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We present a state-dependent pricing model that generates inflation fluctuations from 

idiosyncratic shocks to the cost of price changes of individual firms. A firm’s 

nominal price increase, lowers other firms’ relative prices, thereby inducing further 

nominal price increases. This snow-ball effect of repricing causes fluctuations to the 

aggregate price level without exogenous aggregate shocks. The fluctuations caused 

by this mechanism are more volatile when the density of firms at the repricing 

threshold is high, and the density at the threshold is high when the trend inflation 

level is high. Thus, the model implies that higher trend inflation produces larger 

volatility of short-term inflation rates. Analytical and numerical analyses show that 

the model can account for the positive relationship between inflation level and 

volatility that has been observed empirically. 
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1 Introduction

Monthly aggregate prices exhibit chronic fluctuations, but the aggregate shocks that

drive these fluctuations are often elusive. Macroeconomic models often use stochastic

macro-level shocks such as technology shocks or monetary policy shocks to produce

these aggregate fluctuations. However, empirical counterparts of those macro-level

shocks have been identified largely as residuals. Direct evidences for exogenous shocks

are usually found at more disaggregated levels.

Bak et al. [5] and Scheinkman and Woodford [30] proposed a model in which ag-

gregate fluctuations are generated by idiosyncratic shocks and endogenous correlations

of firm’s actions. They considered a lattice network of supply chains. Each firm has a

fixed cost of producing and uses inventory as a buffer to sales shocks. When the inven-

tory hits bottom, the firm produces goods and replenishes its inventory. They show

that the inventory profile converges to a distribution at which the correlation function

of firms’ productions with respect to the supply-chain distance exhibits polynomial

decline. Thus, the economy self-organizes to an inventory profile at which the aggre-

gate fluctuations emerge endogenously. This mechanism was extended to a general

equilibrium model by Nirei [27, 28].

In this paper, we apply the self-organization model for inflation fluctuations that

are generated endogenously from firm-level interactions. Firms set their prices depend-

ing on their competitors’ pricing and incur price-adjustment costs. A firm’s upward

repricing reduces all the competitors’ relative prices, inducing some of them to reprice

upward. Thus firms’ pricing behavior in equilibrium exhibits complementarity. The

strength of this propagation depends on the average number of firms that are induced

to change their prices when a firm adjusts. The average number of affected firms is

increasing in the trend inflation rate because the stationary density at the threshold is
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increasing in the stationary inflation rate. We show that this higher density results in

greater complementarity and higher short-run volatility. Thus our model generates a

positive correlation between the long-run level of inflation and the volatility of inflation.

First observed by Okun [29], this positive correlation has been confirmed repeatedly,

e.g., by Judson and Orphanides [21] or Dincer and Eichengreen [15] who controlled for

central bank independence and trade openness. The observation of the positive asso-

ciation between volatility and trend inflation is used to partially justify central banks’

choice of low inflation targets. In addition to the trend-volatility correlation, our model

generates other testable implications such as that the inflation volatility positively de-

pends on the elasticity of substitution between goods and negatively depends on the

economy size.

The rest of the paper is organized as follows. Section 2 reviews the related litera-

ture. Section 3 builds a tractable state-dependent pricing model with linear production

and solves for the pricing policy and the stationary distribution of relative prices when

the number of firms tends to infinity. We show the existence of a unique stationary

equilibrium for each long-run inflation level and produce key comparative statics re-

sults. Section 4 demonstrates that, in the case of a finite number of firms, the model

generates substantial fluctuations of inflation rates around the long-run level. Key to

the analysis is the degree of complementarity between firms’ repricing behavior, which

generates a power-law distribution of the propagation size and slows down the cancel-

ing effects from the law of large numbers. Using the comparative-statics result that an

increase in long-run inflation leads to a higher degree of complementarity, we establish

that higher inflation causes higher volatility in inflation. In Section 5 we calibrate

model parameters and investigate the magnitude of the positive association between

inflation level and volatility for a wide range of inflation levels. Section 6 concludes.
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2 Related Literature

A standard argument is that the law of large numbers precludes aggregate fluctuations

as a result of direct aggregation of the micro-level independent shocks. However, a

recent literature demonstrates that the micro shocks may produce macro shocks in

an economy in which some firms or industries are very large. Gabaix [18], an early

contributor, dubbed this mechanism the “granular hypothesis.” Acemoglu et al. [1]

show that input-output relationships can produce industries that have a very large

influence in the overall economy. The granular hypothesis implies that the origin of

aggregate shocks should be identifiable as a set of micro shocks on large firms or key

industries.1 Nonetheless, estimates by Gabaix [18] or Carvalho and Grassi [13] leave

the majority of aggregate shocks still unexplained.

There is an extensive literature on inflation volatility. Common wisdom is to target

the annual inflation rate at about 2%, and even researchers who advocate higher infla-

tion targets do not suggest inflation rates higher than 4% (e.g., Ball [8]), because the

higher inflation rate would bring high social costs. Along with the redistribution effects

of inflation, greater dispersion of relative prices and greater volatility or uncertainty

of inflation rates are commonly cited as such costs (Fischer and Modigliani [17]). The

connection between the relative price dispersion and inflation is well established and

its welfare implications are extensively discussed (see, e.g., Golosov and Lucas [20];

Burstein and Hellwig [9]; Nakamura and Steinsson [26]). In contrast, the positive asso-

1In a recent paper, Moran and Bouchaud [24] examine the effect of replacing the Cobb-Douglas

production function in [1] by a CES with “small” degree of substitutability, while not assuming the

existence of “key industries.” They show that near critical parameter values these networks generate

power-tail size distributions of firms and that small idiosyncratic shocks cause aggregate output losses

that have a power law distribution.
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ciation between inflation level and volatility has been little explored in state-dependent

pricing models.2 A New Keynesian explanation was provided by Ball, Mankiw and

Romer [7]. In their model, a high level of inflation induces frequent repricing and more

flexible aggregate prices, under which exogenous demand shocks generate large volatil-

ity of aggregate price and small volatility of output. This particular consequence of

high inflation would have a positive impact on social welfare.

The impact of trend inflation has been investigated mostly in a time-dependent

pricing model (see Ascari and Sbordone [4] for a survey). However, the lack of micro-

foundation for repricing frequency in the time-dependent models has been a serious

limitation for policy analysis. The state-dependent pricing model, which provides a

microfoundation, has been beyond analytical analysis. The model loses tractability

quickly, unless one employs linear-quadratic approximation or exogenous real wage.

Our state-dependent pricing model is similar to the model in Dotsey, King and Wol-

man [16] and Golosov and Lucas [20] which has been analyzed mostly numerically.3

3 Model

3.1 Setup

This section presents a dynamic general equilibrium model with menu costs. The

model is a continuous-time, continuous-state version of Dotsey et al. [16] with linear

2Earlier work has focused on the possibility that monetary authority chooses the combination of

high-level, high-volatility inflation (see Ball [6] and references therein).
3The Golosov-Lucas model spawned empirical analyses by Midrigan [23] and Gagnon [19]. These

papers document that repricing occurs when the current price deviates sufficiently from the desired

price. Gagnon [19] also documents that a higher level of inflation is associated with more firms located

at the threshold—a key mechanism of our study of endogeneous price fluctuations.
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production. The stationary equilibrium of the model allows for comparative statics

analytically under an infinite number of firms and without aggregate shocks. In partic-

ular, equilibrium real wage turns out to be decreasing in trend inflation rate, reflecting

the misallocation effect of the relative price dispersion.

Consider that there are n firms, each of which supplies a differentiated intermediate

good monopolistically. The intermediate good i is produced using labor li,t linearly,

yi,t = li,t. (1)

A competitive sector produces composite goods using the intermediate goods as

Yt =

(
n∑
i=1

y
(η−1)/η
i,t n−1/η

)η/(η−1)

where η > 1 is the elasticity of substitution. Let Pt denote the price of the final goods.

Then, the optimization condition for the production of final goods leads to a demand

function for intermediate goods as yi,t = p−ηi,t Yt/n, where pi,t := Pi,t/Pt denotes the

relative price of good i. The price of the final goods is Pt =
(∑n

i=1 P
1−η
i,t /n

)1/(1−η)
.

Thus, the inflation rate of consumer price index in this model is πt = (dPt/dt)/Pt.

Let Wt denote the nominal wage rate and wt := Wt/Pt the real wage that firms

face. Firm i’s real net revenue from production is

Z(pi,t, wt, Yt) = (p1−η
i,t − wtp

−η
i,t )Yt/n. (2)

Firm i chooses its price pi,t to maximize the discounted value of the firm’s future

profit stream. There is no capital in this economy, but the prices of intermediate

goods are sticky. We assume that the firm can adjust the price of its good by bearing

adjustment costs δYt/n. We choose this specification of the adjustment cost so that

the firms’ pricing solution is explicitly derived. Let λt,t+dt denote a fraction of firms

that incur repricing costs in time interval [t, t+ dt).
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In addition, we assume that the firms face a homogeneous Poisson point process

with an intensity µ. At each t in which the point process jumps the firm can adjust

price without paying adjustment costs. The Poisson processes are independent across

firms. Thus, this model includes both elements of the state-dependent pricing and the

Calvo pricing models, as in Stokey [32]. The Calvo shock is the only exogenous shock in

this model. Thus, the Calvo shock represents all idiosyncratic disturbances on pricing

conditions such as adjustment costs, marginal costs and productivity.

Composite good Ct is consumed by representative households whose preference is

given by
∫∞

0
e−ρtU(Ct, Nt)dt, where ρ denotes the time discount rate and Nt labor

supply. The labor market is competitive. Combining the goods demand function and

the labor demand function p−ηi,t /n = yi,t/Yt = li,t/Yt, we obtain

Yt = Nt/(
n∑
i=1

p−ηi,t /n) (3)

at the labor market equilibrium
∑n

i=1 li,t = Nt.

We consider the stationary equilibrium where the aggregate price Pt grows at a

stationary inflation rate π for any t. We focus on the case of positive inflation rate

π > 0. The deflationary case π < 0 can be symmetrically analyzed in our framework.

In the stationary equilibrium firms incur repricing costs at a rate λ per unit of time.

Also, in the stationary equilibrium the risk-free real rate is ρ. Since n is large and the

Calvo shocks are independent, we assume that firms discount future real profits at the

risk-free rate.

The intra-temporal optimality condition for households is UN = −UCw. The market

clearing condition for final goods is

Y = C + λδY, (4)

since λδY is spent on price adjustments per-unit of time. Given w and the stationary
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distribution of pi,t, the steady-state output Y is determined by these conditions. We

need λδ < 1 so that C > 0. We will show later (Proposition 3) that this is indeed

satisfied for large π, since λδ asymptotes to 1/η > 1 as π →∞.

Consider a stationary equilibrium and a firm at t = 0. Since the maximization

problems are identical for all i we drop the subscript i on prices. Let T ′ denote the

(stopping) time when the firm reprices by incurring adjustment cost δY/n and τ the

time when the firm draws a Calvo shock. Let p′ denote the relative price to which the

firm reverts when it adjusts the price. The firm’s value function satisfies:

V (p0, w, Y ) = sup
{p′,T ′}

Eτ

{∫ T ′∧τ

0

e−ρtZ(pt, w, Y )dt+ e−ρ(T ′∧τ)(V (p′, w, Y )− 1T ′<τδY/n)

}
.

The homogeneity of the Poisson process guarantees that conditional on p0 the op-

timal stopping time T is independent of the past realizations of the Poisson process.

Since in a stationary equilibrium, until the firm draws a Calvo shock, the evolution of

pt is deterministic, the optimal T ∗ is also deterministic and the optimal p∗ to which the

firm reverts is independent of past-histories of Calvo shocks and prices. Thus we may

optimize over deterministic stopping times and reverting-prices that are independent

of past-histories of Calvo shocks and prices.

Since adjustment cost and profits (2) are linear on Y the value function is also

linear on Y . Writing

v :=
V (p, w, Y )

Y/n
,

z :=
Z(p, w, Y )

Y/n
= p1−η − wp−η,
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using the exponential distribution of τ , and omitting the arguments (Y,w) we have:

v(p0) = sup
{p′,T ′}

{
e−µT

′

(∫ T ′

0

e−ρtz(pt)dt+ e−ρT
′
(v(p′)− δ)

)

+

∫ T ′

0

µe−µτ
(∫ τ

0

e−ρtz(pt)dt+ e−ρτv(p′)

)
dτ

}
. (5)

Thus, the optimal pricing policy (p∗, T ∗) is not affected by Y .

In a stationary equilibrium firms’ repricing plan is given by a stopping time charac-

terized by a threshold rule, because they incur fixed costs δY/n when adjusting prices

(see, e.g., Ahlin and Shintani [2]). Under π > 0, the optimal pricing policy takes the

form of a one-sided regulator, in which a firm reprices upward to a price p∗ when it

reaches a lower threshold, denoted by p. An interval (p, p∗] forms a firm’s inaction

region where it is optimal for the firm not to adjust the price unless the firm draws a

Calvo shock. The lower threshold p must satisfy

z(p) = ρv(p∗)− (ρ+ µ)δ. (6)

Condition (6) follows because by marginally increasing p, a firm loses an instanta-

neous profit z(p)dt and a chance of not paying adjustment costs δµdt, on the one hand.

On the other hand, the firm gains the discounted value of adjusting, (v(p∗) − δ)ρdt.

Thus, the condition (6) assures that a marginal change in p does not increase the value

of firm.

A stationary equilibrium when n tends to infinity is defined as aggregate variables

(π,w, Y, C,N, λ), the distributions of (pi,t, yi,t, li,t)i,t, the value function v and pricing

policy {p, p∗}, and the path of aggregate price Pt that satisfy the following conditions:

(i) the allocation maximizes the household’s utility given prices, (ii) the value func-

tion, pricing policy and allocation solve the firms’ dynamic optimization problem given
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prices, (iii) markets clear for the final good, intermediate goods and labor, (iv) the

distribution of relative prices pi,t is stationary, and (v) Pt grows at a constant rate π.

3.2 Comparative statics of stationary equilibrium

First, we derive firms’ optimality conditions at the stationary equilibrium. For p0

outside of inaction region (p, p∗), T = 0 holds, and thus v(p0) = v(p∗) − δ. Inside

inaction region p0 ∈ (p, p∗), the relative price evolves deterministically as dpt/dt =

−πpt. Thus, inside the inaction region for a short time horizon dt, Equation (5) can

be written as

v(pt) = sup
p′

∫ t+dt

t

e−ρsz(ps)ds+

∫ t+dt

t

µe−(µ+ρ)τv(p′)dτ + e−(µ+ρ)dtv(pt+dt).

For a small interval dt, the above equation is written as

v(pt) = sup
p′
{(1− ρdt)z(pt)dt+ µ(1− (µ+ ρ)dt)v(p′)dt

+(1− (µ+ ρ)dt)(v(pt) + v′(pt)(dpt/dt)dt)}+ o(dt)

= sup
p′
{z(pt)dt+ µv(p′)dt+ (1− (µ+ ρ)dt)v(pt)− v′(pt)ptπdt}+ o(dt).

Hence, the Hamilton-Jacobi-Bellman equation is obtained as:

(ρ+ µ)v(p) = sup
p′

[z(p) + µv(p′)− πpv′(p)] = z(p) + µv(p∗)− πpv′(p), (7)

where p∗ maximizes v. The HJB equation makes it clear that the repricing point p∗

does not depend on the current relative price p. Differentiating with respect to p one

obtains: (ρ+ µ)v′(p) = z′(p)− πv′(p)− πpv′′(p) and z′(p∗) = πp∗v′′(p∗).

Given p∗, Equation (7) yields a first-order linear ODE up to an unknown constant

µv(p∗) = z(p∗)µ/ρ, which has a class of solution,

v(p) = c0p
−(ρ+µ)/π +

p1−η

ρ+ µ− π(η − 1)
− wp−η

ρ+ µ− πη
+
z(p∗)µ/ρ

ρ+ µ
, (8)
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with unknown coefficient c0.

The firm’s optimal choice for p∗ and p leads to the value matching condition

v(p∗)− δ = v(p) (9)

and p∗ must satisfy the first order condition

v′(p∗) = 0. (10)

Conditions (6,8,9,10) must be satisfied by a {p, p∗, c0, v(p)}, which solves the firms’

maximization problem given w. Let q := p∗/p > 1 denote the size of price adjustment

for the firm hitting p. Combining (6,10) and ρv(p∗) = z(p∗), we obtain z(p∗)− z(p) =

(ρ+ µ)δ, which may be rewritten as

(ρ+ µ)δ = (q1−η − 1)p1−η − w(q−η − 1)p−η [Value Matching]. (11)

Moreover, the optimal markup over the marginal labor cost satisfies (see the appendix

for derivation):

p∗ = qp =
ϕ(q, η − ρ+µ

π
)

ϕ(q, η − 1− ρ+µ
π

)

η

η − 1
w [Optimal Markup] (12)

where ϕ(q, x) := (qx−1)/x is an integral of qx−1 with respect to q. Using this equation,

and the fact that ϕ(·, ·) is strictly increasing in the second argument as shown in the

appendix, one can check that p∗ > p̂ := (η/(η−1))w. Note that p̂ maximizes the static

profit: z′(p̂) = 0. Thus, z′(p) = −ηp−η−1(((η − 1)/η)p − w) is strictly negative for

p > p̂. Therefore if v′(p) = 0 and p > p̂, v′′(p) = z′(p)/(πp) < 0. Thus, there is at most

one p > p̂ such that v′(p) = 0 and this p must achieve the maximum of v(p).

We now derive the stationary distribution of relative prices. Since Pt grows at π > 0,

the firm’s relative price pi,t deterministically declines at rate π unless the firm draws a
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Calvo shock, while it is adjusted to p∗ when pi,t reaches p or a Calvo shock arrives at rate

µ. Define a state variable si,t := (log pi,t− log p)/ log q, which denotes a firm’s distance

from the threshold relative price, normalized by the repricing size log q. Let f(s, t)

denote the density of st over its support (0, 1]. The state s declines by π/ log q due to

inflation, while it is reset to 1 when it reaches 0 or randomly at rate µ. Thus, f(s, t)

evolves according to Kolmogorov forward equation ∂f(s, t)/∂t = f(s+(π/ log q)dt, t)−

f(s, t) − f(s, t)µdt. The stationary distribution f(s) solves ∂f(s, t)/∂t = 0. Dividing

both sides of the equation by dt and taking dt→ 0, we obtain an ordinary differential

equation for the stationary distribution, 0 = f ′(s)π/ log q − f(s)µ, whose solution has

an exponential form. Since f(s) must integrate to 1, we obtain the solution as

f(s) = foq
sµ/π, (13)

where fo := log q/ϕ(q, µ/π) denotes the stationary density of firms at the repricing

threshold s = 0.

From pi,t = Pi,t/Pt and demand functions, an aggregation condition must hold:

n∑
i=1

p1−η
i,t /n = 1.

As n→∞, the left-hand side tends to E[p1−η
i,t ] where the expectation is evaluated using

the stationary distribution f(s) and p = p(p∗/p)s. Applying the stationary distribution,

the aggregation condition leads to

pη−1 =
ϕ(q, 1− η + µ

π
)

ϕ(q, µ
π
)

[Price Aggregation]. (14)

Hence, given w, the pricing policy (q, p) is determined by (11,12), and the aggre-

gation condition (14) puts a restriction on the policy (q, p), determining q, p, and w.

Note that p is linear in w in (12). Substituting w out and using (11,12,14), we obtain
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an equation to determine q:

η − 1

(ρ+ µ)δ

[
ϕ(q,−η)

ϕ(q, 1− η)

ϕ(q, 1− η + ρ+µ
π

)

ϕ(q,−η + ρ+µ
π

)
− 1

]
=

ϕ(q, 1− η + µ
π
)

ϕ(q, µ
π
)ϕ(q, 1− η)

. (15)

The left-hand side is equal to pη−1/ϕ(q, 1− η), indicating that the difference in profits

between p∗ and p is determined by the repricing cost δ. An increase in q raises p. The

right-hand side expresses that the relative prices must aggregate to 1. Thus, increasing

q decreases p. This establishes:

Proposition 1. There exists a unique stationary equilibrium for each π > 0.

All proofs are deferred to the appendix unless stated otherwise. This proposition

establishes the existence of unique stationary equilibrium for a state-dependent pricing

model with endogenous real wage and without using quadratic approximations.4 In

this model, the real wage is affected by the inflation rate through optimal markup

behavior, even though the marginal product of labor is constant due to the linear pro-

duction technology. We can show that the stationary equilibrium satisfy the following

properties:

Proposition 2. 1. The repricing size log q grows asymptotically linearly in π with

coefficient (log(1 + µδη))/µ.

2. The target price p∗ increases unboundedly as π increases.

4In the tradition of state-dependent pricing models, analytical results are obtained by taking real

wage or real cost of production exogenous (Sheshinski and Weiss [31]; Caplin and Spulber [12]; Ca-

ballero and Engel [10]; Caplin and Leahy [11]; Ahlin and Shintani [2]; Stokey [32]; Alvarez and Lippi

[3]) and the general equilibrium results are obtained numerically (Dotsey et al. [16]; Golosov and Lucas

[20]). An exception is Danziger [14] which analytically establishes the existence of Markov perfect

equilibrium under η = 2.
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3. The real wage w decreases as π increases for sufficiently large π.

The repricing size increases in π as in Sheshinski and Weiss [31], and the intuition

is clear: a higher inflation would cause more frequent repricing, inducing a firm to

adjust its price by a greater intensive margin in order to gain more time until the next

repricing. (1) establishes the sharper result that the increase is asymptotically linear

on inflation in our model. (2) implies that the target price to which firms adjust their

prices is increasing in the inflation π. Combined with (3), this implies that a higher

inflation induces firms to choose a higher markup when they revert to p∗, because

otherwise the firms would spend longer time with low markups. (3) states that, when

the inflation rate is sufficiently high, the real wage decreases as inflation increases.

When the inflation is higher, the relative price dispersion and the resulting inefficiency

loss in the production sector are larger. Thus, in an equilibrium of the good and labor

markets, as the inflation rate increases, the real wage decreases. To our knowledge,

this is a novel result in a literature where most analytical results are obtained with an

exogenous real wage or using quadratic approximations, whereas our result is obtained

asymptotically for large π.

The positive relationship between π and q implies that high inflation increases the

intensive margin of aggregate price adjustments, which generates a positive correlation

between the inflation level and inflation volatility. However, the main source of corre-

lation between the level of inflation and inflation volatility in our model—in a causal

sense as well as in terms of quantitative significance— is the extensive margin, that is,

the number of firms that reprice simultaneously, as we show in Section 4.
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3.3 Complementarity of repricing at the extensive margin

In a stationary equilibrium, the fraction of firms per unit of time that reprice at the

lower threshold of the inaction band, λ, is the extensive margin of aggregate price

adjustments. The value of λ is determined by the complementarity of repricing behavior

across firms. We define, the degree of complementarity in (stationary) equilibrium as

the mean number of firms that are induced to reprice as a result of a firm’s repricing

at the threshold. We next derive an O(n−1) approximation for the mean number of

firms that are induced to reprice as a result of a firm’s repricing at the threshold that

we denote by θ.

Suppose that firm i hits the threshold p and reprices its log price logPi,t by log q.

The price change by firm i increases the aggregate good price Pt, which in turn decreases

the relative price of other firms pj,t, j 6= i. The impact of Pi,t on Pt may be computed

as follows. Note that Pt =
(∑n

i=1 e
(1−η) logPi,t/n

)1/(1−η)
. Now logPi,t is increased by

∆ logPi,t. Using a Maclaurin’s series expansion around the given initial price logPi,t,

we obtain

∆ logPt =
1

n

p1−η
i,t

1− η

∞∑
k=1

((1− η)∆ logPi,t)
k

k!
+O(n−2)

=
p1−η
i,t

n

e(1−η)∆ logPi,t − 1

1− η
+O(n−2)

=
p1−η

n
ϕ(q, 1− η) +O(n−2) (16)

The increase in aggregate price reduces sj,t by ∆ logPt/ log q. Firms with sj,t in

the interval (0,∆ logPt/ log q] are induced to reprice when firm i reprices. Since the

stationary density at the threshold is fo, the mean number of firms that are induced to
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reprice by firm i′s repricing is foϕ(q, 1− η)p1−η/ log q. Using (13) and (14), we obtain

θ =
ϕ(q, 1− η)

ϕ(q, 1− η + µ/π)
. (17)

The firm j’s repricing further increases the aggregate price by ∆ logPt, decreases

other firms’ states by ∆ logPt/ log q, and induces some of them to reprice. The mean

number of these firms is θ2. Those firms further induce some other firms to reprice.

Thus, the total effect is 1 + θ + θ2 + · · · = 1/(1 − θ), which is well defined since (17)

implies θ < 1 for any π. Hence, the degree of complementarity θ determines the extent

of multiplier effects on the extensive margin λ.

However, the mean number of firms induced to reprice due to a firm that draws a

Calvo shock is different from θ, because the repricing size for the firm i drawing a Calvo

shock is not log q but log p∗−log pi,t. Substituting this for ∆ logPi,t in the second line of

(16), we obtain that the impact on aggregate price is ∆ logPt = (p∗1−η − p1−η
i,t )/(n(1−

η))+O(n−2). The first term has an expected value (p∗1−η−1)/(n(1−η)) = ϕ(p∗, 1−η)/n

when pi,t is drawn from a stationary distribution. Let m0 denote the number of firms

in the interval (0, ϕ(p∗, 1− η)/(n log q)]. Then, the mean of m0 is foϕ(p∗, 1− η)/ log q,

which is rewritten as ϕ(p∗, 1− η)/ϕ(q, µ/π) using (14) and (17). The number of firms

that are induced to reprice due to m0 is m0/(1− θ). Now, µdt fraction of firms incur

Calvo shocks in a small time interval dt. Thus, the stationary extensive margin is

determined as

λ =
µϕ(p∗, 1− η)

ϕ(q, µ/π)(1− θ)
. (18)

The extensive margin λ and the degree of complementarity θ turns out to be in-

creasing as the inflation rate rises.

Proposition 3. 1. The extensive margin λ and the degree of complementarity θ

converge to 1/(δη) and 1, respectively, as π →∞.
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2. λ is increasing in π for sufficiently large π.

3. θ is increasing in π for sufficiently large π.

This proposition shows that a higher inflation results in a greater multiplier effects

in pricing behavior. As the trend inflation rate π increases, the stationary distribution

of relative prices skews to the left. This leads to an increase in the density of firms near

the repricing threshold (fo increases towards (log(1 + µδη))/(µδη).) In this situation,

a repricing action by a triggering firm causes a larger size of avalanche of repricing

by other firms. Hence, a higher inflation rate generates a larger multiplier effect and

results in a larger fraction of repricing firms λ.

Finally, the proposition states that the extensive margin λ is finite even when π

diverges. In particular, this implies that the aggregate adjustment cost λδ converges

to a constant less than 1 since η > 1. Hence, the resource constraint is satisfied for any

π.

In this section, we showed that the degree of complementarity θ leads to a multiplier

effect on the mean repricing behavior. In the next section, we argue that complemen-

tarity generates not only the mean multiplier effect but also volatility in aggregate price

when n is large but finite.

4 Fluctuations in a finite economy

In this section, we show that the model economy exhibits quantitatively significant

fluctuations in inflation rates around the long-run level π when the number of firms

n is large but finite. When n is finite, idiosyncratic shocks (Calvo events) generate

some aggregate fluctuations in principle, but the variance of the aggregate fluctuation

vanishes quickly as n tends to infinity according to the law of large numbers if the
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repricing behavior is independent. Whether the sum of idiosyncratic shocks matters

for the aggregates depends on the degree of complementarity θ of repricing behavior.

This section shows that complementarity generates a fat-tailed distribution of the num-

ber of firms that reprice simultaneously, leading to (i) short-term inflation rates that

exhibit non-negligible fluctuations and (ii) a high level of long-term inflation causes

high volatility of short-term inflation rates.

4.1 Stochastic number of firms that reprice simultaneously

In an economy with finite n, any realized moment of the cross-section distribution of

si,t is generically not equal to the population moment derived from the stationary dis-

tribution f(s). The aggregate price in the finite model can deviate from its stationary

counterpart in the model with infinitely many firms. Because firms’ pricing decisions

are positively correlated, a firm’s discrete adjustment in price may have substantial

avalanche effects on adjustments by other firms. In this section we characterize the

asymptotic property of this avalanche effect.

To keep the analysis simple with a finite number of firms and fluctuating aggregate

prices, we assume that the monetary authority is capable of implementing the average

inflation rate at its target π, by increasing the money supply Mt at the rate π, while

also accommodating shocks by changing the nominal rate it to maintain a constant

real interest rate rt := it − π at the household’s time-discount rate, that is, rt = ρ.5

Households hold the monetary base Mt which yields the nominal interest rate it, and

households must satisfy a cash-in-advance constraint Mt = PtCt. We also assume

5Although it is beyond the scope of this paper, we conjecture that the fluctuation on real variables

is smaller than the fluctuation in realized inflation, so that one could relax the assumption on the real

economic variables.
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that households own the firms in the economy and are paid the total nominal firms’

profits as a dividend Dt. The household’s flow budget constraint is thus PtCt + Ṁt =

WtNt +Dt + itMt.

When a firm reprices due to a Calvo shock, it reduces the relative prices of all other

firms, which may induce some firms near the threshold to reprice. The number of firms

that reprice after the initial firm depends on the distribution of sj,t. Let Lt denote

the total number of firms that reprice after a firm adjusts due to a Calvo shock at t.

The ratio of those firms to all firms, Lt/n, forms the stochastic extensive margin of

aggregate price adjustments in a finite economy. The aggregate price level logPt is

thus a compound Poisson process with arrival rate µ: the aggregate price level does

not move when no firms draw Calvo shocks, whereas it jumps if a Calvo shock arrives

at a firm, and the jump size of logPt is determined by the extensive margin Lt/n and

the intensive margin log q.

We make an approximation that, in the finite economy, the real macroeconomic

variables r, w, and Y stay at the stationary level and firms follow the stationary policy

rule (p, p∗). This environment holds asymptotically as n tends to infinity, because

the real aggregate variables are dependent only on relative prices, and the moments of

relative prices (pi,t) obey the law of large numbers even though aggregate price inflation

rates fluctuate. Thus, the deviation of relative prices from the stationary distribution

has only vanishingly small impacts on real aggregate variables as n → ∞ . The real

wage rate asymptotically stays at the stationary level, since the nominal wage rate

adjusts flexibly in the model. The monetary authority is able to accommodate a jump

in Pt by adjusting monetary base Mt instantly.

Suppose that a state profile (si,t)
n
i=1 is randomly drawn from the joint stationary

density function fn(s). If firm i draws a Calvo shock in t, the repricing by i reduces
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(sj,t)j 6=i and induces some firms near the threshold to reprice. Let m0 denote the

number of these repricing firms. The repricing of these m0 firms further reduce the

relative prices of other firms, possibly inducing some other m1 firms to reprice. This

process continues until there is no firm induced to reprice. Thus, the total number of

adjusting firms within t (other than firm i) is L =
∑U

u=0mu, where U is the smallest

integer satisfying mU = 0. All these L firms reprice at the extensive margin, so their

repricing size is always log q. In the stationary case, we characterized the mean number

of firms θ that are induced to reprice by a firm repricing by log q in (17). Hence, in

this adjustment process, each repricing firm gives rise to a random number of repricing

firms, which follows a Poisson distribution which has mean θ asymptotically as n→∞.

Thus, mu for u = 0, 1, . . . , U is embedded in a so-called Poisson branching process with

mean θ. This allows for the following characterization of the fluctuation of the sum L.

Proposition 4. The mean and variance of L conditional on m0 = 1 converge as

n→∞ to 1/(1− θ) and θ/(1− θ)3, respectively. Furthermore, as n→∞,

Pr(L = ` | m0)→ m0

`

e−θ`(θ`)`−m0

(`−m0)!
(19)

for ` = m0,m0 + 1,m0 + 2, . . .. The tail of the above probability function satisfies

m0

`

e−θ`(θ`)`−m0

(`−m0)!
∝ e−(θ−1−log θ)``−1.5 as `→∞. (20)

The implication of this proposition is three-fold. First, it shows that the mean of L

conditional on m0 = 1 converges to 1/(1− θ). Since each firm draws a Calvo event at

rate µ, there are nµdt firms on average that draw a Calvo event in a short time horizon

dt. Hence, the average fraction of firms that adjust within dt is µdt/(1 − θ). Note

that, as n → ∞, this converges to the fraction of firms that adjust in the stationary

equilibrium. This means that our choice of L in a finite economy is consistent with the

economy with infinitely many firms.
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Second, this proposition shows that the asymptotic variance of L is increasing in

the degree of complementarity θ. The increase is non-linear and rather rapid when θ

is close to 1. Moreover, θ is increasing in π by Proposition 3. Hence, we obtain that

the variance of the extensive margin of aggregate price adjustments increases as the

long-run inflation level π increases.

In the previous section, we showed that the degree of complementarity θ determines

a multiplier effect of repricing. A firm’s reprice induces θ firms to reprice on average,

leading to the mean number of subsequently repricing firms to be 1/(1−θ). Proposition

4 now shows that the multiplier effect is stochastic under finite n, and the variance

of the multiplier effect is increasing in θ as θ/(1 − θ)3. When θ approaches 1 as π

increases unboundedly, the variance of L diverges. Therefore, Proposition 4 points

to the possibility that the fluctuations of aggregate prices are obtained for any large

number of firms n when π is sufficiently high.

Thirdly, Proposition 4 also indicates that the number of firms that reprice simul-

taneously has a power-law distribution with exponential truncation as shown in (20).

Therefore, the multiplier effect caused by the complementarity of repricing is not only

stochastic under finite n, but also exhibits a fat right tail, signified by the power-law

distribution, up to the exponential truncation point determined by θ. When θ reaches

1, the truncation point diverges, implying that the entire tail is characterized by a

power-law distribution.

The power law of the multiplier effect L is the key to generate inflation fluctuations.

The power-law tailed distribution for the avalanche of simultaneously repricing firms

is reminiscent of the self-organized criticality model of inventories proposed by Bak et

al. [5] and Scheinkman and Woodford [30]. In their model, the configuration of agents’

states (inventory profile) globally converges to the criticality point of pairwise correla-
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tion of actions, at which the power-law distribution of simultaneous actions emerges,

resulting in non-trivial aggregate fluctuations arising from micro-level interactions. In

our model, the relevant configuration is the profile of relative prices. If a relatively

large number of firms have their relative prices near the repricing threshold, a few

small shocks cause many large avalanches of repricing behavior, leading to a quick

decrease in the number of firms near the threshold. In contrast, if a relatively small

number of firms are located near the threshold, only small-sized avalanches occur, and

the number of firms near the threshold gradually rises. In either case, the relative price

distribution converges toward the stationary distribution, at which the complementar-

ity of repricing is θ. Therefore, when θ is close to 1, the relative prices globally converge

to the point at which substantial fluctuations of the number of repricing firms emerge.

4.2 Volatile short-run inflation under high long-run inflation

Proposition 4 shows that the number of repricing firms exhibits higher volatility when

the trend inflation is higher. In Proposition 2, we observed that the repricing size q

increases as the trend inflation increases. Therefore, both the extensive and intensive

margins of aggregate price adjustments contribute to the higher volatility of inflation

under higher trend inflation. This leads to the following main result:

Proposition 5. For sufficiently large n and in a range of sufficiently large π, the

variance of inflation d logPt is increasing in π.

In this section, we showed that for an economy with a finite number of firms, the

inflation rate fluctuates due to the complementarity of firms’ repricing behavior and

the volatility of inflation increases as the trend inflation level increases. To conclude

this section, we discuss how this fluctuation sustains even when n is very large. In con-
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ventional analysis of state-dependent pricing, a continuum of firms is often assumed.

As a direct consequence of the assumption, there is no aggregate fluctuation arising

from idiosyncratic shocks. If the distribution of the number of firms that reprice simul-

taneously, L, had an exponential tail, then all moment would be finite, and aggregate

fluctuations would be absent in the infinite limit. In the present model, this prediction

holds for any finite π, since the distribution of L has an exponential tail as in (20):

Pr(L = `) ∝ e−(θ−1−log θ)`−1.5. As seen in this function, the exponential decline takes

effect when L has the order of magnitude 1/(θ − 1 − log θ). This value diverges as

θ ↗ 1. At the limit θ = 1, the distribution of L becomes a pure power law. This

transition can be also seen in that the variance of L is determined by an inverse of

1 − θ. In this extreme case, L has no first moment and the aggregate fluctuations

survive even as n → ∞. Note that θ is increasing toward 1 as π increases. Thus, for

any finite n, there is a finite level of π for which the model economy exhibits sizable

aggregate price fluctuations. In the next section, we investigate if the model economy

exhibits meaningful fluctuations under reasonable parameter values.

5 Numerical analysis

In this section, we investigate the model quantitatively within a realistic range of long-

run inflation rates and a finite number of firms. The purpose of this exercise is to

extend the analytical results obtained asymptotically so far to the environment of low

inflation rates. Thus, the quantification here should be regarded as a proof of concept

rather than serious estimation of the model. We calibrate the model to match some key

empirical patterns reported by Nakamura and Steinsson [25]. They reported that the

median size of price increases is 7.3 percent (all sectors). In the periods they studied
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(1988-2005), the U.S. monthly CPI experienced 0.1% inflation (1.17% annual rate)

with a standard deviation of 0.23%. Thus, we set δ at 0.0023 so that q is equal to 1.07

and calibrate µ at 0.1 so that the inflation volatility is 0.23%, when the average annual

inflation rate π is 1.17%. Note that µ is the arrival rate of exogenous repricing. Since

there are other firms that reprice by paying menu costs, the total fraction of repricing

firms in the model is always greater than µ. The elasticity of substitution η is chosen to

be 3 so that the labor share is two-thirds of the total value added. The time discount

rate ρ is set to the long-term real interest rate 0.02.

We first show comparative statics results. The left panel of Figure 1 plots the

stationary real wage w on the left axis for each π. The plot confirms that the real

wage is decreasing in π, extending our comparative statics (Proposition 2) to the low

inflation range under the calibrated parameter set. The same plot shows the monthly

repricing probability for a firm on the right axis. The right panel of Figure 1 plots the

degree of complementarity θ and the standard deviation of the stochastic multiplier

effect
√
θ/(1− θ)3 for each π. In the plot, θ increases monotonically with π. This

result extends the asymptotic analytical result of Proposition 3 to the range of low

inflation rates. θ approaches to the critical value 1 quickly even in a low inflation range

2%–5%. As a result, the stochastic multiplier effect increases almost linearly in π, as

can be seen in the plot.

The left panel of Figure 2 plots the stationary distribution f(s) for each level of π.

Observe that the exponential stationary distributions converge to the uniform distri-

bution as π increases. This implies that the increase in the degree of complementarity

θ toward 1 along with π is accompanied by the increase in fo, the density of firms at

the threshold s = 0, toward 1. The right panel of Figure 2 plots repricing size q and

threshold p for each π. Both numerical results show the quantitative extent of the
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Figure 1: Comparative statics for various inflation level π. Left: Real wage rate (left

axis) and repricing frequency (right axis) for various inflation levels π. Right: Degree

of complementarity θ (left axis) and the standard deviation of L conditional on m0 = 1

(right axis).

analytical results obtained in Proposition 2.

Finally, Figure 3 plots the simulated standard deviation of monthly inflation rates

for each π in three cases n = 10000, 30000, 100000. For each Monte Carlo trial, a state

profile (s1, s2, . . . , sn) is randomly drawn from a stationary joint density function fn(s).

Next, a firm i is selected randomly to receive a Calvo shock. Then, profile s is updated

as in Section 3, and the final profile s and the number of firms L that reprice following

firm i are computed. With these, the increase in aggregate price d logP is computed.

This procedure is repeated for ten thousand times to compute the standard deviation

of d logP . The plotted result agrees with Proposition 5, for the standard deviation of

inflation is increasing in the long-run inflation level π.

The simulated results are compared to the empirical observation between inflation

level and volatility. Figure 5 plots the short-term volatility against the long-term level

of inflation across countries or periods. A casual observation confirms the positive
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Figure 2: Left: Stationary distributions of s. The steepest slope (blue) corresponds to

the inflation rate π at 1%, the second steepest (pink) at 2%, and the flattest at 30%.

Right: Repricing size q and repricing threshold relative price p

association between the level and volatility in a high inflation range, whereas this

relationship seems somewhat attenuated in a low inflation range less than about 5%

at annual rate. The dotted line in Figure 3 plots the same line as in the right panel

of Figure 5 except that the standard deviation is reduced by the standard deviation

observed at π = 0. Here, we interpret the standard deviation observed at π = 0 as the

price volatility caused by aggregate shocks which are not incorporated in the model.

The plot shows that the observed relation is consistent with the case of n = 30000.

This implies that the number of firms that affect a firm’s pricing is a relevant parameter

to determine the sensitivity of aggregate price volatility to the inflation level.

The standard deviation of inflation rates is increased by more than 10 times for

the increase of π from 5% to 30% in Figure 3 (from 0.2% to 2% for n = 10000; from

0.02% to 0.6% for n = 100000). This makes contrast with repricing size log q in the

right panel of Figure 2, which increases less than twice (from 11% to 20%) when π
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Figure 3: Levels of annual inflation rates and the standard deviations of monthly

inflation rates in the model simulations and the data.

increases by the same degree. This observation implies that the extensive margin (L)

rather than the intensive margin (log q) accounts for the dominant portion of inflation

volatility for a high inflation range. In the model, the extensive margin causes the

aggregate fluctuations, since without the complementarity of repricing behavior at the

extensive margin there would be only negligible aggregate fluctuations. The numerical

analysis shows that the extensive margin is important not only in the causal sense but

also in quantitative terms for generating the positive association between the inflation

level and volatility.
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Figure 4: Inflation level and volatility. Left: Country-wise scatter plot of inflation level

and volatility for 32 OECD countries for all the periods available in OECD database.

The inflation rate is defined by a difference of logarithm of CPI. Right: Stratified pooled

data. The horizontal axis shows annual inflation rates in two-year periods, while the

vertical axis shows the volatility of monthly inflation rates during the two-year period.

The error bar shows ±1 standard errors. The sample consists of 32 OECD countries

during 1980–2015.

6 Conclusion

This paper provides an explanation for the positive association between inflation level

and inflation volatility. Since a firm’s relative price is determined by other firms’ pricing

behavior, a firm’s price increase necessarily leads to a decrease in other firms’ relative

prices. Thus, repricing behavior exhibits complementarity across firms. The comple-

mentarity leads to a possibility of stochastic synchronization of repricing behavior, in

which the aggregate price exhibits fluctuations due to the varying number of firms that

reprice simultaneously.

Analytical results demonstrate that the stochastic number of repricing firms exhibits

a fat tail when the trend inflation is high. When the trend inflation is high, firms’ rel-
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ative prices are quickly drifted away from optimum, causing a relatively higher density

of firms located at the repricing threshold. Hence, there is a higher probability for

a firm’s repricing to cause another firm’s repricing. By this mechanism, we analyti-

cally show that a sufficiently high long-run inflation rate causes the high volatility in

short-run inflation rates.

We calibrate the model with reasonable parameter values to investigate the level-

volatility nexus in a relatively low inflation range. Numerical analyses show that the

considerable magnitude of inflation fluctuation and the positive association between

level and volatility are generated by this mechanism. This suggests that there is an-

other possible source of welfare costs of high inflation: a high inflation causes a high

volatility in aggregate prices, leading to welfare loss due to intertemporal misallocation

of resources. Further exploration of the welfare loss is left for future research.

Appendix

Derivation of Equation (12)

From the value matching condition (9), z(p∗) = ρv(p∗), and thus v(p∗) − (µ/(ρ +

µ))v(p∗) = z(p∗)/(ρ+ µ). The smooth pasting condition (6), z(p) = ρv(p∗)− (ρ+ µ)δ,

yields z(p) = ρv(p)− µδ. Combining these expressions, we have

v(p)− µ

ρ+ µ
v(p∗) =

z(p) + µδ

ρ
−
z(p) + (ρ+ µ)δ

ρ

µ

ρ+ µ

=
z(p)

ρ+ µ
.

Using the general solution (8), we obtain, for both p = p∗ and p = p,

z(p)

ρ+ µ
= c0p

− ρ+µ
π +

p1−η

ρ+ µ− π(η − 1)
− wp−η

ρ+ µ− πη
.
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Expanding the function z(p) = p1−η − wp−η, we have, for both p = p∗ and p = p,

−c0(ρ+ µ)

π(η − 1)
p−

ρ+µ
π =

p1−η

ρ+ µ− π(η − 1)
− (η/(η − 1))wp−η

ρ+ µ− πη
.

Applying this equation at p∗ and p we obtain

q−
ρ+µ
π =

p∗1−η − c1wp
∗−η

p1−η − c1wp−η

where

c1 :=
η

η − 1

η − 1− ρ+µ
π

η − ρ+µ
π

.

Since p∗ = qp we establish (12) as follows.

q−
ρ+µ
π (p− c1w)p−η = (q1−ηp− c1wq

−η)p−η

⇔ p(qη−1− ρ+µ
π − 1) = c1w(qη−1− ρ+µ

π − q−1)

⇔ pϕ(q, η − 1− (ρ+ µ)/π) =
η

η − 1

w

q
ϕ(q, η − (ρ+ µ)/π)

Properties of ϕ(q, x)

We summarize properties of the function ϕ(q, x) in the following lemma. Here ϕq(q, x)

and ϕx(q, x) denote the partial derivatives of ϕ(q, x).

Lemma 1. For q > 1, ϕ(q, x) := (qx − 1)/x satisfies the following properties.

(i) ϕ(q, x) > 0, ϕq(q, x) > 0, and ϕ(q,−x) = ϕ(q, x)/qx = ϕ(q, x)/(ϕq(q, x)q)

(ii) logϕ(q, x) is strictly increasing and convex in x,

ϕx
ϕ

(q, x) =
log q

1− q−x
− 1

x
> 0,

∂

∂x

(
ϕx
ϕ

)
(q, x) =

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
≥ 0 with equality holding at x = 0,

and (∂/∂x)(ϕx/ϕ)(q, x) ≤ 1/x2.
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(iii) (∂/∂q)(qxϕ(q, y)/ϕ(q, x+ y)) > 0 if and only if x > 0

(iv) (∂/∂q)(ϕ(q, x)ϕ(q, y)/ϕ(q, x+ y)) > 0 if x > 0

(v)
ϕx
ϕ2

(q, x) =
∂

∂x

(
−1

ϕ

)
(q, x) =

qx log(qx)− qx + 1

(qx − 1)2

is strictly positive, continuous and decreasing in x.

Proof.

(i) ϕ(q, x) = (qx − 1)/x > 0 for q > 1 and x 6= 0, and limx→0 ϕ(q, x) = log q > 0 for

q > 1. Also, ϕq(q, x) = qx−1 > 0. Furthermore, ϕ(q,−x)qx = (1− qx)/(−x) = ϕ(q, x).

(ii)

ϕx(q, x) =
∂

∂x

qx − 1

x
=

1

x2
[qx log(qx)− (qx − 1)] .

Since y log y − (y − 1) > 0 for y > 0 and y 6= 1, ϕx(q, x) is strictly positive for x 6= 0.

For x = 0, l’Hôpital’s rule yields limx→0 ϕx(q, x) = (log q)2/2. Hence, ϕx(q, x) > 0 for

any x. Moreover,

ϕx
ϕ

(q, x) =
∂

∂x
log

qx − 1

x
=

x

qx − 1

(qx log q)x− (qx − 1)

x2
=

log q

1− q−x
− 1

x

and

∂

∂x

(
ϕx
ϕ

)
(q, x) = −q

−x(log q)2

(1− q−x)2
+

1

x2
=

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
.

Set h(y) := (y−1)2−y(log y)2 for y > 0. Note that h′(y) = 2(y−1)−2 log y−(log y)2

and h(1) = h′(1) = 0. Also, h′′(y) = (2/y)(y − 1 − log y) is positive for y > 0. Thus,

h′ is increasing in y, implying that h′(y) < 0 for 0 < y < 1 and h′(y) > 0 for

31



y > 1. Hence, h(y) achieves a minimum 0 at y = 1 and h(y) > 0 for y 6= 1. This

leads to 1 ≥ y(log y)2/(y − 1)2 for y > 0 with equality holding at y = 1. Thus,

(∂2/∂x2) logϕ(q, x) ≥ 0 with equality holding at x = 0.

(iii) Using ϕ(q,−x) = ϕ(q, x)/qx from Lemma 1(i), we have

qxϕ(q, y)

ϕ(q, x+ y)
=
ϕ(q, y)

qy
qx+y

ϕ(q, x+ y)
=

ϕ(q,−y)

ϕ(q,−x− y)
.

Thus, the derivative with respect to q is

∂

∂q

ϕ(q,−y)

ϕ(q,−x− y)
=

1

ϕ2(q,−x− y)

[
q−y−1ϕ(q,−x− y)− ϕ(q,−y)q−x−y−1

]
=

q−x−2y−1

ϕ2(q,−x− y)
[ϕ(q, x+ y)− ϕ(q, y)] .

By Lemma 1(ii), ϕ(q, x) is increasing in x. Hence, the last expression has the same

sign as x.

(iv) First, we obtain for y 6= 0:

∂

∂q

qxϕ(q, y)

ϕ(q, x+ y)
=

∂

∂q

qx(qy − 1)

qx+y − 1

x+ y

y

=
x+ y

y(qx+y − 1)2

[
(qx+y − 1)((x+ y)qx+y−1 − xqx−1)− (x+ y)qx+y−1(qx+y − qx)

]
=

x+ y

y(qx+y − 1)2

(
yq2x+y−1 − (x+ y)qx+y−1 + xqx−1

)
=
x(x+ y)qx+y−1

(qx+y − 1)2

(
qx − 1

x
− q−y − 1

−y

)
= x

[
(x+ y)qx+y−1

(qx+y − 1)2
(ϕ(q, x)− ϕ(q,−y))

]
.

By taking a limit as y → 0 we can show that this same expression holds for the case

y = 0. Since ϕ(q, x) is increasing in x, ϕ(q, x) − ϕ(q,−y) has the same sign as x + y.
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Thus, the expression inside the square brackets is positive. Hence, the entire right-hand

side expression has the same sign as x. Write

∂

∂q

ϕ(q, x)ϕ(q, y)

ϕ(q, x+ y)
=

∂

∂q

qxϕ(q, y)

xϕ(q, x+ y)
− ∂

∂q

ϕ(q, y)

xϕ(q, x+ y)
.

Since x > 0, the first term is strictly positive and the second term (including the

negative sign) is positive by (iii).

(v) Define a function g(y) = (y log y − y + 1)/(y − 1)2. Note that y log y > y − 1 for

y 6= 1. By l’Hôpital’s rule,

g(1) = lim
y→1

log y

2(y − 1)
= lim

y→1

1

2y
= 1/2.

Thus, g(y) is continuous and g(y) > 0. Moreover,

g′(y) =
1

(y − 1)4

(
(y − 1)2 log y − 2(y − 1)(y log y − y + 1)

)
=

1

(y − 1)3
(2(y − 1)− (y + 1) log y) . (21)

Note that a function h(y) := 2(y − 1)− (y + 1) log y satisfies h(1) = 0 and

h′(y) = 1− 1/y − log y ≤ 0 with equality holding at y = 1.

Hence h(y) is positive for 0 < y < 1 and negative for y > 1. Thus g′(y) = h(y)/(y−1)3

is negative for 0 < 1 < y or y > 1, and g(y) is a decreasing function for y > 0. Hence,

(∂/∂x)(−1/ϕ)(q, x) = g(qx) is a decreasing function in x for q > 1. 2
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Proof of Proposition 1: There exists a unique steady state equilibrium for

each π > 0.

We define δo, A(q, π), and B(q, π) by δo := δ(ρ+ µ)/(η − 1),

A(q, π) :=
ϕ(q,−η)

ϕ(q, 1− η)

ϕ(q, 1− η + ρ+µ
π

)

ϕ(q,−η + ρ+µ
π

)
(22)

B(q, π) :=
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)ϕ(q, 1− η)
(23)

and rewrite Equation (15) as

A(q, π) = B(q, π)δo + 1. (24)

B is decreasing in q by Lemma 1(iv). Since any ratio ϕ(q, x)/ϕ(q, y) converges to 1 as

q → 1 by l’Hôpital’s rule and since limq→1 ϕ(q, µ/π) = 0, B tends to∞ as q → 1 for any

π. Also, B converges to 0 as q →∞, because for any x > 0, limq→∞ ϕ(q, x) =∞ and

limq→∞ ϕ(q,−x) = 1/x. Thus, for q > 1 the right-hand side of (24) is a continuously

decreasing function onto (1,∞).

Next we investigate the left-hand side of (24). Setting a := (ρ + µ)/π and using

Lemma 1(i),

A =
ϕ(q,−η)

ϕ(q, 1− η)

ϕ(q, 1− η + a)

ϕ(q,−η + a)
=

ϕ(q, η)

ϕ(q, η − 1)

ϕ(q, η − 1− a)

ϕ(q, η − a)
. (25)
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From Lemma 1(i),

Aq/A =
∂

∂q
logA

=
∂

∂q
(logϕ(q, η)− logϕ(q, η − 1) + logϕ(q, η − 1− a)− logϕ(q, η − a))

=
1

q

(
qη

ϕ(q, η)
− qη−1

ϕ(q, η − 1)
+

qη−1−a

ϕ(q, η − 1− a)
− qη−a

ϕ(q, η − a)

)
=

1

q

(
1

ϕ(q,−η)
− 1

ϕ(q, 1− η)
+

1

ϕ(q, 1 + a− η)
− 1

ϕ(q, a− η)

)
=

1

q

(∫ min{1−η,a−η}

−η

∂

∂x

(
−1

ϕ

)
(q, x)dx−

∫ 1+a−η

max{1−η,a−η}

∂

∂x

(
−1

ϕ

)
(q, x)dx

)
. (26)

By Lemma 1(v), the integrand (∂/∂x)(−1/ϕ)(q, x) in (26) is a positive-valued,

decreasing function. This implies that Aq is strictly positive, since −η < min{1 −

η, a− η} ≤ max{1− η, a− η} < 1 + a− η. Hence, A is increasing in q. Moreover, since

limq→1A(q, π) = 1, the left-hand side of (24) takes values above 1 for q > 1. Hence,

Equation (24) has a unique solution q in the range q > 1.

Proof of Proposition 2:

1. The repricing size log q grows asymptotically linearly in π with coeffi-

cient (log(1 + µδη))/µ.

2. The target price p∗ increases unboundedly as π increases.

3. The real wage w decreases as π increases for sufficiently large π.

Throughout this paper, x(π) ∼ y(π) means limπ→∞ x(π)/y(π) = 1, and we write

y(π) = O(x(π)) if and only if there exists a positive real number M and a real number

πo such that |y(π)| ≤Mx(π) for all π ≥ πo.
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We first show that q is increasing in π in Equation (24). By taking total derivative

of (24) and rearranging, we have

d log q

dπ
=
−1

q

Aπ − δoBπ

Aq − δoBq

.

Aq was shown positive in the proof of the last proposition. Moreover, Lemma 1(iv)

implies that (∂/∂q)(1/B) > 0, and thus Bq < 0. Hence, the denominator q(Aq − δoBq)

is positive. Using the right-hand side of Equation (25), we calculate Aπ as

Aπ
A

=
∂ logA

∂π
=

(
ϕx
ϕ

(q, η − 1− a)− ϕx
ϕ

(q, η − a)

)
d(−a)

dπ

=

∫ η−a

η−1−a

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
dx

(
−a
π

)
(27)

where the second line used Lemma 1(ii). Since the integrand is positive by Lemma

1(ii), we obtain 0 > Aπ > −(a/π)/(η − 1 − a)2. Similarly, Bπ = (∂ logB/∂π)B is

calculated as

Bπ =

[
ϕx
ϕ

(q, 1− η + µ/π)− ϕx
ϕ

(q, µ/π)

](
−µ
π2

)
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)ϕ(q, 1− η)
. (28)

By Lemma 1(ii), logϕ(q, x) is convex in x. Thus, the term in square brackets is

negative, implying that Bπ is positive. Combining with the previous result on Aπ,

we obtain that the numerator −Aπ + δoBπ is strictly positive. This establishes that

d log q/dπ > 0.

Next, we show that log q increases unboundedly as π → ∞. Suppose to the con-

trary that log q is bounded from above. Then for any sequence πn →∞, qn = q(πn) is

bounded and A(qn, πn) converges to 1 as πn →∞. Hence, Equation (24) implies that

B(qn, πn) converges to 0 as πn →∞. The numerator of B, ϕ(q, 1− η+µ/π), is strictly

positive and increasing in q for q > 1. Therefore, the denominator must tend to infinity

in order for B to converge to 0. However, ϕ(qn, 1 − η) is bounded. Thus, ϕ(qn, µ/πn)
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must tend to infinity. For a fixed log q, we have limπ→∞(eµ(log q)/π − 1)/(µ/π) =

limπ→∞(eµ(log q)/πµ(log q)/(−π2))/(µ/(−π2)) = log q. Since log qn is bounded by our

hypothesis, this contradicts the fact that ϕ(qn, µ/πn) diverges. Hence, log q(π) must

diverge towards infinity as π →∞.

Proof of Result (1).

Function ϕ(q0, x) = (qx0 − 1)/x for fixed q0 > 1 is analytic in region x < 0, and so

is logϕ(q0, x). Thus, a first-order Taylor series expansion of logϕ(q, x) around x = −η

yields

logϕ(q,−η + a)− ϕ(q,−η) = a
ϕx
ϕ

(q,−η) +O(a2)

for |a| < 1. Similar expansion around x = 1− η yields

logϕ(q, 1− η + a)− ϕ(q, 1− η) = a
ϕx
ϕ

(q, 1− η) +O(a2).

Moreover, Lemma 1(ii) gives

ϕx
ϕ

(q, 1− η)− ϕx
ϕ

(q,−η) =

∫ 1−η

−η

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
dx. (29)

Using again the notation a = (ρ+ µ)/π, we obtain the first-order Taylor expansion

of logA around a = 0 as

logA(q, π) = logϕ(q, 1− η + a)− logϕ(q, 1− η)− logϕ(q,−η + a) + logϕ(q,−η)

=

(
ϕx
ϕ

(q, 1− η)− ϕx
ϕ

(q,−η)

)
a+O(a2).

Combining with (29), we obtain

π logA(q, π) = (ρ+ µ)

∫ 1−η

−η

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
dx+O(a).

Since q → ∞ as π → ∞, we have limπ→∞ q
x(log qx)2/(qx − 1)2 = 0 for x < 0. Also

note
∫ 1−η
−η 1/x2dx = 1/(η(η − 1)). Thus, we obtain π logA(q, π) → (ρ + µ)/(η(η − 1))
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as π →∞. From Equation (22), A(q, π) converges to 1 as π →∞. Thus, limπ→∞(A−

1)/ logA = 1 by l’Hôpital’s rule. Combining with the above result yields

π(A(q, π)− 1)→ ρ+ µ

η(η − 1)
as π →∞.

Moreover, using ϕ(q, 1− η+µ/π) = ϕ(q, 1− η) +O(µ/π) in Equation (23) we have

B(q, π) =
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)ϕ(q, 1− η)
∼ 1

ϕ(q, µ/π)
.

Equation (24) is written as A(q, π) − 1 = B(q, π)δ(ρ + µ)/(η − 1). Applying the

asymptotic relations for A and B above, this equation implies

ϕ(q, µ/π)

π
∼ δη.

Since ϕ(q, µ/π) = (eµ(log q)/π − 1)π/µ, the asymptotic relation further implies

log q

π
∼ log(1 + µδη)

µ
.

That is, log q grows asymptotically linearly in π. 2

Proof of Result (2).

From Equations (12,14), we obtain

(p∗)η−1 =
ϕ(q, 1− η + µ/π)qη−1

ϕ(q, µ/π)
.

First, ϕ(q, 1 − η + µ/π) converges to a positive constant. Second, we know from

Result (1) that log q grows linearly in π for large π. This implies that, for large π,

qη−1 = e(η−1) log q grows exponentially in π, while ϕ(q, µ/π) = (π/µ)(eµ(log q)/π − 1)

grows only linearly in π. Therefore, the numerator dominates the denominator for

large π. Thus p∗ grows unboundedly. 2

In order to prove Result (3), we need the following lemma.
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Lemma 2.
d log q

dπ
∼ log q

π
.

Proof.

We evaluate the asymptotic behavior of

d log q

dπ
=
−1

q

Aπ − δoBπ

Aq − δoBq

.

We start from Aq in the denominator. Using Equation (26), we have for sufficiently

large π such that (ρ+ µ)/π < 1,

Aq =
A

q

[∫ min{1−η,a−η}

−η

∂

∂x

(
−1

ϕ

)
(q, x)dx−

∫ 1+a−η

max{1−η,a−η}

∂

∂x

(
−1

ϕ

)
(q, x)dx

]

=
Aa

q

[
∂

∂x

(
−1

ϕ

)
(q, x1)− ∂

∂x

(
−1

ϕ

)
(q, x2)

]
=
Aa

q

∫ x1

x2

∂2

∂x2

(
−1

ϕ

)
(q, x)dx =

Aa

q

∫ x2

x1

∂2

∂x2

(
1

ϕ

)
(q, x)dx

where x1 ∈ [−η, a− η] and x2 ∈ [1− η, 1 + a− η] and x1 < x2 < 0 for large π.

From Lemma 1(v) and Equation (21), we have

∂2

∂x2

(
−1

ϕ

)
(q, x) =

∂

∂x

qx log(qx)− qx + 1

(qx − 1)2
=

1

(qx − 1)2

(
2− qx + 1

qx − 1
log(qx)

)
qx log q.

Substituting this into the equation above, we obtain

Aq =
Aa

q

[
−qx3 log q

(qx3 − 1)2

(
2− qx3 + 1

qx3 − 1
log(qx3)

)]
for some x3 ∈ [x1, x2]

=
(log q)2

πq1−x3

−x3A(ρ+ µ)

(1− qx3)2

(
2

x3 log q
+

1 + qx3

1− qx3

)
=

(log q)2

πq1−x3
(−x3A(ρ+ µ))(1−O(1/ log q))

where the last equality uses the fact that qx3 tends to 0 as a power function with

exponent x3 < 0, and hence it is dominated by 1/ log q for large π.
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We also obtain

−Bq = −∂ logB

∂q
B =

(
1

ϕ(q,−µ/π)
+

1

ϕ(q, η − 1)
− 1

ϕ(q, η − 1− µ/π)

)
B

q

=

(
1

ϕ(q,−µ/π)
+

∫ η−1

η−1−µ/π

∂

∂x

(
1

ϕ

)
(q, x)dx

)
B

q

=

(
1

ϕ(q,−µ/π)
− µ

π

ϕx
ϕ2

(q, x4)

)
B

q
where x4 ∈ [η − 1− µ/π, η − 1]

=

(
1

ϕ(q,−µ/π)
− µ

π

ϕx
ϕ2

(q, x4)

)
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)ϕ(q, 1− η)q
.

By Lemma 1(v), we have (ϕx/ϕ
2)(q, x4) = O(q−x4 log q), which is dominated by 1/ϕ(q,−µ/π)

for x4 > 0. Also, ϕ(q, 1− η+µ/π)/ϕ(q, 1− η) = 1 +O(1/π). Combining these results,

we obtain that π2q(Aq − δoBq) is equal to

π(log q)2

q−x3
(−x3A(ρ+ µ))

(
1−O

(
1

log q

))
+

(
π2δo

ϕ(q,−µ/π)
−O

(
π log q

qx4

))
1 +O(1/π)

ϕ(q, µ/π)
.

Since q grows asymptotically exponentially as π →∞, both q−x3 and qx4 (with x3 < 0

and x4 > 0) grow exponentially. Also, we have shown limπ→∞ ϕ(q, µ/π)/π = δη. This

implies that (log q)/π converges to a positive constant and that κ := limπ→∞ ϕ(q,−µ/π)/π

also exists and non-zero. Collecting these results, we obtain

lim
π→∞

π2q(Aq − δoBq) =
δo
δηκ

.

Next, we turn to the numerator −Aπ + δoBπ. From (27), we have

π2Aπ = −(ρ+ µ)A

∫ η−a

η−1−a

1

x2

(
1− qx(log qx)2

(qx − 1)2

)
dx.

Thus, limπ→∞ π
2Aπ = −(ρ+ µ)

∫ η
η−1

x−2dx = −(ρ+ µ)/(η(η − 1)).

40



From (28) and using Lemma 1(ii), we have

Bπ =

(
ϕx
ϕ

(q, 1− η + µ/π)− ϕx
ϕ

(q, µ/π)

)(
−µ
π2

)
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)ϕ(q, 1− η)

=

(
log q

1− qη−1−µ/π +
1

η − 1− µ/π
− log q

1− q−µ/π
+
π

µ

)(
−µ
π2

)
1 +O(π−1)

ϕ(q, µ/π)

=

(
−O

(
log q

πqη−1

)
+

1

π(η − 1)/µ− 1
− log q

ϕ(q,−µ/π)
+ 1

)
−(1 +O(π−1))

πϕ(q, µ/π)

=

(
log q

ϕ(q,−µ/π)
− 1−O(π−1)

)
1 +O(π−1)

πϕ(q, µ/π)
.

Using π/ϕ(q, µ/π) ∼ 1/(δη), we have

lim
π→∞

π2Bπ =

(
1

κ
lim
π→∞

log q

π
− 1

)
1

δη
.

Collecting the results above, we obtain

lim
π→∞

π2(−Aπ + δoBπ)

π2q(Aq − δoBq)
=

(
ρ+ µ

η(η − 1)
+

(
1

κ
lim
π→∞

log q

π
− 1

)
δo
δη

)
δηκ

δo
= lim

π→∞

log q

π

where we used δo = δ(ρ+µ)/(η− 1). Hence, we obtain the desired result: d log q/dπ ∼

(log q)/π. 2

Proof of Result (3).

The real wage w is determined using Equations (12,14) as

w =
η − 1

η

qϕ(q, η − 1− ρ+µ
π

)

ϕ(q, η − ρ+µ
π

)

(
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)

)1/(η−1)

=
η − 1

η

ϕ(q, 1− η + ρ+µ
π

)

ϕ(q,−η + ρ+µ
π

)

(
ϕ(q, 1− η + µ/π)

ϕ(q, µ/π)

)1/(η−1)

. (30)

Note that ϕ(q, µ/π) tends to infinity as π → ∞ and all the other terms with ϕ are

bounded for q > 1. Thus, w converges to 0 as π increases.

Rewrite (30) using a := (ρ+ µ)/π as

η − 1

η(η − 1− µ/π)1/(η−1)

η − a
η − 1− a

(1− q1−η+a)(1− q1−η+µ/π)1/(η−1)

(1− q−η+a)ϕ(q, µ/π)1/(η−1)
. (31)
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The first two fractions are monotonically decreasing in π. We focus on the third

fraction. We have

d

dπ

(
1− q1−η+µ/π

)
= −q1−η+µ/π

(
(1− η + µ/π)

d log q

dπ
− µ log q

π2

)
.

By Proposition 2(1) and Lemma 2, we have d log q/dπ ∼ (log q)/π ∼ (log(1 +µδη))/µ.

Hence, for any small ε > 0 there exists πo such that for all π > πo, |d log q/dπ −

(log q)/π| < ε, |d log q/dπ−(log(1+µδη))/µ| < ε, and |(log q)/π−(log(1+µδη))/µ| < ε

hold. Hence, we have

d

dπ

(
1− q1−η+µ/π

)
<

1

qη−1−µ/π

[
(η − 1)

(
log(1 + µδη)

µ
+ ε

)
+
εµ

π

]
.

Since q asymptotically grows exponentially in π, the left-hand side is bounded by a

function exponentially decreasing to 0. The same analysis holds true for functions (1−

q1−η+µ/π)1/(η−1), 1−q1−η+a, and 1−q−η+a. Since all of these functions are bounded above

by 1 and bounded below by positive constants for sufficiently large π, the logarithms

of these functions also have derivatives exponentially decreasing in π for large π.

Next, we examine the derivative of logϕ(q, µ/π). For π > πo we have the following

inequality:

d logϕ(q, µ/π)

dπ
=

1

ϕ(q, µ/π)

[
1

µ
(qµ/π − 1) + qµ/π

(
d log q

dπ
− log q

π

)]
=

1

π
+

µ

π(1− e−µ(log q)/π)

(
d log q

dπ
− log q

π

)
>

1

π

(
1− µε

1− eµε

1+µδη

)
.

Thus, the left-hand side is bounded from below by a function that declines as 1/π.

Combining the results, the derivative of the logarithm of the third fraction of (31),

d

dπ

(
log

(1− q1−η+a)(1− q1−η+µ/π)1/(η−1)

(1− q−η+a)ϕ(q, µ/π)1/(η−1)

)
,
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consists of three terms that are bounded by exponentially declining functions and one

term, with negative sign, which is bounded below by a function declining as 1/π. Thus,

the negative term dominates the other terms for large π. Hence, the third fraction is

a decreasing function in π.

Since all fractions in (31) are decreasing in π for large π, we obtain that w is

asymptotically decreasing in π. 2

Proof of Proposition 3:

1. The degree of complementarity θ → 1 and the extensive margin λ →

1/(δη) as π →∞.

2. λ is increasing in π for sufficiently large π.

3. θ is increasing in π for sufficiently large π.

Proof of Result (1).

From Equation (17), we obtain

θ =
ϕ(q, 1− η)

ϕ(q, 1− η + µ/π)
=
q1−η − 1

1− η
1− η + µ/π

q1−ηeµ(log q)/π − 1
.

By Proposition 2(1), (log q)/π converges to a positive constant as π → ∞. Since

q1−η → 0, we obtain θ → 1 as π →∞.

From Equation (18), we have λ = µϕ(p∗, 1 − η)/(ϕ(q, µ/π)(1 − θ)). We note that

ϕ(p∗, 1− η) ∼ 1/(η − 1), since p∗ ↗∞. Using Lemma 1(ii), we have

log θ = logϕ(q, 1− η)− logϕ(q, 1− η + µ/π) =

∫ 1−η

1−η+µ/π

ϕx
ϕ

(q, x)dx

=

∫ 1−η

1−η+µ/π

log q

1− q−x
− 1

x
dx ∼

(
log q

1− qη−1
− 1

1− η

)
−µ
π
∼ −µ
η − 1

1

π
.
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Since θ → 1 as π → ∞, we have (1 − θ)/ log θ → −1 by l’Hôpital’s rule. Thus

1− θ → µ/(π(η − 1)) as π →∞. Collecting these results, we obtain

λ ∼ π

ϕ(q, µ/π)
∼ 1

δη
.

Since η > 1, the condition δλ < 1 holds asymptotically as π →∞. 2

Proof of Result (3).

Since ϕ(q, x) is increasing in x by Lemma 1(ii), we have θ < 1. By taking total

derivative of the logarithm of (17) and using Lemma 1(i), we obtain

d log θ

dπ
=

(
1

ϕ(q, η − 1)
− 1

ϕ(q, η − 1− µ/π)

)
d log q

dπ
+
ϕx
ϕ

(q, 1− η + µ/π)
µ

π2
, (32)

where, by Lemma 1(ii), the second term in the right-hand side is equal to(
log q

1− qη−1−µ/π +
1

η − 1− µ/π

)
µ

π2
.

The term log q/(1 − qη−1−µ/π) converges to 0 as π → ∞, because η > 1 and (log q)/π

converges to a constant. Thus, the second term in the right-hand side of (32) asymp-

totes to (µ/(η − 1))π−2.

The first term in the right-hand side of (32) is(
1

ϕ(q, η − 1)
− 1

ϕ(q, η − 1− µ/π)

)
d log q

dπ
= −

∫ η−1

η−1−µ/π

∂

∂x

(
−1

ϕ

)
(q, x)dx

d log q

dπ
.

The right-hand side is negative by Lemma 1(v). Now, for some x5 ∈ [η−1−µ/π, η−1],∫ η−1

η−1−µ/π

∂

∂x

(
−1

ϕ

)
(q, x)dx =

∂

∂x

(
−1

ϕ

)
(q, x5)

µ

π
.

Hence, using Lemma 1(v) and the asymptotic result for d log q/dπ, we obtain

−
∫ η−1

η−1−µ/π

∂

∂x

(
−1

ϕ

)
(q, x)dx

d log q

dπ
∼ −q

x5 log(qx5)− (qx5 − 1)

(qx5 − 1)2

log(1 + µδη)

π
.
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Since x5 > 0, this term declines as e−x5π for large π. Thus, this negative first term in

the right-hand side of (32) is dominated by the positive second term for large π. Hence

d log θ/dπ > 0 for sufficiently large π. 2

Proof of Result (2).

From (18), we have λ = µϕ(p∗, 1− η)/(ϕ(q, µ/π)(1− θ)). Using (12,14) we have

ϕ(p∗, 1− η)

ϕ(q, µ/π)
=

(
ϕ(q,1−η+µ/π)
ϕ(q,µ/π)

)−1

q1−η − 1

(1− η)ϕ(q, µ/π)
=

1

η − 1

[
1

ϕ(q, µ/π)
− q1−η

ϕ(q, 1− η + µ/π)

]
.

Since ϕ(q, 1 − η + µ/π) is bounded and since (log q)/π converges to a constant, the

second term in the square brackets declines to zero exponentially as π → ∞, whereas

the first term declines only as 1/π. Thus, the sum of two terms is increasing for

sufficiently large π. We have also shown previously that 1/(1 − θ) is asymptotically

increasing in π. Hence, λ is increasing in π for sufficiently large π. 2

Proof of Proposition 4: The mean and variance of L conditional on m0 = 1

converge as n→∞ to 1/(1− θ) and θ/(1− θ)3, respectively. Furthermore, as

n→∞,

Pr(L = ` | m0)→ m0

`

e−θ`(θ`)`−m0

(`−m0)!

for ` = m0,m0 + 1,m0 + 2, . . .. The tail of the above probability function

satisfies

m0

`

e−θ`(θ`)`−m0

(`−m0)!
∝ e−(θ−1−log θ)``−1.5 as `→∞.

The probability generating function Ψ(z) of the sum L of a branching process with

initial value 1 has a recursive form as Ψ(z) = zΦ(Ψ(z)), where Φ is a probability

generating function of the number of children born from a parent. In our case, Φ
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follows a Poisson distribution with mean θ asymptotically as n→∞. By the property

of a probability generating function, Φ(1) = Ψ(1) = 1. Moreover, Φ′(1) is equal to

the mean and Φ′′(1) + Φ′(1) − (Φ′(1))2 is equal to the variance. Thus, Φ′(1) = θ and

Φ′′(1) + Φ′(1)− (Φ′(1))2 = θ. Hence, Φ′′(1) = θ2.

Using the recursive relationship, we obtain Ψ′(z) = Φ(Ψ(z)) + zΦ′(Ψ(z))Ψ′(z) and

Ψ′′(z) = 2Φ′(Ψ(z))Ψ′(z) + zΦ′′(Ψ(z))(Ψ′(z))2 + zΦ′(Ψ(z))Ψ′′(z). Evaluating at z = 1,

we obtain the mean of L as Ψ′(1) = 1/(1− θ). For Ψ′′(1), we have

Ψ′′(1) =
θ(2− θ)
(1− θ)3

.

Hence, the variance of L is

Ψ′′(1) + Ψ′(1)− (Ψ′(1))2 = θ/(1− θ)3.

The sum L conditional on m0 of a Poisson branching process is known to follow

the Borel-Tanner distribution (19) (see Kingman [22]; Nirei [27, 28]). Applying the

Stirling’s formula for the factorial (`−m0)! in (19), we obtain (20).

Preparation for Proof of Proposition 5

To fully characterize d logPt, we need to pin down the distribution of m0 and the

unconditional distribution of L. To do so, first investigate the direct effect of the firm

that draws a Calvo shock. Its effect differs from the effect of a firm which reprices

at the extensive margin. First, its repricing size is not log q. This difference can be

safely ignored when n is large. However, the different repricing size leads to the second

difference: its impact on the extensive margin which defines the distribution of m0.

This point can be formally analyzed as follows.

Suppose firm i is hit by the Calvo event and reprices from Pi,t to P ∗i,t. The size of

price jump is ∆ logPi,t = log p∗ − log pi,t. Thus, we obtain that the decline of sj,t for
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j 6= i caused by the increase in logPi,t is equal to εo(si)/n, where

εo(si) :=
1

log q

p∗1−η − p1−η
i,t

1− η
.

This implies that firm i’s price adjustment has an impact on the state of other firms

with an order of magnitude 1/n. This shift in sj,t causes firm j to adjust its price if sj,t

is located close enough to the adjustment threshold. Namely, firms in (0, εo(si)/n] will

adjust their prices as an optimal response to the price change by i. The probability for

firm j to adjust is F (εo(si)/n), where F (·) denotes the cumulative distribution function

of s. Since there are n− 1 firms that are affected by the initial price change by i, the

number of firms that adjust due to the price change by i follows a binomial distribution

with population n− 1 and probability F (εo(si)/n). This is the distribution of m0.

When n tends to infinity, the binomial distribution of m0 asymptotes to a Poisson

distribution. Since εo has an order of magnitude 1/n, nF (εo(si)/n) tends to

θεo(si) :=
fo

log q

p∗1−η − p1−η
i,t

1− η

where fo denotes the density of firms at the repricing threshold. Then, when n tends to

infinity and given εo(si), m0 asymptotically follows a Poisson distribution with mean

θεo(si). Given the distribution of m0, the distribution of L conditional on the state si

of the firm that draws a Calvo shock is obtained as follows.

Lemma 3. As n→∞, the probability function of L conditional on si converges as

Pr(L = ` | si)→
θεo(si)
`!

e−(θ`+θεo(si))(θ`+ θεo(si))
`−1 (33)

for ` = 1, 2, . . ..

Proof.
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A profile of state (si,t)
n
i=1 is drawn randomly from a joint density function fn. Lt > 0

holds only when a firm draws a Calvo event in t. The firm’s price adjustment affects

the profile s, and the other firms’ repricing continues until si,t ∈ (0, 1] is achieved. This

new profile constitutes a momentary equilibrium in t. Lt is the number of firms that

are involved in the repricing within the instance t. We compute Lt by a best response

dynamics proposed by Nirei [28] as follows.

Suppose that i is hit by a Calvo event, and all the other firms’ sj,t are reduced by

εo(si)/n. If there are no firms with sj,t in the range (0, εo/n], the adjustment process

stops and the equilibrium price distribution is obtained. If there are some firms in the

range, each of them adjusts the price from pj,t to p∗t . The impact of the price change

by j on other firms is calculated similarly to the case of firm i, and denoted by ε1/n.

Noting that pj,t ∈ (p, p + (log p∗ − log p)εo/n), pj,t converges to p as n → ∞. Thus,

when n is large,

ε1 =
p∗1−η − p1−η

j,t

(1− η) log q
→
n→∞

ϕ(q, 1− η)p1−η

log q
.

Let m1 denote the number of firms with sj,t ∈ (εo/n, (εo + ε1)/n]. m1 follows a

binomial distribution with population n−m1 and probability F ((εo+ε1)/n)−F (εo/n).

The shift of sk,t by the price adjustments of m1 firms may cause further adjust-

ments. The adjustment process is formulated as a best response dynamics mu for

u = 0, 1, . . . , U as defined in Section 4.1. The sum L =
∑U

u=0mu conditional on m0

has been already obtained in (19). We combine (19) with the fact that m0 follows a
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Poisson distribution with mean θεo .

Pr(L = `) =
∑̀
m0=0

θm0
εo e

−θεo

m0!

m0

`

e−θ`(θ`)`−m0

(`−m0)!

=
θεoe

−θ`−θεo

`

∑̀
m0=1

(θ`)`−m0θm0−1
εo

(`−m0)!(m0 − 1)!

=
θεo
`!
e−(θ`+θεo )(θ`+ θεo)

`−1.

2

Proof of Proposition 5: For sufficiently large n and in a range of sufficiently

large π, the variance of inflation d logPt is increasing in π.

Using Lemma 3, we derive the variance of d logP . The main determinants of the

variance, L and log q, have already been established. What remains to show is that

the quantitative role played by the Calvo shock directly is negligible.

In each instance, there may be a firm that reprices due to the Calvo shock. Condi-

tional on a firm repricing due to the Calvo shock, m0 denotes the number of firms that

reprice due to the decreased relative price caused by the firm that reprices due to the

Calvo shock. Asymptotically as n→∞, m0 follows a Poisson distribution with mean

θ0. The probability generating function of the total number of firms that adjust at the

instance of the exogenous repricing event is Ψ0(z) := E[Ψm0(z)]. Note that m0 follows

a Poisson distribution with mean θεo(s). This notation makes explicit the dependence

of εo on s which follows a distribution function f(s). Then, the probability generating

function is solved as Ψ0(z) =
∫ 1

0
eθεo(s)(Ψ(z)−1)f(s)ds. The derivative with respect to z
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yields:

Ψ′0(z) =

∫ 1

0

Ψ′(z)eθεo(s)(Ψ(z)−1)θεo(s)f(s)ds

Ψ′′0(z) =

∫ 1

0

(
Ψ′′(z)eθεo(s)(Ψ(z)−1)θεo(s) + eθεo(s)(Ψ(z)−1)(Ψ′(z)θεo(s))

2
)
f(s)ds.

Thus, we obtain that Ψ′0(1) = E[θεo(s)]/(1− θ) and Ψ′′0(1) = E[θεo(s)]θ(2− θ)/(1− θ)3 +

E[θ2
εo(s)

]/(1− θ)2.

The aggregate price logPt follows a compound Poisson process with intensity rate

µ and a jump size which is the multiple of individual repricing size log q and the total

number of the firms that adjust in the branching process Lt.

The number of firms that draw such events in a unit time follows a Poisson dis-

tribution with mean µn. Let X denote the total number of firms repricing in a

unit time and Y a random variable following the Poisson distribution with mean

µn. Note that L follows the same distribution as X conditional on Y = 1. Then,

V (X) = E[V (X | Y )] +V (E[X | Y ]) = E[Y ]V (L) +V (Y )E[L]2 = µnE[L2]. Thus, the

variance of d logPt in a unit time is (log q)2µE[L2]/n. Note

E[L2] = E[L(L− 1)] + E[L] = Ψ′′0(1) + Ψ′0(1) =
θ0

(1− θ)3
+
E[θ2

εo(s)
]

(1− θ)2

where θ0 := E[θεo(s)]. Using E[p1−η
i,t ] = 1, we have

θ0 =
E[p∗1−η − p1−η

i,t ]

(1− η) log q

log q

ϕ(q, µ/π)
=
ϕ(p∗, 1− η)

ϕ(q, µ/π)
.

In the proof of Proposition 3, we showed that ϕ(p∗, 1 − η)/ϕ(q, µ/π) = O(1/π) and

1− θ ∼ µ/(π(η − 1)). Therefore, θ0/(1− θ) is convergent to a finite value. Moreover,

1/(1− θ)2 ↗∞ as π →∞. Hence, θo/(1− θ)3 is asymptotically increasing in π.

Next, we show that E[θ2
εo ]/(1−θ)

2 is also asymptotically increasing. First we derive
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E[qsi,tx] for an arbitrary parameter x.∫ 1

0

qsi,tx
qsi,tµ/π(µ/π) log q

qµ/π − 1
dsi,t =

log q

ϕ(q, µ/π)

qsi,t(x+µ/π)|10
(x+ µ/π) log q

=
ϕ(q, x+ µ/π)

ϕ(q, µ/π)
.

Note that

θεo =
fo

log q

p∗1−η − p1−η
i,t

1− η
=

(pq)1−η

ϕ(q, µ/π)

1− q(si,t−1)(1−η)

1− η

=
q1−η

ϕ(q, 1− η + µ/π)

1− q(si,t−1)(1−η)

1− η
.

Then, E[θ2
εo(si,t)

] can be calculated as(
q1−η

(1− η)ϕ(q, 1− η + µ/π)

)2 (
1− 2qη−1E[qsi,t(1−η)] + q2(η−1)E[q2(1−η)si,t ]

)
=

(
q1−η

(1− η)ϕ(q, 1− η + µ
π
)

)2(
1− 2qη−1ϕ(q, 1− η + µ

π
)

ϕ(q, µ
π
)

+ q2(η−1)ϕ(q, 2(1− η) + µ
π
)

ϕ(q, µ
π
)

)
∼ q2(1−η) − 2q1−η

(η − 1)ϕ(q, µ/π)
+
ϕ(q, 2(1− η) + µ/π)

ϕ(q, µ/π)
,

where we used ϕ(q, 1 − η + µ/π) ∼ η − 1. Note that the first two terms decline

exponentially in π, while the last term declines as 1/π. Also using ϕ(q, 2(1−η)+µ/π) ∼

1/(2(η − 1)), we obtain E[θ2
εo(si,t)

] ∼ 1/(2(η − 1)ϕ(q, µ/π)). Thus,

E[θ2
εo(si,t)

]

(1− θ)2
∼ 1

2(η − 1)ϕ(q, µ/π)

(
1

µ/((η − 1)π)

)2

=
(η − 1)π/µ

2(qµ/π − 1)
.

Since (log q)/π converges to a finite value, qµ/π in the denominator is bounded, whereas

the numerator increases as π. Hence, E[θ2
εo(si,t)

]/(1 − θ)2 is asymptotically increasing

in π.

Combining these results, E[θεo(s)]/(1−θ)3+E[θ2
εo(s)

]/(1−θ)2 increases as π increases

for sufficiently large π.
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