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The relative-price approach to identifying investment-specific technology shocks is 
inconsistent with a two-sector model with permanent markup change, consumption-
specific technology, or sector-specific factor shares.  This paper proposes a new approach 
by finding the model’s long-run properties that link labor productivity and the relative 
price of investment to sector-specific technology change and nontechnology change and 
by developing a new Max Share identification strategy to exploit these properties.  The 
identified shocks play a large role in both short- and long-run economic fluctuations.  
This paper also highlights the implications of a broadly overlooked identity between TFP 
and aggregate sectoral technology. 
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1. Introduction 

In business cycle studies employing vector autoregressions (VARs), it is repeatedly shown that 

investment-specific technology shocks play a large role in business cycles (Fisher 2006; Galí 

and Gambetti 2009; Ben Zeev and Khan 2015). 1  The common identifying assumption 

developed by Fisher (2006) is that the investment-specific technology shock is the sole source 

of long-run movements in the relative price of investment.2 This assumption is not innocuous 

and many papers, including the above papers themselves, are concerned with the conditions 

required for it to be valid.  First, there must be no long-run change in the markup in the 

investment-goods sector relative to that in the consumption-goods sector.  Second, there must 

be no technology specific to the consumption-goods sector.  Unless these conditions are 

satisfied, a relative markup change or a linear combination of technology shocks in the two 

sectors is mislabeled as an investment-specific technology shock.  Third, factor shares must 

be the same between the two sectors.  Otherwise, sector-neutral technology shocks that affect 

both sectors simultaneously or nontechnology shocks push up the price more in the sector with 

the larger labor share by raising the capital-labor ratio.  At least the third condition is not 

supported by data: the labor share computed using the U.S. input-output tables is higher in the 

investment-goods sector than in other sectors (Chari, Kehoe, and McGrattan 1997; Valentinyi 

and Herrendorf 2008; Basu, Fernald, Fisher, and Kimball 2013). 

This paper develops a new approach to identifying the investment-specific technology 

shock that is valid even if these conditions are not satisfied.  It exploits two steady-state 

properties of the two-sector model.  The first property is that labor productivity measured in 

                                                   
1 The evaluation of Fisher (2006) and Ben Zeev and Khan (2015) is based on estimated impulse responses and 
forecast error decompositions.  Their results are explained in detail in Section 4.  Galí and Gambetti (2009) 
show that the Great Moderation reflected low volatility conditional on investment-specific technology shocks. 
2 More boldly, when implementing model simulations or estimations, numerous papers assume that the parameter 
of investment-specific technology equals the inverse of the relative price of investment at all times (Greenwood, 
Hercowitz, and Krusell 1997, 2000; Justniano, Primiceri, and Tambalotti 2011; Schmitt-Grohé and Uribe 2012; 
Khan and Tsoukalas 2012). 
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terms of investment goods, where the numerator is nominal output divided by the investment 

deflator, is affected by technology change in the investment-goods sector, not in the 

consumption-goods sector, and by nontechnology changes such as a change in the capital tax 

or markup.  This is because an increase in the parameter representing the consumption-goods 

technology is offset by a decrease in the relative price of consumption.  This mechanism is 

irrelevant to whether the factor shares in the two sectors are equal or not.  Kimball (1994) first 

notes the “consumption-technology neutrality” and this paper is the first to exploit it to identify 

technology shocks. 

The second property is that a specific log-linear combination of labor productivity and the 

relative price of investment is affected by technology change in the consumption-goods sector, 

not in the investment-goods sector, and by nontechnology change.  The effect of the 

investment-goods sector’s technology is cancelled out, since the relative price of investment is 

affected by technology change in both sectors while labor productivity in investment units is 

affected by technology change only in the investment-goods sector. 

These two properties imply that a shock that has a long-run effect on labor productivity in 

investment units but not on the log-linear combination of labor productivity and the relative 

price of investment is an investment-specific technology shock, not a sector-neutral technology 

shock nor a nontechnology shock. 

One traditional approach to identifying the shocks that satisfy long-run properties is the 

long-run restriction identification developed by Shapiro and Watson (1988), Blanchard and 

Quah (1989), and King, Plosser, Stock, and Watson (1991).  However, since Galí (1999) 

identified technology shocks by assuming that they are the sole source of long-run movements 

in labor productivity, this approach has been criticized because of difficulties in estimating very 

long-run horizon parameters and in correctly assuming the order of integration of VAR 
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variables.3 An alternative, proposed by Barsky and Sims (2011) and Francis, Owyang, Roush, 

and DiCecio (2014), is the “Max Share” approach, where an identified shock is associated with 

the maximum forecast-error variance share in a target variable at a long, but finite horizon.4 

While it is free from the problems of the long-run restriction approach, it allows for exploitation 

of only one steady-state property linked to the maximization.  Thus, this paper proposes a 

“constrained” Max Share approach that allows one to exploit the two steady-state properties 

explained above.  Specifically, the identified shock accounts for the maximum forecast-error 

variance share in one variable at a pre-specified horizon, subject to the constraint that it accounts 

for essentially none of the forecast-error variance share in another variable.  It is noteworthy 

that the application of the constrained Max Share is not limited to this paper.  For example, 

Ben Zeev and Pappa (2017) try to identify the U.S. military news shock that best explains future 

movements in defense spending but has no relation to TFP.  For this purpose, they identify the 

shock that maximizes the difference between its contribution to the forecast error variance share 

in defense spending and that in TFP.  This paper’s approach allows for a more straightforward 

identification. 

The focus on labor productivity to identify the technology shock is a return to Galí (1999). 

Francis, Owyang, Roush, and DiCecio (2014) also identify the shock that explains the 

maximum forecast-error variance share in labor productivity.  A slight, but theoretically 

important, move away from them is that, for the numerator, this paper measures output in terms 

of investment goods and does not use real GDP.  Since real GDP growth is the weighted 

average of output growth in the two sectors, its shock is also the weighted average of technology 

shocks in the two sectors.  TFP news shocks identified by Barsky and Sims (2011) and 

                                                   
3 See, for example, Christiano, Eichenbaum, and Vigfusson (2003) and Chari, Kehoe, and McGrattan (2008).  
Fernald (2007) shows that the presence of a low-frequency correlation between labor productivity growth and 
hours worked per capita, which need not be causal, can significantly distort impulse responses to the shock 
identified by Galí’s (1999) long-run restriction. 
4 For a summary of the differences between the two methods, see Francis, Owyang, Roush, and DiCecio (2014). 
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Kurmann and Sims (2020) with the Max Share approach also reflect the two types of technology 

shocks, since their measure of TFP is computed using the chain-aggregate output series. 

Applying this paper’s approach to the U.S. data, I find that the investment-specific 

technology shock is the most important source of economic fluctuations in both the short- and 

long-run.  The identified shock has long-run effects on TFP, output, investment, and 

consumption, consistent with the model.  It induces positive business-cycle comovement and 

plays a large role in business cycles: for example, its contribution to the forecast error variance 

of output at a horizon of two years is 61 percent and much larger than Fisher’s (2006) finding.  

This paper also shows that the relative-price approach fails to identify the investment-specific 

technology shock correctly: the shock that best explains future movements in the relative price 

of investment causes little change in TFP, which is inconsistent with the identity between TFP 

and the weighted average of sectoral technology. 

The results from this paper’s approach and the failure of the relative-price approach are 

robust to using alternative investment and consumption deflators.  It is also shown that the 

shock identified by this paper’s approach is not Granger-caused by nontechnology shocks 

identified by other papers.  Further, the investment- and consumption-goods technology series 

computed by Fernald’s (2014, 2015) approach, which exploits TFP and the relative price of 

investment and seems to be complementary to this paper’s approach, move in tandem with labor 

productivity in investment units and its linear combination with the relative price of investment 

respectively. 

Finally, this paper highlights a broad misunderstanding about covariation between TFP and 

the relative price of investment.  Schmitt-Grohé and Uribe (2011) show that TFP and the 

relative price of investment are cointegrated and argue that this is evidence of a common 

stochastic trend shared by sector-neutral and investment-specific technologies.  Based on 

multiple statistical tests, Benati (2014) argues against cointegration but admits the possibility 
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of a common stochastic trend.  In contrast, Beaudry and Lucke (2010) and Ben Zeev and Khan 

(2015) assume that the relative price of investment is affected by investment-specific 

technology shocks while TFP is not in the short- or long-run.  All miss the identity between 

TFP and the weighted average of sectoral technology.  The identity implies that TFP reflects 

investment-specific technology as well as sector-neutral technology at all times.  Further, TFP 

is positively correlated with the relative price of investment by construction, since the latter is 

intrinsically linked to investment-specific technology. 

This paper proceeds as follows.  Section 2 explains the econometric strategy.  Section 3 

explains the data.  Section 4 presents the main results.  Section 5 assesses the robustness of 

the empirical results.  Section 6 discusses the relation of TFP to sectoral technology and the 

relative price of investment.  Section 7 concludes. 

2. Econometric Strategy 

This section proposes a new approach to identifying investment-specific technology shocks by 

studying the steady-state properties of a model economy and by developing a new Max Share 

identification strategy that allows one to exploit these properties. 

2.1 The Model Economy 

This paper’s model consists of two sectors: one produces investment goods and another 

produces all other goods, referred to as consumption goods in this paper.  The assumptions 

made by the relative-price approach are relaxed in the model, allowing for: (i) numerous 

nontechnology changes, such as markup and capital tax changes, that affect the relative price; 

(ii) a technology parameter specific to each sector, rather than a priori sector-neutrality; (iii) 

factor shares that are different between the two sectors.  This paper only requires a Cobb-

Douglas production function and a King-Plosser-Rebelo type of utility function, both broadly 

used in macroeconomic modelling, to have the steady-state properties exploited for 

identification.  No adjustment cost mechanisms are assumed, since this paper focuses on the 
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steady state, where such costs are zero. 

2.1.1 Goods Producers 

Let I and C be investment and consumption respectively.  The final goods are produced from 

intermediates.  The production of final goods is competitive while that of intermediate goods 

is monopolistically competitive.  The production functions for final goods are 

(1)         𝐼𝐼𝑡𝑡 = �� 𝑌𝑌𝐼𝐼,𝑡𝑡(𝑠𝑠)
𝜀𝜀𝐼𝐼,𝑡𝑡−1
𝜀𝜀𝐼𝐼,𝑡𝑡 𝑑𝑑𝑠𝑠

1

0
�

𝜀𝜀𝐼𝐼,𝑡𝑡
𝜀𝜀𝐼𝐼,𝑡𝑡−1

and 𝐶𝐶𝑡𝑡 = �� 𝑌𝑌𝐶𝐶,𝑡𝑡(𝑠𝑠)
𝜀𝜀𝐶𝐶,𝑡𝑡−1
𝜀𝜀𝐶𝐶,𝑡𝑡 𝑑𝑑𝑠𝑠

1

0
�

𝜀𝜀𝐶𝐶,𝑡𝑡
𝜀𝜀𝐶𝐶,𝑡𝑡−1

, 

where 𝑌𝑌𝑗𝑗,𝑡𝑡(𝑠𝑠) denotes the output of firm s in sector j.  ɛ j,t is larger than unity, not constant, 

and specific to sector j.  Final goods producers solve their profit maximization problems.  

The aggregate price and the demand for intermediate goods are given by 

(2)               𝑃𝑃𝑗𝑗,𝑡𝑡 = �� 𝑃𝑃𝑗𝑗,𝑡𝑡(𝑠𝑠)1−𝜀𝜀𝑗𝑗,𝑡𝑡𝑑𝑑𝑠𝑠
1

0
�
1 1−𝜀𝜀𝑗𝑗,𝑡𝑡⁄

  for 𝑗𝑗 = 𝐼𝐼,𝐶𝐶 , 

(3)          𝑌𝑌𝐼𝐼,𝑡𝑡(𝑠𝑠) = 𝐼𝐼𝑡𝑡 �
𝑃𝑃𝐼𝐼,𝑡𝑡(𝑠𝑠)
𝑃𝑃𝐼𝐼,𝑡𝑡

�
−𝜀𝜀𝐼𝐼,𝑡𝑡

, and 𝑌𝑌𝐶𝐶,𝑡𝑡(𝑠𝑠) = 𝐶𝐶𝑡𝑡 �
𝑃𝑃𝐶𝐶,𝑡𝑡(𝑠𝑠)
𝑃𝑃𝐶𝐶,𝑡𝑡

�
−𝜀𝜀𝐶𝐶,𝑡𝑡

, 

where Pj,t is the aggregate price and Pj,t(s) is the price of individual intermediate goods. 

An intermediate-goods firm solves the nominal cost-minimization problem: 

min
𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠),𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠)

𝑅𝑅𝑡𝑡𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠) + 𝑊𝑊𝑡𝑡𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠) 

(4)                    s. t.  𝑌𝑌�𝑗𝑗,𝑡𝑡(𝑠𝑠) = 𝑍𝑍𝑗𝑗,𝑡𝑡𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠)𝛼𝛼𝑗𝑗𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠)1−𝛼𝛼𝑗𝑗 , 

where 𝑅𝑅𝑡𝑡 and 𝑊𝑊𝑡𝑡 respectively denote the nominal rental rate and nominal wage, which are 

common to all firms, and 𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠) and 𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠) respectively denote the capital stock and labor 

inputs used by firm s.  The production function is Cobb-Douglas with sector-specific capital 

share αj and sector-specific technology Zj,t. 

   The first-order conditions are 

(5)                      𝑅𝑅𝑡𝑡 = 𝑀𝑀𝐶𝐶𝑗𝑗,𝑡𝑡(𝑠𝑠)𝑍𝑍𝑗𝑗,𝑡𝑡𝛼𝛼𝑗𝑗 �
𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠)
𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠)�

𝛼𝛼𝑗𝑗−1
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and 

(6)                    𝑊𝑊𝑡𝑡 = 𝑀𝑀𝐶𝐶𝑗𝑗,𝑡𝑡(𝑠𝑠)𝑍𝑍𝑗𝑗,𝑡𝑡�1 − 𝛼𝛼𝑗𝑗� �
𝐾𝐾𝑗𝑗,𝑡𝑡(𝑠𝑠)
𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠)�

𝛼𝛼𝑗𝑗
, 

where MCj,t(s) is the nominal marginal cost.  Since all firms face common factor prices, the 

capital-labor ratio Kj,t(s)/Nj,t(s)≡Xj,t(s) and the marginal cost are also common in sector j.  

The capital-labor ratio in each sector is given by 

(7)                            𝑋𝑋𝐼𝐼,𝑡𝑡 =
𝛼𝛼𝐼𝐼𝑊𝑊𝑡𝑡

(1 − 𝛼𝛼𝐼𝐼)𝑅𝑅𝑡𝑡
 

(8)                        and 𝑋𝑋𝐶𝐶,𝑡𝑡 =
𝛼𝛼𝐶𝐶(1 − 𝛼𝛼𝐼𝐼)
𝛼𝛼𝐼𝐼(1 − 𝛼𝛼𝐶𝐶)𝑋𝑋𝐼𝐼,𝑡𝑡. 

Thus, if the factor shares are different between the two sectors, so will the capital-labor ratios 

be. 

Given the demand functions (3), all intermediate firms in sector j choose the following price 

at the steady state: 

(9)                    𝑃𝑃𝑗𝑗,∗ = 𝜇𝜇𝑗𝑗,∗𝑀𝑀𝐶𝐶𝑗𝑗,∗where 𝜇𝜇𝑗𝑗,∗ ≡
𝜀𝜀𝑗𝑗,∗

1 − 𝜀𝜀𝑗𝑗,∗
, 

where an asterisk denotes the steady state and µ j,t is the markup in sector j.  This equation, 

together with equations (5) and (8), implies 

(10)             
𝑃𝑃𝐼𝐼,∗

𝑃𝑃𝐶𝐶,∗
=

1 − 𝛼𝛼𝐶𝐶
1 − 𝛼𝛼𝐼𝐼

�
𝛼𝛼𝐶𝐶 (1 − 𝛼𝛼𝐶𝐶)⁄
𝛼𝛼𝐼𝐼 (1 − 𝛼𝛼𝐼𝐼)⁄ �

𝛼𝛼𝐶𝐶 𝜇𝜇𝐼𝐼,∗
𝜇𝜇𝐶𝐶,∗

𝑋𝑋𝐼𝐼,∗
𝛼𝛼𝐶𝐶−𝛼𝛼𝐼𝐼 𝑍𝑍𝐶𝐶,∗

𝑍𝑍𝐼𝐼,∗
. 

Equation (10) shows that the following three conditions must be satisfied for the relative 

price to coincide with technology in the investment-goods sector in the long-run. 

First, there must be no long-run change in the relative markup (i.e. µI,*/µC,* is constant). 

Second, there must be no technology specific to the consumption-goods sector.  Otherwise, 

the relative-price approach misidentifies a linear combination of the two sectors’ technology 

shocks as an investment-specific technology shock.  This is the reason why the relative-price 

approach assumes the following specific forms of technology: 
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(11)                     𝑍𝑍𝐼𝐼,𝑡𝑡 ≡ 𝑍𝑍𝑆𝑆𝑁𝑁,𝑡𝑡𝑍𝑍𝐼𝐼𝑆𝑆,𝑡𝑡 and 𝑍𝑍𝐶𝐶,𝑡𝑡 ≡ 𝑍𝑍𝑆𝑆𝑁𝑁,𝑡𝑡, 

where ZSN,t is sector-neutral technology that is common to the two sectors and ZIS,t is 

investment-specific technology.  Technology in the investment-goods sector is a log-linear 

combination of the two types of technology and technology in the consumption-goods sector is 

sector-neutral technology.  In this case, the relative technology boils down to investment-

specific technology. 

Third, the capital share must be equalized between the two sectors to prevent the capital-

labor ratio XI from affecting the relative price, since the capital-labor ratio is affected by sector-

neutral technology change and nontechnology change in the long-run.  With a difference in 

the capital share, the price in the sector with the lower capital share (i.e. higher labor share) is 

pushed up more by a permanent increase in the real wage due to a permanent increase in the 

capital-labor ratio (see equation (7)). 

The data do not support at least the third of the three conditions and indicate that αI<αC.  

Basu, Fernald, Fisher, and Kimball (2013), Valentinyi and Herrendorf (2008), and Chari, Kehoe, 

and McGrattan (1997) compute the sectoral factor shares using the U.S. input-output tables.  

Essentially all exploit the relationship that factor shares in a sector are the aggregates of factor 

shares in industry outputs that belong to the sector as intermediate inputs and value added.  

Basu, Fernald, Fisher, and Kimball’s results (2013) indicate that αI=0.29 and αC=0.34 on 

average in the period 1961-2004.  Valentinyi and Herrendorf’s (2008) results for 1997 are very 

similar: αI=0.28 and αC=0.35.  In Chari, Kehoe, and McGrattan’s (1997) results for 1987, 

the difference is larger, with αI=0.31 and αC=0.39.  Since there are differences not only in 

the sample period but also in the definition of investment and consumption across these studies, 

the result that αI<αC is robust.5 

                                                   
5 This paper aggregates Basu, Fernald, Fisher, and Kimball’s (2013) results for private equipment and structure 
investment to compute the capital share in the investment-goods sector.  The capital share in the consumption 
goods sector is computed by using this number and Fernald’s (2014) capital share in the total businesss sector.  
Valentinyi and Herrendorf’s (2008) investment includes government investment and their output is GDP.  Chari, 
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2.1.2 Household, Government, and Market Clearing 

The household gets utility from consumption and disutility from working and rents capital by 

purchasing investment goods.  The utility maximization problem, where the utility function is 

of the King-Plosser-Rebelo type, is given by 

max
𝐶𝐶𝐻𝐻,𝑡𝑡,𝑁𝑁𝑡𝑡

�𝛽𝛽𝑡𝑡 �log𝐶𝐶𝐻𝐻,𝑡𝑡 − 𝜑𝜑
𝑁𝑁𝑡𝑡
1+1𝜂𝜂

1 + 1
𝜂𝜂
�

∞

𝑡𝑡=0

 

s. t.𝑃𝑃𝐶𝐶,𝑡𝑡𝐶𝐶𝐻𝐻,𝑡𝑡 + 𝑃𝑃𝐼𝐼,𝑡𝑡𝐼𝐼𝐻𝐻,𝑡𝑡 + 𝐵𝐵𝑡𝑡+1 = 𝑊𝑊𝑡𝑡𝑁𝑁𝑡𝑡 + (1 + 𝑖𝑖𝑡𝑡)𝐵𝐵𝑡𝑡 + (1 − 𝜏𝜏𝑡𝑡)𝑅𝑅𝑡𝑡𝐾𝐾𝑡𝑡 + 𝑃𝑃𝐼𝐼,𝑡𝑡𝜏𝜏𝑡𝑡𝛿𝛿𝑡𝑡𝐾𝐾𝑡𝑡 − 𝑇𝑇𝑡𝑡 

(12)                     and  𝐾𝐾𝑡𝑡+1 = 𝐼𝐼𝐻𝐻,𝑡𝑡 + (1 − 𝛿𝛿𝑡𝑡)𝐾𝐾𝑡𝑡, 

where CH,t is the household’s consumption, Nt is labor supply, IH,t is the household’s purchase 

of investment goods, Bt is nominal government bonds, it is the nominal interest rate, τt is the 

capital tax rate, δt is the depreciation rate, and Tt is a lump-sum tax.  The first-order conditions 

are 

(13)                            
1
𝐶𝐶𝐻𝐻,𝑡𝑡

= 𝜆𝜆𝑡𝑡𝑃𝑃𝐶𝐶,𝑡𝑡, 

(14)                            𝜑𝜑𝑁𝑁𝑡𝑡
1
𝜂𝜂 = 𝜆𝜆𝑡𝑡𝑊𝑊𝑡𝑡, 

(15)                              𝜆𝜆𝑡𝑡 = 𝛽𝛽𝜆𝜆𝑡𝑡+1(1 + 𝑖𝑖𝑡𝑡+1), 

(16)        𝜄𝜄𝑡𝑡 = 𝛽𝛽�𝜆𝜆𝑡𝑡+1�(1 − 𝜏𝜏𝑡𝑡+1)𝑅𝑅𝑡𝑡+1 + 𝑃𝑃𝐼𝐼,𝑡𝑡+1𝜏𝜏𝑡𝑡+1𝛿𝛿𝑡𝑡+1� + 𝜄𝜄𝑡𝑡+1(1 − 𝛿𝛿𝑡𝑡+1)�, 

(17)                          and 𝜄𝜄𝑡𝑡 = 𝜆𝜆𝑡𝑡𝑃𝑃𝐼𝐼,𝑡𝑡, 

where λt and ιt are Lagrange multipliers. 

A key equation representing the consumption-technology neutrality is the equation for the 

capital-labor ratio in the investment-goods sector, which is given by combining equations (16) 

and (17), substituting the capital demand equation (5) for the investment-goods sector, and 

evaluating the resultant equation at the steady state: 

                                                   
Kehoe, and McGrattan (1997) allocate final demand other than private consumption and investment to the two 
sectors proportionately. 
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(18)                𝑋𝑋𝐼𝐼,∗ = �
𝛼𝛼𝐼𝐼𝑍𝑍𝐼𝐼,∗

𝜇𝜇𝐼𝐼,∗{(1 𝛽𝛽⁄ − 1) (1 − 𝜏𝜏∗) + 𝛿𝛿∗⁄ }�
1 (1−𝛼𝛼𝐼𝐼)⁄

. 

Given that XC,* depends only on XI,* as shown by equation (8), this equation shows that capital 

deepening is caused only by technology improvements in the investment-goods sector and 

changes in nontechnology parameters.  Sector-neutral technology assumed by the relative-

price approach also causes capital deepening, since it constitutes ZI,*, as shown by equation (11).  

In contrast, technology improvements only in the consumption-goods sector do not raise capital 

demand, since they push down the relative price of consumption and do not raise the marginal 

product of capital measured in terms of investment.6 

To close the model, this paper derives aggregate production functions by integrating market 

equilibrium equations for intermediate goods obtained by equating equations (3) and (4).  At 

the steady state, accompanied by no price dispersion, these are 

(19)       𝐼𝐼∗ = 𝑍𝑍𝐼𝐼,∗𝑋𝑋𝐼𝐼,∗
𝛼𝛼𝐼𝐼𝑁𝑁𝐼𝐼,∗ and 𝐶𝐶∗ = 𝑍𝑍𝐶𝐶,∗𝑋𝑋𝐶𝐶,∗

𝛼𝛼𝐶𝐶𝑁𝑁𝐶𝐶,∗ where 𝑁𝑁𝑗𝑗,𝑡𝑡 = ∫ 𝑁𝑁𝑗𝑗,𝑡𝑡(𝑠𝑠)𝑑𝑑𝑠𝑠1
0 . 

Market clearing conditions for investment goods, consumption goods, labor, and capital stock 

are 

(20)        𝐼𝐼𝑡𝑡 = 𝐼𝐼𝐻𝐻,𝑡𝑡, 𝐶𝐶𝑡𝑡 = 𝐶𝐶𝐻𝐻,𝑡𝑡 + 𝐶𝐶𝐺𝐺,𝑡𝑡, 𝑁𝑁𝑡𝑡 = 𝑁𝑁𝐼𝐼,𝑡𝑡 + 𝑁𝑁𝐶𝐶,𝑡𝑡, and 𝐾𝐾𝑡𝑡 = 𝐾𝐾𝐼𝐼,𝑡𝑡 + 𝐾𝐾𝐶𝐶,𝑡𝑡, 

where CG,t denotes the government’s purchases of consumption goods.  It is assumed that the 

government collects taxes and issues bonds to purchase consumption goods.  The 

government’s nominal budget constraint implied in this model is 

𝑃𝑃𝐶𝐶,𝑡𝑡𝐶𝐶𝐺𝐺,𝑡𝑡 = 𝐵𝐵𝑡𝑡+1 − (1 + 𝑖𝑖𝑡𝑡)𝐵𝐵𝑡𝑡 + 𝜏𝜏𝑡𝑡�𝑅𝑅𝑡𝑡 − 𝑃𝑃𝐼𝐼,𝑡𝑡𝛿𝛿𝑡𝑡�𝐾𝐾𝑡𝑡 + 𝑇𝑇𝑡𝑡. 

The monetary policy rule is not specified, since this paper focuses on the steady state conditions. 

2.1.3 Identifying Approach 

Aggregate output measured in terms of investment goods, denoted by Yt, is represented by 

                                                   
6  This is shown by combining equations (16) and (17), substituting the capital demand equation (5) for the 
consumption-goods sector, and evaluating the resultant equation at the steady state. 
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(21)                          𝑌𝑌𝑡𝑡 ≡ 𝐼𝐼𝑡𝑡 +
𝑃𝑃𝐶𝐶,𝑡𝑡

𝑃𝑃𝐼𝐼,𝑡𝑡
𝐶𝐶𝑡𝑡 

The equation for labor productivity is given by combining this equation and the production 

functions (19) and substituting the capital-labor ratio equations (8) and (18) and the relative-

price equation (10) into the resultant equation at the steady state: 

(22) 
𝑌𝑌∗
𝑁𝑁∗

= 𝑍𝑍𝐼𝐼,∗
1

1−𝛼𝛼𝐼𝐼 �
𝛼𝛼𝐼𝐼

𝜇𝜇𝐼𝐼,∗{(1 𝛽𝛽⁄ − 1) (1 − 𝜏𝜏∗) + 𝛿𝛿∗⁄ }�

𝛼𝛼𝐼𝐼
1−𝛼𝛼𝐼𝐼

�
𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

+
(1− 𝛼𝛼𝐼𝐼)𝜇𝜇𝐶𝐶,∗

(1 − 𝛼𝛼𝑁𝑁𝐼𝐼)𝜇𝜇𝐼𝐼,∗
�1 −

𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

��. 

In this model, the sectoral share in the labor market is unaffected by technology change at the 

steady state. 7  Thus labor productivity is determined by parameters for investment-goods 

technology and nontechnology.  The technology parameter in the consumption-goods 

production function is not in the equation because its change is offset by a change in the relative 

price of consumption and because it is irrelevant to the steady-state level of the capital-labor 

ratio.  This is Kimball’s (1994) consumption-technology neutrality.  The first useful property 

is the following. 

Property 1.  In the long-run, only technology shocks in the investment-goods sector and 

nontechnology shocks affect labor productivity measured in terms of investment goods. 

Identifying investment-specific technology shocks requires an additional property, since the 

shocks that have long-run effects on labor productivity in investment units could be 

nontechnology shocks or, as seen in the technology-mapping equations (11), sector-neutral 

                                                   
7 This property is from the assumption of no government purchases of investment goods.  It is shown by equating 
the capital accumulation equation (12) evaluated at the steady state to the investment-goods supply equation (19) 
and combining the resultant equation with the capital-labor ratio equations (8) and (18) and the market clearing 
conditions for capital stock and labor inputs (20).  If the government increases the purchase of consumption goods 
at the rate of technology improvements in the consumption-goods production, that is, 𝐶𝐶𝐺𝐺,∗/ �𝑍𝑍𝐶𝐶,∗𝑍𝑍𝐼𝐼,∗

𝛼𝛼𝐶𝐶/(1−𝛼𝛼𝐼𝐼)� is 
constant, total labor supply and sectoral labor inputs are also unchanged for technology change at the steady state.  
This is shown by substituting the consumption equation (13) into the labor supply equation (14) and combining 
the resultant equation with the labor demand equation, goods supply equation for consumption goods, and market 
clearing condition, (6), (19) and (20).  Even if the government purchases investment goods as well, total labor 
supply and sectoral labor inputs at the steady state are unchanged for technology change when the government 
increases investment-goods purchases at the rate of technology improvements in the investment-goods production, 
that is, 𝐼𝐼𝐺𝐺,∗/𝑍𝑍𝐼𝐼,∗

1/(1−𝛼𝛼𝐼𝐼), where IG,t denotes government investment, is constant. 
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technology shocks that simultaneously hit the consumption-goods sector’s production function.  

Thus, this paper purifies the shocks by finding a variable that only technology shocks in the 

consumption-goods sector and nontechnology shocks affect in the long-run and by constraining 

identified shocks not to affect such a variable in the long-run.  A specific log-linear 

combination of labor productivity in investment units and the relative price of investment 

satisfies such a property, since the latter variable reflects technology change in both sectors and 

can cancel out the effect of technology change in the investment-goods sector in the former 

variable.  This paper specifies its form by combining the relative-price equation (10), the 

capital-labor ratio equation (18), and the labor productivity equation (22) to eliminate the 

investment-goods technology parameter: 

(23)                        
𝑃𝑃𝐼𝐼,∗

𝑃𝑃𝐶𝐶,∗
�
𝑌𝑌∗
𝑁𝑁∗
�
1−𝛼𝛼𝐶𝐶

=
𝑍𝑍𝐶𝐶,∗

𝛩𝛩∗
, 

where Θ* collects nontechnology terms.8 The labor share, 1-αC, appears because of a difference 

in the capital deepening effect on each variable: the coefficients on the capital-labor ratio are 

αI for labor productivity and αC-αI for the relative price of investment.  Fortunately, an 

estimate of αC is readily available.  The second useful property is the following. 

Property 2.  In the long-run, only technology shocks in the consumption-goods sector and 

nontechnology shocks affect the log-linear combination of labor productivity measured in terms 

of investment goods and the relative price of investment. 

The two properties give the identifying assumption that an investment-specific technology 

shock is a shock that has a long-run effect on labor productivity in investment units but not on 

the log-linear combination of labor productivity in investment units and the relative price of 

investment.  In order to identify such a shock, this paper develops a constrained Max Share 

                                                   
8 Kimball’s (1994) consumption-technology neutrality result requires a Hicks-neutral type of technology and a 
King-Plosser-Rebelo type of utility function, but does not require a Cobb-Douglas production function.  This 
paper uses a Cobb-Douglas production function to derive equation (23). 
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approach that allows identification of the shock that accounts for the maximum forecast-error 

variance share in labor productivity in investment units at a long, but finite horizon, subject to 

the constraint that it accounts for essentially none of the forecast-error variance share in the log-

linear combination of labor productivity in investment units and the relative price of investment.  

The new approach is explained in detail in the next subsection. 

Finally, this paper shows that the nominal investment-output ratio, or equivalently the ratio 

of the quantity of the two goods measured in terms of the same goods, is affected only by 

nontechnology shocks in the long-run.  This is the balanced-growth property of the model and 

works as a litmus test for assessing whether identified shocks are contaminated by 

nontechnology shocks or not.  The equation for investment per unit of labor input at the steady 

state is derived by combining the capital-labor ratio equations (8) and (18), the capital 

accumulation equation (12) evaluated at the steady state, and the market equilibrium condition 

for capital stock (20): 

(24) 
𝐼𝐼∗
𝑁𝑁∗

= 𝛿𝛿 �
𝛼𝛼𝐼𝐼𝑍𝑍𝐼𝐼,∗

𝜇𝜇𝐼𝐼,∗{(1 𝛽𝛽⁄ − 1) (1 − 𝜏𝜏∗) + 𝛿𝛿∗⁄ }�
1 (1−𝛼𝛼𝐼𝐼)⁄

�
𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

+
𝛼𝛼𝐶𝐶(1 − 𝛼𝛼𝐼𝐼)
𝛼𝛼𝐼𝐼(1 − 𝛼𝛼𝐶𝐶) �1 −

𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

��. 

Note that it is affected by technology in the investment-goods sector, but not by technology in 

the consumption-goods sector.  Dividing this by the labor productivity equation (22) yields 

(25)           
𝐼𝐼∗
𝑌𝑌∗

=
𝛼𝛼𝐼𝐼𝛿𝛿∗ �

𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

+ 𝛼𝛼𝐶𝐶(1 − 𝛼𝛼𝐼𝐼)
𝛼𝛼𝐼𝐼(1 − 𝛼𝛼𝑁𝑁𝐼𝐼)

�1 −
𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

��

𝜇𝜇𝐼𝐼,∗ �
1 𝛽𝛽⁄ − 1

1 − 𝜏𝜏∗
+ 𝛿𝛿∗� �

𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

+
𝜇𝜇𝐶𝐶,∗(1 − 𝛼𝛼𝐼𝐼)
𝜇𝜇𝐼𝐼,∗(1 − 𝛼𝛼𝐶𝐶) �1 −

𝑁𝑁𝐼𝐼,∗
𝑁𝑁∗

��
. 

The right-hand side includes no technology term.  Thus, if identified shocks are not 

contaminated by nontechnology shocks, they do not affect the nominal investment-output 

ratio.9 

2.1.4 Summary of the Effects of Sectoral Technology Improvements 

                                                   
9 Watanabe (2012) identifies the permanent nontechnology shock as the shock that has a permanent effect on the 
nominal investment-output ratio and studies its role in G7 countries’ business cycles. 
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It is useful to summarize the theoretical effects of the sectoral technology improvements that 

can be compared with empirical results.  Though both long-run change and no long-run 

change in labor inputs are possible in theory, the U.S. data support the latter, as will be shown 

later.  Given this, permanent technology improvements in the investment-goods sector cause 

permanent increases in output and investment.  The same is true for consumption, as implied 

by the capital-labor ratio equations (8) and (18) and the consumption-goods supply equation 

(19).  In contrast, permanent technology improvements in the consumption-goods sector cause 

permanent increases in consumption only. 

Though not directly seen in the model, TFP increases in response to both types of 

technology improvements.  As in Beaudry and Lucke (2010) and Fernald (2014), TFP is 

usually computed using data for a chain-weighted measure of output, which is approximated 

by the Divisia index: 

𝑑𝑑𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 = 𝜔𝜔𝑡𝑡𝑑𝑑𝐼𝐼𝑡𝑡 + (1 − 𝜔𝜔𝑡𝑡)𝑑𝑑𝐶𝐶𝑡𝑡, 

where GDPt is output, d indicates the logarithmic growth rate, and ωt is the average of the 

investment share in nominal output in periods t and t-1.  The standard growth accounting 

implies 

(26) 𝑑𝑑𝑇𝑇𝑇𝑇𝑃𝑃𝑡𝑡 ≡ 𝑑𝑑𝐺𝐺𝐺𝐺𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑡𝑡�𝑢𝑢𝑡𝑡𝑑𝑑𝐾𝐾𝐼𝐼,𝑡𝑡 + (1 − 𝑢𝑢𝑡𝑡)𝑑𝑑𝐾𝐾𝐶𝐶,𝑡𝑡� − (1 − 𝑞𝑞𝑡𝑡)�𝑣𝑣𝑡𝑡𝑑𝑑𝑁𝑁𝐼𝐼,𝑡𝑡 + (1 − 𝑣𝑣𝑡𝑡)𝑑𝑑𝑁𝑁𝐶𝐶,𝑡𝑡� 

           = 𝜔𝜔𝑡𝑡𝑑𝑑𝑍𝑍𝐼𝐼,𝑡𝑡 + (1 − 𝜔𝜔𝑡𝑡)𝑑𝑑𝑍𝑍𝐶𝐶,𝑡𝑡, 

where qt, ut, and vt are the weights computed by ωt, αI, and αC.10 TFP growth is a weighted 

average of both types of technology improvements.  Summing up this equation from period 1 

to t gives the level representation: 

(27)                 ln𝑇𝑇𝑇𝑇𝑃𝑃𝑡𝑡 ≈ 𝜔𝜔∗ ln𝑍𝑍𝐼𝐼,𝑡𝑡 + (1 − 𝜔𝜔∗) ln𝑍𝑍𝐶𝐶,𝑡𝑡, 

where ω* is the sample average of the investment share.  The term dropped, 

                                                   
10 As is implicit in the standard growth accounting, the log of the price dispersion term in the aggregate production 
function affects measured TFP.  It is zero around the zero-inflation steady state up to a first-order approximation.  
See, for example, Galí (2008). 
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∑ (𝜔𝜔𝑠𝑠−𝜔𝜔∗)�𝑑𝑑𝑍𝑍𝐼𝐼,𝑠𝑠 − 𝑑𝑑𝑍𝑍𝐶𝐶,𝑠𝑠�𝑡𝑡
𝑠𝑠=1 , is very small because the investment share’s deviation from its 

average is very small and indeed the maximum absolute value of the deviation for the U.S. 

business sector in the period 1947:1-2018:1 is 0.046. 

2.2 The VAR Model 

The Max Share approach currently employed in business cycle studies identifies the shock 

associated with the maximum forecast-error variance share in a target variable, but does not 

allow one to exploit the two steady-state properties explained above.  Thus, this paper 

develops a constrained Max Share approach where the identified shock accounts for the 

maximum forecast-error variance share in one variable at a pre-specified horizon, subject to the 

constraint that it accounts for essentially none of the forecast-error variance share in another 

variable. 

   Let yt be a m×1 vector of observables of length T.  The moving average representation is 

given by yt=B(L)ut, where ut is a m×1 vector of prediction errors with variance-covariance 

matrix E(ut u’t )=Σ and B(L) is a matrix of lag polynomials.  It is assumed that there exists a 

linear mapping between the prediction errors and structural shocks, ut =Aεt, where εt is a m×1 

vector of structural shocks characterized by E(εtε’t)=I and A is a m×m matrix satisfying 

AA’=Σ.  This paper obtains A by a Cholesky decomposition of Σ and denotes it by Ã.  The 

permissible impact matrix can be written as Ã D, where D is a m×m orthonormal matrix 

satisfying D’D=I. 

Let γ be a column of D.  Ãγ is the impulse vector that indicates the effect of a shock on 

each variable.  The forecast error variance share of the ith variable attributable to the shock at 

horizon h is, 

𝛺𝛺𝑖𝑖(ℎ) =
∑ 𝐵𝐵𝑖𝑖,𝑙𝑙�̃�𝐴𝛾𝛾𝛾𝛾′�̃�𝐴′𝐵𝐵𝑖𝑖,𝑙𝑙′ℎ
𝑙𝑙=0

∑ 𝐵𝐵𝑖𝑖,𝑙𝑙𝛴𝛴𝐵𝐵𝑖𝑖,𝑙𝑙′ℎ
𝑙𝑙=0

                            

where Bi,l is the ith row of the lag polynomial evaluated at L=l.  The standard Max Share 



16 
 

approach identifies the shock associated with the maximum forecast-error variance share in the 

variable i by solving the following maximization problem for a given value of h. 

                                  max
𝛾𝛾

𝛺𝛺𝑖𝑖(ℎ) 

                            s. t.    𝛾𝛾′𝛾𝛾 = 1. 

Faust (1998) and Uhlig (2004) show that γ is given by the eigenvector associated with the 

maximum eigenvalue of the m×m cross-moment matrix of the impulse responses of variable i 

to the orthogonalized shocks, ∑ �𝐵𝐵𝑖𝑖,𝑙𝑙�̃�𝐴�
′ℎ

𝑙𝑙=0 �𝐵𝐵𝑖𝑖,𝑙𝑙�̃�𝐴�. 

Instead, this paper solves the following maximization problem numerically: 

                                   max
𝛾𝛾

𝛺𝛺𝑖𝑖(ℎ) 

                      s. t.    𝛾𝛾′𝛾𝛾 = 1 and 𝛺𝛺𝑗𝑗(ℎ) ≤ 𝜅𝜅. 

The constrained Max Share approach identifies the shock that accounts for the maximum 

forecast-error variance share in variable i subject to the constraint that its contribution to the 

forecast-error variance share in variable j is no more thanκ.11  In this paper, variable i is labor 

productivity in investment units and variable j is the log-linear combination of labor 

productivity and the relative price of investment.  The value of κ has to be small enough to 

make the constraint binding and this paper chooses κ=0.01, since it is smaller than the lower 

bound of the 95-percent confidence interval of Ωj(h) computed by the standard Max Share 

approach (0.018).  The standard Max Share approach gives the initial γ for the numerical 

optimization as well.  The identified investment-specific technology shock εIS,t is recovered 

using the following relationship: 

𝜀𝜀𝐼𝐼𝑆𝑆,𝑡𝑡 = 𝛾𝛾′�̃�𝐴−1𝑢𝑢𝑡𝑡. 

This paper sets the baseline h at 32 quarters to exclude the effects of business cycles, which 

are typically defined as cycles in the range of 1.5 to 8 years (Christiano and Fitzgerald 2003).  

                                                   
11 This paper uses the RATS BFGS method for the numerical optimization.  See Estima (2014). 
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This paper estimates the VAR model with seven variables ordered as follows: labor productivity 

in investment units, the log-linear combination of labor productivity and the relative price of 

investment, TFP, labor inputs, real nondurable and service consumption, the nominal 

investment-output ratio, and noninvestment-goods inflation.  The subsets of these variables 

allow one to recover the responses of the relative price of investment, real output, and real 

investment.  While the Schwartz and Hannan-Quinn criteria both chose two (from up to eight) 

lags, the likelihood ratio test chose seven.  This paper chooses four, since it is between them 

and is the conventional number in estimating VAR models with quarterly data. 

3. Data 

The sample period is 1949:1-2018:1 and the data source is the National Income and Product 

Accounts (NIPA) unless noted.12 The numerator of labor productivity is nominal business 

output divided by the deflator for private nonresidential fixed investment and the denominator 

is labor inputs measured with Fernald’s (2014) cost-share weighted series that reflects the 

contribution of worker characteristics as well as that of raw hours.13 The relative price of 

investment is measured by the ratio of the investment deflator to the deflator for total 

noninvestment demand, which is the difference between output and investment, since such a 

measure is consistent with the model. 14  In computing the linear combination of labor 

productivity and the relative price of investment, this paper uses the capital share estimated by 

Basu, Fernald, Fisher, and Kimball (2013).  TFP is measured with Fernald’s (2014) quarterly 

utilization-adjusted series.  The nominal investment-output ratio is measured by the ratio of 

investment to business output in investment units.  Labor inputs and nondurable and service 

consumption in the VAR model are converted to per capita terms by dividing them by the 

                                                   
12 The initial quarter is determined by the availability of the quarterly population series to construct per capita 
series. 
13 Investment does not include durable consumption to be consistent with the model.  Fernald’s (2014) data are 
available at his website (https://www.frbsf.org/economic-research/economists/john-fernald/). 
14 The latter deflator is computed using the Fisher ideal chain index formula (see, e.g., Whelan 2002). 
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civilian noninstitutionalized population aged 16 and over.15 

   Greenwood, Hercowitz, and Krusell (1997, 2000) use Gordon’s (1990) annual quality-

adjusted series for equipment price in measuring the investment price and Fisher (2006) 

interpolates Gordon’s (1990) and Cummins and Violante’s (2002) annual quality-adjusted 

series for the equipment price.  In contrast, this paper uses the NIPA series in the baseline 

estimation.  This treatment follows Justiano, Primiceri, and Tambalotti (2011) and Ben Zeev 

and Khan (2015) and the reason is the same as theirs.  First, the coverage of Fisher’s (2006) 

series is limited to 1955:1-2000:4. 16  Second, the Bureau of Economic Analysis (BEA) 

introduced quality-adjusted price indexes for computers and peripherals in 1985 and later 

developed estimates back to 1959, old enough to cover the period where computers were of 

importance.  Landefeld and Grimm (2000) show that the BEA estimates for computer-price 

declines are in the range of other studies’ estimates based on micro data.  In addition, the 

quality adjustments are not limited to computers and peripherals and cover around 10 percent 

of private nonresidential fixed investment in 2015.17 If the BEA makes quality adjustments to 

components with rapid quality improvements, the NIPA aggregate investment deflator should 

measure investment prices correctly.  Indeed, Landefeld and Grimm (2000) state that the 

impact of quality adjustments is small in most of the adjusted components that account for 18 

percent of GDP.  Nevertheless, since prices are inherently measured with error, this paper 

assesses the robustness of results to price measurements by extending Fisher’s (2006) 

equipment price series. 

Figure 1 plots the four series: labor productivity in investment units, labor productivity 

                                                   
15 The Fisher ideal chain index formula is used for constructing the nondurable and service consumption series.  
The output of households and institutions serving households is subtracted since they are not included in business 
output.  Data for population are published by the U.S. Bureau of Labor Statistics and downloaded from the 
Federal Reserve Bank of St. Louis’s FRED. 
16 Some authors, including Schmitt-Grohé and Uribe (2011), extend Fisher’s (2006) series to later periods, but 
only up to the pre-2010 period. 
17 See BEA’s website (https://www.bea.gov/sites/default/files/papers/hedonic%20update%20Aug%202016.pdf). 



19 
 

raised to the power of the labor share in the investment goods sector, the log-linear combination 

of labor productivity and the relative price of investment, and the inverse of the relative price 

of investment.  The second and third series are expected to follow the level of technology in 

the investment- and consumption-goods sectors in the long-run, as seen in equations (22) and 

(23).  The two series move roughly together until the early 1980s.  Then the consumption-

goods technology appears to stop improving until the mid-1990s.  In contrast, technology 

improvements in the investment-goods sector continued steadily and accelerated in the mid-

1990s.  The speedup of technology improvements in both sectors from the mid-1990s to the 

mid-2000s, albeit at much slower pace in the consumption-goods sector, argues in favor of the 

hypothesis that information technology has contributed to both IT-production and IT-use sectors 

as a general purpose technology (Fernald 2015).  In the mid-2000s, technology improvements 

in the investment-goods sector decelerated and the consumption-goods technology stopped 

improving again.  This observation is consistent with Fernald’s (2015) finding that trend 

productivity growth slowed several years before the Great Recession. 

   This paper interprets the observed divergence of the two series as indicating that technology 

in the investment- and consumption-goods sectors should be modelled separately.  The 

relative-price approach would have to interpret it as indicating that the driving force of 

technology improvements had been sector-neutral technology until the early-1980s and 

switched to investment-specific technology thereafter.  This paper assesses the plausibility of 

the two interpretations using the VAR results. 

4. Results 

This section shows the effects of the identified investment-specific technology shock.  For 

comparison, this section also shows the effects of the shock identified by applying the relative-

price approach to the VAR model where labor productivity is replaced with the relative price of 

investment. 
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4.1 The Effects of the Investment-Specific Technology Shock 

Figure 2 shows impulse responses to the shock identified by this paper’s approach.  The 95-

percent confidence bands are computed by a residual-based bootstrap procedure repeated 2000 

times.  Labor productivity increases while the response of its log-linear combination with the 

relative price of investment is not statistically significant at almost any horizon.  The two 

responses are what the constrained max-share approach is expected to give and indicate that the 

shock reflects technology change in the investment-goods sector, but neither technology change 

in the consumption-goods sector nor nontechnology change.  The insignificant response of the 

nominal investment-output ratio also indicates that the shock does not reflect nontechnology 

change. 

The long-run responses of TFP, output, investment, and consumption are all positive and 

consistent with the theoretical effects of an investment-specific technology shock.  TFP 

gradually increases to a level above the initial response and such a response suggests that the 

identified shock reflects the arrival of news that later materializes in actual technology change.  

Output, investment, consumption and labor inputs continue to increase up to the one- or two-

year horizon and thus the identified shock induces positive business-cycle comovement among 

the macroeconomic aggregates.  The impact responses of investment and labor inputs are 

around zero and could be explained by investment adjustment costs.  As shown by 

Vigfusson’s (2004) model simulations, since such costs lead to a limited increase in output by 

making investment demand inertial, an increase in labor inputs in response to technology 

improvements is smaller than in the case of no such costs. 

Table 1 shows the share of the forecast error variances attributable to the identified 

investment-specific technology shock.  The shock accounts for 82 percent of the forecast error 

variance share of labor productivity at the eight-year horizon, where the share is maximized for 

identification.  In contrast, it accounts only for 1 percent of the share of the log-linear 
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combination of labor productivity and the relative price of investment.  These results show 

that, on average over the sample period in the U.S. data, the role of sector-neutral technology 

shocks is small.  The identified shock’s small role in fluctuations in the nominal investment-

output ratio (6 percent) shows that this paper’s approach effectively works to make the shock 

uncontaminated by nontechnology change. 

The contribution to TFP fluctuations is 6 percent on impact and increases to 21 percent at 

the eight-year horizon.  This means that the shock is dominated by the arrival of news, not by 

the unanticipated technology shock, and requires time to materialize in TFP change.  The 

identified shock plays a large role in both business-cycle and long-run fluctuations in 

macroeconomic aggregates.  At the two-year horizon, it accounts for 61, 28, 44, and 19 percent 

of the forecast error variance shares of output, investment, consumption, and labor inputs 

respectively and notably the contribution to output fluctuations is 19 percent even at the lower 

bound.  The shock’s contributions to the forecast error variance shares of output, investment, 

and consumption at the eight-year horizon are also large, at 71, 52, and 51 percent respectively.  

The role of the investment-specific technology shock found by this paper is larger than what 

Fisher (2006) finds: his shock accounts for 14 and 34 percent of output fluctuations at the two-

year horizon in the periods 1955:1-1979:2 and 1982:3-2000:4 respectively.  However, his 

approach is to combine the long-run restriction identification with the relative-price approach, 

both of which this paper regards as problematic.  Ben Zeev and Khan (2015) try to identify 

the news shock about investment-specific technology as the shock that best explains future 

movements in the relative price of investment and is orthogonal to innovations in TFP and the 

relative price of investment.  Thus, they combine the max-share identification approach with 

the “brave” version of relative-price approach where the inverse of the relative price of 

investment is assumed to equal investment-specific technology at all times.18 The role of their 

                                                   
18 With different factor shares between the two sectors or with markups, their orthogonality condition does not 
allow identification of the technology news shock since the relative price of investment responds endogenously 
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news shock in the U.S. business cycle is very large: the shock leads to significant increases in 

output, investment, and consumption and explains 73, 60, and 73 percent of those variables’ 

forecast error variances at the two-year horizon.  In contrast, very oddly, the news shock does 

not cause a significant response of TFP and explains little the forecast error variance of TFP.  

Given the identity between TFP and aggregate sectoral technology, this implies that they fail to 

identify the investment-specific technology shock.19 The next section shows that it is very likely 

that they identify negative technology shocks in the consumption-goods sector as well as 

positive technology shocks in the investment-goods sector, both of which affect the relative 

price of investment in the same direction. 

4.2 Comparison with the Relative-Price Approach 

This subsection examines the relative-price approach by replacing labor productivity with the 

relative price of investment in the VAR model and identifying the shock that best explains future 

movements in the latter variable.  The response of labor productivity is recovered from the 

responses of the relative price of investment and its linear combination with labor productivity.  

Figure 3 shows impulse responses.  Strikingly, while the response of labor productivity is still 

positive, the response of the log-linear combination of labor productivity and the relative price 

of investment turns negative on average and is statistically significant around the two- to three-

year horizon.  The response of TFP is not statistically significant at any horizon and confirms 

Ben Zeev and Khan’s (2015) result.  Another large change from the baseline results is that the 

response of consumption is not statistically significant at long horizons.20 The responses of TFP 

                                                   
and immediately.  Given the identity between TFP and aggregate sectoral technology shown in equation (27), it 
is conceptually possible to identify the technology news shock only by assuming orthogonality with TFP.  
However, Kurmann and Sims (2020) show that such an orthogonality condition makes results sensitive to revisions 
in Fernald’s (2014) utilization-adjusted TFP series, which is used by Ben Zeev and Khan (2015). 
19 Ben Zeev and Khan (2015) only state that “[T]he effect on TFP is insignificant” for this result.  Though Fisher 
(2006) does not have TFP in his VAR model, his approach might not suffer such a problem since he imposes the 
additional restriction that the investment-specific technology shock that lowers the relative price of investment 
raises labor productivity. 
20 Since Ben Zeev and Khan (2015) show impulse responses only up to the five-year horizon, it is unknown what 
their impulse responses look like in the long-run. 
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and consumption are inconsistent with the theoretical role of investment-goods technology.  In 

addition, confidence bands for many variables are wider. 

Table 2 shows the share of the forecast error variances attributable to the shock.  Since the 

shock accounts for 57 percent of labor productivity’s fluctuations at the eight-year horizon, it 

is very likely that it reflects technology shocks in the investment-goods sector.  Nevertheless, 

its contribution to TFP fluctuations at the same horizon is only 6 percent.  The shock’s share 

in the forecast error variance of the log-linear combination of labor productivity and the relative 

price of investment is 15 percent at the eight-year horizon and larger than in the baseline results 

(1 percent).  When compared with the baseline results on macroeconomic aggregates, the 

shock’s share in the forecast error variance of consumption is especially smaller at 33 and 37 

percent at the two- and eight-year horizons (44 and 51 percent in the baseline results). 

A possible reason for these results is that the relative-price approach identifies a linear 

combination of the positive technology shock in the investment-goods sector and the negative 

technology shock in the consumption-goods sector, both leading to an increase in the inverse 

of the relative price of investment.  The negative response of the log-linear combination of 

labor productivity and the relative price of investment is consistent with this interpretation.  

The smaller role of the shock in fluctuations in TFP and consumption is consistent with the 

two-sector model’s prediction that the negative consumption-goods technology shock has 

negative effects on TFP and consumption.  The confidence bands are expected to be large 

because the technology shock in the consumption-goods sector since the early 1980s has been 

small or infrequent, as strongly suggested by the observations in Section 3, and thus its effect 

is estimated imprecisely. 

The role of the negative consumption-goods technology shock can be illustrated by 

substituting the responses of labor productivity and its linear combination with the relative price 

of investment, each of which should eventually follow the response of technology in each of 
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the two sectors, into equation (27) and approximating the TFP response.  Figure 4 compares 

the result with the TFP response.  The two responses are not statistically different.   In spite 

of the positive response of labor productivity noted above, the approximate TFP response is not 

statistically significant at any horizon, reflecting the negative response of the linear combination 

of labor productivity and the relative price investment and the large confidence bands for the 

two variables.  The bottom row of Table 2 shows the forecast error variance share in the 

approximate TFP.  It is far smaller than the contribution to labor productivity and does not 

exceed 5 percent at any horizon. 

5. Robustness 

As robustness checks, I ordered the target variable, labor productivity or the relative price of 

investment, last and set the truncation horizon to 60 quarters instead of 32 quarters.  The 

results obtained by using the approach developed in this paper were quantitatively robust to the 

order change and qualitatively robust to the change in the truncation horizon.21 When using the 

relative-price approach and setting the truncation horizon to 60 quarters, the impulse response 

of TFP was still statistically insignificant at all horizons, though the lower bound of the 

confidence band for the impulse response of consumption at long horizons became very slightly 

positive.  Ordering the relative price of investment last made the confidence intervals so wide 

that all the responses became statistically insignificant.  Thus, the superiority of this paper’s 

approach was robust to these checks.  The remainder of this section shows results from other 

robustness checks: testing Granger-causality, using an alternative measure of relative price of 

investment, and looking at sectoral technology series computed by Fernald’s (2014, 2015) 

approach. 

5.1 Granger-Causality Test 

                                                   
21 When the truncation horizon was changed, the impulse response of labor inputs to the identified shock was not 
statistically significant and the shock’s shares in forecast-error variances of macroeconomic aggregates were 
smaller than the baseline results by more or less 10 percentage points. 
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Though the impulse response of the nominal investment-output ratio allows a comprehensive 

assessment of the irrelevance of the identified shock to nontechnology change, an additional 

check is possible by studying the relationship with identified nontechnology shocks.  Such an 

approach is taken by Francis and Ramey (2005), Fisher (2006), and Ben Zeev and Khan (2015).  

This paper considers whether each of the following eight variables Granger-causes the 

identified investment-specific technology shock: Ramey and Zubairy’s (2018) military news 

shock, Mertens and Ravn’s (2013) personal income tax shock and corporate income tax shock, 

Mertens and Ravn’s (2011) tax news shock, Romer and Romer’s (2004) monetary policy shock, 

Gilchrist and Zakrajšek’s (2012) excess bond premium, Kilian’s (2008) OPEC oil supply shock, 

and Baker, Bloom, and Davis’s (2016) U.S. economic policy uncertainty index.22 The identified 

investment-specific technology shock is regressed on a constant and the current and four lagged 

values of each shock.  Table 3 shows p-values for the null hypothesis that all the coefficients 

on the variables in question are jointly equal to zero.  The null is not rejected for any of the 

cases. 

5.2 Alternative Deflators for Investment and Consumption 

The robustness of the results to price measurements is assessed by two experiments.  First, 

this paper replaces the NIPA investment deflator with an alternative investment deflator 

reflecting information in Fisher’s (2006) equipment deflator.  Second, this paper measures the 

consumption-goods price using the NIPA nondurable and service consumption deflator, instead 

of the deflator for total noninvestment demand, since the former deflator is used very often in 

the literature. 

This paper extends Fisher’s (2006) equipment deflator to periods before 1955 and after 2000 

                                                   
22 This paper uses Romer and Romer’s (2004) monetary policy shock series updated by Johannes Wieland, which 
is available in Ramey's (2016) dataset for the Handbook of Macroeconomics, downloadable at her website.  
Mertens and Ravn (2011) construct 17 series of anticipated tax shocks, each corresponding to the number of 
quarters that it would take until actual change occurs.  This paper constructs a single series of tax news shocks 
by allocating the shocks to the dates when they arrived.  This paper does not use the oil supply shock identified 
by the popular Kilian (2009) approach, since it could reflect news about oil demand, as argued by Wieland (2019). 
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by simply using the growth rate of the NIPA equipment series, since the five-year correlation 

between the log-differences of the two series is very high at around 0.8 at the beginning and 

end of Fisher’s (2006) sample period.  The investment deflator is constructed by combining 

the extended equipment deflator series with the NIPA deflator series for the other components 

of private nonresidential fixed investment.23  Figure 5 compares the two equipment deflators 

and plots the three versions of the relative price of investment.  Fisher’s (2006) deflator rises 

less until the early 1980s and falls more thereafter, reflecting larger quality adjustments, and 

the cumulative difference reaches 110 percent.  Investment deflators diverge less, reflecting 

the share of equipment investment in total investment (about 50 percent), and the cumulative 

difference is 60 percent.  Using the nondurable and service consumption deflator makes an 

additional difference of 20 percent. 

Figure 6 shows impulse responses to shocks identified by this paper’s approach and the 

relative-price approach with the alternative investment deflator and Figure 7 shows impulse 

responses to shocks identified with the alternative deflators for both investment and 

consumption.  The results are very similar to the results shown in Figures 2 and 3.  The shock 

identified by this paper’s approach causes significant increases in TFP and other 

macroeconomic aggregates.  The shock identified by the relative price approach does not 

cause a significant response of TFP at any horizon, while causing a temporary negative response 

of the linear combination of labor productivity and the relative price of investment.  The only 

noticeable change from before is that the response of consumption is statistically significant.  

Thus, most of this paper’s main findings are robust to changes in the price measurements. 

5.3 Comparison with Fernald’s (2014, 2015) Measure of Sectoral Technology 

Fernald (2014, 2015) measures sectoral technology change by exploiting the identity between 

                                                   
23 The Fisher ideal chain index formula is used for constructing the investment deflator.  This deflator is used for 
constructing other series in the VAR model (i.e. labor productivity, the relative price of investment, and 
noninvestment-goods inflation). 
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TFP and aggregate sectoral technology shown by equation (26).  By assuming that changes in 

relative technology equal changes in relative prices, his approach measures technology growth 

in the investment- and consumption-goods sectors as follows: 

  𝑑𝑑𝑍𝑍𝐼𝐼,𝑡𝑡 = 𝑑𝑑𝑇𝑇𝑇𝑇𝑃𝑃𝑡𝑡 + (1 − 𝑤𝑤𝑡𝑡)�𝑑𝑑𝑃𝑃𝐶𝐶,𝑡𝑡 − 𝑑𝑑𝑃𝑃𝐼𝐼,𝑡𝑡� and 𝑑𝑑𝑍𝑍𝐶𝐶,𝑡𝑡 = 𝑑𝑑𝑇𝑇𝑇𝑇𝑃𝑃𝑡𝑡 − 𝑤𝑤𝑡𝑡�𝑑𝑑𝑃𝑃𝐶𝐶,𝑡𝑡 − 𝑑𝑑𝑃𝑃𝐼𝐼,𝑡𝑡�. 

While this approach ignores the difference in the sectoral factor shares and the possible change 

in relative markups, it uses TFP instead of labor productivity and does not rely on the long-run 

properties of the two-sector model.  Thus, his approach and this paper’s approach can be 

viewed as complements, with distinct identification schemes and strengths. 

   Figure 8 plots the technology series computed by Fernald’s (2014, 2015) approach, together 

with this paper’s series for comparison.24 The former series represent cumulative growth.  The 

two technology series for each sector follow a similar trend.  Though there are persistent 

differences in the level of the investment-goods technology series, those are due to temporary 

differences in growth in the mid-1970s.  Indeed, correlation coefficients between the first 

differences of the two series for each sector are very high: 0.91 for the investment-goods sector 

and 0.82 for the consumption-goods sector.  These results reinforce the plausibility of this 

paper’s approach. 

6. TFP and Sectoral Technology 

There is a broad misunderstanding about the covariation between TFP and the relative price of 

investment.  Schmitt-Grohé and Uribe (2011) assert that TFP and the relative price of 

investment share a common stochastic trend by finding a cointegrating relationship.  They also 

assert that sector-neutral and investment-specific technology are cointegrated by regarding TFP 

and the relative price of investment as respectively indicating each type of technology.  Based 

on multiple statistical tests, Benati (2014) admits the possibility of a common stochastic trend 

                                                   
24 This paper follows Fernald (2015) by using the TFP series unadjusted for utilization in measuring sectoral 
technology. 
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but argues against cointegration.  In contrast, Beaudry and Lucke (2010) make the identifying 

assumption that the relative price of investment is affected by the investment-specific 

technology shock while TFP is not in the long-run.  Their other identifying assumption is that 

TFP is not affected by the investment-specific technology shock in the short-run.  Ben Zeev 

and Khan (2015) also use such an assumption when identifying the unanticipated investment-

specific technology shock.  This paper argues below that these studies miss the identity 

between TFP and aggregate sectoral technology shown in equation (27). 

After testing the cointegrating relationship, Schmitt-Grohé and Uribe (2011) evaluate the 

importance of a shock to the common stochastic trend by estimating a one-sector real business 

cycle model where sector-neutral and investment-specific technology are embedded.  Given 

their estimation result that the relative price of investment literally equals the investment-

specific technology, the factor share should be common between the investment- and 

consumption-goods sectors in the two-sector representation.25 Then, technology in their model 

is mapped to technology in the two-sector model as follows: 

(28)                   𝑍𝑍𝐼𝐼,𝑡𝑡 ≡ 𝑍𝑍𝑆𝑆𝑁𝑁,𝑡𝑡
1−𝛼𝛼𝑍𝑍𝐼𝐼𝑆𝑆,𝑡𝑡 and 𝑍𝑍𝐶𝐶,𝑡𝑡 ≡ 𝑍𝑍𝑆𝑆𝑁𝑁,𝑡𝑡

1−𝛼𝛼. 

The sector-neutral technology is raised to the power of the labor share since it is Harrod-neutral 

in their model.  Their TFP measure, taken from the working paper version of Beaudry and 

Lucke (2010), is computed using NIPA data and satisfies the relationship with sectoral 

technology shown in equation (27).  Substituting equation (28) into (27) gives 

(29)                 ln𝑇𝑇𝑇𝑇𝑃𝑃𝑡𝑡 ≈ (1 − 𝛼𝛼) ln𝑍𝑍𝑆𝑆𝑁𝑁,𝑡𝑡 + 𝜔𝜔∗ ln𝑍𝑍𝐼𝐼𝑆𝑆,𝑡𝑡. 

Equation (29) shows two facts.  First, TFP always reflects investment-specific as well as 

sector-neutral technology.  Thus Schmitt-Grohé and Uribe’s (2011) associating TFP only with 

                                                   
25 Given that Schmitt-Grohé and Uribe’s (2011) estimate entails a standard error, this result is not inconsistent 
with the fact that the factor shares computed using the input-output table are different between the two sectors.  
In terms of the two-sector model, what Schmitt-Grohé and Uribe (2011) estimate is (1 − 𝛼𝛼𝐶𝐶)/(1 − 𝛼𝛼𝐼𝐼)  in 
𝑃𝑃𝐶𝐶 ,𝑡𝑡/𝑃𝑃𝐼𝐼,𝑡𝑡 = 𝑍𝑍𝐼𝐼𝑆𝑆,𝑡𝑡

(1−𝛼𝛼𝐶𝐶)/(1−𝛼𝛼𝐼𝐼).  Their estimate is unity with a standard error of 0.06, while Basu, Fernald, Fisher, and 
Kimball’s (2013) results based on the input-output table imply that it is 0.93. 
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sector-neutral technology is incorrect and the identifying assumption of Beaudry and Lucke 

(2010) and Ben Zeev and Khan (2015) is not valid. 26 Second, since the relative price of 

investment intrinsically reflects the investment-specific technology, it shares a common 

stochastic trend with TFP by construction.  Thus, an empirical investigation of the existence 

of such a trend, as in Schmitt-Grohé and Uribe (2011) and Benati (2014), is meaningless. 

7. Conclusion 

This paper proposes to identify the investment-specific technology shock as the shock that has 

a long-run effect on labor productivity in investment units but not on its log-linear combination 

with the relative price of investment.  This approach allows permanent relative markup change, 

technology specific to the consumption-goods sector, and differences in sectoral factor shares, 

while the relative-price approach does not.  This paper also proposes a constrained Max Share 

approach that allows one to exploit the two steady-state properties.  The investment-specific 

technology shock identified with the U.S. data is an important source of economic fluctuations 

in both short- and long-run.  It induces positive business-cycle comovement.  In contrast, the 

relative-price approach seems to fail to identify the shock correctly, since TFP changes little.  

Finally, this paper highlights a broadly missed identity between TFP and aggregate sectoral 

technology, which causes covariation between TFP and the relative price of investment by 

construction. 

   This paper’s results imply that, in estimating dynamic stochastic general equilibrium 

(DSGE) models, many papers, including Smets and Wouters (2007), Justiniano, Primiceri, and 

Tambalotti (2010, 2011), Schmitt-Grohé and Uribe (2011, 2012), and Khan and Tsoukalas 

(2012), might include a specification error by assuming investment-specific and sector-neutral 

technology.  Justiniano, Primiceri, and Tambalotti (2011), Schmitt-Grohé and Uribe (2012), 

                                                   
26 Indeed, very oddly, Ben Zeev and Khan’s (2015) identified shock explains a tiny portion of fluctuations in TFP 
and output while it explains more than half of fluctuations in the relative price of investment.  Perhaps they 
mislabel nontechnology shocks that affect the relative price of investment as unanticipated technology shocks. 
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and Khan and Tsoukalas (2012) might underestimate the role of investment-specific technology 

in business cycles by equating it to the inverse of the relative price of investment, which might 

be negatively affected by technology improvements in the consumption-goods sector.  Ireland 

and Schuh (2008) is a notable exception in that they estimate their model assuming investment- 

and consumption-goods technology and find that the two types of technology play different 

roles in business cycles.  This suggests that results in the literature of DSGE model estimation 

should be reexamined using a different specification of technology. 
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Table 1. Forecast Error Variance Decomposition: Investment-Specific Technology Shock 

Horizon 0 4 8 16 32 
      Labor productivity (LP) 19.5 

(1.2,45.5) 
54.0 

(22.7,71.4) 
64.3 

(32.7,77.2) 
76.0 

(44.0,83.6) 
81.8 

(41.9,88.7) 
LP & RPI linear combination 2.0 

(0.0,7.6) 
2.0 

(0.2,5.4) 
1.5 

(0.3,3.3) 
1.4 

(0.4,1.9) 
1.0 

(1.0,1.0) 
Investment-output ratio 2.9 

(0.0,26.5) 
1.2 

(0.2,25.0) 
3.3 

(0.7,21.9) 
6.1 

(1.2,23.1) 
5.6 

(1.5,22.1) 
TFP 6.3 

(0.1,29.8) 
4.9 

(0.4,28.8) 
4.6 

(0.7,26.4) 
9.4 

(3.2,28.2) 
20.7 

(8.3,34.9) 
Output 9.0 

(0.0,27.6) 
40.4 

(6.2,56.8) 
61.1 

(19.4,70.6) 
69.8 

(24.4,79.1) 
71.1 

(25.2,83.2) 
Investment 0.1 

(0.0,20.4) 
9.9 

(0.7,31.0) 
28.0 

(4.5,46.9) 
43.7 

(10.1,58.3) 
51.9 

(12.9,65.6) 
Consumption 29.9 

(0.2,56.0) 
36.5 

(1.4,59.1) 
44.1 

(4.7,66.0) 
48.2 

(6.4,70.3) 
50.7 

(8.1,73.5) 
Labor input 1.1 

(0.0,33.0) 
7.0 

(1.0,23.0) 
19.2 

(2.3,36.5) 
25.4 

(2.5,42.7) 
26.2 

(2.7,45.1) 
Relative price of investment (RPI) 12.8 

(0.3,38.7) 
45.2 

(16.9,66.9) 
58.9 

(27.5,77.0) 
69.6 

(36.6,83.6) 
74.5 

(37.3,88.0) 
Inflation 17.2 

(0.3,41.0) 
30.9 

(5.8,46.8) 
29.8 

(5.9,45.6) 
28.6 

(6.5,43.8) 
28.6 

(6.7,43.6) 

Note: The unit is percent.  The forecast horizon is in quarters.  Numbers in parenthesis represent the 2.5th and 
97.5th percentile confidence intervals generated by a residual-based bootstrap procedure repeated 2000 times. 
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Table 2. Forecast Error Variance Decomposition: Relative-Price Approach 

Horizon 0 4 8 16 32 
      Labor productivity (LP) 5.4 

(0.0,33.3) 
31.4 

(12.7,58.1) 
38.1 

(18.7,64.1) 
46.3 

(25.3,69.1) 
56.5 

(30.0,76.5) 
LP & RPI linear combination 3.6 

(0.0,14.1) 
4.7 

(0.3,18.5) 
10.9 

(0.8,28.6) 
17.4 

(1.2,40.0) 
15.1 

(1.4,43.6) 
Nominal investment-output ratio 8.2 

(0.0,36.0) 
3.4 

(0.4,31.1) 
3.0 

(0.9,24.8) 
3.5 

(1.4,24.9) 
4.7 

(2.3,28.3) 
TFP 2.3 

(0.0,17.3) 
4.0 

(0.2,21.9) 
4.3 

(0.3,24.5) 
3.1 

(0.7,22.6) 
5.8 

(0.9,33.0) 
Output 7.3 

(0.0,32.7) 
38.1 

(6.7,62.8) 
55.9 

(21.7,74.2) 
63.7 

(30.1,81.0) 
66.0 

(31.0,84.5) 
Investment 0.8 

(0.0,21.4) 
6.8 

(0.8,32.1) 
20.6 

(3.3,48.9) 
32.0 

(5.8,58.3) 
38.0 

(6.2,65.3) 
Consumption 20.6 

(0.1,46.2) 
27.6 

(0.9,54.4) 
32.9 

(2.1,60.8) 
35.1 

(3.2,65.3) 
37.4 

(2.9,69.2) 
Labor input 1.4 

(0.0,15.8) 
13.7 

(0.7,36.7) 
28.5 

(2.5,54.1) 
37.5 

(4.0,63.1) 
40.6 

(4.3,66.0) 
Relative price of investment (RPI) 26.4 

(2.7,46.0) 
59.2 

(29.2,78.1) 
72.3 

(47.0,86.8) 
85.1 

(69.2,92.7) 
91.4 

(82.2,95.7) 
Inflation 8.5 

(0.3,38.5) 
28.2 

(8.7,51.8) 
28.6 

(9.2,51.3) 
29.8 

(10.5,50.8) 
31.7 

(11.2,51.4) 
Approximate TFP 1.6 

(0.0,12.1) 
0.8 

(0.2,11.1) 
2.7 

(0.4,15.1) 
5.1 

(0.6,23.3) 
3.1 

(0.9,24.7) 

Note: The unit is percent.  The forecast horizon is in quarters.  Numbers in parenthesis represent the 2.5th and 
the 97.5th percentile confidence intervals generated by a residual-based bootstrap procedure repeated 2000 times. 
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Table 3. Granger Causality Test 

Does the following shock Granger-cause the 
investment-specific technology shock? 

p-value in 
parenthesis 

Military news shock No (0.69) 
Personal income tax shock No (0.99) 
Corporate income tax shock No (0.82) 
Tax news shock No (0.84) 
Monetary policy shock No (0.65) 
Credit shock No (0.19) 
OPEC shock No (0.20) 
Uncertainty shock No (0.76) 

Note: The table shows results from regressing the identified investment-specific technology shock on current and 
four lagged values of each of the nontechnology series and testing that all the coefficients are zero.  The sample 
period differs depending on the availability of each series; 1949:1-2015:4 for the military news shock; 1951:1-
2006:4 for the personal and corporate income tax shocks; 1949:1-2006:4 for the tax news shock; 1970:2-2007:4 
for the monetary policy shock; 1974:2-2016:2 for the credit shock; 1972:1-2004:3 for the OPEC shock; 1986:2-
2018:1 for the uncertainty shock. 
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Figure 1. Labor Productivity in Investment Units and the Relative Price of Investment 

 
Note: Labor productivity raised to the power of the labor share in the investment-goods sector indicates the level 
of technology in the investment-goods sector.  See equation (22).  The linear combination of labor productivity 
and the relative price of investment is computed using the labor share in the consumption-goods sector as the 
coefficient.  See equation (23). 
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Figure 2. Impulse Reponses to an Investment-Specific Technology Shock 

 

 

 

 

 
Note: The unit is percent and the horizon is in quarters.  Solid lines represent impulse responses to a one percent 
innovation.  Dashed lines represent the 2.5th and 97.5th percentile confidence intervals generated by a residual-
based bootstrap procedure repeated 2000 times.  The relative price of investment is abbreviated to RPI.  
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Figure 3. Impulse Reponses to the Shock Identified by the Relative-Price Approach 

 

 

 

 

 
Note: The unit is percent and the horizon is in quarters.  Solid lines represent impulse responses to a one percent 
innovation.  Dashed lines represent the 2.5th and 97.5th percentile confidence intervals generated by a residual-
based bootstrap procedure repeated 2000 times.  The relative price of investment is abbreviated to RPI.  
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Figure 4. Impulse Response of TFP to the Shock Identified by the Relative-Price Approach 

 
Note: The unit is percent and the horizon is in quarters.  Solid lines represent impulse responses to a one percent 
innovation.  Dashed lines and shaded band represent the 2.5th and 97.5th percentile confidence intervals 
generated by a residual-based bootstrap procedure repeated 2000 times.  The approximate TFP is a weighted 
average of labor productivity and its linear combination with the relative price of investment.  The weight is the 
share of private nonresidential fixed investment in business output. 
  



40 
 

Figure 5. Equipment Deflator and the Relative Price of Investment 

Equipment deflator 

 

Relative price of investment 

 

Note: The baseline series is identical to the series of relative price of investment shown in Figure 1. 
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Figure 6. Alternative Investment Deflator 

Investment-specific technology shock Relative-price approach 

  

  

  

  

  

Note: The unit is percent and the horizon is in quarters.  Solid lines represent impulse responses to a one percent 
innovation.  Dashed lines represent the 2.5th and 97.5th percentile confidence intervals generated by a residual-
based bootstrap procedure repeated 2000 times.  The relative price of investment is abbreviated to RPI. 
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Figure 7. Alternative Deflators for Investment and Consumption 

  Investment-specific technology shock Relative-price approach 

  

  

  

  

  

Note: The unit is percent and the horizon is in quarters.  Solid lines represent impulse responses to a one percent 
innovation.  Dashed lines represent the 2.5th and 97.5th percentile confidence intervals generated by a residual-
based bootstrap procedure repeated 2000 times.  The relative price of investment is abbreviated to RPI. 
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Figure 8. Comparison with Fernald’s Approach to Measuring Sectoral Technology 

 
Note: The series computed by Fernald’s approach represent cumulative growth.  The series of labor productivity 
and its linear combination with the relative price of investment are identical to those shown in Figure 1. 
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