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Abstract 

We make an empirical analysis of whether and how variance risk premia (VRP) 

contribute to predicting excess stock returns in the US and Japan. Our new findings 

to be added to the literature are that (i) the correlation between VRP and future 

excess returns in the US is insignificant when the risk-free rate is close to zero, and 

(ii) the correlation in Japan is significantly negative. To explain these findings, we 

also conduct a preliminary theoretical analysis with a structural model of asset 

pricing based on two assumptions: the zero lower bound (ZLB) for the risk-free rate, 

and a negative correlation between the consumption growth rate and the volatility-

of-volatility. These allow excess returns to follow a hump-shaped pattern. This 

affects the sign and significance of the correlation of the returns with the VRP. 
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1 Introduction

Variance risk premium (VRP) is defined as the difference between the expectation of the

quadratic variation (QV) of financial returns under the risk-neutral measure Q and that under

the physical measure P , which we call the conditional variance (CV). Using an asset pricing

model with time-varying volatility-of-volatility, Bollerslev et al. (2009) show that the VRP

can help in predicting excess stock returns. Bollerslev et al. (2009) and Bekaert and Hoerova

(2014) provide empirical evidence for this implication, using the VRP of S&P500 in the US.

Ubukata and Watanabe (2014a) and Andersen et al. (2019), however, find that the VRP lacks

the excess return predictability for the Nikkei 225 in Japan.

Bollerslev et al. (2014, Table 3) examine whether the VRP contributes to predicting ex-

cess stock returns in eight countries (France, Germany, Japan, Switzerland, the Netherlands,

Belgium, the UK and the US). Specifically, they regress the monthly-averaged excess return

(ER) of a stock index in each of the eight countries from month t to month t+ h on the VRP

of that index for month t; namely, ERt:t+h = α + βVRPt + ϵt, where ϵt is residuals. They

consider the cases of h =1, 2,...,6, 9, and 12 for the countries, and report the adjusted R2 of

these regressions. They find that the country-specific VRPs predict the returns in all of the

countries except for Japan. The relevance of the VRP to future excess stock returns differs

between countries. To investigate these differences in relation to countries’ risk-free rates, we

plot the adjusted R2 for selected hs and the risk-free rates in the eight countries in Figure 1.1

In Bollerslev et al.’s (2014) regressions for the selected hs, the VRPs are estimated to have

statistically significant coefficients for six countries at one percent levels of statistical signifi-

cance as indicated with •, and for one country at a five percent level of statistical significance

as indicated with ◦. Japan’s VRP is estimated to have a statistically insignificant coefficient

as indicated with ×. Figure 1 shows that a country with a higher (lower) risk-free rate has a

higher (lower) adjusted R2, and that Japan’s adjusted R2 is quite small.2

This article investigates the relevance of VRPs to predicting excess returns for Japan and

the US. The period of our sample for Japan ranges from 2000.2 to 2018.9. In this period,

Japan’s risk-free rate is always close to zero, except for a few points in time. The sample

1For each country, we select a specific h which has the largest value of the adjusted R2. The risk-free rates
are “short-term interest rates” in MainEconomicIndicators published by the OECD, and the averages of these
interest rates for the 12 years from 2000−2011, the period analyzed in Bollerslev et al. (2014). Bollerslev et al.
(2014, Table 3) also report the Newey-West t−statistics for the coefficients of the VRPs.

2Apart from the above-mentioned selection rule, we straightforwardly select the cases where hs are 3, 4, and
5. Even in these cases, we find the same positive relation between the adjusted R2 and the risk-free rates across
the eight countries.
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period for the US ranges from 1992.1 to 2017.7. The US risk-free rate is close to zero between

2008.11 and 2016.10. We examine this subsample period separately.

[Figure 1 about here.]

The expectation of QV under Q can be obtained as the squared implied volatility from

options prices. However, it is not appropriate to use the Black-Scholes model, because it

assumes that volatility is constant over time. We use a model-free implied volatility, which is

not based on the Black-Scholes model and is allowed to change over time. Specifically, we use

the Volatility Index Japan (VXJ) published by Osaka University for the Nikkei 225 stock index

in Japan, and VIX index from the Chicago Board Options Exchange (CBOE) for the S&P500

in the US. There are a number of methods for calculating CV. Traditional methods include

the GARCH and the stochastic volatility models with daily returns. A recent method is to

fit a model to realized variance (RV), which is the estimate of QV calculated using intraday

returns. Bollerslev et al. (2009, 2014) assume that RV follows a simple random-walk process.

Beyond this simple model, Corsi (2009) proposes a heterogeneous autoregressive (HAR) model,

which has been extended and is now widely used as surveyed by Watanabe (2020). In this

model, RV is a linear function of RVs with different frequency, such as daily, weekly and

monthly RVs. Ubukata and Watanabe (2014a) calculate CV using this model to examine

the excess return predictability of RV in Japan. If asset price is subject to discontinuous

jumps, RV will have both continuous and jump components, and the persistence in these two

components may be different. Andersen et al. (2007) extend this model to the HAR model

with continuous and jump components (HAR-CJ) by separating RV into these two components

and introducing them separately as explanatory variables. Bekaert and Hoerova (2014) extend

the HAR-CJ model by introducing the squared VIX as an explanatory variable and taking

account of the negative correlation between today’s return and tomorrow’s volatility, which is

a well-known phenomenon in stock markets. To calculate CV, we use this model, which we

call the asymmetric HAR-CJ model with the squared VIX.

The main empirical findings to be added to the literature are as follows. First, the corre-

lation between the VRP and future excess returns in the US is not statistically significant in

the subsample (2008.11–2016.10) when the risk-free rate is close to zero, while it is statistically

significant in the full sample (1992.1-2017.7), which is consistent with the previous literature,

such as Bollerslev et al. (2009, 2014) and Bekaert and Hoerova (2014). Second, the correlation

between the VRP and future excess returns in Japan is negative and, unlike Bollerslev et al.
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(2014), Ubukata and Watanabe (2014a), Uchiyama and Yamanaka (2015) and Andersen et al.

(2019), statistically significant.

Finally, to mark a first step toward a theoretical explanation of these findings, we provide

a simple asset pricing model by incorporating two new ingredients to Bollerslev et al. (2009):

the zero lower bound (ZLB) for the risk-free rate, and a negative correlation between the

consumption growth rate and the volatility-of-volatility. Since the risk-free rate can not be

lower than zero, excess stock returns follow a hump-shaped pattern and have a kink when the

risk-free rate hits the ZLB. On the left side of this kink (before the risk-free rate hits the ZLB),

the correlation between the VRP and the excess returns is significantly positive, which may

correspond to the case of the US when the risk-free rate is not close to zero. On the right hand

side of the kink, the correlation is significantly negative, which may correspond to the case of

Japan. Around the kink, the correlation becomes insignificant, which may correspond to the

case of the US in the ZLB period.

The article proceeds as follows. Sections 2 reviews the VRP and how we estimate it.

Section 3 explains the data used and the estimates of the VRP. Section 4 examines the excess

return predictability afforded by the VRP in Japan and the US. Section 5 makes a model to

understand our findings and discusses its associated limitations and potential improvements

for future theoretical research on the VRP. Section 6 concludes.

2 Variance Risk Premium

Suppose that the log-price p of an asset follows a typical jump diffusion process below:

dp(t) = µ(t)dt+ σ(t)dW (t) + κ(t)dN(t), (1)

where µ(t) is the drift, σ(t) is the volatility, W (t) is a standard Brownian motion, κ(t) is the

jump size, and N(t) is a counting measure for the jumps.

Suppose that we observe n intraday returns {rt+1/n, rt+2/n, . . . , rt+1} during day t. Then,

daily quadratic variation on day t, QVt, is defined as:

QVt = plim
n→∞

n∑
i=1

r2t+i/n. (2)
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Quadratic variation between day t+ 1 and t+ τ is defined as:

QVt+1:t+τ =

τ∑
i=1

QVt+i. (3)

Variance risk premium (VRP) is defined as the difference between the conditional expectation

of QV under Q and that under P as:

VRPt = EQ
t [QVt+1:t+τ ]− EP

t [QVt+1:t+τ ]. (4)

As usual, we set τ = 22 (one month).

EQ
t [QVt+1:t+τ ] is calculated from option prices. However, it is not appropriate to use the

Black-Scholes model, which assumes that volatility is constant over time. If the asset price

follows the jump-diffusion process (1), the following equation holds approximately, even if the

volatility changes over time (see Britten-Jones and Neuberger [2000] and Jiang and Tian [2005]

for the proof):

EQ
t [QVt+1:t+τ ] ≈ 2 exp(rτ)

[∫ F

0

P (τ,K)

K2
dK +

∫ ∞

F

C(τ,K)

K2
dK

]
, (5)

where r is risk-free rate, τ is time to maturity, K is strike price, P (τ,K) is price of put

option, C(τ,K) is price of call option and F = S exp(rτ). Equation (5) is subject to a minor

approximation error when the price jumps. However, this is immaterial in the context of

predictive regressions (see Andersen et al. [2019] for details). Since the integrals in the right-

hand-side cannot be solved analytically, they are approximated by the summation. In the

US, CBOE calculates VIX from the prices of S&P500 options using this method. In Japan,

Osaka University and Nikkei Publishing Inc. calculate VXJ and Nikkei VI respectively from

the prices of Nikkei 225 options. In VIX and Nikkei VI, the summation with respect to K

is calculated using the options traded in the market, which may cause a non-negligible bias

because the number of options with different K traded in the market is small (Jiang and Tian

[2005, 2007]). For Japan, we use VXJ because Osaka University calculates it by interpolating

options with the strike prices which are not traded in the market (see Fukasawa et al. [2011]

for the detail of VXJ). As such data is not available for the US, we use VIX. VIX and VXJ are

the square root of equation (5), annualized. We take the squares of VIX and VXJ and divide

them by 12, with the resulting figures being used for EQ
t [QVt+1:t+22].

There are several methods for the computation of CV, which researchers tend to calculate
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by fitting a model to the realized variance (RV) using intraday returns. The simple daily RV

is the sum of squared intraday returns over a day, and is written as:

RVt =
n∑

i=1

r2t+i/n. (6)

RV between days t+ 1 and t+ τ is

RVt+1:t+τ =

τ∑
i=1

RVt+i. (7)

This simple RV runs the risk of being biased by market microstructure noises such as bid-ask

bounce and nonsynchronous trading.3 As discussed by Ubukata and Watanabe (2014b), some

researchers have developed new methods to deal with any such bias, for example the realized

kernel estimator of Barndorff-Nielsen et al. (2008, 2009), and the two- or multi-scale estimator

of Zhang et al. (2005) and Zhang (2006).4 Nevertheless, Liu et al. (2015) show that these

methods have no advantage over the simple RV calculated using 5-minutes returns, in terms

of ability to predict volatility. Therefore, we use such returns for the simple RV, rather than

using these more complex methods.

Bollerslev et al. (2014) assume simply that EP
t [QVt+1:t+22] = QVt−21:t and estimate

QVt−21:t as RVt−21:t. However, this assumption is true only if monthly QV follows a ran-

dom walk. Andersen et al. (2001a,b, 2003) have documented that daily RV may follow a

long-memory process instead of a random walk, so they use an autoregressive fractionally in-

tegrated moving average (ARFIMA) model for daily RV (see Beran [1994] for long-memory

and ARFIMA models). A more widely used model is the heterogeneous autoregressive (HAR)

model proposed by Corsi (2009), written as:

log RVt+1 = α0 + βd log RVt + βw log RVt−4:t + βm log RVt−21:t + vt, vt ∼ N(0, σ2v), (8)

where RVt, RVt−4:t, and RVt−21:t are daily, weekly and monthly RVs. In this article, we express

3See Campbell et al. (1997) for details of market microstructure noise and Hansen and Lunde (2006) for the
bias in RV caused by market microstructure noise.

4Takahashi et al. (2009, 2016) extend stochastic volatility models so as to take account of the bias in RV
by modeling the daily returns and RV jointly. Similarly, Hansen et al. (2012) and Hansen and Huang (2016)
extend GARCH and EGARCH models to realized GARCH and EGARCH models.
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all variables in monthly units, so that we define RVt, RVt−4:t and RVt−21:t as:

RVt = 22

n∑
i=1

r2t−1+i/n, RVt−4:t =
22

5

5∑
i=1

RVt+1−i, RVt−21:t =

22∑
i=1

RVt+1−i. (9)

The HAR model (8) is not a long-memory model. However, it is known to accurately approx-

imate a long-memory process. The advantage of using this model is that it can be estimated

by OLS and we have only to replace the left-hand-side of equation (8) by logRVt+1:t+22 when

we wish to forecast monthly QV.

If the asset price follows equation (1), QV is divided into two components as:

QVt+1:t+τ =

∫ t+τ

t
σ2(s)ds+

∑
t<s≤t+τ

κ2(s)ds. (10)

The first and second terms on the right hand side are called the continuous and jump com-

ponents, respectively. The continuous component is usually more persistent than the jump

component. Andersen et al. (2007) extend the HAR model to the HAR-CJ model by separat-

ing RV into continuous and jump components and introducing them separately as explanatory

variables. Let Ct and Jt denote the continuous and jump components on day t in monthly

units and define weekly and monthly continuous components as:

Ct−4:t =
22

5

5∑
i=1

Ct−i+1, Ct−21:t =
22∑
i=1

Ct−i+1, (11)

and weekly and monthly jump components as:

Jt−4:t =
22

5

5∑
i=1

Jt−i+1, Jt−21:t =

22∑
i=1

Jt−i+1. (12)

Then, the HAR-CJ model has the following form:

logRVt+1:t+22

= α0 + βd logCt + βw logCt−4:t + βm logCt−21:t

+γd log(1 + Jt) + γw log(1 + Jt−4:t) + γm log(1 + Jt−21:t) + vt, vt ∼ N(0, σ2v). (13)

To separate RV into continuous and jump components, Andersen et al. (2007) use the bipower

variation (BV) method proposed by Barndorff-Nielsen and Shephard (2006), which we also use

in this article. Appendix A details this method.
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The negative correlation between today’s return and tomorrow’s volatility is a common

phenomenon in stock markets. The HAR and HAR-CJ models above do not take into account

this asymmetry in volatility. Although VIX and VXJ are under Q, they may include additional

information on future QV under P because they are the expectation of QV. To consider this

additional information and that asymmetry in volatility, Bekaert and Hoerova (2014) insert

log(VIX2
t /12) and R

−
t into the HAR-CJ model (13). They gain the following:

log RVt+1:t+22

= α0 + α1 log(VIX
2
t /12) + βd logCt + βw logCt−4:t + βm logCt−21:t

+γd log(1 + Jt) + γw log(1 + Jt−4:t) + γm log(1 + Jt−21:t)

+δR−
t + vt, vt ∼ N(0, σ2v), (14)

where Rt is daily return and R−
t = min [Rt, 0], which captures the asymmetry in volatility. If

δ < 0, this model is consistent with the above-mentioned negative correlation between today’s

return and tomorrow’s volatility. We use this model, which we call the asymmetric HAR-CJ

(AHAR-CJ) model with the squared VIX (VXJ).5

3 Data

The New York stock exchange is open between 9:00 and 15:00 and does not have a lunch break,

whereas the Tokyo Stock Exchange is open between 9:00 and 11:30 and between 12:30 and

15:00, with a one-hour lunch break. We obtain the prices of S&P500 at 9:00, 9:05, . . ., 15:00

from the Cash Indices of Tick Data, LLC, and those of Nikkei 225 at 9:00, 9:05, . . ., 11:30

and 12:30, 12:35, . . ., 15:00 from the Stock Indices of Nikkei NEEDS Tick Data. We calculate

5-minute returns of S&P500 and Nikkei 225 as the log difference of the consecutive prices. We

omit the overnight returns in both the indices and the lunch time returns between 11:30 and

12:30 in Nikkei 225 because their time intervals are long.

As mentioned above, we first calculate RVs of Nikkei 225 and S&P500 as the sum of the

squares of 5-minute returns without overnight and lunch-time returns. Since a whole day’s (24

5Bekaert and Hoerova (2014) also add

R−
t−4:t = min

[
Rt, (22/5)

5∑
t=1

Rt+1−i

]
, R−

t−21:t = min

[
Rt,

22∑
t=1

Rt+1−i

]

as explanatory variables. However, we remove them because they are not statically significant, either in Japan
or the US.
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hours) volatility is underestimated when the RV is calculated with overnight and lunch-time

returns excluded, we use the method proposed by Hansen and Lunde (2005) to convert the

RVs to the estimate of a whole day’s volatility:

RVt = c∗RV
(o)
t , c∗ =

∑T
t=1(Rt − R̄)2∑T

t=1RV
(o)
t

, (15)

where Rt is the daily return and R̄ is the sample mean of daily returns {R1, . . . , RT }. This

case verifies the following:

1

T

T∑
t=1

RVt =
1

T

T∑
t=1

(Rt − R̄)2. (16)

This adjustment makes the sample mean of RV equal to the sample variance of daily returns.

As in equation (14), we separate a whole day’s RV into continuous and jump components

using the bipower variation method proposed by Barndorff-Nielsen and Shephard (2006). We

set Jt equal to RVt −BVt if it is statistically significant at the 1% significance level, and equal

to zero otherwise.6 The daily continuous component Ct is set equal to RVt − Jt.

Table 1 shows the OLS estimation results of the AHAR-CJ model with the squared VIX

(VXJ) using the full samples. Following Andersen et al. (2007), we calculate the Newey-

West (1987) t−statistics with a Bartlett kernel and the lag length of 44 taking account of

the overlapping observations problem. The adjusted R2 figures for Nikkei 225 and S&P500

are 0.598 and 0.715, respectively, indicating the high explanatory power of this model. All

parameters except γm in Nikkei 225 and γd and γw in S&P500 are statistically significant at

the 5% significance level. Bekaert and Hoerova (2014) also find that γd and γw in S&P500 are

not statistically significant. We also conduct all analyses below by assuming γm = 0 in Nikkei

225 and γd = γw = 0 in S&P500, but the result does not change qualitatively. δ is significantly

negative both for Nikkei 225 and S&P500, which is consistent with the common phenomenon

in stock markets of a negative correlation between today’s return and tomorrow’s volatility.

[Table 1 about here.]

We estimate the AHAR-CJ model with the squared VIX or VXJ at the end of the last

trading day of each month using 500 samples up to that day. Using the estimates of parameters

6We also calculate Ct and Jt using the 0.1% and 5% significance levels, but the results are unaltered. We
report the 1%-significant-level cases in the text.
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and error variance (α̂0, α̂1, β̂d, β̂w, β̂m, γ̂d, γ̂w, γ̂m, δ̂, σ̂2v), we calculate EP
t [RVt+1:t+22] as:

EP
t [RVt+1:t+22]

= exp

[
EP

t [log RVt+1:t+22] +
1

2
V arPt [log RVt+1:t+22]

]
= exp

[
α̂0 + α̂1 log(VIX

2
t /12) + β̂d logCt + β̂w logCt−4:t + β̂m logCt−21:t

+γ̂d log(1 + Jt) + γ̂w log(1 + Jt−4:t) + γ̂m log(1 + Jt−21:t) + δ̂R−
t +

1

2
σ̂2v

]
. (17)

We can then calculate the VRP as the difference between either the squared VIX or VXJ,

and EP
t [RVt+1:t+22]. Daily data on VIX and VXJ are downloaded from the CBOE and Osaka

University websites. We obtain the VRP of Nikkei 225 at the end of each month between

2000.2 and 2018.9, and of S&P500 between 1992.1 and 2017.7. Figure 2 plots the squared VIX

or VXJ, CV and the VRP of Nikkei 225 and S&P500. If traders are risk averse, the VRP

would have to be positive. However, we sometimes obtain negative values for the VRP.

[Figure 2 about here.]

4 The Excess Return Predictability and the VRP

We regress the h-month-ahead excess stock return, ERt:t+h = 1
h

∑h
i=1 ERt+i, on VRPt to

examine the excess return predictability afforded by the VRP as:

ERt:t+h = α+ βVRPt + ϵt, (18)

where the excess returns of Nikkei 225 and S&P500 are calculated as the differences between the

returns of Nikkei 225 and S&P500, and the risk-free rates. Following the previous literature,

such as Bollerslev et al. (2009, 2014) and Bekaert and Hoerova (2014), we use the 3-month

T-bill rate as the risk-free rate for the US. We use the 1-month call rate for Japan because the

3-month call market is so illiquid that there are some missing data due to no trading. The

3-month T-bill and 1-month call money rates are downloaded from the websites of the Federal

Reserve Bank of St. Louis and the Bank of Japan (BOJ), respectively.

This regression is subject to the overlapping observations problem. Bollerslev et al.’s (2014)

simulation result shows that the Newey-West (1987) t−statistic with a Bartlett kernel and a

lag length determined by h+4((T − h)/100)2/9 is marginally more powerful than the Hodrick
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(1992) type t−statistic.7 Table 2 shows the estimates of α and β with the Newey-West-based

t−statistics and adjusted R2 for Nikkei 225. While the previous literature, such as Bollerslev

et al. (2014), Ubukata and Watanabe (2014a), Uchiyama and Yamanaka (2015) and Andersen

et al. (2019), does not find any significant correlations between the VRP and the future excess

returns in Japan for any h, Table 2(a) shows a significantly negative correlation for h = 3, 4

at the 5% significance level (one-sided test). This does not mean that the VRP contributes

to predicting the excess returns for Nikkei 225, because the adjusted R2 is very small. Notice

that the adjusted R2 is denoted in percentage in Tables 2 and 3, while it is not in Table 1.

The negative correlation between the VRP and the excess returns contradicts the theoretical

results in Bollerslev et al. (2009). Table2(b) shows significantly positive correlation between

the VRP and the excess returns for h = 1, 3, 4 at the 5% significance level (one-sided test),

which is consistent with the theoretical results in Bollerslev et al. (2009) and the empirical

results in Bollerslev et al. (2009, 2014) and Bekaert and Hoerova (2014). The adjusted R2 is

still small but larger than that for Nikkei 225.

[Table 2 about here.]

[Figure 3 about here.]

Figure 3 plots the 1-month call money rate in Japan and 3-month T-bill rate in the US,

which we use as risk-free rates. The 1-month call rate in Figure 3(a) is always close to zero,

except for some short periods. The 3-month T-bill rate in the US is close to zero only between

2008.11 and 2016.10. No one has examined the excess return predictability of the VRP during

this period in the US. If the lack of excess return predictability of the VRP in Japan is due to

the ZLB for the risk-free rate, we would expect the VRP in the US to not predict the excess

returns during this period. Table 3 shows the estimation results using the subsample between

2008.11 and 2016.10. As is expected, β is not statistically significant for any h at any standard

significance level.

[Table 3 about here.]

Figure 2 shows that VIX and VRP in Japan increase around the end of 2008 after the

Lehman shock in 2008.9, while CV increases more than VIX in the US, so that VRP has

7The lag-length selection for the Newey-West (1987) t−statistics is still under debate (see Lazarus et al.
[2018]). We set the lag-length for the Newey-West t−statistics in Table 1 following Andersen et al. (2007), and
that in Table 2 and 3 following Bollerslev et al. (2014).
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negative values. To examine the effect of the dramatic increase in VRP around the end of

2008 in Japan from our results, we excluded the data between 2008.10 and 2008.12 from all

analyses for Japan in this section. The results are, however, qualitatively unaltered.

5 Model

In this section, we conduct a theoretical analysis to explain the results obtained in the previous

section by using a simple asset pricing model. Bollerslev et al. (2009) provide an asset pricing

model with time-varying volatility-of-volatility to produce a positive correlation between the

VRP and excess stock returns. In the previous sections, we obtain the following results.

1. In the US, the correlation between the VRP and excess stock returns is significantly

positive when we use the full sample (1992.1-2017.7), while it is not statistically significant

when we restrict the sample to the ZLB period (2008.11-2016.10).

2. In Japan, the correlation between the VRP and excess stock returns is significantly

negative.

These results can not be explained by Bollerslev et al.’s (2009) model, which always produces

a positive correlation between the VRP and excess stock returns. To explain the above results,

we extend the model of Bollerslev et al. (2009) by incorporating two new ingredients: (a) the

ZLB for the risk-free rate and (b) a negative correlation between the consumption growth rate

and the volatility-of-volatility.

Pricing a higher-order risk premium, or VRP, requires the use of a recursive utility function

(e.g., Epstein and Zin [1989], Bansal and Yaron [2004]). To obtain an analytical solution to a

model using this utility function, we make some unconventional assumptions. In reality, the

ZLB is imposed on nominal interest rates, but we impose it on real interest rates by assuming

zero inflation that equalizes nominal with real interest rates. We exclude the monetary au-

thority and assume that real interest rates are equal to zero if the values determined by the

Euler equation are less than zero. Thanks to these assumptions, our model can explain why

the correlation between the VRP and future excess returns can be zero or negative. We close

this section by discussing the theoretical potentials and technical difficulties of incorporating

our model to New-Keynesian frameworks, general equilibrium models with nominal rigidities,

and ways to render those unconventional assumptions unnecessary.
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5.1 Environment

Suppose that geometric growth rate of consumption in the economy, gt+1 = log
(
Ct+1

Ct

)
, follows

a stochastic process such as:

gt+1 = µg(qt) + σg,tzg,t+1, (19)

σ2g,t+1 = aσ + ρσσ
2
g,t +

√
qtzσ,t+1, (20)

qt+1 = aq + ρqqt + φq
√
qtzq,t+1, (21)

where σg,t is the conditional variance of growth rate, qt is a parameter associated with the

volatility-of-volatility, {zg,t, zσ,t, zq,t} are jointly independent i.i.d. N(0,1) innovation processes,

and µg is the mean growth rate. Parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, φq > 0.

Notice that there are two state variables in the economy, namely, σg,t and qt.

We assume a negative correlation between the consumption growth rate and the volatility-

of-volatility as:

µg(qt) = −αqt + β, (22)

where α and β are associated parameters. This assumption is based on what Oya (2011)

and Ubukata and Watanabe (2014a) find for Japan; that is, changes in the VRP are counter-

cyclical. These changes are directly proportional to changes in the volatility-of-volatility in our

model, as will be demonstrated later. That assumption diverges from Bollerslev et al. (2009)

in which µg(qt) is constant. The assumption contributes to creating a negative correlation

between the VRP and excess stock returns.

We assume that the representative agent in the economy has the Epstein-Zin-Weil utility

function (Epstein and Zin [1989]) such that:

Vt =

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V

1−γ
t+1 ]

) 1
θ

] θ
1−γ

, (23)

where δ is the subjective discount factor, γ is the coefficient of risk aversion, θ is defined as

θ ≡ 1−γ

1− 1
ψ

in which ψ is the intertemporal elasticity of substitution.

Then, the logarithm of the stochastic discount factor, mt+1 ≡ log(Mt+1), can be expressed
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as:

mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)rt+1, (24)

where rt+1 ≡ log(Rt+1) is the return at t+ 1 on the consumption claim (equity).

5.2 Equilibrium Solution

5.2.1 Stock Returns

By using the stochastic discount factormt+1 derived in the previous subsection, the equilibrium

condition for equity, Et[Mt+1Rt+1] = 1, leads to

Et

[
exp

(
θ ln δ − θ

ψ
gt+1 + θrt+1

)]
= 1. (25)

We conjecture that the log (equity) price-consumption ratio, wt, follows:

wt = A0 +Aσσ
2
g,t +Aqqt. (26)

Furthermore, following Campbell and Shiller (1988), the stock return (rt+1) is approximated

by using this price-consumption ratio as:

rt+1 = κ0 + κ1wt+1 − wt + gt+1. (27)

Parameters (A0, Aσ, Aq) are pinned down by solving the above conditions.

rt+1 can be expressed explicitly by using state variables (σg,t, qt) and innovations as:

rt+1 = − ln δ − αqt +
β

ψ
− (1− γ)2

2θ
σ2g,t + (κ1ρq − 1)Aqqt + σg,tzg,t+1

+ κ1
√
qt (Aσzσ,t+1 +Aqφqzq,t+1) . (28)

See Appendix B for details of the derivation.

5.2.2 Risk-Free Rate

We derive the risk-free rate (rf ) in a similar way to that used by Bansal and Yaron (2004). Let

rft ≡ log(Rf
t ), where R

f
t is the return on the risk-free asset at t+1. The equilibrium condition

13



for this asset, Et[Mt+1R
f
t ] = 1, leads to

Et

[
exp

(
θ ln δ − θ

ψ
gt+1 + (θ − 1)rt+1 + rft

)]
= 1. (29)

Solving this equation for rft yields:

rft = − ln δ − αqt

(
θ

ψ
+ 1− θ

)
+
β

ψ

+ σ2g,t

[
(1− γ)2

2θ
(θ − 1)− 1

2

(
θ

ψ

)2

− 1

2
(θ − 1)2 − θ(1− θ)

ψ

]

+ qt

[
(1− θ)(κ1ρq − 1)Aq −

1

2
(θ − 1)2κ21

(
A2

σ + (Aqφq)
2
)]
. (30)

See Appendix C for details of the derivation.

5.2.3 Excess Stock Returns without the ZLB

We compute excess stock returns by using equations (28) and (30) as:

Et

[
rt+1 − rft

]
= σ2g,t

(
γ − 1

2

)
︸ ︷︷ ︸

Risk premium fromvolatility

+ qt

(
1

2
− θ

)
κ21

(
A2

σ + (Aqφq)
2
)

︸ ︷︷ ︸
Risk premium from volatility-of-volatility

. (31)

The excess returns consist of two kinds of risk premia. The first comes from volatility, and the

second comes from volatility-of-volatility.

See Appendix D for details of the derivation.

5.2.4 Zero Lower Bound for the Risk-Free Rate

We assume that the risk-free rate rft described by equation (30) is not less than zero, as shown

below:

r̂ft = max{rft , 0}. (32)

Now, the excess stock return with the ZLB can be described as Et

[
rt+1 − r̂ft

]
.

We interpret here a situation where the ZLB works for the risk-free asset as meaning that

the representative consumer has infinite demand for risk-free assets when the risk-free rate is
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zero. In this case, the market for risk-free assets does not clear, since the risk-free rate cannot

decrease any further: excess demand for risk-free assets arises. In our model, risk-free assets

correspond to securities and bank deposits. When the risk-free rate is zero, the representative

consumer wants to invest more in those risk-free assets, however, supply cannot keep pace with

demand.

5.2.5 VRP (Variance Risk Premium)

In line with Bollerslev et al. (2009), we describe the VRP as:

VRPt ≡ EQ
t

(
σ2t+1

)
− EP

t

(
σ2t+1

)
= (θ − 1)κ1

[
Aσ +Aqκ

2
1

(
A2

σ +A2
qφ

2
q

)
φ2
q

]
qt, (33)

where the VRP is proportional to the volatility-of-volatility.

5.3 Calibration

To calibrate our model, we set the parameter values with reference to the ones used in Bollerslev

et al. (2009). Our κ1 is 0.8 and different from that used by Bollerslev et al. (2009). This

is because the solution of Aq in the quadratic equation (B4) becomes a complex number that

prevents an equilibrium from emerging when we use the value 0.9 used by Bollerslev et al.

(2009). Two parameters (α, β) are specific to our model. These are set so that the average

consumption growth rate becomes 0.15%. Table 4 shows the value of all parameters.

[Table 4 about here.]

5.4 Model Results

Figure 4 shows the solutions of the calibrated model. We fix one of the state variables σg,t at

the mean value and change the other state variable qt, then observe any change in excess stock

returns and VRP.

Figure 4(a) shows how the stock return (rt), the risk-free rate (rft ), and the excess stock

return (rt − rft ) change over the volatility-of-volatility (qt). When qt increases, both the stock

return and the risk-free rate decrease initially because we assume that the consumption growth

rate (µg) has a negative correlation with the volatility-of-volatility (qt). One part of the excess

stock return, or a risk premium coming from qt, increases because investors require more

15



premium for higher-order uncertainty as shown in equation (31). However, after the risk-free

rate hits the ZLB, the excess stock return begins to decline. As a result, the excess stock

return follows a hump-shaped pattern over qt, as shown in Figure 4(a). Figure 4(b) shows the

counterparts in Bollerslev et al. (2009). Their excess stock return monotonically increases as

qt increases.

Figure 4(c) shows how the VRP varies over qt. As shown in equation (33), it monotonically

increases when qt increases. On the left hand side of the kink (before the risk-free rate hits

the ZLB), the correlation between the VRP and excess stock returns is significantly positive.

This may correspond to the US case. On the right hand side of this kink (after the risk-free

rate hits the ZLB), the correlation is significantly negative. This may correspond to the case

of Japan. Finally, around this kink, the correlation becomes insignificant. This corresponds to

the US case in the ZLB period.

[Figure 4 about here.]

5.5 Discussion

To explain the two important observations on the VRP mentioned above, we extend the model

of Bollerslev et al. (2009), while keeping their underlying model specific, a real endowment

economy with exogenous production and consumption. To obtain an analytical solution to our

extended model, we need to make the following three assumptions.

First, the ZLB is imposed not on the nominal but on the real interest rate. In our model,

the real interest rate is equal to the nominal interest rate simply because there is no distinction

between the nominal and real terms. This equalization can be verified in an extreme situation

where the final goods price is perfectly rigid.

Second, we abstract from the monetary authority. In line with Bollerslev et al. (2009), our

model does not provide the monetary authority with any role, because the model describes an

endowment economy without any nominal frictions. The absence of such frictions removes the

need for a policy-making body that affects the real allocation and social welfare.

Last, equation (32) means that real interest rates are equal to zero if the value of rft

determined by the Euler equation (30) is less than zero. This assumption causes excess demand

for risk-free assets when real interest rates are zero, because the Euler equation for the assets

is not satisfied. When the risk-free rate hits zero, it will not decrease any further, thereby

failing to clear the market for the assets. Because production is exogenous in our endowment
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economy, there is no way for the economy to change production to restore equilibrium in the

risk-free asset market. Securities and bank deposits are real-world examples of our model’s

risk-free assets. When the risk-free rate is zero, the representative consumer wants to invest in

the risk-free assets as much as possible to store their value. Not all of this demand, however,

can be accommodated, because the supply of these assets is limited.

One may regard these assumptions as unconventional with reference to the New-Keynesian

framework. Within this framework, a conventional monetary economy would be one in which

production is determined endogenously, where the monetary authority works in response to

inflation based on a specific rule such as the Taylor rule, and where the nominal interest rate

is equal to zero if the value determined by that rule is less than zero. New-Keynesian models

with the ZLB have the potential to relax the three assumptions made in our model. Some

New-Keynesian models do not need our first assumption because they can make a distinction

between nominal and real terms by embedding money in the economy. This distinction helps

impose the ZLB on nominal interest rate. Some New-Keynesian models work without our

model’s second assumption because they generate nominal frictions, calling for a monetary

authority that can mitigate the inefficiencies caused by those frictions. Regarding the last

unconventional assumption, when the risk-free rate hits zero, the New-Keynesian framework

allows the new equilibrium to arise endogenously in the risk-free asset market in response to

the reduction in demand for risk-free assets due to the decline in production, income, and then

consumption (see, e.g., Eggertsson and Woodford [2003], Caballero and Farhi [2017], Basu and

Bundick [2017]). In our model, this mechanism will not work, simply because production is

exogenous, as in the model of Bollerslev et al. (2009).

Inspired by the potential of the New-Keynesian framework, Basu and Bundick (2017) and

Strobel et al. (2019) employ the framework to analyze the second-order risk premium, and

propose numerical methods for solving the equilibrium with the ZLB imposed on the nominal

rate. Unfortunately, their methods are not applicable in this study because the VRP is a

fourth-order risk premium, which requires the use of a recursive utility function for pricing.

6 Conclusion

We investigate the relevance of VRPs to predicting excess stock returns for Japan and the

US. The main findings are as follows. First, the correlation between the VRP and the future

excess returns in the US is statistically significant in the full sample (1990.12-2017.7), which is
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consistent with the previous literature, while it is not statistically significant in the subsample

(2008.11–2016.10) during the period of zero interest policy. Second, the correlation between

the VRP and the future excess returns in Japan is negative and, unlike the previous literature,

statistically significant. To provide an account of these findings, we conduct a preliminary

theoretical analysis with a structural model of asset pricing based on two assumptions: the

ZLB for the risk-free rate and a negative correlation between the consumption growth rate and

the volatility-of-volatility.

Our study merits several extensions. First, as we examine only Japan and the US, our study

invites application to other countries too. Second, it may be interesting to examine the effect of

the BOJ’s ETF purchases on the VRP and excess stock returns, and on the relation between

these two. Third, although we do not cover production and financial intermediaries, these

would both merit consideration in constructing an equilibrium model for the VRP. Oya (2011)

and Ubukata and Watanabe (2014a) show that the VRP contributes to predicting business

cycles for Japan. Ubukata and Watanabe (2014a) also find that the VRP has predictive power

for credit spreads in Japan. In the US, by contrast, rather than the VRP, it is conditional

variance (CV) that predicts business cycles and financial instability (Bekaert and Hoerova

[2014]). Fourth, to explain fully the mechanics of the correlation between the VRP and excess

stock returns, our unconventional assumptions made to straightforwardly extend the model of

Bollerslev et al. (2009) should be relaxed. The New-Keynesian framework has the potential

to help this relaxation. However, to make it feasible for fourth-order risk premia, further

technical efforts are needed to secure the approximation accuracy and computability for such

risk premia. Last, there are some other extensions of the HAR model, such as those proposed

by Bollerslev et al. (2016) and Chen et al. (2018). Stroud and Johannes (2014) show that the

QV’s ability to predict excess stock returns increases by modelling the dynamics of intraday

volatility. It would be interesting to calculate the VRP using such new methods and compare

it with that calculated based on the conventional HAR model.
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Appendix

A Method for Dividing RV into the Continuous and Jump

Components

To divide RVt into the continuous component Ct and the jump component Jt, we use the

method proposed by Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen and Shep-

hard (2006). The following Bipower Variation (BVt) converges to the continuous component

Ct as n→ ∞.

BVt = µ−2
1

n

n− 1

n∑
i=2

|rt−1+i/n||rt−1+(i−1)/n|, (A1)

where µ1 =
√
2/π.

We first test for the null hypothesis of no jump. Following Barndorff-Nielsen and Shephard

(2006) and Huang and Tauchen (2005), we use the following test statistic.

Z∗
t =

√
n(RVt − BVt)RV

−1
t√

(µ−4
1 + 2µ−2

1 − 5)Max(1,TQtBV
−2
t )

, (A2)

where TQt is the tri-power quarticity defined by

TQt = nµ−3
4/3

n

n− 4

n∑
i=3

|rt−1+i/n|4/3|rt−1+(i−1)/n|4/3|rt−1+(i−2)/n|4/3,

µ4/3 = 22/3Γ(7/6)Γ(1/2)−1.

The asymptotic distribution of Z∗
t is the standard normal under the null hypothesis of no

jump. We conduct this test at the 1% significance level.

Then, we set Ct = RVt − Jt if the null hypothesis is rejected and Ct = RVt otherwise.

B Derivation for Stock Returns

By substituting equations (19), (20), (21), and (26) into (27), we can express the stock return

rt+1 by using the state variables (σg,t, qt) and innovations as:
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rt+1 = κ0 + κ1(A0 +Aσσ
2
g,t+1 +Aqqt+1)− (A0 +Aσσ

2
g,t +Aqqt) + gt+1

= β + κ0 + (κ1 − 1)A0 + κ1Aqaq + κ1Aσaσ + (κ1ρσ − 1)Aσσ
2
g,t

+ [(κ1ρq − 1)Aq − α]qt + κ1Aσ
√
qtzσ,t+1 + κ1Aqφq

√
qtzq,t+1 + σg,tzg,t+1. (B1)

Using the above equation, we can rewrite the term in equation (25) as:

θ ln δ − θ

ψ
gt+1 + θrt+1 = θ

[
ln δ + κ0 + β(1− 1

ψ
) + (κ1 − 1)A0 + κ1(Aσaσ +Aqaq)

+ (κ1ρσ − 1)Aσσ
2
g,t +

{
(κ1ρq − 1)Aq − α(1− 1

ψ
)

}
qt

]
+ θκ1Aσ

√
qtzσ,t+1 + θκ1Aqφq

√
qtzq,t+1 + θσg,t

(
1− 1

ψ

)
zg,t+1.

Using the formula, E[exp(X)] = exp[E(X) + 1
2V ar(X)], LHS of equation (25) becomes

exp

[
θ

(
ln δ + κ0 + β(1− 1

ψ
) + (κ1 − 1)A0 + κ1(Aσaσ +Aqaq)

+(κ1ρσ − 1)Aσσ
2
g,t +

{
(κ1ρq − 1)Aq − α(1− 1

ψ
)

}
qt

)
+
1

2
qt(θκ1)

2
(
A2

σ + (Aqφq)
2
)
+

1

2
(θσg,t)

2

(
1− 1

ψ

)2
]
.

Since equilibrium condition (25) holds for any state variables (σg,t, qt), we have following

three conditions:

β

(
1− 1

ψ

)
+ ln δ + κ0 + (κ1 − 1)A0 + κ1(Aσaσ +Aqaq) = 0, (B2)

(κ1ρσ − 1)Aσ +
1

2
θ

(
1− 1

ψ

)2

= 0, (B3)

(κ1ρq − 1)Aq − α

(
1− 1

ψ

)
+

1

2
θκ21

(
A2

σ + (Aqφq)
2
)
= 0. (B4)

Equations (B2), (B3), and (B4) jointly yield the solution for (A0, Aσ, Aq). In particular,

we have the explicit solution for Aσ:
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Aσ =
(1− γ)2

2θ(1− κ1ρσ)
. (B5)

By substituting (B2) and (B5) into (B1), we have the solution for the stock return rt+1 as

equation (28).

C Derivation for the Risk-Free Rate

The derivation for the risk-free rate rft is as follows:

Using the formula, E[exp(X)] = exp[E(X) + 1
2V ar(X)], equation (29) becomes

expEt

[(
θ ln δ − θ

ψ
gt+1 + (θ − 1)rt+1 + rft

)
+

1

2
V art

(
θ

ψ
gt+1 + (1− θ)rt+1

)]
= 1.

Solving the above equation with respect to rft yields:

rft = −θ ln δ + θ

ψ
Et [gt+1] + (1− θ)Et [rt+1]−

1

2
V art

(
θ

ψ
gt+1 + (1− θ)rt+1

)
= −θ ln δ + θ

ψ
(−αqt + β) + (1− θ)

[
− ln δ − αqt +

β

ψ
− (1− γ)2

2θ
σ2g,t + (κ1ρq − 1)Aqqt

]
− 1

2

[(
θσg,t
ψ

)2

+ (θ − 1)2
(
σ2g,t + κ21qt

(
A2

σ + (Aqφq)
2
))

+
2θ(1− θ)

ψ
σ2g,t

]

= − ln δ − αqt

(
θ

ψ
+ 1− θ

)
+
β

ψ
+ (1− θ)

[
−(1− γ)2

2θ
σ2g,t + (κ1ρq − 1)Aqqt

]
− 1

2

[(
θσg,t
ψ

)2

+ (θ − 1)2
(
σ2g,t + κ21qt

(
A2

σ + (Aqφq)
2
))

+
2θ(1− θ)

ψ
σ2g,t

]

= − ln δ − αqt

(
θ

ψ
+ 1− θ

)
+
β

ψ
+ σ2g,t

[
(1− γ)2

2θ
(θ − 1)− 1

2

(
θ

ψ

)2

− 1

2
(θ − 1)2 − θ(1− θ)

ψ

]

+ qt

[
(1− θ)(κ1ρq − 1)Aq −

1

2
(θ − 1)2κ21

(
A2

σ + (Aqφq)
2
)]
.

D Derivation for the Excess Stock Return without the ZLB

Excess stock return can be computed by using equations (28) and (30) as:
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Et

[
rt+1 − rft

]
= − ln δ − αqt +

β

ψ
− (1− γ)2

2θ
σ2g,t + (κ1ρq − 1)Aqqt

+ ln δ + αqt

(
θ

ψ
+ 1− θ

)
− β

ψ

− σ2g,t

[
(1− γ)2

2θ
(θ − 1)− 1

2

(
θ

ψ

)2

− 1

2
(θ − 1)2 − θ(1− θ)

ψ

]

− qt

[
(1− θ)(κ1ρq − 1)Aq −

1

2
(θ − 1)2κ21

(
A2

σ + (Aqφq)
2
)]

= θαqt

(
1

ψ
− 1

)
+ σ2g,t

[
1

2

(
θ

ψ

)2

+
1

2
(θ − 1)2 +

θ(1− θ)

ψ
− (1− γ)2

2

]

+ qt

[
θ(κ1ρq − 1)Aq +

1

2
(θ − 1)2κ21

(
A2

σ + (Aqφq)
2
)]

= θαqt

(
1

ψ
− 1

)
+ σ2g,t

(
γ − 1

2

)
+ qt

[
θ(κ1ρq − 1)Aq +

1

2
θ2κ21

(
A2

σ + (Aqφq)
2
)

− (θ − 1

2
)κ21

(
A2

σ + (Aqφq)
2
)]

= θαqt

(
1

ψ
− 1

)
+ σ2g,t

(
γ − 1

2

)
− qt

[
(θ − 1

2
)κ21

(
A2

σ + (Aqφq)
2
)]

+ θαqt

(
1− 1

ψ

)
= σ2g,t

(
γ − 1

2

)
+ qt

(
1

2
− θ

)
κ21

(
A2

σ + (Aqφq)
2
)
,

where we use the condition (B4).
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Figure 1: Relation between the Predictability and the Risk-Free Rate by Country
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Note: Bollerslev et al. (2014, Table 3) regress the monthly-averaged excess return of a stock index in each of

the eight countries from month t to month t+ h on the VRP of that index for month t and report the adjusted

R2 for h =1, 2,...,6, 9, and 12. This figure plots the adjusted R2 for selected hs and the risk-free rates in the

eight countries. For each country, we select a specific h which has the largest value of adjusted R2. The risk-free

rates are “short-term interest rates” in Main Economic Indicators published by OECD, and the averages of

these interest rates for the 12 years from 2000−2011, the period analyzed in Bollerslev et al. (2014). Bollerslev

et al. (2014, Table 3) also report the Newey-West t−statistics for the coefficients of the VRPs. In Bollerslev et

al.’s (2014) regressions for the selected hs, the VRPs are estimated to have statistically significant coefficients

for six countries at one percent levels of statistical significance as indicated with •, and for one country at a

five percent level of statistical significance as indicated with ◦. Japan’s VRP is estimated to have a statistically

insignificant coefficient as indicated with ×.
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Figure 2: Squared VIX (VXJ), CVs and VRPs
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Figure 3: Risk-Free Rates in Japan and US
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Figure 4: Solutions of Calibrated Model

(a) Excess stock return over qt (our model)
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Table 1: Estimation Results of the AHR-CJ Model with the Squared VIX (VXJ)

(a) Nikkei 225

α0 α1 βd βw βm γd γw γm δ R
2

Estimates 0.654 0.276 0.125 0.228 0.157 0.016 0.033 0.060 −0.001 0.598
t−stat. 3.637 3.317 7.121 4.562 2.256 3.132 2.230 1.480 −2.687

The sample period is between 1998.2.5 and 2018.9.28 and the sample size is 5,073. The Newey-West (1987)
t−statistics with a Bartlett kernel and the lag length of 44 are calculated taking account of the overlapping

observations problem. R
2
is the adjusted R2.

(b) S&P500

α0 α1 βd βw βm γd γw γm δ R
2

Estimates 0.219 0.316 0.106 0.209 0.214 0.007 0.007 0.109 −0.003 0.715
t−stat. 1.678 4.437 7.787 5.778 3.800 1.618 0.309 2.358 −4.706

The sample period is between 1990.2.1 and 2017.7.31 and the sample size is 6,924. The Newey-West (1987)
t−statistics with a Bartlett kernel and the lag length of 44 are calculated taking account of the overlapping

observations problem. R
2
is the adjusted R2.
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Table 2: Results of the Regressions (Full Sample)

(a) Nikkei 225 (2000.2–2018.9)

h 1 2 3 4 5 6

α 0.073 0.036 0.097 0.127 0.096 0.069
(0.163) (0.080) (0.226) (0.300) (0.225) (0.161)

β −0.004 −0.001 −0.005 −0.006 −0.003 −0.001
(−1.119) (−0.305) (−2.612) (−3.317) (−1.390) (−0.234)

R
2
(%) −0.362 −0.443 0.017 0.401 −0.137 −0.439

h 7 8 9 10 11 12

α 0.055 0.055 0.068 0.080 0.093 0.105
(0.127) (0.127) (0.160) (0.188) (0.220) (0.251)

β 0.001 0.001 0.001 0.001 0.000 −0.000
(0.376) (0.480) (0.341) (0.244) (0.103) (−0.104)

R
2
(%) −0.416 −0.380 −0.405 -0.427 −0.447 −0.446

The numbers in parentheses are the Newey-West (1987) t−statistics with a Bartlett kernel

and a lag length determined by h+ 4((T − h)/100)2/9. R
2
is the adjusted R2.

(b) S&P500 (1992.1–2017.7)

h 1 2 3 4 5 6

α 0.051 0.098 0.021 0.039 0.171 0.248
(0.164) (0.311) (0.066) (0.124) (0.574) (0.867)

β 0.032 0.028 0.036 0.034 0.022 0.015
(2.183) (1.805) (2.957) (3.024) (1.975) (1.348)

R
2
(%) 1.047 1.579 4.473 5.307 2.339 1.065

h 7 8 9 10 11 12

α 0.267 0.295 0.342 0.371 0.367 0.367
(0.951) (1.075) (1.308) (1.454) (1.468) (1.469)

β 0.013 0.010 0.006 0.003 0.003 0.003
(1.223) (1.046) (0.571) (0.286) (0.342) (0.379)

R
2
(%) 0.906 0.533 −0.045 −0.251 −0.225 −0.207

The numbers in parentheses are the Newey-West (1987) t−statistics with a Bartlett kernel

and a lag length determined by h+ 4((T − h)/100)2/9. R
2
is the adjusted R2.
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Table 3: Results of the Regressions for S&P5 00

S&P500 (2008.11–2016.10: Zero Interest Rate Period)

h 1 2 3 4 5 6

α 0.930 1.035 0.886 0.970 1.088 1.099
(2.062) (2.447) (2.071) (2.563) (3.180) (3.370)

β −0.001 −0.013 0.011 0.008 −0.005 −0.007
(−0.014) (−0.472) (0.482) (0.424) (−0.277) (−0.356)

R
2
(%) −1.063 −0.595 −0.525 −0.631 −0.803 −0.505

h 7 8 9 10 11 12

α 1.092 1.136 1.121 1.114 1.067 1.053
(3.686) (4.543) (4.718) (4.905) (4.974) (5.033)

β −0.007 −0.013 −0.012 −0.013 −0.008 −0.007
(−0.424) (−1.012) (−1.037) (−1.126) (−0.908) (−0.791)

R
2
(%) −0.354 2.293 2.614 3.837 1.438 1.170

The number in parenthesis is the Newey-West (1987) t−statistics with a Bartlett kernel and

a lag length determined by h+ 4((T − h)/100)2/9. R
2
is the adjusted R2.
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Table 4: Model Parameters

Parameter Value Source

γ 10 Bollerslev et al. (2009)
δ 0.997 Bollerslev et al. (2009)
ψ 1.5 Bollerslev et al. (2009)
κ1 0.8 In Bollerslev et al. (2009) κ1 = 0.9
ρσ 0.978 Bollerslev et al. (2009)
ρq 0.8 Bollerslev et al. (2009)

aq(1− ρq)
−1 10−6 Bollerslev et al. (2009)

φq 10−3 Bollerslev et al. (2009)
E(σg) 0.0078 Bollerslev et al. (2009)
E(µg) 0.0015 Bollerslev et al. (2009)
α 1.3 ∗ 103 Model-specific parameter
β 0.0028 E(µg) = αE(q) + β
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