probability documented by

9To derive this number, we first compute the gross deposit growth rate over three years and take its
cubic root for each observation, which is the average annual deposit growth rate over three years. We
compute the standard deviation of this variable through the entire sample.
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Schularick and Taylor (2012).

3.5 Macroprudential Policy

Thus far we have shown that the model generates two key features of banking and crises:

(i) procyclical leverage, consistent with Adrian and Shin (2010), and (ii) banking crises

that tend to follow credit booms, consistent with Schularick and Taylor (2012). Using the

model, we now consider the role of macroprudential policy in addressing banking crises. We

first discuss the sources of inefficiency in our model. We then introduce leverage restrictions

into the model and present some quantitative results and welfare implications.

Sources of inefficiency The main source of inefficiency in our model is an externality

associated with the choice of leverage by banks. For the purpose of exposition, consider a

continuum of banks instead of a representative bank. When banks choose leverage, they

take as given the deposit interest rate determined in the competitive market. However, if all

banks were to reduce leverage, the bank run probability would be lower and the expected

recovery rate of deposit would be higher. In this case, households would be willing to

accept a lower deposit interest rate, and the interest rate would actually be lower. A lower

deposit interest rate would in turn decrease liquidation costs, making bank runs less likely.

It would also increase bank profits, and banks would be able to accumulate a larger amount

of bank capital. As a result, the banking sector would be more resilient against negative

shocks. But, because banks do not internalize the fact that lowering leverage would lower

the deposit interest rate and make the banking sector more resilient, they choose instead

socially excessive leverage.10 This over-leverage by banks may justify policy interventions

in our model.

Leverage restrictions We consider two types of leverage restrictions in the following

analysis. The first type limits bank leverage by a fixed percentage relative to the lever-

age that would be chosen in the economy without any restrictions. Specifically, let L∗t

denote leverage that would be chosen by banks if there were no policy. Then, the leverage

10Ikeda (2018) shows that the source of inefficiency in the version of a two-period model of bank runs is
two-fold: bank risk shifting and a pecuniary externality that works through the interest rate. The bank risk
shifting arises because the bank takes the deposit interest rate as given in choosing leverage as in Acharya
(2009) and Mendicino et al. (2020). The pecuniary externality, which is similar in spirit to that studied
by Christiano and Ikeda (2016), arises because the interest rate constitutes the cost of early liquidation.
These two types of inefficiency can be put simply as an externality associated with bank leverage choice.
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Figure 8: Leverage restrictions by a fixed percentage

Leverage Bank capital Output

Note: Leverage is expressed in actual values. Bank capital and output are expressed in percentage devia-
tions from the stochastic mean.

restriction is written as Lt ≤ (1 − τ)L∗t , where τ governs the tightness of the restric-

tion. By construction, the restriction is always binding and the leverage becomes lower by

(100× τ) % at any time.

From a social welfare perspective, the tightness τ should balance the benefits of reducing

crisis probability against the cost of restraining credit and thus economic activity. Indeed,

the social welfare measured by the household’s expected life-time utility is non-monotonic

with respect to the tightness τ . The social welfare is increasing in τ when τ is small, reaches

its maximum at τ = 0.025, and is decreasing in τ when τ > 0.025.

The restriction with τ = 0.025 can make the banking sector more resilient and prevent

a run from happening. To illustrate this, we simulate and compare two model economies,

with and without the restriction, by using the average dynamics of banking crises presented

in Section 3.3. Specifically, in both economies, we set the initial state of the simulation to

the state variables at t− 8 from the average dynamics. Then we feed the average path of

TFP shocks from t− 8 to t+ 20 to these economies and compare the dynamics. The result

is plotted in Figure 8. Before the negative TFP shock hits the economy at period 0, the

leverage restriction lowers leverage compared to the economy without restrictions. Lower

leverage implies lower credit to the real economy, thus it reduces investment and output

as shown in the right panel. This is the costs of leverage restrictions. When the negative

TFP shock hits in period 0, a bank run erupts in the economy without restrictions. By

contrast, a run does not occur in the economy with the restriction. The leverage restriction
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Table 3: Stochastic simulation means of selected variables

Stochastic steady state Stochastic simulation mean

Variable No policy τ = 2.5% No policy τ = 2.5%

Output 0.573 0.569 (−0.75%) 0.560 0.570 (+1.80%)

Consumption 0.389 0.387 (−0.51%) 0.384 0.389 (+1.24%)

Leverage 10.041 9.545 (−4.94%) 15.343 10.566 (−31.14%)

Run probability 1.3% 0.1% (−1.16%) 7.3% 0.4% (−6.91%)

Crisis probability – – 1.7% 0.2% (−1.46%)

successfully prevents a run from happening. Bank capital remains positive and a decrease

in output is substantially limited compared to the case without the restriction, illustrating

the benefits of leverage restrictions.

Table 3 compares the key moments of the economy with and without the restriction.

The first two columns of Table 3 present the values at the stochastic steady state. Numbers

in parentheses are percentage gaps from the values under no policy. The leverage restriction

lowers leverage, thereby lowering a run probability substantially from 1.3% without policy

to 0.1% with policy. The cost of this lower leverage is that leverage restriction reduces

output and consumption as well.

The latter two columns of Table 3 present the means of the entire sample of the 99,000-

period stochastic simulation including bank runs. With no policy, the sample means of

output and consumption are lower than those in the stochastic steady state in the first

column. These lower values reflect the effects of bank runs, which are accompanied by

persistently low output and consumption. For the same reason, leverage and run probability

are substantially higher than those in the stochastic steady state. By contrast, under the

leverage restriction, the sample means in the fourth column are essentially the same as

those in the stochastic steady state in the second column. This is because the leverage

restriction reduces the number of bank runs substantially in the stochastic simulation.

Comparing the sample means with and without the restriction in the third and fourth

columns, both consumption and output become higher under the restriction by more than

1 percent, in contrast to the case of the stochastic steady state. The sample means of

leverage and run probability are substantially lower under the restriction, implying that

the economy becomes more stable and resilient under the restriction. The bottom row is the

unconditional probability of banking crises, which is computed as the number of banking

35



Figure 9: Fixed leverage restrictions

Leverage Investment Output

Note: Leverage is expressed in actual values. Investment and output are expressed in percentage deviations
from the stochastic mean.

crises divided by the total number of periods. The restriction reduces the probability of

banking crises substantially.

Our results suggest that there is a trade-off associated with macroprudential policy, in

line with the literature on this much discussed trade-off. Macroprudential policy reduces

leverage and thereby discourages economic activity in normal times. But it also reduces

the probability of a banking crisis and makes the economy and the financial system more

resilient. But, what our model adds to the literature is the explicit modeling of endogenous

crisis probability. In addition, our model shows that the welfare gained by reducing the

probability of a banking crisis quantitatively dominates the cost of discouraging economic

activity in normal times.11

Role of countercyclical restrictions The first type of leverage restrictions, namely

Lt ≤ (1 − τ)L∗t , is countercyclical in that it allows banks to have high leverage especially

when bank capital is damaged and the banking sector needs high leverage to supply credit

to the real economy. To illustrate the role of this countercylicality, we consider the second

type of leverage restrictions: a fixed upper limit on bank leverage. As an illustration, we

11We compute the expected welfare gain measured by a permanent consumption gap that equalizes
households’ expected utility with and without policy, which is standard in the literature. In the case of
asymptotically zero disutility of early withdrawals, κ→ 0, the expected welfare gain is 0.05% of permanent
consumption, which is substantially lower than the percentage gap in the sample mean of consumption in
Table 3. This is because higher labor disutility offsets the welfare gain by higher consumption. Because
the welfare gain is computed under the assumption of κ→ 0, it should be regarded as the lower bound.
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consider Lt ≤ L̄ = 15. We then conduct the same simulation as above, namely we start the

simulation from the initial state at t−8 of the average crisis dynamics and feed the average

TFP path from t− 8 to t+ 20 into the two economies, with and without the restriction.

The result is plotted in Figure 9. The fixed leverage restriction does not prevent a bank

run, because Lt ≤ 15 is a relatively loose restriction. But our focus lies in the effects of

this policy on the economy during and after a banking crisis. When a bank run occurs

in period 0, the fixed leverage restriction becomes binding and leverage is restrained at

Lt = 15. Given that bank capital is wiped out and only n̄ units are injected, low leverage

implies a sharp contraction in investment as shown in the middle panel. Output also drops

sharply because capital shrinks substantially. As a result, this fixed leverage restriction

exacerbates the crisis, thereby reducing welfare compared to the laissez-faire economy with

no restriction. This experiment indicates the importance of the countercyclicality of lever-

age restrictions, as is often emphasized in the literature. When a banking crisis actually

happens, macroprudential policy needs to be loosened so that the banking sector does not

deleverage substantially and can continue to supply credit to the real economy.

4 Conclusion

This paper has developed a dynamic general equilibrium model of bank runs. By incor-

porating the global game bank run model of Rochet and Vives (2004) into the otherwise

standard RBC model with a banking sector, the model features endogenous bank run

probability, which is derived as a function of bank fundamentals, bank leverage in partic-

ular. Thus, the model articulates a link between bank fundamentals and banking crisis

probability – the core idea of Basel III – in the infinite horizon economy.

The model generates procyclical leverage – a salient feature of the banking sector pointed

out by Adrian and Shin (2010). In addition, by combining the procyclical leverage with

the endogenous crisis probability, the model replicates the seminal empirical finding of

Schularick and Taylor (2012) that credit growth tends to precede banking crises. The

model simulation shows that countercyclical leverage restrictions, which allow banks to

have high leverage when they actually need it, can improve social welfare by balancing the

benefits of reducing the crisis probability against the costs of suppressed economic activity

in normal times.

We would like to conclude with some caveats and limitations of the paper. First, the

model generates procyclical leverage by introducing a parameter that makes bank capital
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sticky. While this paper already has made the model rich by introducing a global game,

enriching the background of procyclical leverage would be important. For example, Nuño

and Thomas (2017) explain leverage cycles by extending a value-at-risk bank model studied

by Adrian and Shin (2014). Second, while the model exclusively focuses on leverage as a

bank choice, banks in practice choose other important variables that could affect financial

stability. Specifically, bank liquidity is an essential safeguard against run risk. Ikeda

(2018) studies the interaction between leverage and liquidity choices and restrictions using

a two-period model with bank runs in a similar global game framework. Third, the model

abstracts away from monetary policy. The fact that the crisis probability depends on the

deposit interest rate in the model suggests that monetary policy could affect the crisis

probability. Incorporating monetary policy in the model is on our agenda for research

next.

Despite all these caveats, we hope that this paper will be useful for understanding and

promoting financial stability.
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Appendix

A Analytical Results

A.1 Proof of Lemma 1

Combining the labor supply and demand curves – equations (5) and (9) – yields

ht =

(
1− α
ψ

eatkαt

) ν
αν+1

.

Substituting this equation into the marginal return on capital (8) yields

rkt = αeatkα−1
t

(
1− α
ψ

eatkαt

) ν(1−α)
αν+1

= α

(
1− α
ψ

) ν(1−α)
αν+1

e
1+ν
αν+1atk

− 1−α
αν+1

t .

Then, the log of bank asset return in period t+ 1 can be written as

r̂kt+1 = log(rkt+1) =
(1− α)ν

αν + 1
log

(
α

(
1− α
ψ

))
+

1 + ν

αν + 1
at+1 −

1− α
αν + 1

log(kt+1).

Because the shock follows the stochastic process (7) and kt+1 is predetermined, the log bank asset return

follows the normal distribution with mean and standard deviation, given by

µt,k =
(1− α)ν

αν + 1
log

(
α

(
1− α
ψ

))
+

1 + ν

αν + 1
ρaat −

1− α
αν + 1

log(kt+1),

σk =
1− α
αν + 1

σa.

A.2 The bank run global game

Uniqueness condition for equations (23) and (24) Equation (24) can be written explicitly as

Φ

√ 1

σ2
k

+
1

σ2
ε

r̂k∗t+1 −
1
σ2
k
µt,k + 1

σ2
ε
s∗t+1√

1
σ2
k

+ 1
σ2
ε

 = γ. (A.1)

Let r̂k∗(s) denote a solution to equation (23) for r̂k∗t+1 as a function of s∗t+1 = s. This function has the

following properties: lims→−∞ r̂k∗(s) = log(rkt+1) and lims→∞ r̂k∗(s) = log[rkt+1(1 + λ)], where rkt+1 =

R̄t(1 − 1/Lt). The slope of r̂k∗(s) is derived by totally differentiating equation (23) with respect to r̂k∗t+1

and s∗t+1 = s as

dr̂k∗

ds
=

[
1 +

1

λ

rk∗t+1

rkt+1

σε
φ((s− r̂k∗t+1)/σε)

]−1

≤
(

1 +
σε
λ

√
2π
)−1

,

where φ(·) ≤ 1/
√

2π and rk∗t+1/r
k
t+1 = 1 + λΦ(·) ≥ 1 are used to derive the inequality.
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Let the left-hand-side of equation (A.1) be written as

P (s) = Φ

√ 1

σ2
k

+
1

σ2
ε

r̂k∗(s)−
1
σ2
k
µt,k + 1

σ2
ε
s√

1
σ2
k

+ 1
σ2
ε

 .

Function P (s) satisfies lims→−∞ P (s) = 1 and lims→∞ P (s) = 0. Hence, a sufficient condition for a unique

solution for P (s) = γ is that P (s) is decreasing in s. Function P (s) is decreasing in s if

P ′(s) ∝
(

1

σ2
k

+
1

σ2
ε

)
∂r̂k∗

∂s
− 1

σ2
ε

≤
(

1

σ2
k

+
1

σ2
ε

)(
1 +

σε
λ

√
2π
)−1

− 1

σ2
ε

< 0,

or

σε <
σ2
k

√
2π

λ
. (A.2)

This condition ensures a unique pair of the thresholds, r̂k∗ and s∗, and it is imposed on the model in the

main text.

Proof of Lemma 2 Totally differentiating equations (23) and (A.1) with respect to r̂kt+1, s∗t+1, and Lt

yields

rk∗t+1dr̂
k∗
t+1 =

R̄t
L2
t

(
1 + λΦ

(
s∗t+1 − r̂k∗t+1

σε

))
dL+ R̄t

(
1− 1

Lt

)
λφ

(
s∗t+1 − r̂k∗t+1

σε

)
ds∗t+1 − dr̂k∗t+1

σε
,

dr̂k∗t+1 =
σ2
k

σ2
ε + σ2

k

ds∗t+1. (A.3)

Arranging these equations leads to

∂s∗t+1

∂Lt
=

(
1 +

σ2
ε

σ2
k

)
R̄t
L2
t

(1 + λΦ(·))

rk∗t+1 − σε
σ2
k
R̄t

(
1− 1

Lt

)
λφ(·)

. (A.4)

The denominator is positive under the uniqueness assumption (A.2) and the numerator is also positive.

Hence, ∂s∗t+1/∂Lt > 0. From this result and equation (A.3), it follows that ∂r̂k∗t+1/∂Lt > 0.

Proof of Lemma 3 Let πt+1 denote the bank gross profits in period t + 1. Then the first-order

condition (26) can be written as ∂E(πt+1)/∂Lt = 0. Under the assumption that ∂E(πt+1)/∂Lt has a single

crossing at zero for Lt < Lmax, the solution satisfies the second-order condition, ∂2E(πt+1)/∂L2
t < 0 if

limLt→0 ∂E(πt+1)/∂Lt > 0. From equation (23), limLt→1 r̂
k∗
t+1 = −∞ and thereby limLt→1 s

∗
t+1 = −∞.

This implies limLt→1 x(r̂kt+1, s
∗
t+1) = 0 for r̂kt+1 > r̂k∗t+1. Therefore, equation (26) implies ∂E(πt+1)/∂Lt =

E(er̂
k
t+1)− R̄t in the limit of Lt → 1. Condition (27) is then equivalent to limLt→1 ∂E(πt+1)/∂Lt > 0.

Derivation of equation (30) in Proposition 1 Consider equations (23) and (A.1) in the limiting

case of σε → 0. Equation (A.1) implies

lim
σε→0

Φ

(
s∗t+1 − r̂k∗t+1

σε

)
= 1− γ. (A.5)
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This result and equation (A.1) imply

lim
σε→0

er̂
k∗
t+1 = R̄t

(
1− 1

Lt

)
[1 + λ(1− γ)] .

Equation (A.5) also implies limσε→0(s∗t+1 − r̂k∗t+1) = 0. This completes the derivation of equation (30).

Derivation of equation (31) in Proposition 1 Consider the first-order condition (26) in the limiting

case of σε → 0. Consider the second term of the RHS of the condition:

λR̄t

∫ ∞
r̂k∗t+1

[
xt+1 +

∂xt+1

∂s∗t+1

∂s∗t+1

∂Lt
(Lt − 1)

]
dFt(r̂

k
t+1).

Since xt+1 = Φ((s∗t+1 − r̂kt+1)/σε) and s∗t+1 → r̂k∗t+1 as σε → 0, it follows that xt+1 = 0 for r̂kt+1 > r̂k∗t+1.

Then, the term shown above in the limiting case is reduced to

λR̄t(Lt − 1) lim
σe→0

[
∂s∗t+1

∂Lt

∫ ∞
r̂k∗t+1

∂xt+1

∂s∗t+1

dFt(r̂
k
t+1)

]
.

From equation (A.4):

lim
σε→0

∂s∗t+1

∂Lt
=

R̄t
L2
t

(1 + λ(1− γ))

rk∗t+1

=
1

Lt(Lt − 1)
.

Hence, the term above is reduced to

λR̄t
Lt

lim
σε→0

∫ ∞
r̂k∗t+1

φ

(
s∗t+1 − r̂kt+1

σε

)
1

σε
dFt(r̂

k
t+1),

where φ is the standard normal pdf. Consider the integral term, which is explicitly written as:

∫ ∞
r̂k∗t+1

φ

(
s∗t+1 − r̂kt+1

σε

)
1

σε
dFt(r̂

k
t+1) =

∫ ∞
r̂k∗t+1

1√
2π
e
− 1

2

(
s∗t+1−r̂kt+1

σε

)2

1

σε

1

σk
√

2π
e
− 1

2

(
r̂kt+1−µt,k

σk

)2

dr̂kt+1.
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The terms in the power of e can be arranged as:

− 1

2

(
s∗t+1 − r̂kt+1

σε

)2

− 1

2

(
r̂kt+1 − µt,k

σk

)2

=− 1

2

[
(s∗t+1)2 − 2s∗t+1r̂
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t+1 + (r̂kt+1)2
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σ2ε
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σ2
k

1
σ2ε

+ 1

σ2
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εσ

2
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ε+σ2
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2

+
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(
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+
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1
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σ2
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σ2
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Then,
∫∞
r̂k∗t+1

φ(·)/σεdF (r̂kt+1) is written as:

∫ ∞
r̂k∗t+1

φ

(
s∗t+1 − r̂kt+1

σε

)
1

σε
dFt(r̂

k
t+1)

=

∫ ∞
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1

σεσk
√

2π
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[
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2

(
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)2
]
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1√
2π

exp

1

2


(
s∗t+1
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σ2
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)2
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σ2
ε
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σ2
k

−
(s∗t+1)2

σ2
ε

−
µ2
t,k
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k


 ,

=
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r̂k∗t+1

1

σ̃k
√

2π
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[
−1

2

(
r̂kt+1 − µ̃t,k

σ̃k

)2
]
dr̂kt+1 ×

1√
2π(σ2

ε + σ2
k)

exp

1

2


(
s∗t+1

σ2
ε

+
µt,k
σ2
k

)2

1
σ2
ε

+ 1
σ2
k

−
(s∗t+1)2

σ2
ε

−
µ2
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 ,

where

µ̃t,k =

s∗t+1

σ2
ε

+
µt,k
σ2
k

1
σ2
ε

+ 1
σ2
k

and σ̃k =
σεσk√
σ2
ε + σ2

k

.

Define z = (r̂kt+1 − µ̃t,k)/σ̃k. Note that limσε→0(r̂k∗t+1 − µ̃t,k)/σ̃k = Φ−1(γ). Then, it follows that

lim
σε→0

∫ ∞
r̂k∗t+1

1

σ̃k
√

2π
exp

[
−1

2

(
r̂kt+1 − µ̃t,k

σ̃k

)2
]
dr̂kt+1 =

∫ ∞
Φ−1(γ)

φ(z)dz = 1− γ,

lim
σε→0

1√
2π(σ2

e + σ2
k)

exp

1

2


(
s∗t+1

σ2
ε

+
µt,k
σ2
k

)2

1
σ2
ε

+ 1
σ2
k

−
(s∗t+1)2

σ2
ε

−
µ2
t,k

σ2
k


 = ft(s

∗
t+1) = ft(r̂

k∗
t+1),

Therefore, in the limiting case of σε → 0, the second term of the RHS of the condition (26) is reduced to

λ(1− γ)ft(r̂
k∗
t+1)R̄t/Lt.
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B Numerical Solution

B.1 Solution Algorithm

We solve the model globally using a parameterized expectation algorithm. Specifically, we approximate the

right-hand side of the Euler equation as a function of the state variables. The state variables in period t

consist of
{
kt, R̄t−1, nt−1, at

}
. After kt, R̄t−1, nt−1 are chosen in period t−1, a stochastic shock determines

the realized TFP at at the beginning of period t, which in turn determines whether a bank run happens

or not. We define the following variable that indicates whether a bank run happens or not:

ξt =
exp

(
r̂kt
)

exp
(
r̂k∗t
) .

By construction, ξt ≥ 1 implies that the realized bank return is above the threshold for runs, and a run

does not happen. ξt < 1 implies a run happens. We use this variable as a state variable instead of at for

approximation.

We create three approximation functions for the right-hand side of the Euler equation, depending on

the state of the economy: the first approximation function is for ‘normal times’ – all cases except the

second and third cases, the second one is when a run happens, and the third one is when a run does not

happen but a bank profit is negative. The reason for these three functions is that the policy function for the

right-hand side of the Euler equation has a kink and a jump across these three states of the economy. We

find that having three approximation functions substantially reduces computational errors and improves

accuracy of our numerical solution.

Accordingly, we approximate the right-hand side of the Euler equation in the following form:

βEt

 1

ct+1 − ψh
1+ 1

ν
t+1 /

(
1 + 1

ν

)vt+1R̄t

 ≈ exp
[
Pn
(
ln (kt) , ln

(
R̄t−1

)
, ln (nt−1) , ln (ξt) ; ηin

)]
,

where Pn is the n-th order polynomial function with coefficient vector ηin, and i = 1, 2, 3 indicates the three

states of the economy explained above. We solve the model using third-order polynomials according to the

following steps:

(1) Make an initial guess for the polynomial coefficients η1
3(0), η2

3(0), η3
3(0). Generate a series of shocks

{εa,t}Tt=0 that follows N(0, σ2
a) for T = 10, 000. Set the initial state at the stochastic steady state.

(2) Simulate the model.

(a) At each period, given the state variables kt, R̄t−1, nt−1, at, we compute the endogenous vari-

ables ht, yt, r̂
k
t , r̂

k∗
t , ξt, π

b
t using the equilibrium conditions. Depending on the values of ξt

and πbt , we use a different polynomial function for the right-hand side of the Euler equation,
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denoted by gt:

gt =


exp

[
P3

(
ln (kt) , ln

(
R̄t−1

)
, ln (nt−1) , ln (ξt) ; η1

3(0)
)]

if ξt ≥ 1 and πbt ≥ 0

exp
[
P3

(
ln (kt) , ln

(
R̄t−1

)
, ln (nt−1) , ln (ξt) ; η2

3(0)
)]

if ξt < 1

exp
[
P3

(
ln (kt) , ln

(
R̄t−1

)
, ln (nt−1) , ln (ξt) ; η3

3(0)
)]

if ξt ≥ 1 and πbt < 0

Using gt, we compute ct in the left-hand side of the Euler equation. We then compute all

the other endogenous variables, including the next period state variables kt+1, R̄t, nt. at+1 is

computed using at, εa,t+1, and the law of motion for at.

(b) Given the next period state variables, compute the right-hand side of the Euler equation

explicitly. We create 301 grid points from −0.06 to 0.06 for realizations of εa,t+1. For each

grid of εa,t+1, we compute the corresponding ct+1 and ht+1 in the same way as in (a). We

then integrate over all grids of εa,t+1 using trapezoidal integration to compute the right-hand

side of the Euler equation, denoted by g̃t.

(3) Obtain a new set of coefficients by regression. We regress log of the computed right-hand side of the

Euler equation ln (g̃t) on log of the state variables ln (kt) , ln
(
R̄t−1

)
, ln (nt−1) , ln (ξt) for observations

t = 500 ∼ 10, 000. In this step, we conduct three regressions separately depending on whether a run

happens or not and whether a bank profit is positive or not. We obtain a new set of the polynomial

coefficients η1
3(1), η2

3(1), η3
3(1).

(4) Check convergence. If all the coefficients η1
3(0), η2

3(0), η3
3(0) and η1

3(1), η2
3(1), η3

3(1) are close enough,

we stop. Otherwise, we update the coefficients in the following way:

ηi3(0) = λ× ηi3(0) + (1− λ)× ηi3(1), i = 1, 2, 3.

We find that λ = 0.3 works well. Go back to Step (2) and repeat the steps until the coefficients

converge.

B.2 Policy Functions and Accuracy

Figure 10 plots the policy functions for the selected variables obtained by the solution method explained

above. The state variables kt, R̄t−1, nt−1 are set at the stochastic steady state values, and the panels show

how each variable changes as the realized TFP on the horizontal axis (expressed in percentage deviation

from 1) changes. The policy function for the right-hand side of the Euler equation has a jump and a kink.

A jump at around −2 is the threshold between a bank run and no run. This is where the realized bank

return r̂kt and the threshold for a run r̂k∗t coincide, as shown in the upper-right panel. If the realized TFP is

lower than this value, indicated by the vertical dotted line, a bank run happens. When a run happens, the

bank capital drops to the injected amount n̄ and leverage jumps up, as shown in the bottom two panels.

A kink at around −1 is the threshold between a positive and negative bank profit. When a relatively

low TFP shock but not low enough to trigger a run hits the economy, the bank profit becomes negative.

The negative profit draws down the bank capital to some extent, which in turn increases leverage as shown
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Figure 10: Policy functions over TFP shocks

RHS of Euler equation Bank return and threshold

Bank capital Leverage

Note: These panels plot the policy functions over TFP shocks, expressed in percentage deviation
from 1 on the horizontal axis. The other state variables are set at the stochastic steady state
values.

in the bottom two panels. The three separate approximation functions explained above are intended to

capture these jump and kink accurately.

Figure 11 plots the histogram of the Euler equation errors over the 9,500-period stochastic simulation.

At each period in the simulation, the Euler equation error is computed as follows:

errort = log10

(
ct − cEEt

ct

)
,

where cEEt is derived by first computing the right-hand side of the Euler equation g̃t explicitly as in Step

(2)(b) of the numerical solution, and then computing consumption using the Euler equation as follows:

cEEt = (g̃t)
−1

+ ψ
h

1+ 1
ν

t

1 + 1
ν
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Figure 11: Euler equation errors

Note: The horizontal axis is log10 of the Euler equation errors. The vertical axis is expressed in
terms of a ratio to total observations.

Errors are expressed in log10 as is standard in the literature. Figure 11 shows that the average error is

−4.42 and the maximum error is −3.43, which is small enough compared to the literature. R2 for the three

regressions are all higher than 0.9999.
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