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Abstract 
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machine predictions. Second, however, the relative performance of human to 
machine predictions improves for firms with specific characteristics, such as less 
observable information, possibly due to the unstructured information used only in 
human predictions. Third, for firms with less information, reallocating prediction 
tasks from machine to analysts reduces type I error while simultaneously increasing 
type II error. Under certain conditions, human predictions can outperform machine 
predictions. 
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1. Introduction 

Prediction is an important task in both private business and public policy. Recent advances in prediction 

techniques, such as machine learning, have helped make the conduct of prediction tasks more reliable 

than those dependent upon human judgment and classical parametric models.1 The practical application 

of these new prediction techniques has been the focus of recent academic, policy, and business 

discussions (Varian 2014; Mullainathan and Spiess 2017; Athey 2019). The successful application of 

these techniques has already been reported in a number of fields, including labor markets (Chalfin et al. 

2016), public services (Kleinberg et al. 2018; Bazzi et al. 2019; Lin et al. 2020), medical services (Patel 

et al. 2019; Mei et al. 2020), and the financial industry (Agrawal et al. 2018). 

The growing employment of these powerful prediction techniques naturally raises the question 

of the ways in which machine predictions disagree with and outperform human predictions. This 

question is particularly relevant given the number of recent studies which argue that technological 

advances will lead either to the replacement of human labor with machines in certain types of jobs (e.g., 

Frey and Osborne 2017) or to the reallocation of human resources to other types of jobs (e.g., Autor et 

al. 2003; Acemoglu and Autor 2011; Acemoglu and Restrepo 2018). Understanding the ways in which 

machines outperform humans, we can identify those cases in which human predictions outperform 

machine predictions. While this has been examined in, for example, the field of medical studies (e.g., 

Raghu et al. 2019), it has not yet been investigated in the context of social science. 

The goal of this paper is to document, in the context of firm exits, the patterns of disagreement 

between human predictions and machine-based predictions and their relative prediction performance. 

First, we test the relative performance of predictions based on machine learning techniques and those 

based on human judgment for the two modes of firm exits, i.e., corporate default and voluntary closure. 

Second, we document the systematic patterns of disagreements between human and machine 

predictions for those events. The disagreement between them is measured with the relative prediction 

performance of human and machine. Thus, we can see not only whether human and machine disagree 

but also, more importantly, the ways in which they disagree. 

Suppose a firm actually does default ex-post. Ex-ante human and machine predictions may 

differ in the way that they arrive at a correct prediction. As reported by Kleinberg et al. (2018) in the 

context of judicial bail decisions, it is highly likely that machine predictions will on average outperform 

human predictions. Nonetheless, the relative performance of human predictions may be better in 

specific circumstances, such as default predictions for informationally opaque firms. We document the 

relative performance of human and machine predictions conditional on the characteristics of their 

prediction targets. Third, after confirming the characteristics systematically correlated with the relative 

performance of human predictions compared with machine predictions, we implement a set of 
 
1 See, for example, Harris (2015), Malekipirbazari and Aksakalli (2015), Zhao et al. (2015), and Ala'raj and Abbod (2016). 
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counterfactual exercises reallocating prediction instances for firms with specific characteristics from 

machine to human and see how overall prediction performance varies. 

To the best of our knowledge, this article is the first to study explicitly the systematic patterns 

of disagreement between human and machine predictions in the context of social science, and to use 

these systematic patterns to improve overall prediction performance. We take advantage of our access 

to a huge volume of firm-level high-dimension panel data collected by one of the largest Japanese credit 

reporting agencies, together with the prediction results of professional analysts working for the 

company and detailed individual attributes of those analysts. These comprehensive datasets provide us 

with an ideal research ground where we can construct a machine-based prediction model, compare its 

predictions with human predictions, and document how they disagree and perform. 

The empirical findings are summarized as follows. First, the average performance in predicting 

firm exits is better for machines than humans, in line with the results reported by existing studies in 

other fields (e.g., Kleinberg et al. 2018). 

Second, the relative performance of human predictions to those of machines however improves 

as, for example, the availability of information on firm characteristics declines. This could be the case 

when human predictions effectively employ unstructured information associated with prediction 

instances. This kind of unstructured information has been referred to as “soft information” (e.g., Liberti 

and Petersen 2019). Examples of soft information include workers’ skill levels, the CEO’s management 

ability, the prospects of future product development, and so on. It is difficult to record all of this highly 

qualitative information as structured (i.e., “hard”) information in, for example, firms’ financial 

statements or other documents. To verify this conjecture, we compare the human predictions recorded 

in our dataset not only with machine predictions but also with the part of the human predictions 

correlated with structured information. As the latter “structured” human predictions do not rely on 

unstructured information, the comparison between the original and the structured human predictions 

tells us to what extent unstructured information has been used in human predictions. Similar to the 

comparison between the original human predictions and machine predictions, we find that the 

performance of human predictions relative to that of “structured” human predictions improves as the 

availability of information on firm characteristics declines.2  

Third, given the empirical finding that the availability of observable information is a key driver 

in the disagreement between human and machine predictions and their relative performance, we 

implement a set of counterfactual exercises that reallocate prediction instances from machine to 

professional analysts, depending on how much information is available for each firm. As the 

 
2 We also separately regress the performance of human and machine predictions on various characteristics and confirm that 

the negative marginal impacts associated with low availability of information is more sizable for machine predictions than for 

human predictions. 
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“improvement” in relative performance of human predictions along with the change in specific firm 

characteristics does not necessarily mean the “level” of conditional performance of human predictions 

is higher than that of machine predictions, these counterfactual exercises are necessary to confirm 

whether there are any cases in which humans outperform machines. Using the number of available 

variables for each firm, which is orthogonalized to other firm characteristics such as firm size, past 

growth trend, and industry fixed-effects, we classify firms into five categories ranging from firms with 

smallest information, small information, average information, large information, and largest 

information. For most of the cases except for firms with smallest information, machine predictions 

outperform human predictions in terms of both type I and type II errors. Nonetheless, we also find that 

reallocating prediction tasks for firms with smallest information from machine to human leads to a 

sizable reduction in type I error. To illustrate, for firms with smallest information, the number of actually 

non-exit firms predicted as “exit” by machine but “non-exit” by human is larger than the number of 

actually non-exit firms predicted as “non-exit” by machine but “exit” by human. Thus, reallocating 

prediction tasks for those firms from machine to human reduces the number of false-positives, and the 

type I error becomes smaller. We should note, however, that the reallocation of the prediction tasks for 

these firms is also accompanied by a larger type II error; i.e., the number of actually exit firms predicted 

as “exit” by machine but “non-exit” by human is larger than the number of actually exit firms predicted 

as “non-exit” by machine but “exit” by human. Thus, reallocating prediction tasks from machine to 

human also reduces the number of true-positives, and type II errors increase. 

These results jointly suggest the usefulness of powerful machine-based prediction techniques 

for practical purposes and highlight a subtle feature of human prediction in the context of exit prediction. 

Overall, most of the prediction work for firm exits should be assigned to machines. Nonetheless, under 

specific circumstances, such as when prediction targets are opaque due to less available information or 

the user of the prediction results is more concerned about type I error than type II error, then there is 

still room for human predictions to outperform machine predictions.  

The rest of the paper proceeds as follows. Section 2 presents the theoretical underpinning of 

our empirical study, which follows Raghu et al. (2019). Section 3 explains our empirical methodology. 

Section 4 gives a brief account of the institutional background related to the prediction of firm exits in 

Japan and details of the data used for our study. Section 5 presents and discusses the empirical results. 

Section 6 concludes. 

 
2. Conceptual Framework 

In this section, we present the conceptual framework representing the disagreement between human and 

machine predictions and their relative performance. Suppose there is a prediction instance 𝑓𝑓  for a 

specific outcome. An example of this instance is a prediction task for a specific firm’s future default. 

We define 𝑭𝑭𝑓𝑓 as a set of attributes associated with this instance. 𝑭𝑭𝑓𝑓 consists of, for example, the size of 
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the firm. The instance 𝑓𝑓 has the actual outcome 𝑎𝑎(𝑓𝑓), which we refer to as a ground-truth. This ground-

truth will be revealed ex-post when we observe whether the firm defaults or not within specific periods 
of time. For the instance 𝑓𝑓, a prediction machine has its own prediction denoted by 𝑚𝑚(𝑓𝑓,𝑭𝑭𝑓𝑓). Similarly, 

a professional analyst 𝑖𝑖 with a set of individual attributes 𝑰𝑰𝑖𝑖 has its own prediction for the instance 𝑓𝑓. 
We name this analyst’s prediction ℎ(𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖). Using these items, first, we can define the prediction 

error 𝛩𝛩(𝑓𝑓,𝑭𝑭𝑓𝑓) of the machine prediction for an instance 𝑓𝑓 with attributes 𝑭𝑭𝑓𝑓 as follows: 

 

𝛩𝛩�𝑓𝑓,𝑭𝑭𝑓𝑓� = 𝐿𝐿�𝑎𝑎(𝑓𝑓),𝑚𝑚(𝑓𝑓,𝑭𝑭𝑓𝑓)�. 

 
Second, we can define the prediction error 𝛺𝛺(𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖)  of the human prediction for an 

instance 𝑓𝑓 with attributes 𝑭𝑭𝑓𝑓 by an analyst 𝑖𝑖 with attributes 𝑰𝑰𝑖𝑖 as follows: 

 

𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� = 𝐿𝐿�𝑎𝑎(𝑓𝑓),ℎ(𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖)�. 

 

Suppose we have a set of prediction instances 𝑈𝑈. What we ultimately want to solve is an 

allocation problem of 𝑈𝑈 to machine (i.e., 𝑆𝑆) or analysts (i.e., 𝑇𝑇). Such an optimization problem can be 

formulated as follows: 

 

min
𝑆𝑆,𝑇𝑇

∑ 𝛩𝛩�𝑓𝑓,𝑭𝑭𝑓𝑓�𝑓𝑓∈𝑆𝑆 + ∑ 𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖�𝑓𝑓∈𝑇𝑇   s.t.  𝑆𝑆 ∪ 𝑇𝑇 = 𝑈𝑈; 𝑆𝑆 ∩ 𝑇𝑇 = ∅. 

 

This is a problem called “an algorithmic triage” in Raghu et al. (2019). Solving this problem, 

we obtain the best assignment (𝑆𝑆∗,𝑇𝑇∗) as a function of �𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖�. This optimal assignment function 
tells us whether we should assign a specific prediction instance 𝑓𝑓 with attributes 𝑭𝑭𝑓𝑓 to the prediction 

machine or to an analyst 𝑖𝑖 with attributes 𝑰𝑰𝑖𝑖. In this paper, we specifically aim at identifying 𝛩𝛩�𝑓𝑓,𝑭𝑭𝑓𝑓� 

and 𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� so that we can understand the sources of the disagreement and further solve the 

algorithmic triage problem as a counterfactual exercise.  

For this purpose, we define an additional function 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 as follows: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 =  𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� −  𝛩𝛩�𝑓𝑓,𝑭𝑭𝑓𝑓�. 

 

As 𝛩𝛩�𝑓𝑓,𝑭𝑭𝑓𝑓� and 𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� denote the prediction errors of the machine and the analyst, the 
relative performance of the human prediction becomes higher as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 becomes smaller. As we 

explicitly demonstrate in the following sections, this 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 accounts not only for the disagreement 

between human and machine predictions but also for their relative performance. 

 While the current setup suffices to study the systematic disagreement between human and 

machine predictions, further decomposition of  𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� into those correlated with structured 



5 

information and the rest of the components is useful for understanding the source of the disagreement 

between human and machine predictions. Let 𝛺𝛺ℎ�𝑓𝑓,𝑭𝑭𝑓𝑓� account for the error component of the human 

prediction correlated with structured observable attributes of the instance 𝑓𝑓. Using this decomposition, 

we can define another measure for disagreement between the human prediction and the “structured” 

human prediction which relies solely on hard information. 

 

𝑃𝑃𝑃𝑃𝑜𝑜𝑥𝑥𝑥𝑥𝑓𝑓,𝑖𝑖,𝑡𝑡
′ =  𝛺𝛺�𝑓𝑓,𝑭𝑭𝑓𝑓 , 𝑖𝑖, 𝑰𝑰𝑖𝑖� −  𝛺𝛺ℎ�𝑓𝑓,𝑭𝑭𝑓𝑓�. 

 
Suppose 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡

′  becomes smaller as the change in 𝑭𝑭𝑓𝑓  (e.g., the amount of available 

information decreases). This means the relative performance of the human prediction to the human 

prediction relying on the observable (i.e., structured) information becomes higher due to the change in 
𝑭𝑭𝑓𝑓. In the current illustration representing the amount of available information, this suggests that, as the 

volume of structured information becomes smaller, the room for analysts to effectively employ 

unstructured information for prediction becomes larger. This comparison between human predictions 

and “structured” human predictions highlights the source for human predictions to surpass machine 

predictions, with the latter (i.e., machine predictions) relying only on structured information. 

 

3. Empirical Strategies 

This section presents how we construct a machine learning-based prediction model for firm dynamics, 

identify the determinants of disagreement between human and machine predictions and their relative 

prediction performance, and implement counterfactual exercises. 

 

3.1 Machine Prediction 

We use a machine learning method to construct a prediction model. Our particular problem of predicting 

relatively rare firm exit events (which occur with a low probability) falls into the class of “imbalanced 

label prediction” tasks. Following the literature, we apply a weighted random forest, a minority-class 

oversampling method.3 

Random forest models aggregate many individual decision tree models, each trained on a 

randomly selected sample from the training data. Particularly for predicting rare events, Chen et al. 

(2004) develop an extension of the random forest, called a weighted random forest. Intuitively, the 

method weighs data corresponding to a minority event (e.g., a firm exit) much more heavily than that 

corresponding to a majority event (e.g., non-exit). 

 
3 We have also used other machine learning techniques to construct prediction models and confirm the robustness of our 

results. 
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In our baseline exercise, we train models with the realization of outcome variables from the end 

of 𝑡𝑡 − 1 to the end of 𝑡𝑡  using the information available over the periods from 𝑡𝑡 − 3 to 𝑡𝑡 − 1, and 

conduct out-of-sample predictions of the realization of outcome variables from the end of 𝑡𝑡 to the end 

of 𝑡𝑡 + 1 using the information available over the periods from 𝑡𝑡 − 2 to 𝑡𝑡. 

We utilize the Receiver Operating Characteristic (ROC) curve to evaluate the predictive 

performance of the model. To implement the prediction task of a binary exit outcome, we need a specific 

threshold. When a predicted score surpasses the threshold, a positive binary outcome is indicated. For 

a given trained model, the ROC curve plots the true and false positive rates corresponding to the varying 

of this threshold value. Without any predictors (i.e., random guess), the curve should trace the 45-degree 

line, and curves closer to the top-left corner are desirable (maximize true positive rate and minimize 

false positive rate). With this motivation, it is conventional to also summarize the ROC curve by the 

area under the curve (AUC). 

 

3.2 Human Prediction 

We use a credit score denoted by “𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓”, which is provided by a credit reporting agency, as a result 

of human prediction. This score is constructed by a professional analyst and assigned to each firm in 

each year. As in financial institutions, each analyst is evaluated by the prediction performance of this 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and thus has a reasonable incentive to produce good predictions. 

We use this score and the ex-post record of exit to run a weighted Probit estimation having the 

exit indicator on the left hand-side and only 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 on the right hand-side of the estimated equation. 

Through this, we transform 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 taking the value of 0-100 to the probability associated with the 

occurrence of the firm exit and use it as the result of human prediction.4 

As already noted, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 accounts for both structured and unstructured information. While it 

is still informative to compare the original 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  with the machine score, we also extract the 

component of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  associated only with such unstructured information. For this purpose, we 

construct a machine learning-based prediction model for 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 by using the same right hand-side 

variables as we use to construct the machine prediction model. Such a “structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 accounts 

only for the part of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 correlated with the structured information. Using this predicted score and 

the actual record of exit to run a weighted Probit estimation, we transform the “structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to 

the probability associated with the occurrence of the firm exits. 

 
4 We should note that due to the weighting procedure aiming at a minority-class oversampling, the probability obtained by 

WRF and this Probit estimation is not exactly the exit probability in the data. It would be rather the probability of exits in the 

balanced sample consisting of equal numbers of exits and non-exits. Given there is no problem for us to use these probabilities 

as far as the machine outputs are constructed in the comparable way, we use them in the following empirical analyses. 
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3.3 Measurement of “disagreement” 

We measure the disagreement between human and machine predictions for a specific exit mode of firm 

𝑓𝑓 in year 𝑡𝑡. We standardize the probabilities of exits corresponding to machine score, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and 

“structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟 as mean zero and standard deviation is one. By using these standardized scores for 

machine (𝑀𝑀𝑀𝑀), analyst (𝐻𝐻), and “structured” human (SH) denoted by 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, we compute a variable 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for a triplet of firm (𝑓𝑓), analyst (𝑖𝑖), and time (𝑡𝑡), which is conceptualized in the previous section, 

as the following definition: 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡

𝑀𝑀𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝐻𝐻   for exit firms, 

                         = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝐻𝐻 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡

𝑀𝑀𝑀𝑀  for non-exit firms, 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡
′ = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡

𝑆𝑆𝑆𝑆 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝐻𝐻   for exit firms, 

                         = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝐻𝐻 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡

𝑆𝑆𝑆𝑆  for non-exit firms. 

 

Due to the way we compute 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, this measure of the disagreement becomes larger when the machine 

or “structured” human produces better predictions than the human does. 

 

3.4 Identifying the determinants of “disagreement” 

Once a measurement of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is obtained, we can estimate the relationship between 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  and 
various explanatory variables consisting of firm attributes (𝑭𝑭𝑓𝑓,𝑡𝑡), analyst attributes (𝑰𝑰𝑖𝑖,𝑡𝑡), and team 

attributes (𝒁𝒁𝑖𝑖,𝑡𝑡) as well as various fixed-effects (𝜼𝜼𝑓𝑓,𝑖𝑖,𝑡𝑡): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 = 𝐺𝐺�𝑭𝑭𝑓𝑓,𝑡𝑡 , 𝑰𝑰𝑖𝑖,𝑡𝑡 ,𝒁𝒁𝑖𝑖,𝑡𝑡� + 𝜼𝜼𝑓𝑓,𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑓𝑓,𝑖𝑖,𝑡𝑡  for 𝑡𝑡 = 2013, ⋯ , 2016. 

 

Where  

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡:  The disagreement between human and machine predictions 

𝑭𝑭𝑓𝑓,𝑡𝑡: Firm-level attribute 

𝑰𝑰𝑖𝑖,𝑡𝑡: Analyst-level attribute 

𝒁𝒁𝑖𝑖,𝑡𝑡: Team-level attribute 

 

In the baseline estimation, we employ a firm-level fixed-effect, analyst-level fixed-effect, and 
year-level fixed-effect for 𝜼𝜼𝑓𝑓,𝑖𝑖,𝑡𝑡, while alternative configurations of fixed-effects are also employed for 

the robustness check. 
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3.5 Counterfactual exercise 

After estimating the coefficients associated with each independent variable, we split the sample into 

five subsamples by referring to the level of an important determinant. We aim at setting up multiple 

groups for which the relative performance of human to machine differs. To construct subgroups purely 

tied to the important independent variable, we orthogonalize the variable to other characteristics and 

take out the residual. Then, we use this residual to sort the firms and construct five subsamples.  

In each subsample, we evaluate the performances of human and machine predictions. By 

comparing, for example, the number of false negatives based on machine predictions to those based on 

human predictions for the same set of firms, we can describe what happens to the prediction 

performance for the subsample by reallocating prediction tasks from machine to human. 

 

4. Data 

In this section, we explain the prediction instances and how we measure human predictions, with some 

institutional background and potential concerns. We also provide a detailed description of the data we 

use. 

 
4.1 Prediction instances and human prediction 

We set predictions for firms’ default and voluntary closure as our prediction instance 𝑓𝑓. Credit reporting 

agencies examine and predict firm exits as these firm-level outcomes are of great interest to business 

entities and government sectors. Examples of such credit reporting agencies include Dunn and 

Bradstreet in the US, Experian in European countries, and Tokyo Shoko Research (TSR) in Japan.5 

In addition to providing structured information such as financial statements to their clients, 

credit reporting companies typically calculate and publish a credit rating score, i.e., “𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓”, to 

summarize the overall performance of a firm. This score is typically constructed from both observable 

(i.e., structured) information on firm characteristics, and from the contents of in-depth interviews on 

owner characteristics, reputation, growth opportunity, and so on (i.e., unstructured information).  

These credit reporting agencies typically rely on their own (often confidential) algorithm to 

construct the scores. While a part of the score systematically depends on structured information 

 
5 TSR is one of the largest credit reporting agencies in Japan and operates in the areas of credit research, publishing, and 

database distribution. The central product of TSR is unsolicited-basis company reports representing the performance of each 

targeted firm. TSR sells them to a variety of clients including banks, securities houses, non-financial enterprises, and 

governmental organizations. A typical credit report consists of more than ten pages and includes firms’ basic characteristics 

and financial statement information. The clients of TSR purchase the reports for various reasons such as evaluating the credit 

worthiness of client firms, screening on transaction partners, and understanding the overall market environment. 
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collected by those agencies, a large part of the score reflects professional analysts’ subjective evaluation 

of the targeted firm. To illustrate, a score given by TSR (max: 100 points) is the summation of (i) the 

ability of the owner (max: 20 points) based on business attitude, experience, and asset condition, (ii) 

the growth possibility (max: 25 points) based on past sales growth, growth of profit, and characteristics 

of the products, (iii) stability (max: 45 points) based on firm age, stated-capital, financial statement 

information, room for collateral provision, and real and financial transaction relationships, and (iv) 

reputation (max 10 points) based on the level of disclosure and overall reputation. Most of these items 

are rarely recorded as structured information but largely as unstructured information such as analysts’ 

subjective evaluation of those firms. Given this institutional background, we use the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 assigned 

by TSR as the output of human predictions.  

 
4.2 Can we really use 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as human prediction? 

There are several immediate concerns over using the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as the output of human predictions. First, 

this score might also be constructed by some machine algorithms. If this is the case, the comparison 

between 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and machine predictions could not account for the differences between human and 

machine predictions, being merely a comparison of two algorithms. While the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 used in the 

present study reflects professional analysts’ subjective evaluation of targeted firms and largely employs 

both the structured and unstructured information as we summarize above, we also try to separate out 

the analysts’ predictions correlated with structured information from the original 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as defined in 

the previous section. Using this framework, we can explicitly study the difference between predictions 

based on structured information and those based on unstructured information, the latter of which can be 

handled only by human analysts. 

Second, machine predictions can take into full account higher dimensions of information than 

human analysts can do. When this is the case, the comparison between 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  and machine prediction 

might account only for the difference between the two different datasets used by human and machine. 

While we think the ability to handle different volumes of information is itself one aspect of the 

difference between human and machine and thus worth examining, we also try to compare human and 

machine predictions on an equal footing in terms of the volume of structured information.  

Third, the target of predictions might not be exactly the same for machine predictions and 

human predictions. As we will detail in the next section, we construct machine-based prediction models 

explicitly targeting one of the two modes of firm exits (i.e., default and voluntary closure), while the  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 summarizes the overall performance of a firm. Although the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is typically used in credit 

risk management and thus largely accounts for the prospects of firm exits, it is better to have human 
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predictions more directly connected to firm exits.6 For this purpose, we employ not only the overall 

firm performance score but also the sub-scores corresponding to the stability of firms as human 

predictions. 

 Apart from these concerns over using the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 as the output of human predictions, we should 

also bear in mind the external validity of the results. Disagreements between human and machine 

predictions may be important in other situations, such as the comparison between machine and investors 

who put more emphasis on the “upside” of a firm’s performance rather than the downside. To address 

these concerns, we implement the same set of analyses for firms’ sales growth and assess the robustness 

of our results regarding firm exits. 

 

4.3 Data overview 

In this section, we will examine the data used in our empirical analysis. All the data is obtained from 

TSR through the joint research agreement between Hitotsubashi University and TSR. We use the 

multiple datasets detailed below to construct a machine-based prediction model for firm exits, 
estimating the determinants of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡, and implement counterfactual exercises. 

 

4.3.1 Firm-level panel data 

One of our main data sources is an annual-frequency panel of Japanese firm data from 𝑡𝑡=2010 to 2016, 

providing information on firms’ financial statements and basic details such as industry classification, 

company owner characteristics, precise geographic location, firm age, etc. This year identifier 𝑡𝑡 

accounts for the timing of data collection and means that the data labeled year 𝑡𝑡 consists of the data 

extracted as of the end of December of the year 𝑡𝑡 from the data server owned by TSR. Given a large 

portion of Japanese firms use an accounting period up to the end of March, the file labeled 𝑡𝑡 =2012, for 

example, consists of a large amount of firm information corresponding to the accounting period up to 

the end of March 2012. The original data covers around three million firms in each year. We use the 

data covering around one million firms, which provide the information we need for our empirical 

analysis. According to the Japanese Small and Medium Size Enterprises Agency, there are around three- 

to four-million active companies in Japan. The TSR data accounts for around one-third of that firm 

population. One point of note is that the sample selection is tilted toward some specific industries, such 

as construction companies.  

 
6 TSR guidelines provide the following categorization of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ranges: (a) caution required (scores 29 and under), (b) 

medium caution required (scores between 30 and 49), (c) little caution required (scores between 50 and 64), (d) no specific 

concern (scores between 65 and 79), and (e) no concern at all (scores 80 and above). 
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These firm-level panel data are accompanied by three types of relational information regarding 

real and financial partners. First, this information contains a list of up to 10 lender banks. Second, the 

information also covers firm-to-firm trade. It lists up to 48 customer and supplier firms for each 

company. In addition to the list of each target firm’s trade partners, we also use the trade relationship 

reported by those trade partners. As there are many trade relationships not reported by the targeted firms 

but only by their trade partners, this operation significantly extends the list of trade partners. Third, the 

data also contain the list of shareholders. 

 

4.3.2 Prediction instances 

We consider the two firm exit outcomes to be predicted over the one-year ahead window: firm default 

and voluntary closure. The explanatory variables and outcome variable used in constructing a machine-

based prediction model are defined for separate time intervals; explanatory variables from 2010 to 2012 

to predict the outcome defined over the one-year window from the end of 2012 to the end of 2013, 

explanatory variables from 2011 to 2013 to predict the outcome from the end of 2013 to the end of 2014, 

and so on. The latest data are the explanatory variables from 2014 to 2016, used to predict the outcome 

from the end of 2016 to the end of 2017. 7  

We measure firm exits in the two modes (i.e., default and voluntary closure) if firms exited 

from the market for these reasons as reported by TSR over the one-year window. Then, we separately 

prepare two dummy variables that take 1 if firms exit through either default or voluntary closure.  

 

4.3.3 Firm attributes 

To construct a machine-based prediction model of firm exits, we use the following seven categories of 

firm attributes: Firms’ basic characteristics (firm own), firms’ detailed financial statement information 

(financial statement), geography and industry-related variables (geo/ind), firm-bank borrowing 

relationship variables (bank), supply chain network variables (network), and shareholder-subsidiary 

shareholding relationship variables (shareholder). We overview the variables categorized in each group 

below. 

 

Firm-own characteristics (firm own): As variables representing firms’ own characteristics, we use 

firm size measured by the logarithm of sales and the change in sales from the previous period, profit-

 
7 The configuration of the data is as follows: Training - (i) outcome from 2012-2013 using 2010-2012, (ii) outcome from 

2013-2014 using 2011-2013, (iii) outcome from 2014-2015 using 2012-2014, (iv) outcome from 2015-2016 using 2013-2015 

while Prediction - (i) outcome from 2013-2014 using 2011-2013, (ii) outcome from 2014-2015 using 2012-2014, (iii) outcome 

from 2015-2016 using 2013-2015, (iv) outcome from 2016-2017 using 2014-2016. Each number corresponds to the case of 

test and train. 
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to-sales ratio and any change from the previous period, the status of dividend payments (paid or not) 

and any change from the previous period, whether the firm is listed or not, the number of employees, 

the logarithm of stated capital, and dummy variables representing industry classification (note: multiple 

industry codes are recorded). We also use firm age, owner age, and the number of establishments.  

Firms’ financial statement information (financial statement): We set up a number of financial 

variables used in the literature as variables representing firms’ detailed financial statement information.8  

Industry and geographical information (geo/ind): We set up the following two groups of variables 

as variables representing the industry and area to which the firms belong. First, we construct the 

variables measuring the average sales growth of firms located in the same city as the targeted firms. 

Second, we compute the average sales growth of firms belonging to the same industry classified in the 

2-digit level. 

Lender banks information (bank): As variables representing firms’ borrowing relationships with 

lender banks, we construct a dummy variable to represent a change in main lenders (i.e., top lender 

bank) or in the number of lender banks. 

Supply-chain linkage information (network): We construct the following two groups of variables to 

represent the supply chain network. First, we compute widely used network metrics for each firm by 

using the supply chain network information. The metrics consist of degree centrality; eigenvector 

centrality; egonet eigenvalue; co-transaction; and the number of transaction partners, both direct (i.e., 

customers and suppliers) and indirect (i.e., suppliers’ suppliers, customers’ suppliers, etc.). Second, we 

construct a number of variables representing the characteristics of transaction partners. To summarize 

this information, we employ the average, maximum, minimum and the sum of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 associated with 

each transaction partner. Note that while the network metrics cover both direct and indirect transaction 

partners, the transaction partners’ characteristics only cover direct transaction partners. 

Shareholder linkage information (shareholder): We set up similar variables to those for supply chain 

network as predictors for shareholder information. 

 

We set up the two prediction models for each one of the exit modes using these seven groups 

of firm attributes together with the differenced and double-differenced variables of those variables. We 

 
8 The list of  “financial statement” variables consists of the following items: Logarithm of total assets, cash-to-total assets 

ratio, liquid assets-to-total assets ratio, tangible assets-to-total assets ratio, receivables turn-over, inventory turn-over, total 

liability-to-total assets ratio, liquid liability-to-total assets ratio, bond-to-total liability ratio, bank borrowing-to-total liability 

ratio, bank short borrowing-to-total bank borrowing ratio, payables turn-over, interest coverage ratio, liquid assets-to-liquid 

liability ratio, fixed compliance ratio, fixed ratio, working capital turn-over, gross profit-to-sales ratio, operating profit-to-sales 

ratio, ordinary profit-to-sales ratio, net profit before tax-to-sales ratio, logarithm of EBITDA, logarithm of EBITDA-to-sales 

ratio, special income-to-sales ratio, special expenses-to-sales ratio, and labor productivity. 
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create a set of dummy variables to deal with missing variables, taking the value of one if the 

corresponding variable is missing for a firm and zero otherwise. When a missing variable dummy takes 

one, we fill in zero to the original missing record. 

 

4.3.4 Potential determinants of disagreement 

To estimate the determinants of the disagreement between human and machine predictions, first, we 

use a subset 𝑭𝑭𝑓𝑓 of the firm attributes defined above. The list consists of the logarithm of firm sales, its 

difference, the listed status dummy variable, the number of industries the targeted firms operate in, and 

the number of variables available in the dataset. We employ this list of variables as they are less prone 

to missing data. In addition to these variables, we also use the information relating to the task priority 

of each firm (priority), denoted by a number, with a larger number corresponding to a higher priority.  

Second, we also use the attributes 𝑰𝑰𝑖𝑖 of the analysts. To measure  𝑰𝑰𝑖𝑖, at each data point, we use 

the attributes of the analysts working for TSR as stored in the anonymized background information 

associated with the company’s analysts. As analysts enter and exit the pool of TSR employees, the data 

is unbalanced panel data. This dataset is accompanied by a table listing the firms assigned to each 

analyst at each data point, which we use to relate analysts to firms. The list of variables 𝑰𝑰𝑖𝑖 is as follows: 

 

Analyst information:  The dataset allows us to identify the list of assigned firms in each year and the 

tenure years of each analyst. The former information allows us to calculate the number of firms assigned 

to each analyst and any previous exposure of an analyst to other firms in the industry of the targeted 

firms, which can be interpreted as the industry expertise of the analyst. 

Team information:  The dataset also allows us to measure the characteristics associated with the team 

each analyst belongs to. First, we measure the size of the team by counting the number of analysts in 

each department. Second, we measure the average tenure years of all members of the team. Third, we 

measure the average number of firms assigned to the analysts in the team. Fourth, we also measure the 

average industry expertise of all the analysts in each team. 

 

 We should note that this analyst and team information is highly endogenous as the assignment 

of analysts to teams and to targeted firms is not random. Thus, we treat these variables simply as control 
variables in the regression of the determinants for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 and do not intend to establish any causal 

relation between these variables and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡. 

 

4.3.5 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

The dataset includes the firm-level panel data of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, which we explained in the previous section. 

This score takes values from 0 to 100. The number is computed as the sum of the four sub-scores 
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representing the ability of the owner, growth possibility, stability, and reputation. In the following 

empirical analysis, we use both the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and the decomposition of each component.  

Table 1 summarizes the variables used to estimate the determinants of the disagreement 

between human and machine predictions, together with the 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, structured 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡. 

 

Table 1: Summary statistics 

 
  

Variable Definition #samples 25%tile median mean 75%tile sd

Firm Characteristics

log(sales f, t) The logarithm of firm f 's gross sales. 3,983,158 10.29 11.29 11.37 12.41 1.86

log(sales f, t)-log(sales f, t -1) Log change in firm f 's gross sales. 3,983,158 -0.06 0.00 0.01 0.07 0.36

#(industry ) f, t
The number of industry codes which are assigned to firm f . It takes values
from 1 to 3. 3,983,158 1.00 2.00 1.92 3.00 0.85

#(available variables ) f, t The number of firm f 's hard information available for predictions. 3,983,158 38.00 80.00 91.02 132.00 60.42

priority f , t Firm f 's relative importance for analysts. 3,810,937 0.00 2.00 14.76 8.00 75.80

fscore f , t
A score that summarizes an overall performance of firm f  provided by TSR.
It takes values from 0 to 100. 3,983,158 43.00 46.00 46.82 50.00 5.91

ML predictions

structured fscore f , t

Firm f 's hypothetical fscore  considered as analysts could use only hard
information for predictions. It is calculated as a replication of fscore  by
machine prediction method.

3,983,158 43.27 46.19 46.82 49.66 5.26

Proxy f , i , t
Relative performance of machine predictions for firm f . The larger
(smaller) value means that machine (analyst i ) can predict outcome better. 3,983,158 -0.95 -0.09 0.00 0.89 1.29

Analyst Characteristics
#(tenure years ) i , t Analyst i 's length of serveice. 3,503,183 3.59 8.05 10.51 15.38 8.67

#(assigned companies ) i , t The number of companies for which analyst i is responsible to make fscore . 3,810,987 610 939 1,516 1,862 1,684.70

industry experience f, i , t
The number of companies (1) having the same industry codes as firm f , and
(2) having been responsible for analyst i  to make fscore  for recent 3 years. 3,810,987 27.00 85.00 263.60 271.00 515.25

Team Characteristics

#(team members ) i , t The number of colleagues belonging to the same division as analyst i . 3,495,647 8.00 13.00 15.02 20.00 9.70
Average
# (tenure years ) i, t

Average length of service across team members including analyst i . 3,466,648 7.50 9.76 10.35 12.72 4.18

Average
industry experience f, i , t

Average industry experience across team members including analyst i . 3,466,648 25.67 60.33 117.60 162.30 136.57

Average
#(assigned companies ) i , t

Average number of assigned companies across the team members including
analyst i . 3,466,648 920.20 1,230.00 1,407.00 1,877.00 679.30
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5. Empirical Results 

In this section, first, we compare the performance of machine-based predictions and human predictions. 

Then, we identify how the disagreement between those predictions varies with changes in the 

characteristics of the targeted companies. After confirming that there could be room for human 

predictions to outperform machine predictions, we implement counterfactual exercises. 

 
5.1 Prediction performance 

The following four panels in Table 2 show the AUCs and standard errors of the five prediction models 

for the years 2013 to 2016. The first and fourth rows show the performance of human predictions and 

machine predictions, respectively. The second row is for the structured human predictions. The third 

and fifth rows show the performances of machine predictions with different sets of independent 

variables. The third row is the case where we add 𝑓𝑓𝑓𝑓𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜 to the list of independent variables used to 

construct a machine prediction model. The fifth row corresponds to the case where we use only a small 

set of independent variables to construct a machine prediction model. 9  Using a smaller set of 

independent variables to construct a machine-based prediction model allows us to compare human and 

machine predictions on an equal footing in terms of the volume of structured information. 

 

Table 2: AUC 
Test data: t = 2013 Test data: t = 2014 

Model default 
voluntary 
closure 

Human 
0.634 

(0.0049) 
0.719 

(0.0030) 

Structured human 0.617 
(0.0046) 

0.749 
(0.0027) 

Machine & fscore  
0.807 

(0.0040) 
0.829 

(0.0023) 

Machine 0.793 
(0.0041) 

0.828 
(0.0024) 

Machine with 
small information 

0.777 
(0.0044) 

0.829 
(0.0024) 

 

Model default 
voluntary 
closure 

Human 
0.639 

(0.0052) 
0.729 

(0.0031) 

Structured human 0.622 
(0.0049) 

0.757 
(0.0028) 

Machine & fscore  
0.794 

(0.0043) 
0.830 

(0.0024) 

Machine 0.780 
(0.0045) 

0.828 
(0.0024) 

Machine with 
small information 

0.765 
(0.0048) 

0.829 
(0.0024) 

 

 
 
 
 

 

 
9 As the smaller set of variables, we employ all the firm own variables except for dividend-related variables, financial 

statement variables representing total assets, profit, and EBITDA, all the bank variables, network variables representing only 

customers and suppliers with direct links, and shareholder variables in direct shareholding relations. 
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Test data: t = 2015 Test data: t = 2016 

Model default voluntary 
closure 

Human 0.653 
(0.0055) 

0.737 
(0.0031) 

Structured human 
0.638 

(0.0052) 
0.766 

(0.0028) 

Machine & fscore  0.799 
(0.0044) 

0.835 
(0.0024) 

Machine 
0.786 

(0.0045) 
0.833 

(0.0024) 
Machine with 

small information 
0.768 

(0.0050) 
0.834 

(0.0025) 
 

Model default voluntary 
closure 

Human 0.663 
(0.0053) 

0.748 
(0.0031) 

Structured human 
0.648 

(0.0050) 
0.776 

(0.0027) 

Machine & fscore  0.789 
(0.0044) 

0.843 
(0.0025) 

Machine 
0.773 

(0.0045) 
0.841 

(0.0025) 
Machine with 

small information 
0.758 

(0.0049) 
0.843 

(0.0024) 
 

Note: Each number represents AUC and the number in the parentheses is its standard error. 

 

First, we can immediately notice that the AUC of machine predictions (the fourth row) is 

significantly higher than that of human predictions (the first row). This is the case even when we employ 

a smaller set of independent variables to make a machine prediction model (the fifth row). Thus, human 

predictions underperform machine predictions on average. 

Second, in the case of default prediction, human predictions outperform those of structured 

human (the first and second rows). We also find that 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 makes an additional contribution to the 

overall performance of the machine predictions (the fourth and fifth rows). These results contrast with 

the findings of Kleinberg et al. (2018). In their empirical analysis of judicial bail decisions, they show 

that the structured human does a better job of identifying risky criminals than the judge’s prediction. 

They claim that the “psychologist’s view,” where humans tend to make noisy predictions, outdoes the 

“economist’s view” where humans can use soft information to make a better prediction. Our result 

suggests that, at least in our setup for default predictions, the economist’s view should be more reliable. 

One point to note is that, as for predictions of voluntary closure, the structured human does a better job 

than the human prediction does, which is consistent with the psychologist’s view.10  

 
5.2 Determinants of disagreement   

Table 3 summarizes the results of the panel estimation associated with default and voluntary closure. 

All the coefficients are shown in the percent point (i.e., the estimated coefficients times 100). 
  

 
10 In the appendix, we examine the recall and precision measures for machine, human, and structured human predictions 

over different thresholds for prediction. 
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Table 3: Baseline estimation 

 
Note: ***, **, and * correspond to 1%, 5%, and 10% statistical significance, respectively. 

 

Regardless of whether we use default or voluntary closure as the prediction target, we find that 

the relative prediction performance of human to machine becomes better for firms with less observable 

information for their attributes (i.e., #(available variables)). Thus, for firms with less observable 

information, the relative performance of human predictions to machine predictions improves.  

 Why do analysts perform better in the case of opaque firms with smaller amounts of observable 

information? One conjecture is that analysts are using unstructured information, which, by definition, 

cannot be used in machine predictions. To confirm this conjecture, we also run the panel regression for 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡
′ , which is defined by replacing 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡

𝑀𝑀𝑀𝑀 with 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝑆𝑆𝑆𝑆 . This regression characterizes 

under what conditions human predictions outperform those of the structured human. The obtained 

results show the similar pattern in Table 3, i.e., relative prediction power of human predictions 

%point

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -18.545 0.127 *** 3.987 0.028 *** -8.511 0.111 *** 5.036 0.030 ***
log(sales f,t ) - log(sales f,t-1 ) 13.015 0.097 *** -0.618 0.022 *** 5.205 0.086 *** -0.521 0.023 ***
listed f,t -2.105 2.758 0.605 0.621 -18.931 2.429 *** -6.351 0.662 ***
#(industry ) f,t -3.009 0.159 *** -0.084 0.036 ** 0.097 0.140 -0.129 0.038 ***
#(available variables ) f,t 0.566 0.001 *** 0.041 0.000 *** 0.485 0.001 *** 0.031 0.000 ***
priority f,t 0.001 0.000 ** 0.000 0.000 *** 0.002 0.000 *** -0.000 0.000 **

Analyst characterstics
#(assigned companies ) i,t -0.001 0.000 *** -0.000 0.000 *** -0.001 0.000 *** -0.000 0.000 ***
industry experience f,i,t -0.004 0.000 *** 0.000 0.000 *** -0.001 0.000 *** 0.001 0.000 ***

Team characteristics
#(team members) i,t 0.081 0.012 *** -0.001 0.003 0.106 0.010 *** -0.001 0.003
Average #(tenure years ) i,t 0.136 0.016 *** -0.008 0.004 ** -0.008 0.014 -0.006 0.004
Average industry experience f,i,t 0.014 0.001 *** 0.000 0.000 0.001 0.001 0.000 0.000
Average #(assigned companies ) i,t -0.001 0.000 *** -0.000 0.000 *** -0.002 0.000 *** -0.000 0.000 ***

Constant 152.997 1.512 *** -49.111 0.340 *** 54.692 1.331 *** -59.965 0.363 ***
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared

default voluntary closure

0.062 0.020
0.777

yes
3,238,817 3,238,817

12,417.240 3,908.300
0.879
0.071

SH vs. Human Machine vs. Human

0.789
0.019

14,314.100

yes
yes
yes

3,238,817
3,591.740

yes
3,238,817

yes

0.831

SH vs. Human

yes
yes

yes yes
yes yes

Machine vs. Human
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compared with structured human becomes higher as the amount of available information becomes 

smaller.11 

We also regress separately the performance of human and machine predictions on the same set 

of characteristics. From the estimation results (reported in the appendix), we confirm that the negative 

marginal impact associated with lower availability of information is greater for machine predictions 

than for human predictions. This could be the case when human predictions effectively use unstructured 

information to make predictions. 

To check the robustness of the results and address the concerns we raised in the previous section, 

first, we employ alternative methods of measuring the disagreement between human and machine 

predictions. As detailed above, we are using the ex-post record of firm exits to obtain the probabilities 

of exit implied by 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and “structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. As the transformation of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to the probability 

is simply a monotonic transformation and does not change the order of the score, it does not affect the 

comparison of human and machine predictions. Nonetheless, in reality, such an ex-post record of exit 

used in calibrating 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 to probability is not attainable in the process of human predictions. Thus, 

we also construct a set of rankings based on the machine prediction, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and “structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 

In this ranking of prediction outcomes, we do not need to refer to the ex-post default records. Second, 
we also define a dummy variable taking the value of one if 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 is positive and zero otherwise. 

We use this dummy variable and run a linear probability model with the abovementioned fixed effects 

and conditional logit model with firm-level fixed effects. We also set 1 to 10 variables depending on 
the level of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 and run ordered-logit estimation without fixed effects. Third, we replace analyst-

level fixed effect with analyst-year-level fixed effect so that we can take complete account of analyst-

level unobservable factors varying over time. Fourth, we employ one of the sub-scores of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 

which represents the “stability” of a firm, instead of the total 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, so that the target of human 

predictions becomes plausibly more comparable to that of machine predictions. All the results are 

shown in the appendix and are consistent with the results in Table 3. 

 
  

 
11 We can also find that the marginal impact of available information on the relative performance of human predictions to 

that of structured humans is much smaller than that for human vs. machine. This means that the sensitivity of the structured 

human predictions with respect to the level of available information is much smaller than that of machine. 
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5.3 Counterfactual exercises 

Can we use the empirical findings presented in the previous section to improve overall prediction 

performance for firm exits? Given the performance of analysts relative to machines improves for more 

opaque firms with smaller amounts of observable information, it is natural to assign firms with smaller 

observable information to humans and firms with larger information to machines. 

We split the sample into five subsamples according to the level of observable information (i.e., 

the number of non-missing variables), orthogonal to a firm’s sales, growth, and industry classification, 
all of which are significant in the estimation of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 . Then, we set up five groups of firms 

depending on the level of these orthogonal variables.  

 
Table 4: Reallocation of prediction instances 

(a) Firms actually do NOT exit ex-post 
 Prediction for default Prediction for voluntary closure 

M = default 
H = not default 

(1) 

M = not default 
H = default 

 (2) 
(2)/(1) 

M = closure 
H = not closure 

(1) 

M = not closure 
H = closure 

 (2) 
(2)/(1) 

~20% 
tile 49,117 23,068 0.47  25,206 19,453 0.77  

20~40% 
tile 36,094 54,446 1.51  28,326 23,667 0.84  

40~60% 
tile 37,362 46,368 1.24  28,370 28,134 0.99  

60~80% 
tile 33,409 39,218 1.17  20,249 30,962 1.53  

80% 
tile~ 11,652 30,608 2.63  8,026 34,406 4.29  

 

(b) Firms actually do exit ex-post 
 Prediction for default Prediction for voluntary closure 

M = default 
H = not default 

 (3) 

M = not default 
H = default 

 (4) 
(3)/(4) 

M = closure 
H = not closure 

(3) 

M = not closure 
H = closure 

 (4) 
(3)/(4) 

~20% 
tile 88 21 4.19  140 51 2.75  

20~40% 
tile 82 40 2.05  195 42 4.64  

40~60% 
tile 86 37 2.32  231 43 5.37  

60~80% 
tile 74 37 2.00  174 54 3.22  

80% 
tile~ 38 27 1.41  72 45 1.60  

Note: M and H denote the predictions of machine and human, respectively. 



20 

The two panels in Table 4 summarize the number of false positive, false negative, true positive, 

and true negative cases for the five subsamples. We treat the top 30% of firms in terms of the prediction 

score as the firms predicted to exit.12 

For example, the columns marked (1) in panel (a), show the number of false-positives for 

machine predictions and true-negatives for human predictions, as these columns show the number of 

firms that do not exit ex-post. Conversely, the columns marked (2) in panel (a) show the number of 

true-negatives for machine predictions and false-positives for human predictions for firms that do not 

exit ex-post. Panel (b) in Table 4 summarizes the number in the same manner but for the firms that 

actually do exit ex-post. 

Comparing the numbers in each column, we can see how type I and type II errors vary 

depending on whether prediction instances are allocated to machine or human. In six out of the ten rows 

in Panel (a), the number in columns marked (1) is smaller than that in (2), while in Panel (b), all the 

numbers in the columns marked (3) are larger than those in (4). 

First, this means that type II error is always smaller in machine predictions than human 

predictions, regardless of the level of available information. Even for the firms with smallest 

information, human predictions cannot outperform machine predictions. Second, in the case of the firms 

with smallest information however (i.e., the first raw labeled as “~20%tile”), it is still possible to reduce 

the number of false-positives, and thus reduce type I error, by reallocating the default prediction 

instances from machine to human (i.e., the number of false-positives is reduced from 49,117 to 23,068). 

In the case of voluntary closure, we can also achieve smaller type I error for firms with  smallest, small, 

and average information (i.e., the first, second, and third raws labeled “~20%tile”, “20~40%tile”, and 

“40~60%tile”) by reallocating the default prediction instances from machine to human.  

We should note, nonetheless, that such a reallocation of prediction tasks is accompanied by 

larger type II error, as shown above. The numbers in columns (3) are always larger than that in (4), 

which suggests that reallocating the prediction instances from machine to human always increases the 

number of false negatives. As one interesting result, we can also find that, in the case of default 

predictions, the ratio tends to be larger as we move from the subsample with smallest information to 

that with largest. This pattern is inconsistent with the positive coefficient obtained in our estimation for 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡. This is the case simply because, in our data, the number of exits is much smaller than that 

of non-exits. In other words, the relative performance of human predictions to machine predictions with 

respect to the level of available information is driven by human predictions correctly predicting non-

exit firms. 

 
12 For robustness check, we vary this prediction threshold (i.e., the top 30% in this baseline exercise) from the top 50% to 

the top 20% and confirm the results do not change. 
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These results reconfirm the usefulness of machine-based prediction techniques in the context 

of exit predictions. There is however room for human predictions to outperform machine predictions 

under specific circumstances, such as when the prediction targets are opaque due to less available 

information or when the user of the prediction results is more concerned with type I error than type II. 

 

5.4 Growth prediction 

We have so far focused on exit predictions. What happens if we focus on the upside of firm dynamics 

instead? We repeat the same analyses by considering firm growth as the target of our predictions. We 

define growth in sales for a firm as a sales growth rate of one standard deviation higher than the industry 

average defined in two-digits over the one-year window used to measure the outcome. Then, we prepare 

a dummy variable that takes 1 if firms experience a growth rate higher than these criteria. 

As predictions for upside events are the mirror image of downside predictions, we conjecture 

that while overall prediction performance is still higher for machine prediction than human, and the 

relative performance of human predictions also becomes higher when the available information is 

smaller as we have described, the source of this better performance is not from lower type I error but 

from lower type II error (i.e., analysts correctly predicting non-growth for actual non-growth firms 

based on smaller information). As presented in the appendix, this is indeed the case.   

 

6. Conclusion 

We examine empirically the relative performance of machine-based and human subjective predictions 

for firm exits. Using a huge volume of firm-level high-dimension panel data, we find that human 

predictions are not as accurate as machine predictions on average. As for predicting the exits of firms 

with less observable information, however, it could be the case that the analysts can outperform machine. 

As one important point to note when using machine predictions in practice, Luca et al. (2016) 

claim that machine predictions cannot ensure automated decision making as it is necessary to take into 

account the various dimensions of the problems under consideration. The present paper provides 

evidence that it is necessary to take into account the conditions under which a prediction is to be 

assigned to machine. Our findings cast light on the circumstances and the extent to which tasks should 

be allocated either to machine or to human. 

Future extensions of the present study may benefit from the inclusion of additional explanatory 

variables as regressors for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. It is particularly important to consider interaction terms among 

regressors because the conditional impact of a variable, such as tenure years, on other characteristics 

provides us with a more detailed picture of the systematic differences between human and machine 

predictions. This should be done by introducing plausible exogenous shocks to the determinants of 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, without which the results could suffer from endogenous matching between an instance and an 
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analyst. Second, a large-sized aggregate-level shock, such as a market downturn or a natural disaster, 

could have an impact on the marginal effect of each determinant of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Understanding potentially 

relevant shocks is useful in considering how we should allocate prediction tasks to machines and 

humans under specific circumstances. All these additional analyses will help us to understand both the 

nature of human error and how humans and machines can work together to provide accurate predictions. 
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APPENDIX 

Here we list the tables and figures referred to in the main body of the paper. First, we show an alternative 

way to compare the prediction power of machine, human, and the “structured” human (Figure A1). We 

can confirm that machine predictions outperform human predictions on average. Regarding the 

comparison between human predictions and those of the structured human, human predictions are more 

precise in the case of default predictions, while the structured human is better in terms of recall in the 

case of voluntary closure. Second, instead of estimating the determinants of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡, we estimate 

separately the determinants of  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑡𝑡
𝑚𝑚  and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡

ℎ , which are defined as below, representing the 

prediction performance of machine and human, respectively. Comparing the estimated coefficients 

associated with the independent variables, we can see how the respective prediction powers of machine 

and human vary according to the change in determinants (Table A1). 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑡𝑡

𝑚𝑚 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡
𝑀𝑀𝑀𝑀 − 1  for exit firms, 

                       = 1 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑡𝑡
𝑀𝑀𝑀𝑀  for non-exit firms, 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡
ℎ = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡

𝐻𝐻 − 1  for exit firms, 

                        = 1 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑓𝑓,𝑖𝑖,𝑡𝑡
𝐻𝐻   for non-exit firms. 

 

Third, we construct a set of rankings based on the machine prediction, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, and “structured” 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

and repeat the same estimation for the disagreement (Table A2). Fourth, we also define a dummy 
variable taking the value of one if 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡 is positive and zero otherwise and run a linear probability 

model and conditional logit model (Table A3). We also set 1 to 10 variables, depending on the level of 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓,𝑖𝑖,𝑡𝑡, and run an ordered-logit estimation (Table A4). Fifth, we replace analyst-level fixed effect 

with analyst-year-level fixed effect (Table A5). Sixth, we employ one of the sub-scores of 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, which 

represents the “stability” of each firm, instead of the total 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, so that the target of human predictions 

becomes plausibly more comparable to that of machine predictions (Table A6). All the results are 

consistent with the ones we presented in the main body of the present paper. Seventh, we summarize 

the results of the proxy estimation and counterfactual exercise representing firm growth (Table A7). 
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Figure A1: Recall and precision measures over different thresholds 

 
(1) Default (test year: t=2016)  
  

Recall Precision 

  

  
(2) Voluntary closure  (test year: t=2016)  
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Table A1: Prediction performance of machine and human 

 

 
 

 
  

%point

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) 2.318 0.020 *** 5.024 0.014 *** 6.461 0.021 *** 7.493 0.021 ***
log(sales f,t ) - log(sales f,t-1 ) 1.701 0.015 *** -0.440 0.011 *** 0.231 0.017 *** -0.760 0.016 ***
listed f,t 2.477 0.443 *** 2.621 0.303 *** -1.838 0.481 *** 2.168 0.467 ***
#(industry ) f,t -0.502 0.025 *** 0.099 0.017 *** 0.244 0.027 *** 0.202 0.027 ***
#(available variables ) f,t 0.102 0.000 *** 0.008 0.000 *** 0.118 0.000 *** 0.012 0.000 ***
priority f,t 0.000 0.000 * 0.000 0.000 *

Analyst characterstics
#(assigned companies ) i,t 0.000 0.000 *** 0.000 0.000 ***
industry experience f,i,t -0.000 0.000 *** -0.000 0.000 ***

Team characteristics
#(team members) i,t 0.002 0.001 -0.005 0.002 **
Average #(tenure years ) i,t 0.014 0.002 *** 0.016 0.003 ***
Average industry experience f,i,t -0.000 0.000 ** 0.000 0.000
Average #(assigned companies ) i,t 0.000 0.000 *** 0.000 0.000 ***

Constant 29.191 0.226 *** -4.012 0.166 *** -19.798 0.245 *** -28.631 0.256 ***
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj R-squared
Within R-squared

default voluntary closure

0.129 0.069
0.866

yes
3,756,803 3,238,817

78,182.190 14,025.710
0.815
0.092

Human Machine

0.897
0.075

53,485.400

yes
yes
yes

3,238,817
15,304.020

yes
3,756,803

yes

0.876

Human

yes
yes

yes yes
yes yes

Machine
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Table A2: Rank-based disagreement estimation 

 

 

 

 
  

Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -58,115.530 374.526 *** -25,088.000 331.840 ***
log(sales f,t ) - log(sales f,t-1 ) 37,273.310 287.922 *** 16,041.170 255.107 ***
listed f,t 27,956.380 8,164.855 *** -34,210.110 7,234.288 ***
#(industry ) f,t -8,595.519 471.108 *** 620.723 417.415
#(available variables ) f,t 1,607.929 4.271 *** 1,527.788 3.784 ***
priority f,t 5.258 1.144 *** 8.109 1.013 ***

Analyst characterstics
#(assigned companies ) i,t -1.894 0.313 *** -3.357 0.277 ***
industry experience f,i,t -11.528 0.604 *** -6.217 0.535 ***

Team characteristics
#(team members) i,t 268.315 34.572 *** 346.771 30.632 ***
Average #(tenure years ) i,t 384.545 48.371 *** -63.242 42.858
Average industry experience f,i,t 39.630 2.346 *** -2.152 2.079
Average #(assigned companies ) i,t -2.936 0.437 *** -5.742 0.387 ***

Constant 470,115.500 4,475.366 *** 125,805.500 3,965.298 ***
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared 0.067 0.069

13,426.970 13,873.310
0.876 0.820

yes yes
3,238,817 3,238,817

yes yes
yes yes

default voluntary closure
Machine vs. Human
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Table A3: Dummy variable measure for disagreement 

 

(1) Linear probability model 

 

 
  

%point

Coef. S.E. Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -5.664 0.076 *** -3.578 0.085 *** -21.235 0.111 ***
log(sales f,t ) - log(sales f,t-1 ) 4.064 0.059 *** 2.315 0.065 *** 3.070 0.084 ***
listed f,t 2.856 1.664 * -7.332 1.849 *** -0.708 2.343
#(industry ) f,t -1.350 0.096 *** 0.042 0.107 -0.644 0.136 ***
#(available variables ) f,t 0.157 0.001 *** 0.265 0.001 *** 0.061 0.001 ***
priority f,t 0.001 0.000 *** 0.002 0.000 *** 0.002 0.000 ***

Analyst characterstics
#(assigned companies ) i,t -0.000 0.000 -0.001 0.000 *** 0.000 0.000
industry experience f,i,t -0.001 0.000 *** -0.000 0.000 ** 0.001 0.000 ***

Team characteristics
#(team members) i,t 0.041 0.007 *** 0.041 0.008 *** -0.030 0.010 ***
Average #(tenure years ) i,t 0.005 0.010 0.005 0.011 -0.159 0.014 ***
Average industry experience f,i,t 0.006 0.000 *** 0.000 0.001 -0.005 0.001 ***
Average #(assigned companies ) i,t -0.001 0.000 *** -0.001 0.000 *** 0.000 0.000 ***

Constant 93.738 0.912 *** 59.737 1.014 *** 287.765 1.326 ***
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared 0.016 0.033 0.022

3,135.790 6,343.690 3,937.390
0.721 0.659 0.490

yes yes yes
3,238,817 3,238,817 3,037,588

yes yes yes
yes yes yes

Machine vs. Human
default voluntary exit growth
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(2) Conditional logit model 

 

 

 

 
  

%point

Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -87.264 1.207 *** -42.894 1.011 ***
log(sales f,t ) - log(sales f,t-1 ) 65.887 0.962 *** 28.807 0.783 ***
listed f,t 45.617 25.010 * -82.705 20.077 ***
#(industry ) f,t -20.860 1.326 *** -6.271 1.235 ***
#(available variables ) f,t 1.942 0.013 *** 2.587 0.012 ***
priority f,t 0.095 0.014 *** 0.072 0.008 ***

Analyst characterstics
#(assigned companies ) i,t 0.000 0.001 0.000 0.000
industry experience f,i,t 0.006 0.001 *** -0.002 0.001 *

Team characteristics
#(team members) i,t 0.425 0.071 *** 0.409 0.065 ***
Average #(tenure years ) i,t -0.241 0.114 ** -0.067 0.104
Average industry experience f,i,t 0.022 0.006 *** -0.104 0.005 ***
Average #(assigned companies ) i,t -0.003 0.001 *** -0.002 0.001 **

Constant
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
Log-likelihood
χ-squared 57,174.73030,953.570

-259,176.670 -315,385.000

no no
736,498 922,303

yes yes
no no

default voluntary closure
Machine vs. Human
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Table A4: Ordered logit estimation 

 

 

 

%point

Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -171.686 0.244 *** -22.596 0.210 ***
log(sales f,t ) - log(sales f,t-1 ) 103.072 0.390 *** 26.065 0.366 ***
listed f,t 542.157 6.472 *** -103.528 5.877 ***
#(industry ) f,t -48.697 0.389 *** -1.500 0.385 ***
#(available variables ) f,t 1.214 0.005 *** 2.262 0.005 ***
priority f,t 0.086 0.003 *** 0.010 0.002 ***

Analyst characterstics
#(assigned companies ) i,t 0.001 0.000 *** -0.001 0.000 ***
industry experience f,i,t 0.047 0.001 *** 0.032 0.001 ***

Team characteristics
#(team members) i,t 2.314 0.028 *** 2.805 0.028 ***
Average #(tenure years ) i,t -0.375 0.049 *** -0.498 0.049 ***
Average industry experience f,i,t 0.255 0.002 *** 0.297 0.002 ***
Average #(assigned companies ) i,t -0.030 0.000 *** -0.041 0.000 ***

Constant
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
Log-likelihood
χ-squared

-6,008,220.100 -6,508,573.100
621,072.400 253,758.480

no no
3,466,611 3,466,611

no no
no no

default voluntary closure
Machine vs. Human
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Table A5: Alternative fixed-effects specification 

 
 
 

 
  

%point

Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -19.063 0.125 *** -8.293 0.111 ***
log(sales f,t ) - log(sales f,t-1 ) 13.213 0.096 *** 5.074 0.085 ***
listed f,t -4.449 2.732 -19.247 2.412 ***
#(industry ) f,t -3.538 0.158 *** 0.002 0.140
#(available variables ) f,t 0.571 0.001 *** 0.482 0.001 ***
priority f,t 0.000 0.000 0.002 0.000 ***

Analyst characterstics
#(assigned companies ) i,t
industry experience f,i,t 0.001 0.000 *** 0.000 0.000

Team characteristics
#(team members) i,t

Average #(tenure years ) i,t
Average industry experience f,i,t 0.017 0.001 *** 0.000 0.001
Average #(assigned companies ) i,t

Constant 157.847 1.465 *** 49.298 1.293 ***
Firm fixed-effect
Analyst-Year fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared

voluntary closuredefault

yes

3,238,266
18,409.250

0.834

yes
yes

3,238,266

0.882
0.061

Machine vs. Human

0.073

22,197.050

yes
yes
yes
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Table A6: Using sub-score as human predictions 

 
 

 
  

%point

Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) 5.178 0.191 *** 3.120 0.044 *** 13.864 0.166 *** 3.240 0.044 ***
log(sales f,t ) - log(sales f,t-1 ) 17.783 0.142 *** -2.203 0.033 *** 13.444 0.123 *** -2.283 0.033 ***
listed f,t 8.962 3.434 *** 4.606 0.787 *** -9.880 2.974 *** 4.304 0.787 ***
#(industry ) f,t -2.132 0.227 *** 0.090 0.052 * 1.092 0.197 *** 0.086 0.052 *
#(available variables ) f,t 0.637 0.002 *** 0.018 0.000 *** 0.519 0.002 *** 0.018 0.000 ***
priority f,t 0.000 0.000 0.000 0.000 0.001 0.000 ** -0.000 0.000

Analyst characterstics
#(assigned companies ) i,t -0.002 0.000 *** 0.000 0.000 *** 0.000 0.000 ** 0.001 0.000 ***
industry experience f,i,t -0.003 0.000 *** 0.001 0.000 *** 0.002 0.000 *** 0.001 0.000 ***

Team characteristics
#(team members) i,t 0.028 0.019 -0.017 0.004 *** 0.026 0.017 -0.018 0.004 ***
Average #(tenure years ) i,t 0.080 0.026 *** -0.046 0.006 *** -0.078 0.022 *** -0.047 0.006 ***
Average industry experience f,i,t 0.026 0.001 *** -0.002 0.000 *** -0.005 0.001 *** -0.002 0.000 ***
Average #(assigned companies ) i,t 0.001 0.000 *** 0.000 0.000 ** -0.001 0.000 *** 0.000 0.000

Constant -132.004 2.359 *** -38.266 0.540 *** -212.930 2.044 *** -39.522 0.540 ***
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared

default voluntary closure

0.085 0.006
0.718

yes
2,199,518 2,199,518

11,101.810 752.040
0.825
0.081

SH vs. Human Machine vs. Human

0.712
0.006

10,515.140

yes
yes
yes

2,199,518
719.200

yes
2,199,518

yes

0.830

SH vs. Human

yes
yes

yes yes
yes yes

Machine vs. Human
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Table A7: Growth prediction 

 

(1) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 estimation 

 
 
 

  

%point

Coef. S.E. Coef. S.E.
Firm characteristics

log(sales f,t ) -50.833 0.229 *** -0.166 0.039 ***
log(sales f,t ) - log(sales f,t-1 ) 14.032 0.174 *** -0.439 0.030 ***
listed f,t -24.028 4.837 *** 3.056 0.830 ***
#(industry ) f,t -1.239 0.281 *** 0.036 0.048
#(available variables ) f,t 0.196 0.003 *** 0.037 0.000 ***
priority f,t 0.005 0.001 *** 0.000 0.000

Analyst characterstics
#(assigned companies ) i,t -0.000 0.000 -0.000 0.000 ***
industry experience f,i,t 0.003 0.000 *** 0.000 0.000 ***

Team characteristics
#(team members) i,t -0.167 0.021 *** -0.008 0.004 **
Average #(tenure years ) i,t -0.357 0.029 *** -0.014 0.005 ***
Average industry experience f,i,t -0.017 0.001 *** 0.000 0.000
Average #(assigned companies ) i,t 0.001 0.000 *** -0.000 0.000 ***

Constant 574.761 2.737 *** -0.627 0.470
Firm fixed-effect
Analyst fixed-effect
Year fixed-effect
#(obs)
F
Adj. R-squared
Within R-squared 0.004

0.590 0.639
0.026

650.920
3,037,588 3,037,588
4,799.540

yes
yes yes
yes

yes

Machine vs. Human SH vs. Human

yes
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(2) Counterfactual exercise 

 

(a) Firms that actually do not grow ex-post                         (b) Firms that actually grow ex-post 

 
 M = growth 

H = not growth 
(1) 

M = not growth 
H = growth 

 (2) 
(2)/(1) 

M = growth 
H = not growth 

(3) 

M = not growth 
H = growth 

 (4) 
(3)/(4) 

~20% 
tile 12,799 30,678 2.40  1765 791 2.23  

20~40% 
tile 15,822 38,401 2.43  2170 978 2.22  

40~60% 
tile 18,513 31,610 1.71  2660 883 3.01  

60~80% 
tile 25,171 22,727 0.90  3599 760 4.74  

80% 
tile~ 34,835 11,263 0.32  5308 401 13.24  

 
 


