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1. Introduction 

During the global financial crisis of 2007–08, financial institutions suffered from 

massive loss due to the realization of wrong-way risk (WWR).1 Since then, WWR has 

been recognized as an important risk to be considered by financial institutions, and has 

been taken into account for pricing and risk management of credit valuation adjustment 

(CVA) by advanced financial institutions. In addition, the Basel Committee on Banking 

Supervision (BCBS) requires the regulatory CVA to capture a significant level of 

adverse dependence between exposure and the counterparty’s credit quality; that is, 

WWR (BCBS, 2017). In response to those demands in pricing, risk management and 

regulation, various types of WWR models have been developed, however, there is no 

consensus how to model and measure it. In this paper, we propose some modeling 

methodologies of WWR in CVA pricing and use credit default swap (CDS) as a typical 

instrument having large impact of WWR. 

Against the background, Brigo and Chourdakis (2009) and Brigo and Capponi (2010) 

employ the Gaussian copula to capture the positive dependence between the credit 

quality of the counterparty and that of the reference name. However, the Gaussian 

copula often becomes the focus of the criticism due to i) the unrealistic dependence 

between credit qualities as pointed out by Lee and Capriotti (2015) and ii) the 

underestimation of CVA stemming from its weak tail dependence as pointed out by 

Glasserman and Yang (2018).  

We therefore compare the unilateral CVA with WWR on a CDS using four well 

known copulas, namely the Gaussian, Student’s t, Clayton, and survival Gumbel 

copulas, under the same strength of copula-correlation parameter. In results, the tail 

dependent copulas including the Student’s t, survival Gumbel, and Clayton copulas 

capture the WWR in the CVA better than the Gaussian copula does as pointed out by 

Glasserman and Yang (2018). In addition, we find that the impact of CVA with WWR 

depends on the employed copula and the copula-correlation parameter. When the 

copula-correlation parameter is small, the Student’s t copula yields larger CVA than 

other copulas do. When it is large, the Clayton and survival Gumbel copulas yield larger 

CVA. It reflects that the Student’s t copula does not reduce to the independent copula 

even when the copula-correlation parameter is zero. This characteristic disappears as the 

copula-correlation parameter becomes large due to the strong tail-dependence of the 

Clayton and survival Gumbel copulas. 

                                                 
1 Wrong-way risk arises when an adverse relationship between exposure to a counterparty and the 
credit quality of that counterparty triggers large loss in portfolios. 
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Other than copulas, jump factors are intensively studied to capture the credit 

dependence for modeling WWR as Jarrow, Lando, and Yu (2005) stress the necessity of 

the jump element to represent the risk premium in a credit spread. Leung and Kwok 

(2005) study counterparty risk using a deterministic intensity with jump triggered by the 

default of other companies. Mercurio and Li (2015) assume a price jump of reference 

asset at the event of counterparty default. Bo and Capponi (2014) show an explicit 

formula of a bilateral CVA on a portfolio consisting of an asymptotically large number 

of CDSs assuming a stochastic default intensity model with a common and an 

independent jump. Adachi and Uchida (2015) reveal the mechanism of booms and busts 

of asset prices via transitions between two different types of traders with and without 

managing WWR derived from a common jump embedded in two risk factors. 

Copulas are also independently employed to capture wider credit dependences. 

Cherubini (2013) represents the WWR in CVA of an interest rate swap by a 

co-monotonic copula between default probabilities and cumulative distribution of 

interest rates. He proposes the CVA as the weighted average of that from the 

co-monotonic copula and that from the independent copula, which is partially corrected 

by Černý and Witzany (2018). Brigo and Chourdakis (2009) and Brigo and Capponi 

(2010) introduce the Gaussian copula into a stochastic default intensity process without 

jump. Rosen and Saunders (2012) capture the WWR using the Gaussian copula between 

an empirical distribution of market factor and cumulative default probabilities. Lee and 

Capriotti (2015) extend the copula approach to compute the CVA of CDS portfolio by 

employing the Clayton copula. They mention that the Clayton copula produces more 

realistic dependence of the default intensity dynamics conditional on the counterparty 

default than the Gaussian copula. Glasserman and Yang (2018) also show  the 

Gaussian copula could underestimate CVA. Böcker and Brunnbauer (2014) propose 

general copula approach to capture the potential future exposure for CVA with WWR 

and apply the method to the Gaussian, Clayton, Frank, and Gumbel copulas. 

Based on the model of Brigo and Chourdakis (2009) and Brigo and Capponi (2010), 

we extend their model of the Gaussian copula to other tail dependent copulas including 

the Student’s t ,Clayton, and survival Gumbel copulas as well as adding a jump factor to 

the stochastic intensity process. Brigo and El-Bachir (2010) call the process as the 

shifted square root jump diffusion (SSRJD). Since SSRJD is an affine jump diffusion 

process, the characteristic function of SSRJD cumulative intensity is analytically 

solvable. In theory, applying the Fourier inversion and numerical integration to the 

characteristic function, the CDF of the cumulative default intensity can be obtained. 

However, the complex-valued characteristic function including log function is 

multivalued and undefined. The derivation of the characteristic function is not 
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straightforward. To handle this problem, we define the characteristic function of 

cumulative SSRJD on a single-layered Riemann surface. To reduce the computational 

cost of the Fourier inversion, we employ the fractional Fourier transform in Bailey and 

Swarztrauber (1991) and Chourdakis (2004). 

This paper is organized as follows. Section 2 overviews the copula approach for the 

default intensity model and shows the numerical comparison with Gaussian, Student’s t, 

Clayton, and survival Gumbel copula approaches and non-copula approaches. Section 3 

derives the conditional survival probabilities with SSRJD default intensities. Section 4 

gives concluding remarks. 

 

2. Copula approach with SSRJD default intensity 

This section describes how the CVA of CDS is calculated in a copula approach using 

a default intensity model. The calculation in a copula approach requires the distribution 

function of the cumulative intensity. We analyze the CVA of CDS comparing the models 

with no wrong-way risk, no jump in default intensities, and non-copula approaches. 

 

2.1. Valuation of CVA of CDS 

We consider a CDS contract between Bank A (protection buyer) and Bank C 

(protection seller) whose reference entity is Firm R. Bank A is assumed to be 

default-free. The maturity of the contract is  𝑡௠ and Bank A pays a premium with the 

rate 𝑠𝑝ோ to the bank C at  𝑡௝  (𝑗 ൌ 1, … , 𝑚) until Firm R defaults with the equal 

interval, 𝛥 ൌ 𝑡௝ െ 𝑡௝ିଵ ሺ∀𝑗ሻ. In this paper, the premium payment is assumed to be 

monthly, 𝛥 ൌ 1/12. We refer to Bank C and Firm R using 𝑘 ൌ 𝐶, 𝑅. 

For the valuation, if Firm R defaults at time 𝜏ோ ∈ ሺ𝑡௝ିଵ, 𝑡௝ሿ, the default is assumed to 

happen at time 𝑡௝ and the Bank A is assumed to pay a premium to Bank C at time 𝑡௝. 

The loss rate given the default of Bank C and the reference Firm R are given by LGD஼ 

and LGDோ, respectively. Both are assumed to be constant. The value of the CDS of the 

notional amount 𝑁𝐴 without CVA at time 𝑡௝ is given by 

 

𝑉஼஽ௌ
ே௢ ஼௏஺൫𝑡௝൯ ൌ ቌLGDோ 𝔼௝

ℚ ቂ𝐷𝐹൫𝑡௝, 𝜏ோ൯1൛ఛೃ∈൫௧ೕ,௧೘൧ൟቃ

െ 𝑠𝑝ோ𝛥 ෍ 𝐷𝐹൫𝑡௝, 𝑡௟൯𝔼௝
ℚൣ1ሼఛೃவ௧೗షభሽ൧

௠

௟ୀ௝ାଵ

ቍ ൈ 𝑁𝐴, 

(1)
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where 𝔼௝
ℚሾ⋅ሿ is the expectation operator at time 𝑡௝ under the risk neutral probability ℚ. 

𝐷𝐹൫𝑡௝, 𝑡௜൯ denotes the discounting factor from 𝑡௝ to 𝑡௜ under the probability ℚ. In 

this paper, we assume the OIS (overnight index swap) discounting factor on May 1, 

2008 with quarterly premium legs. Evaluating equation (1) by discretizing at time  𝑡௟  

(𝑙 ൌ 𝑗 ൅ 1, … , 𝑚), 

 
𝑉஼஽ௌ

ே௢ ஼௏஺൫𝑡௝൯ ൌ 𝑁𝐴 ෍ 𝐷𝐹൫𝑡௝, 𝑡௟൯൛LGDோ𝑃𝐷ோ,௝ሺ𝑡௟ିଵ, 𝑡௟ሻ

௠

௟ୀ௝ାଵ

െ 𝑠𝑝ோ𝛥൫1 െ 𝑃𝐷ோ,௝ሺ𝑡௝, 𝑡௟ିଵሻ൯ൟ, 

(2)

where 𝑃𝐷ோ,௝ሺ𝑡௟ିଵ, 𝑡௟ሻ denotes the term default probability measure at time 𝑡௝ that the 

reference Firm R defaults during the term ሺ𝑡௟ିଵ, 𝑡௟ሿ , that is, 𝑃𝐷ோ,௝ሺ𝑡௟ିଵ, 𝑡௟ሻ ൌ

𝔼௝
ℚൣ1ሼఛೃ∈ሺ௧೗షభ,௧೗ሿሽ|𝜏ோ ൐ 𝑡௝൧ ൌ ℚ൫𝜏ோ ൐ 𝑡௟ିଵ|𝜏ோ ൐ 𝑡௝൯ െ ℚሺ𝜏ோ ൐ 𝑡௟|𝜏ோ ൐ 𝑡௝ሻ. 

The unilateral CVA observed from Bank A at time 𝑡଴ is calculated by 

 
𝐶𝑉𝐴஺ሺ𝑡଴ሻ ൌ LGD஼ ෍ 𝐷𝐹൫𝑡଴, 𝑡௝൯

௠

௝ୀଵ

𝔼଴
ℚ ቂ𝑉஼஽ௌ

ே௢ ஼௏஺൫𝑡௝൯
ା

ቚ 𝜏஼

∈ ሺ𝑡௝ିଵ, 𝑡௝ሿቃ 𝑃𝐷஼,଴൫𝑡௝ିଵ, 𝑡௝൯,

(3)

where 𝑉ା ≡ maxሺ𝑉, 0ሻ. 𝑃𝐷஼,଴൫𝑡௝ିଵ, 𝑡௝൯ denotes the term default probability measure 

at time 𝑡଴ that the counterparty bank C defaults during the term ሺ𝑡௝ିଵ, 𝑡௝ሿ, that is, 

𝑃𝐷஼,଴൫𝑡௝ିଵ, 𝑡௝൯ ൌ 𝔼଴
ℚ ቂ1൛ఛ಴∈ሺ௧ೕషభ,௧ೕሿൟቃ ൌ ℚ൫𝜏஼ ൐ 𝑡௝ିଵ൯ െ ℚሺ𝜏஼ ൐ 𝑡௝ሻ.  

The key point to capture WWR is modeling the conditional expected exposure with 

the counterparty default, 𝔼଴
ℚ ቂ𝑉஼஽ௌ

ே௢ ஼௏஺൫𝑡௝൯
ା

ቚ 𝜏஼ ∈ ሺ𝑡௝ିଵ, 𝑡௝ሿቃ, becomes larger than the 

unconditional one, 𝔼଴
ℚ ቂ𝑉஼஽ௌ

ே௢ ஼௏஺൫𝑡௝൯
ା

ቃ. 

We evaluate the unilateral CVA observed from Bank A at time 𝑡଴ by simulation with 

𝑁 paths. Denoting the default time of the Bank C and the reference Firm R with 𝑖-th 

path by 𝜏஼
ሺ௜ሻ and 𝜏ோ

ሺ௜ሻrespectively, the CVA is calculated by 

 𝐶𝑉𝐴஺ሺ𝑡଴ሻ ൌ
LGD஼

𝑁
෍ ෍ 𝐷𝐹൫𝑡଴, 𝑡௝൯𝑉஼஽ௌ

ே௢ ஼௏஺൫𝑡௝൯
ା

1
ቄఛ಴

ሺ೔ሻ∈൫௧ೕషభ,௧ೕ൧,ఛೃ
ሺ೔ሻஹఛ಴

ሺ೔ሻቅ

௠

௝ୀଵ

ே

௜ୀଵ

. (4)

 

2.2. Default intensity model with simultaneous jump 

Although Brigo and Chourdakis (2009) and Brigo and Capponi (2010) use shifted 
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square root diffusion without jump (SSRD), Jarrow, Lando, and Yu (2005) indicate that 

the jump element is important for the risk premium in the credit spread. Duffie and 

Gârleanu (2001), Brigo and El-Bachir (2010), and others adopt the SSRJD for the 

stochastic default intensity. Therefore, we introduce the stochastic default intensity with 

jump. 

The default times 𝜏஼  and 𝜏ோ  are modeled by the default intensities 𝜆஼ሺ𝑡ሻ and 

𝜆ோሺ𝑡ሻ, respectively. Brigo and Chourdakis (2009) adopt the following square root 

diffusion (SRD) for the default intensity 𝜆௞ሺ𝑡ሻ (𝑘 ൌ 𝐶, 𝑅) as 

 𝑑𝜆௞ሺ𝑡ሻ ൌ 𝜅௞൫𝜃௞ െ 𝜆௞ሺ𝑡ሻ൯𝑑𝑡 ൅ 𝜎௞ඥ𝜆௞ሺ𝑡ሻ𝑑𝑊௞ሺ𝑡ሻ, (5)

where 𝑊௞ሺ𝑡ሻs (𝑘 ൌ 𝐶, 𝑅) are the Brownian motions which have constant correlation as  

 𝑑〈𝑊஼, 𝑊ோ〉ሺ𝑡ሻ ൌ 𝜌஼,ோ𝑑𝑡. (6)

For the valuation of the term default probabilities and the survival probabilities in 

equations (2) and (3), Brigo and Chourdakis (2009) incorporate the adjusting elements 

𝛹௞൫𝑡௝൯ by the market calibration. Hence, the stochastic process of the default intensity 

𝜆௞ሺ𝑡ሻ (𝑘 ൌ 𝐶, 𝑅) is called Shifted SRD.  

We assume the upshifted default intensity 𝜆௞ሺ𝑡ሻ (𝑘 ൌ 𝐶, 𝑅) with the following 

square root jump diffusion (SRJD). 

 𝑑𝜆௞ሺ𝑡ሻ ൌ 𝜅௞൫𝜃௞ െ 𝜆௞ሺ𝑡ሻ൯𝑑𝑡 ൅ 𝜎௞ඥ𝜆௞ሺ𝑡ሻ𝑑𝑊௞ሺ𝑡ሻ ൅ 𝑑𝐽௞ሺ𝑡ሻ, (7)

where 𝐽௞ሺ𝑡ሻ is the jump component using marked Poisson process 𝑁ఎሺ𝒛, 𝑡ሻ with the 

intensity 𝜂 as 

 𝐽௞ሺ𝑡ሻ ൌ න න 𝑧௞𝑑𝑁ఎሺ𝒛, 𝑠ሻ
ℝశ

௧బା௧

௧బ

, 𝒛 ൌ ሺ𝑧஼, 𝑧ோሻ, 𝑧௞~ Expሺ𝜁௞ሻ. (8)

The timing of the jump is common to each default intensity. Each default intensity has 

each jump size mean 𝜁௞. Regarding the correlation of each jump size, we consider two 

types: (i) simultaneous comonotone jump, that is, the jump size 𝑧௞ is given as 𝑧௞ ൌ
𝜁௞𝑧 with the common exponential random number 𝑧~ Expሺ1ሻ, and (ii) simultaneous 

independent jump, that is, the jump sizes 𝑧஼ and 𝑧ோ are given as 𝑧஼~ Expሺ𝜁஼ሻ and  

𝑧ோ~ Expሺ𝜁ோሻ independently. The diffusion parts have a constant correlation as  

 𝑑〈𝑊஼, 𝑊ோ〉ሺ𝑡ሻ ൌ 𝜌஼,ோ
௝௨௠௣𝑑𝑡. (9)

For the valuation of the term default probabilities and the survival probabilities in 

equations (2) and (3), we also incorporate the adjusting elements Ψ௞൫𝑡௝൯ by the market 

calibration described in Section 2.5. 

For the discretized CVA valuation (3), we assume constant default intensity between 

the discretized time, 𝜆௞ሺ𝑡ሻ ൌ 𝜆̅௞,௝  for 𝑡 ∈ ሺ𝑡௝ିଵ, 𝑡௝ሿ, to identify the default time of 
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counterparty 𝜏஼ and whether the reference firm survives at time 𝜏஼, 𝜏ோ ൐ 𝜏஼. If 𝜏஼ ∈

ሺ𝑡௝ିଵ, 𝑡௝ሿ  and 𝜏ோ ൐ 𝜏஼ , the conditional survival probability ℚሺ𝜏ோ ൐ 𝑡௟|𝜏ோ ൐ 𝑡௝ሻ  is 

calculated analytically in the SSRJD default intensity (see Section 3.1). 

 

2.3. Copula approach for cumulative intensity 

The copula approach shown in Brigo and Chourdakis (2009) represents WWR by 

connecting the cumulative default probability of the counterparty 𝑈஼ to that of the 

reference firm 𝑈ோ with the copula function:  

 𝐶஼,ோሺ𝑢஼, 𝑢ோሻ ≔ ℚሺ𝑈஼ ൑ 𝑢஼, 𝑈ோ ൑ 𝑢ோሻ. (10)

As the canonical construction of the time of default 𝜏௞ (𝑘 ൌ 𝐶, 𝑅) indicated in Bielecki, 

Jeanblanc, and Rutkowski (2009), the time of default 𝜏௞  is connected though an 

increasing and continuous process of the cumulative default intensity Λ௞ሺ𝑡ሻ (𝑘 ൌ
𝐶, 𝑅): 

 Λ௞ሺ𝑡ሻ ≔ න 𝜆௞ሺ𝑠ሻ𝑑𝑠
𝑡

𝑡0

. (11)

The cumulative default probability 𝑈௞ until the time of default 𝜏௞ is given as 

 𝑈௞ ൌ 1 െ expሼെ𝛬௞ሺ𝜏௞ሻሽ . (12)

Conversely, the time of default 𝜏௞ is given as 

 𝜏௞ ൌ infሼ𝑡 ൐ 𝑡଴|𝛬௞ሺ𝑡ሻ ൒ െ lnሺ1 െ 𝑈௞ሻሽ . (13)

Given the counterparty defaults at time 𝜏஼ ∈ ሺ𝑡௝ିଵ, 𝑡௝ሿ  and the reference firm 

survives until 𝑡௝ , the survival probability of the reference firm beyond 𝑡 ൒ 𝑡௝ , 

ℚ൫𝜏ோ ൐ 𝑡ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯ , is transformed as: 

 

ℚ൫𝜏ோ ൐ 𝑡ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯   
ൌ ℚ൫1 െ 𝑒ି௸ೃሺఛೃሻ ൐ 1 െ 𝑒ି௸ೃሺ௧ሻห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯
ൌ ℚ൫𝛬ோሺ𝑡ሻ െ 𝛬ோሺ𝜏஼ሻ ൏ െlogሺ1 െ 𝑈ோሻ െ 𝛬ோሺ𝜏஼ሻห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯

ൌ න 𝐹௸ೃሺ௧ሻି௸ೃሺఛ಴ሻሺെlogሺ1 െ 𝑈ோሻ െ 𝛬ோሺ𝜏஼ሻሻ
ଵ

௎ೃ|಴

 𝑑ℚ൫𝑈ோ ∈ 𝑑𝑢ோห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯

ൌ න 𝐹௸ೃሺ௧ሻି௸ೃሺఛ಴ሻ ൬log
1 െ 𝑈ோ|஼

1 െ 𝑈ோ
൰

ଵ

௎ೃ|಴

𝑑ℚ൫𝑈ோ ∈ 𝑑𝑢ோห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯, 

(14)

where 𝐹௸ೃሺ௧ሻି௸ೃሺఛ಴ሻሺ⋅ሻ  denotes the cumulative distribution function of 𝛬ோሺ𝑡ሻ െ

𝛬ோሺ𝜏஼ሻ and  

 𝑈ோ|஼ ≔ 1 െ expሼെ𝛬𝑅ሺ𝜏𝐶ሻሽ . (15)
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At the last term in equation (14), ℚ൫𝑈ோ ∈ 𝑑𝑢ோห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯ is evaluated as: 

 

ℚ൫𝑈ோ ∈ 𝑑𝑢ோห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯ ൌ
ℚ൫𝑈ோ ∈ ൫𝑈ோ|஼, 𝑈ோ|஼ ൅ 𝑑𝑢ோ൧, 𝑈஼ ∈ ൫𝑈஼,௝ିଵ, 𝑈஼,௝൧൯

ℚ൫𝑈ோ ൐ 𝑈ோ|஼, 𝑈஼ ∈ ൫𝑈஼,௝ିଵ, 𝑈஼,௝൧൯

ൌ
ℚ൫𝑈ோ ൑ 𝑈ோ|஼ ൅ 𝑑𝑢ோ, 𝑈஼ ∈ ൫𝑈஼,௝ିଵ, 𝑈஼,௝൧൯ െ ℚ൫𝑈ோ ൑ 𝑈ோ|஼, 𝑈஼ ∈ ൫𝑈஼,௝ିଵ, 𝑈஼,௝൧൯

1 െ ℚ൫𝑈ோ ൑ 𝑈ோ|஼, 𝑈஼ ∈ ൫𝑈஼,௝ିଵ, 𝑈஼,௝൧൯
, 

(16)

where 𝑈஼,௝ ≔ 1 െ exp൛െ𝛬஼൫𝑡௝൯ൟ . The conditional distribution function (16) is 

represented as 𝐶ோ|஼൫𝑈𝑅|𝐶 ൅ 𝑑𝑢𝑅; 𝑈஼൯, where 

 𝐶ோ|஼ሺ𝑢ோ; 𝑈஼ሻ ≔

𝜕𝐶஼,ோሺ𝑢஼, 𝑢ோሻ
𝜕𝑢஼

ฬ
௨಴ୀ௎಴

െ
𝜕𝐶஼,ோ൫𝑢஼, 𝑈𝑅|𝐶൯

𝜕𝑢஼
ቤ

௨಴ୀ௎಴

1 െ
𝜕𝐶஼,ோ൫𝑢஼, 𝑈𝑅|𝐶൯

𝜕𝑢஼
ቤ

௨಴ୀ௎಴

. (17)

Using equation (17), equation (14) is represented as: 

 

ℚ൫𝜏ோ ൐ 𝑡ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯

ൌ න 𝐹௸ೃሺ௧ሻି௸ೃሺఛ಴ሻ ൬log
1 െ 𝑈ோ|஼

1 െ 𝑢ோ
൰ 𝑑𝐶ோ|஼ሺ𝑢ோ; 𝑈஼ሻ.

ଵ

௎ೃ|಴

(18)

In equation (18), 𝐹௸ೃሺ௧ሻି௸ೃሺఛ಴ሻሺ⋅ሻ  is calculated by numerical integration of the 

density, which is calculated by Fourier inversion of the characteristic function. We 

discuss the procedures in Section 3. 

 

2.4. Copulas and their derivatives 

While Brigo and Chourdakis (2009) and Brigo and Capponi (2010) adopt a Gaussian 

copula for the approach, Lee and Capriotti (2015) adopt a Clayton copula for the 

approach where each default intensity has the Black and Karasinski process (1991). Lee 

and Capriotti (2015) mention that the Clayton copula produces a more realistic 

dependence of the default intensity dynamics conditional on the counterparty default, 

citing Schönbucher and Schubert (2001). After the GFC (global financial crisis) around 

2008, much criticism arose for CDO (collateralized debt obligation) rating using the 

Gaussian copula, which has no tail dependence. Some advanced financial institutions 

use the Student’s t copula to evaluate credit portfolio risk or enterprise risk with some 

risk categories. In light of these discussions, we present not only the Gaussian copula, 

but also the Student’s t, Clayton, and survival Gumbel copulas for the default intensity 

dynamics. 

Following Brigo and Chourdakis (2009), we first adopt the Gaussian copula for the 
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copula approach. The bivariate Gaussian copula is given as 

 𝐶ீሺ𝑢ଵ, 𝑢ଶ; 𝜌ሻ ≔ ΦଶሺΦିଵሺ𝑢ଵሻ, Φିଵሺ𝑢ଶሻ; 𝜌ሻ, (19)

where 𝜌  is the copula-correlation parameter, Φଶሺ⋅,⋅; 𝜌ሻ  is the bivariate standard 

Gaussian CDF with the correlation 𝜌  given as equation (20), and Φሺ⋅ሻ  is the 

univariate standard Gaussian CDF given as equation (21). 
 

Φଶሺℎ, 𝑘; 𝜌ሻ ≔ න න
1

2𝜋ඥ1 െ 𝜌ଶ
exp ቊെ

𝑥ଶ െ 2𝜌𝑥𝑦 ൅ 𝑦ଶ

2ሺ1 െ 𝜌ଶሻ
ቋ

௞

ିஶ

௛

ିஶ
𝑑𝑥𝑑𝑦

ൌ න Φ ቆ
𝑘 െ 𝜌𝑥

ඥ1 െ 𝜌ଶ
ቇ

1

√2𝜋
exp ቊെ

𝑥ଶ

2
ቋ

௛

ିஶ
𝑑𝑥, 

(20)

 
Φሺ𝑘ሻ ≔ න

1

√2𝜋
exp ቊെ

𝑦ଶ

2
ቋ

௞

ିஶ
𝑑𝑦. (21)

The Kendall’s tau, one of the scale-invariant measures of association, is given as: 
 

𝜏௄
ீ ൌ

2
𝜋

arcsin 𝜌 . (22)

The partial derivative in equation (17) is given as equation (23). 
 𝜕𝐶ீሺ𝑢஼, 𝑢ோ; 𝜌ሻ

𝜕𝑢஼
ൌ Φ ቆ

Φିଵሺ𝑢ோሻ െ 𝜌Φିଵሺ𝑢஼ሻ

ඥ1 െ 𝜌ଶ
ቇ. (23)

For the comparison between copulas, we also adopt the Student’s t copula for the 

copula approach. The bivariate Student’s t copula is given as 

 𝐶௧ሺ𝑢ଵ, 𝑢ଶ; 𝜌, 𝜈ሻ ≔ 𝑡ଶ,ఔሺ𝑡ఔ
ିଵሺ𝑢ଵሻ, 𝑡ఔ

ିଵሺ𝑢ଶሻ; 𝜌ሻ, (24)

where 𝑡ଶ,ఔሺ⋅,⋅; 𝜌ሻ is the bivariate Student’s t CDF with the copula-correlation 𝜌 given 

as equation (25), and 𝑡ఔሺ⋅ሻ is the univariate Student’s t CDF given as equation (26). 
 

𝑡ଶ,ఔሺℎ, 𝑘; 𝜌ሻ ≔ න
1

2𝜋ඥ1 െ 𝜌ଶ
න ቆ1 ൅

𝑥ଶ െ 2𝜌𝑥𝑦 ൅ 𝑦ଶ

𝜈ሺ1 െ 𝜌ଶሻ
ቇ

ି
ሺఔାଶሻ

ଶ௞

ିஶ

௛

ିஶ
𝑑𝑥𝑑𝑦, (25)

 

𝑡ఔሺℎሻ ≔
Γሺሺ𝜈 ൅ 1ሻ 2⁄ ሻ

Γሺ𝜈 2⁄ ሻ√𝜋𝜈
න ቆ1 ൅

𝑥ଶ

𝜈
ቇ

ି
ሺఔାଵሻ

ଶ௛

ିஶ
𝑑𝑥 (26)

The Kendall’s tau of the Student’s t copula is the same as that of the Gaussian copula 

given as equation (22). The partial derivative in equation (17) is given as 
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𝜕𝐶௧ሺ𝑢஼, 𝑢ோ; 𝜌ሻ

𝜕𝑢஼
ൌ

Γሺሺ𝜈 ൅ 2ሻ 2⁄ ሻ

Γሺሺ𝜈 ൅ 1ሻ 2⁄ ሻ√𝜋𝜈ඥ1 െ 𝜌ଶ
ቆ1 ൅

𝑥ଶ

𝜈
ቇ

ሺఔାଵሻ
ଶ

ൈ න ቆ1 ൅
𝑥ଶ െ 2𝜌𝑥𝑦 ൅ 𝑦ଶ

𝜈ሺ1 െ 𝜌ଶሻ
ቇ

ି
ሺఔାଶሻ

ଶ
𝑑𝑦

௧ഌ
షభሺ௨ೃሻ

ିஶ

ൌ
Γሺሺ𝜈 ൅ 2ሻ 2⁄ ሻ

Γሺሺ𝜈 ൅ 1ሻ 2⁄ ሻඥ𝜋ሺ𝜈 ൅ 1ሻ
න ቆ1 ൅

𝑧ଶ

𝜈 ൅ 1
ቇ

ି
ሺఔାଶሻ

ଶ
𝑑𝑧

௭̅

ିஶ
, 

(27)

with 
 

𝑧̅ ≔ ඨ
𝜈 ൅ 1

𝜈 ൅ 𝑥ଶ ቊ
𝑡ఔ

ିଵሺ𝑢ோሻ െ 𝜌𝑥

ඥ1 െ 𝜌ଶ
ቋ , 𝑥 ൌ 𝑡ఔ

ିଵሺ𝑢஼ሻ. (28)

Thus the partial derivative in equation (17) is given as 
 

𝜕𝐶௧ሺ𝑢஼, 𝑢ோ; 𝜌ሻ
𝜕𝑢஼

ൌ 𝑡ఔାଵ ቌඨ
𝜈 ൅ 1

𝜈 ൅ 𝑡ఔ
ିଵሺ𝑢஼ሻଶ ቊ

𝑡ఔ
ିଵሺ𝑢ோሻ െ 𝜌𝑡ఔ

ିଵሺ𝑢஼ሻ

ඥ1 െ 𝜌ଶ
ቋቍ. (29)

Following Lee and Capriotti (2015), we also consider the Clayton copula for 

comparison. The bivariate Clayton copula is given as 

 𝐶஼ሺ𝑢ଵ, 𝑢ଶ; 𝛼ሻ ≔ ሺ𝑢ଵ
ିఈ ൅ 𝑢ଶ

ିఈ െ 1ሻିଵ ఈ⁄ . (30)

The Kendall’s tau is given as 
 

𝜏௄
஼ ൌ

𝛼
𝛼 ൅ 2

. (31)

Equating (22) with (31), the parameter 𝛼 is given as 
 

𝛼 ൌ
4 arcsin 𝜌

𝜋 െ 2 arcsin 𝜌
. (32)

The partial derivative in equation (17) is given as 
 𝜕𝐶஼ሺ𝑢஼, 𝑢ோ; 𝛼ሻ

𝜕𝑢஼
ൌ 𝑢஼

ିఈିଵሺ𝑢஼
ିఈ ൅ 𝑢ோ

ିఈ െ 1ሻିଵ ఈ⁄ ିଵ. (33)

We also consider the survival Gumbel copula for comparison, which comes from an 

extreme value copula, the Gumbel copula. The bivariate Gumbel copula is given as 

 𝐶ீ௨ሺ𝑢ଵ, 𝑢ଶ; 𝛾ሻ ≔ exp൛െሺሺെ log 𝑢ଵሻఊ ൅ ሺെ log 𝑢ଶሻఊሻଵ ఊ⁄ ൟ. (34)

The Kendall’s tau is given as 
 

𝜏௄
ீ௨ ൌ 1 െ

1
𝛾

. (35)

Equating (22) with (35), the parameter 𝛾 is given as 
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𝛾 ൌ

𝜋
𝜋 െ 2 arcsin 𝜌

. (36)

Since the survival bivariate Gumbel copula is given as 
 𝐶ௌீ௨ሺ𝑢ଵ, 𝑢ଶ; 𝛾ሻ ൌ 𝑢ଵ ൅ 𝑢ଶ െ 1 ൅ 𝐶ீ௨ሺ1 െ 𝑢ଵ, 1 െ 𝑢ଶ; 𝛾ሻ, (37)

the partial derivative in equation (17) is given as 
 𝜕𝐶ௌீ௨ሺ𝑢஼, 𝑢ோ; 𝛾ሻ

𝜕𝑢஼
ൌ 1 െ exp൛െሺሺെ logሺ1 െ 𝑢஼ሻሻఊ ൅ ሺെ logሺ1 െ 𝑢ோሻሻఊሻଵ ఊ⁄ ൟ

ൈ ሼሺെ logሺ1 െ 𝑢஼ሻሻఊ ൅ ሺെ logሺ1 െ 𝑢ோሻሻఊሽଵ ఊ⁄ ିଵ

ൈ
ሺെ logሺ1 െ 𝑢஼ሻሻఊିଵ

1 െ 𝑢஼
. 

(38)

The Kendall’s tau of the survival Gumbel copula is the same as that of the Gumbel 

copula, given as equation (35). 

Table 1 summarizes the parameters, Kendall’s tau 𝜏௄, and lower tail dependence 𝜆௅ 

for the bivariate copulas used in this subsection. The lower tail dependence 𝜆௅ is given 

as:  

 
𝜆௅ ൌ lim

௨→଴

𝐶ሺ𝑢, 𝑢ሻ
𝑢

. (39)

Table 1 Bivariate parametric copulas, their Kendall’s tau, and lower tail dependence 

Copula Parameter Kendall’s tau 𝜏௄ Lower tail dependence 𝜆௅ 

Gaussian 𝜌 ሺ2/𝜋ሻarcsin 𝜌 0

Student’s t 𝜌, 𝜈 
ሺ2/𝜋ሻarcsin 𝜌 2𝑡ఔାଵ ቌെඨ

ሺ1 െ 𝜌ሻሺ𝜈 ൅ 1ሻ

1 ൅ 𝜌
ቍ 

Clayton 𝛼 𝛼/ሺ𝛼 ൅ 2ሻ 2ିଵ ఈ⁄

Survival 

Gumbel 
𝛾 1 െ 1/𝛾 2 െ 2ଵ ఊ⁄  

 

2.5. Calibration 

The parameters in equation (7) of the default intensities 𝜆஼ሺ𝑡ሻ  and 𝜆ோሺ𝑡ሻ  are 

calibrated from market quotes of CDS in two steps. First, the nonparametric implied 

survival probabilities ℚ෡ሺ𝜏௞ ൐ 𝑡௝ሻ  (𝑘 ൌ 𝐶, 𝑅 ) are derived from the market quotes. 

Second, the parameters of each intensity 𝜆௞ሺ𝑡ሻ (𝑘 ൌ 𝐶, 𝑅) are calibrated from the 

nonparametric implied survival probabilities ℚ෡ሺ𝜏௞ ൐ 𝑡௝ሻ (𝑗 ൌ 1, … , 𝑚).  
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2.5.1. Implied survival probability 

Following Brigo and Capponi (2010), we also apply CDS market quotes on May 1, 

2008 of Lehman Brothers (Bank C) and Royal Dutch Shell (Firm R). The terms of 

market quotes are given for each year from one year to ten years given as Table 2. Let 

𝑡௕భ
, 𝑡௕మ

, …  be the maturities of market quotes. In this paper, ൫𝑡௕భ
, 𝑡௕మ

, … , 𝑡௕భబ
൯ ൌ

ሺ1,2, … ,10ሻ. The nonparametric implied survival probabilities ℚ෡ሺ𝜏௞ ൐ 𝑡௕೗
ሻ is given by 

assuming piecewise linear default intensity 𝜆௞ሺ𝑡ሻ ൌ 𝜆̅௞,௟
଴ ൅ 𝜆̅௞,௟

ଵ 𝑡 between the maturities 

of market quotes 𝑡 ∈ ሺ𝑡௕೗షభ
, 𝑡௕೗

ሿ, as in Brigo and Mercurio (2006) and Brigo and 

Capponi (2010). 

Table 2 CDS market quotes (bp) on May 1, 2008 

 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Bank C 203 188.5 166.75 152.25 145 136.3 130 125.8 122.6 120

Firm R 24 24.6 26.4 28.5 30 32.1 33.6 35.1 36.3 37.2

 

For the calibration, we assume quarterly premium payments and apply CDS market 

valuation (2) for the firm R of the maturity 𝑡௠ to CDS market quotes for the firms 𝑘 ൌ
𝐶, 𝑅 of the maturities 𝑡௕ ൌ 𝑡௕భ

, 𝑡௕మ
, … , 𝑡௕భబ

. The CDS market quote for the firm  𝑘 of 

the maturity 𝑡௕೗
 observed at time 𝑡଴  is denoted as 

𝑉஼஽ௌ,௞
ே௢ ஼௏஺ ቀ𝑡଴, 𝑡௕; ൫𝜆̅௞,ଵ

଴ , 𝜆̅௞,ଵ
ଵ ൯, … , ൫𝜆̅௞,௟

଴ , 𝜆̅௞,௟
ଵ ൯ቁ , where ൫𝜆̅௞,௟

଴ , 𝜆̅௞,௟
ଵ ൯  are the implied 

coefficients of the piecewise linear default intensity during 𝑡 ∈ ሺ𝑡௕೗షభ
, 𝑡௕೗

ሿ. We orderly 

solve 

 𝑉஼஽ௌ,௞
ே௢ ஼௏஺ ቀ𝑡଴, 𝑡௕భ

; ൫𝜆̅௞,ଵ
଴ , 𝜆̅௞,ଵ

ଵ ൯ቁ ൌ 0,

⋮
𝑉஼஽ௌ,௞

ே௢ ஼௏஺ ቀ𝑡଴, 𝑡ଵ଴; ൫𝜆̅௞,ଵ
଴ , 𝜆̅௞,ଵ

ଵ ൯, … , ൫𝜆̅௞,ଵ଴
଴ , 𝜆̅௞,ଵ଴

ଵ ൯ቁ ൌ 0,
 (40)

to obtain the implied coefficients, ൫𝜆̅௞,ଵ
଴ , 𝜆̅௞,ଵ

ଵ ൯, … , ൫𝜆̅௞,ଵ଴
଴ , 𝜆̅௞,ଵ଴

ଵ ൯. The implied survival 

probabilities ℚ෡ሺ𝜏௞ ൐ 𝑡௕೗
ሻ are orderly given as 

 ℚ෡ሺ𝜏௞ ൐ 𝑡௕భ
ሻ ൌ exp ቀെ൫𝜆̅௞,ଵ

଴ ൅ 𝜆̅௞,ଵ
ଵ ൫𝑡଴ ൅ 𝑡௕భ

൯ 2⁄ ൯൫𝑡௕భ
െ 𝑡଴൯ቁ ,

⋮
ℚ෡൫𝜏௞ ൐ 𝑡௕భబ

൯ ൌ ℚ෡൫𝜏௞ ൐ 𝑡௕వ
൯ exp ቀെ൫𝜆̅௞,ଵ଴

଴ ൅ 𝜆̅௞,ଵ଴
ଵ ൫𝑡௕వ

൅ 𝑡௕భబ
൯ 2⁄ ൯൫𝑡௕భబ

െ 𝑡௕వ
൯ቁ .

(41)

 

2.5.2. Calibration of parameters of SSRD 

We first calibrate parameters 𝜷௞ ൌ ሺ𝜅௞, 𝜃௞, 𝜎௞, 𝜆௞ሺ0ሻሻ of SSRD intensity without 

jump (5) for comparison by equating the theoretical survival probabilities (55) 
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excluding 𝛼௃ሺ𝑠, 𝑡ሻ term with the implied survival probabilities (41) as the following 

steps. 

1. For 𝑏 ൌ 𝑏ଵ, … , 𝑏ଵ଴, calculate 
 𝜓ሺ𝑡௕, 𝜷௞ሻ ൌ log ቀℚ෡ሺ𝜏௞ ൐ 𝑡௕ሻቁ െ log൫ℚሺ𝜏௞ ൐ 𝑡௕ሻ൯, (42)

where the theoretical survival probability ℚሺ𝜏௞ ൐ 𝑡௕ሻ is calculated using current 

parameters for SSRD. 

2. Repeat Step 1 to minimize 𝛹൫𝑡௕భబ
, 𝜷௞൯ ൌ ∑ 𝜓൫𝑡௕೔

, 𝜷௞൯
ଶଵ଴

௜ୀଵ  with the constraints 

𝜓ሺ𝑡௕, 𝜷௞ሻ ൒ 0 for all 𝑏 ൌ 𝑏ଵ, … , 𝑏ଵ଴ and 2𝜅௞𝜃௞ ൐ 𝜎௞
ଶ.  

The calibrated parameters of SSRD intensity are given in Table 3. 

Table 3 Calibration SSRD default intensity 

𝑘 𝜅௞ 𝜃௞ 𝜎௞ 𝜆௞ሺ0ሻ 

Bank C 0.5667 0.0155 0.1327 0.0394 

Firm R 0.4884 0.0068 0.0100 0.0021 

 

2.5.3. Calibration of parameters of SSRJD 

As indicated in Brigo, Morini, and Pallavicini (2013), it is difficult to jointly identify 

the volatility parameter 𝜎௞  and the jump parameters, 𝜂  and 𝜈௞  for the SSRJD 

intensity (7). Following Brigo, Morini, and Pallavicini (2013), we first set jump 

parameters, 𝜂 and 𝜈௞ , exogenously before the calibration of the parameters 𝜷௞ ൌ
ሺ𝜅௞, 𝜃௞, 𝜎௞, 𝜆௞ሺ0ሻ, 𝜁௞, 𝜂ሻ  of SSRJD intensity (7). The calibration is given as the 

following steps. 

1. Set 𝜂  and 𝜁௞  exogenously, as 𝜁௞ ൌ 0.05  and 𝜂 ൌ 0.01  (simultaneous 

comonotone jump) or 𝜁௞ ൌ 0.05  and 𝜂 ൌ 0.02  (simultaneous independent 

jump). 

2. For 𝑏 ൌ 𝑏ଵ, … , 𝑏ଵ଴ , calculate equation (42) where the theoretical survival 

probability ℚሺ𝜏௞ ൐ 𝑡௕ሻ is calculated using current parameters of SSRJD. 

3. Repeat Step 2 to minimize 𝛹൫𝑡௕భబ
, 𝜷௞൯ ൌ ∑ 𝜓൫𝑡௕೔

, 𝜷௞൯
ଶଵ଴

௜ୀଵ  with the constraints 

𝜓ሺ𝑡௕, 𝜷௞ሻ ൒ 0 for all 𝑏 ൌ 𝑏ଵ, … , 𝑏ଵ଴ and 2𝜅௞𝜃௞ ൐ 𝜎௞
ଶ. 

Regarding the correlation parameter 𝜌஼,ோ
௝௨௠௣ in equation (9), we set the parameter as 
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the correlation 𝑑〈𝜆஼, 𝜆ோ〉ሺ𝑡ሻ of SSRJD (7) equal to that of SSRD (5). When we adopt 

(i) simultaneous comonotone jump (SC-jump), that is, the jump size 𝑧௞ is given as  

𝑧௞ ൌ 𝜁௞𝑧 with the common exponential random number 𝑧~ Expሺ1ሻ, the correlation 

parameter 𝜌஼,ோ
௝௨௠௣ is given as 

 
𝜌஼,ோ

௝௨௠௣ ൌ
𝜌஼,ோඥ𝜎஼

ଶ𝜃஼ ൅ 2𝜂𝜁஼
ଶඥ𝜎ோ

ଶ𝜃ோ ൅ 2𝜂𝜁ோ
ଶ െ 2𝜂𝜁஼𝜁ோ

𝜎஼𝜎ோඥ𝜃஼𝜃ோ

. (43)

When we adopt (ii) simultaneous independent jump (SI-jump), that is, the jump sizes 

𝑧஼ and 𝑧ோ are independent, the correlation parameter 𝜌஼,ோ
௝௨௠௣ is given as 

 
𝜌஼,ோ

௝௨௠௣ ൌ
𝜌஼,ோඥ𝜎஼

ଶ𝜃஼ ൅ 2𝜂𝜁஼
ଶඥ𝜎ோ

ଶ𝜃ோ ൅ 2𝜂𝜁ோ
ଶ െ 𝜂𝜁஼𝜁ோ

𝜎஼𝜎ோඥ𝜃஼𝜃ோ

. (44)

The calibrated parameters of SSRJD intensity are given in Table 4 for SC-jump and 

Table 5 for SI-jump. 

Table 4 Calibration SSRJD default intensity with SC-jump 

𝑘 𝜅௞ 𝜃௞ 𝜎௞ 𝜆௞ሺ0ሻ 𝜁௞ 𝜂 

Bank C 0.5681 0.0147 0.1293 0.0394 
0.05 0.01 

Firm R 0.4867 0.0058 0.0100 0.0021 

Table 5 Calibration SSRJD default intensity with SI-jump 

𝑘 𝜅௞ 𝜃௞ 𝜎௞ 𝜆௞ሺ0ሻ 𝜁௞ 𝜂 

Bank C 0.5694 0.0139 0.1257 0.0394 
0.05 0.02 

Firm R 0.4829 0.0049 0.0100 0.0021 

 

2.6. Numerical comparison 

We compare CVA of CDS with each year (1, 2, …, and 10 year) maturity under the 

following settings. The premium rate for each maturity 𝑠𝑝ோ is given as in Table 2. The 

notional amount 𝑁𝐴 is 100 million dollars. The loss rates given default for Bank C and 

Firm R are given as LGD஼ ൌ LGDோ ൌ 0.6 following the CDS market convention of 

40%  recovery rate. The number of paths for each simulation is given by 100,000. 

 

2.6.1. Intensity model with/without simultaneous jump 

We compare CVA of CDS under the following five settings and the results are in 

Figure 1. We can see that the CVA increases as the correlation coefficient, that is, CVA 

of No WWR < CVA of No Jump1 < CVA of No Jump2 when the maturity is long (9–10 
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years). For short maturities (less than 8 years), the difference in CVA of No Jump1 and 

that of No Jump2 is insignificant. We can also see that despite the correlation coefficient 

𝜌஼,ோ
௝௨௠௣ of SC-Jump is adjusted to the larger correlation coefficient 𝜌஼,ோ than that of 

SI-Jump, the CVA of SC-Jump is significantly smaller than that of SI-Jump.  

1. No WWR: No jump and 𝜌஼,ோ ൌ 0 

2. No Jump1: 𝜌஼,ோ ൌ 0.3 

3. SI-Jump (simultaneous independent jump) 𝜌஼,ோ
௝௨௠௣ ൌ 0.361 is calculated from 

equation (44) with 𝜌஼,ோ ൌ 0.3 

4. No Jump2: 𝜌஼,ோ ൌ 0.4 

5. SC-Jump (simultaneous comonotone jump) 𝜌஼,ோ
௝௨௠௣ ൌ െ0.325  is calculated 

from equation (43) with 𝜌஼,ோ ൌ 0.4 

Figure 1 CVA under intensity models 

 

 

2.6.2. Copula approach with/without simultaneous jump 

Focusing on simultaneous independent (SI-jump, 𝜌஼,ோ ൌ 0.3  <𝜌஼,ோ
௝௨௠௣ ൌ 0.361>) 

model for the intensity process of the counterparty and the reference firm, we compare 

CVA of CDS with Gaussian, Student’s t (𝜈 ൌ 3), Clayton, and Survival Gumbel copulas. 

Let 𝜌஼,ோ
௖௢௣௨௟௔ denote the copula-correlation between Bank C and Firm R. The parameter 

of the Clayton copula, 𝛼 , is given by equation (32) with 𝜌 ൌ 𝜌஼,ோ
௖௢௣௨௟௔ , and the 

parameter of Gumbel copula, 𝛾, is given by equation (36) with 𝜌 ൌ 𝜌஼,ோ
௖௢௣௨௟௔. 

Figure 2 plots the term structure for CVA of CDS with the four copulas: Gaussian, 

Student’s t (𝜈 ൌ 3), Clayton, and Survival Gumbel. Comparing with Figure 1, these 
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figures show large impacts of the incorporation of copulas after the default of the 

counterparty. With the same 𝜌஼,ோ
௖௢௣௨௟௔ ൐ 0, CVA of Gaussian copula is much smaller 

than that of Student’s t (𝜈 ൌ 3), Clayton, or Survival Gumbel copula. It implies the 

Gaussian copula tends to underestimate the CVA, which is also indicated in Glasserman 

and Yang (2018). The Gaussian and Survival Gumbel copulas are reduced to 

independent copulas when 𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0 while the Clayton copula is not defined for 

𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0. For a small (a) 𝜌஼,ோ

௖௢௣௨௟௔ ൌ 0.1, the CVA of CDS increases in the order 

Gaussian, Clayton, Survival Gumbel, and Student’s t (𝜈 ൌ 3). On the other hand, for a 

large (b) 𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0.5, the CVA increases in the order Gaussian, Student’s t (𝜈 ൌ 3), 

Survival Gumbel, and Clayton.  

Figure 2 CVA under copula approach with SI-Jump 

(a) 𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0.1 (b) 𝜌஼,ோ

௖௢௣௨௟௔ ൌ 0.5 

  

Figure 3 plots the CVA with 10 year maturity versus 𝜌஼,ோ
௖௢௣௨௟௔ focusing on SI-Jump 

with 𝜌஼,ோ ൌ 0.3  (𝜌஼,ோ
௝௨௠௣ ൌ 0.361). As Glasserman and Yang (2018) indicate, the 

Gaussian copula seems to underestimate the CVA relative to the values of Student’s t 

(𝜈 ൌ 3), Clayton, and Survival Gumbel copulas. We notice that the CVA of Student’s t 

(𝜈 ൌ 3) converges to larger values than that of Gaussian, Clayton, and Survival Gumbel 

copulas as 𝜌஼,ோ
௖௢௣௨௟௔ → 0. The result comes from the Student’s t not converging to the 

independent copula as 𝜌஼,ோ
௖௢௣௨௟௔ → 0 while other copulas including Gaussian, Clayton, 

and Survival Gumbel copulas converge to the independent copula as 𝜌஼,ோ
௖௢௣௨௟௔ → 0. 

From Table 1, the lower tail dependence of Student’s t (𝜈 ൌ 3) copula converges to 

2𝑡ఔାଵ൫െ√𝜈 ൅ 1൯ ൌ 2𝑡ସሺെ2ሻ ≅ 0.116 as 𝜌஼,ோ
௖௢௣௨௟௔ → 0. 
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Figure 3 CVA of ten-year CDS under copula approach with SI-Jump versus 𝝆𝑪,𝑹
𝒄𝒐𝒑𝒖𝒍𝒂 

 

Comparing SI-Jump with SC-Jump in the copula approach, we see that the CVA of 

SI-Jump is larger than that of SC-Jump with Gaussian copula and other copulas for long 

maturities. On the other hand, the CVA of SC-Jump is larger than that of SI-Jump with 

Student’s t (𝜈 ൌ 3), Clayton, and Survival Gumbel copulas for short maturities. Figure 4 

plots the difference of the CVA term structure between SC-Jump and SI-Jump. We see 

that the CVA of SI-Jump with most copulas is larger than that of SC-Jump with (a) 

𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0.1. On the other hand, for (b) 𝜌஼,ோ

௖௢௣௨௟௔ ൌ 0.5, the CVA of SC-Jump with 

Clayton, and Survival Gumbel copulas is larger than that of SI-Jump and the CVA of 

SC-Jump with Student’s t (𝜈 ൌ 3) copula for a maturity of less than eight years is larger 

than that of SI-Jump. The tail dependent copulas well capture the wrong-way risk 

represented by a very rare simultaneous comonotone jump. 
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Figure 4 Difference of CVA under copula approach between SC-Jump and SI-Jump 
(a) 𝜌஼,ோ

௖௢௣௨௟௔ ൌ 0.1 (b) 𝜌஼,ோ
௖௢௣௨௟௔ ൌ 0.5 

 

3. Conditional survival probabilities of SSRJD default intensities 

This section shows how to derive the CDF of cumulative SRJD intensity.  

 

3.1. Survival probability and characteristic function 

The default intensity 𝜆௞ሺ𝑡ሻ with SRJD (7) is one dimensional affine jump diffusion 

referred at equation (2.1) in Duffie, Pan, and Singleton (2000). Denoting the cumulative 

intensity from time s to t by 

 𝛬௞ሺ𝑠, 𝑡ሻ ≡ න 𝜆௞ሺ𝑦ሻ𝑑𝑦
௧

௦
, (45)

and the expectation at time s under the risk-neutral measure ℚ by 𝔼௦
ℚሾ⋅ሿ, both the 

survival probability ℚሺ𝜏௞ ൐ 𝑡|𝜏௞ ൐ 𝑠ሻ ≡ 𝔼௦
ℚൣexp൫െ𝛬௞ሺ𝑠, 𝑡ሻ൯൧  and the characteristic 

function of the cumulative intensity 𝜙௞,௦,௧ሺ𝑢ሻ ≡ 𝔼௦
ℚൣexp൫i𝑢𝛬௞ሺ𝑠, 𝑡ሻ൯൧, 𝑢 ∈ ℝ, i ≡ √െ1 

are special cases of the moment generating function 𝑀௦,௧ሺ𝜉ሻ where 

 𝑀௦,௧ሺ𝜉ሻ ≡ 𝔼௦
ℚൣexp൫𝜉𝛬௞ሺ𝑠, 𝑡ሻ൯൧, (46)

The moment generating function 𝑀௦,௧ሺ𝜉ሻ are represented by an exponential affine form 

exp൫𝛼௃ሺ𝑠, 𝑡ሻ ൅ 𝛼஽ሺ𝑠, 𝑡ሻ ൅ 𝛽ሺ𝑠, 𝑡ሻ𝜆௞ሺ𝑠ሻ൯. As described on section 2.2 in Duffie, Pan, 

and Singleton (2000), the coefficients 𝛼௃ሺ𝑠, 𝑡ሻ, 𝛼஽ሺ𝑠, 𝑡ሻ, 𝛽ሺ𝑠, 𝑡ሻ have the following 

ordinal differential equations. 

 
𝑑𝛼௃ሺ𝑠, 𝑡ሻ

𝑑𝑠
ൌ െ

𝜂𝜁௞𝛽ሺ𝑠, 𝑡ሻ

1 െ 𝜈௞𝛽ሺ𝑠, 𝑡ሻ
, (47)
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𝑑𝛼஽ሺ𝑠, 𝑡ሻ

𝑑𝑠
ൌ െ𝜅௞𝜃௞𝛽ሺ𝑠, 𝑡ሻ, (48)

 
𝑑𝛽ሺ𝑠, 𝑡ሻ

𝑑𝑠
ൌ െ𝜉 ൅ 𝜅௞𝛽ሺ𝑠, 𝑡ሻ െ

𝜎௞
ଶ

2
𝛽ଶሺ𝑠, 𝑡ሻ, (49)

where 𝜉 ൌ െ1  for the survival probability ℚሺ𝜏௞ ൐ 𝑡|𝜏௞ ൐ 𝑠ሻ  and 𝜉 ൌ i𝑢  for the 

characteristic function of the cumulative intensity 𝜙௞,௦,௧ሺ𝑢ሻ.  

The Riccati equation (49) is solved as 

 𝛽ሺ𝑠, 𝑡ሻ ൌ 𝜉𝐵ሺ𝑠, 𝑡ሻ, (50)

where 

 𝐵ሺ𝑠, 𝑡ሻ ൌ
2൫exp൛ℎకሺ𝑡 െ 𝑠ሻൟ െ 1൯

2ℎక ൅ ൫𝜅௞ ൅ ℎక൯ሺexp൛ℎకሺ𝑡 െ 𝑠ሻൟ െ 1ሻ
, (51)

 ℎక ൌ ට𝜅௞
ଶ െ 2𝜉𝜎௞

ଶ. (52)

See Appendix B for the derivation. Substituting equation (50) into (48) and integrating 

from 𝑠 to 𝑡 yields 

 
𝛼஽ሺ𝑠, 𝑡ሻ ൌ

2𝜅௞𝜃௞

𝜎௞
ଶ  log

2ℎకexp ቊ
൫𝜅௞ ൅ ℎక൯ሺ𝑡 െ 𝑠ሻ

2 ቋ

2ℎక ൅ ൫𝜅௞ ൅ ℎక൯൫exp൛ℎకሺ𝑡 െ 𝑠ሻൟ െ 1൯
. 

(53)

Substituting equation (50) into (47) and integrating from 𝑠 to 𝑡 yields 

 
𝛼௃ሺ𝑠, 𝑡ሻ ൌ

2𝜂𝜁௞

𝜎௞
ଶ െ 2𝜅௞𝜁௞ ൅ 2𝜉𝜁௞

ଶ log
2ℎకexp ቊ

൫𝜅௞ ൅ ℎక െ 2𝜉𝜁௞൯ሺ𝑡 െ 𝑠ሻ
2 ቋ

2ℎక ൅ ൫𝜅௞ ൅ ℎక െ 2𝜉𝜁௞൯൫exp൛ℎకሺ𝑡 െ 𝑠ሻൟ െ 1൯
. 

(54)

The survival probability ℚሺ𝜏௞ ൐ 𝑡|𝜏௞ ൐ 𝑠ሻ  for 𝜉 ൌ െ1  is also solved by an 

exponential affine form as 

 ℚሺ𝜏௞ ൐ 𝑡|𝜏௞ ൐ 𝑠ሻ ൌ exp൛𝛼௃ሺ𝑠, 𝑡ሻ ൅ 𝛼஽ሺ𝑠, 𝑡ሻ െ 𝐵ሺ𝑠, 𝑡ሻ𝜆𝑘ሺ𝑠ሻൟ, (55)

where ℎଵ in 𝛼௃ሺ𝑠, 𝑡ሻ, 𝛼஽ሺ𝑠, 𝑡ሻ, and 𝐵ሺ𝑠, 𝑡ሻ is given as 

 ℎିଵ ൌ ට𝜅𝑘
2 ൅ 2𝜎𝑘

2, (56)

and equation (54) is represented as 

 

𝛼௃ሺ𝑠, 𝑡ሻ|కୀିଵ

ൌ
2𝜂𝜁௞

𝜎௞
ଶ െ 2𝜅௞𝜁௞ െ 2𝜁௞

ଶ log
2ℎexp ൜

ሺ𝜅௞ ൅ ℎିଵ ൅ 2𝜁௞ሻሺ𝑡 െ 𝑠ሻ
2 ൠ

2ℎଵ ൅ ሺ𝜅௞ ൅ ℎିଵ ൅ 2𝜁௞ሻሺexpሼℎିଵሺ𝑡 െ 𝑠ሻሽ െ 1ሻ
. 

(57)

The solution (55) of the survival probability is the same as that in Brigo and El-Bachir 

(2010). 
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The characteristic function of the cumulative intensity 𝜙௞,௦,௦ା௧ሺ𝑢ሻ is given as  

 𝜙௞,௦,௦ା௧ሺ𝑢ሻ ൌ exp൛𝛼௃ሺ𝑠, 𝑠 ൅ 𝑡ሻ ൅ 𝛼஽ሺ𝑠, 𝑠 ൅ 𝑡ሻ ൅ i𝑢𝐵ሺ𝑠, 𝑠 ൅ 𝑡ሻ𝜆𝑘ሺ𝑠ሻൟ, (58)

where ℎି୧௨ in 𝛼௃ሺ𝑠, 𝑡ሻ, 𝛼஽ሺ𝑠, 𝑡ሻ, and 𝐵ሺ𝑠, 𝑡ሻ is represented as 

 ℎi𝑢 ൌ ට𝜅𝑘
2 െ 2i𝑢𝜎𝑘

2, (59)

and equation (54) is represented as 

 

𝛼௃ሺ𝑠, 𝑠 ൅ 𝑡ሻ|𝜉ൌi𝑢

ൌ
2𝜂𝜁௞

𝜎௞
ଶ െ 2𝜅௞𝜁௞ ൅ 2i𝑢𝜁௞

ଶ log
2ℎi𝑢exp ቊ

൫𝜅௞ ൅ ℎi𝑢 െ 2i𝑢𝜁௞൯𝑡
2 ቋ

2ℎi𝑢 ൅ ൫𝜅௞ ൅ ℎi𝑢 െ 2i𝑢𝜁௞൯ሺexpሼℎi𝑢𝑡ሽ െ 1ሻ
. 

(60)

In the calculation of equation (58), we have to identify the single layer of Riemann 

surface related to the square root function of equation (59) and the log functions of 

equation (53) and (60). 

 

3.2. Solutions to multivalued log functions 

We define the regular log function by defining the Riemann surface, since the log 

function is a multivalued function in a complex space (see Rudin, 1987, for example). 

 

3.2.1. Multivalued log function 

We show the necessity to identify the Riemann surface of the log function to calculate 

the value of 𝛼௃ሺ𝑠, 𝑡ሻ  and 𝛼஽ሺ𝑠, 𝑡ሻ  properly. Figure 5 compares ቚexp ቀ𝛼௃ሺ𝑠, 𝑡ሻቁቚ 

between two cases; one is the log function with the proper Riemann surface (Riemann 

Considered) and the other without it (Riemann Unconsidered). Here we set 𝑡 െ 𝑠 ൌ

10Yr and the SRJD parameters of Firm R in Table 4. The value of ቚexp ቀ𝛼௃ሺ𝑠, 𝑡ሻቁቚ 

without considering Riemann surface takes over 1 despite being supposed to be equal or 

less than 1. On the other hand, if the Riemann surface is taken into consideration, 

ቚexp ቀ𝛼௃ሺ𝑠, 𝑡ሻቁቚ takes equal or less than one properly. 
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Figure 5 Riemann surface considered versus unconsidered 

 

 

3.2.2. Effect of square-root functions 

The square-root function as the ℎ function in equation (59) is a bi-valued function in 

a complex space as 

 
ℎi𝑢 ൌ േℎi𝑢

ሺାሻ, ℎi𝑢
ሺାሻ ൌ

ඩ𝜅𝑘
2 ൅ ට𝜅𝑘

4 ൅ 4𝑢2𝜎𝑘
4

2
െ i

ඩെ𝜅𝑘
2 ൅ ට𝜅𝑘

4 ൅ 4𝑢2𝜎𝑘
4

2
. 

(61)

However, the bi-values have the same effect on the calculation, which is shown as  
 

െ2ℎ୧௨
ሺାሻexp ቐ

ቀ𝜅 െ ℎ୧௨
ሺାሻ െ 2i𝑢𝜁ቁሺ𝑡 െ 𝑡଴ሻ

2 ቑ

െ2ℎ୧௨
ሺାሻ ൅ ቀ𝜅 െ ℎ୧௨

ሺାሻ െ 2i𝑢𝜁ቁቀexpሼെℎ୧௨
ሺାሻሺ𝑡 െ 𝑡଴ሻሽ െ 1ቁ

ൌ

െ2ℎ୧௨
ሺାሻexp ቐ

ቀ𝜅 െ ℎ୧௨
ሺାሻ െ 2i𝑢𝜁ቁሺ𝑡 െ 𝑡଴ሻ

2 ቑ

െ2ℎ୧௨
ሺାሻ ൅ ቀ𝜅 െ ℎ୧௨

ሺାሻ െ 2i𝑢𝜁ቁቀexpሼെℎି୧௨
ሺାሻ ሺ𝑡 െ 𝑡଴ሻሽ െ 1ቁ

𝑒ℎ౟ೠ
ሺశሻሺ௧ି௧బሻ

𝑒ℎ౟ೠ
ሺశሻሺ௧ି௧బሻ

ൌ

2ℎି୧௨
ሺାሻ exp ቐ

ቀ𝜅 ൅ ℎ୧௨
ሺାሻ െ 2i𝑢𝜁ቁሺ𝑡 െ 𝑡଴ሻ

2 ቑ

2ℎ୧௨
ሺାሻ ൅ ቀ𝜅 ൅ ℎ୧௨

ሺାሻ െ 2i𝑢𝜁ቁቀexpሼℎ୧௨
ሺାሻሺ𝑡 െ 𝑡଴ሻሽ െ 1ቁ

.

(62) 
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3.2.3. Solutions 

Let 𝑧ሺ𝑢ሻ be a complex-valued function, 𝑛ሺ𝑢ሻ be the integer-valued function which 

indicates the number at which the Riemann surface passes the point 𝑧 ൌ |𝑧| , 

Log൫𝑧ሺ𝑢ሻ൯ the principal value of the log function, and Arg൫𝑧ሺ𝑢ሻ൯ the argument of the 

principal value. Then the log function included in equations (53), (54), and (60) is 

defined as 

 
logሺ𝑧ሺ𝑢ሻሻ ≔ Log൫𝑧ሺ𝑢ሻ൯ ൅ 2𝜋i𝑛ሺ𝑢ሻ

ൌ Logሺ|𝑧ሺ𝑢ሻ|ሻ ൅ i ቀArg൫𝑧ሺ𝑢ሻ൯ ൅ 2𝜋𝑛ሺ𝑢ሻቁ . (63) 

In practice, the implementation of 𝑛ሺ𝑢ሻ is the problem. Using a MATLAB or signal 

package on R, the function is given by unwrap and Arg functions applied to 𝑧ሺ𝑢ሻ in 

ascending order of 𝑢 as 

 unwrap൫Argሺ𝑧ሻ൯ ൌ Arg൫𝑧ሺ𝑢ሻ൯ ൅ 2𝜋𝑛ሺ𝑢ሻ. (64) 

Guo and Hung (2007), Lord (2010), and Lord and Kahl (2010) also adopt the same 

approach in the evaluation of the derivative pricing under the Heston (1993) model. 

Figure 6 plots the absolute value, real part, and imaginary part of the characteristic 

function 𝜙௞,௦,௦ା௧ሺ𝑢ሻ where the parameters of equation (7) are given as Firm R in Table 

4. 

Figure 6 The characteristic function 

 
 

3.3. Fractional fast Fourier transform 
 
3.3.1. Fourier inversion 

Given the characteristic function 𝜙ሺ𝑢ሻ ൌ 𝜙௞,௦,௦ା௧ሺ𝑢ሻ of SSRJD cumulative intensity 
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in equation (58), the density function 𝑓ሺ𝑥ሻ and the distribution function 𝐹ሺ𝑥ሻ are 

given by Fourier transforms as equations (65) and (66), respectively. Here, equation 

(65) can be derived using 𝜙ሺ𝑢ሻ∗ ൌ 𝜙ሺെ𝑢ሻ  because the density is a real valued 

function, where 𝜙ሺ𝑢ሻ∗ is the complex conjugate of 𝜙ሺ𝑢ሻ. 

 
𝑓ሺ𝑥ሻ ൌ

1
2𝜋

න 𝑒ି୧௨௫𝜙ሺ𝑢ሻ𝑑𝑢
ஶ

ିஶ
ൌ

1
𝜋

Re ቈන 𝑒ି୧௨௫𝜙ሺ𝑢ሻ𝑑𝑢
∞

0
቉ , (65) 

 
𝐹ሺ𝑥ሻ ൌ න 𝑓ሺ𝑦ሻ𝑑𝑦

௫

ିஶ
. (66) 

 

3.3.2. FRFT 

Bailey and Swarztrauber (1991) propose fractional fast Fourier transform (FRFT) as 

an efficient computation for the discrete Fourier transform. The discrete Fourier 

transform for the vector 𝝓 ൌ ሺ𝜙௟ሻ௟ୀ଴
௅ିଵ is defined as equation (67). 

 

න 𝑒ି୧௫௨𝜙ሺ𝑢ሻ𝑑𝑢 ൎ FFT௞ሾ𝝓ሿ ≔ ෍ 𝑒ି୧ଶగ
௅ ௞௟𝜙௟

௅ିଵ

௟ୀ଴

ஶ

଴
. (67) 

Let 𝜔 be the grid of frequency, and  𝜒 be the grid of space, then the condition (68) 

should be satisfied. 
 

𝜔𝜒 ൌ
2𝜋
𝐿

. (68) 

The right side of equation (68) corresponds to the exponent portion of the discrete 

Fourier transform of equation (67). The truncated wavenumber 𝑢୫ୟ୶ ൌ 𝐿𝜔 needs to be 

set to a value where the characteristic function is sufficiently small to reduce the 

truncation error (see Section 3.4.1). In addition, the number of sampling 𝐿 should be 

larger than 2𝑢୫ୟ୶ according to the sampling theorem. Since 𝐿 and 𝜔 are determined 

by the constraints on the characteristic function and the sampling theorem, 𝜒  is 

determined through equation (68). A method free from this constraint condition is FRFT 

and is defined as equation (69).  

 

න 𝑒ି୧௫௨𝜙ሺ𝑢ሻ𝑑𝑢 ൎ 𝐺ሺ𝝓, 𝛼ሻ ≔ ෍ 𝑒ି୧ଶగఈ௞௟𝜙௟

௅ିଵ

௟ୀ଴

ஶ

଴
. (69) 

When 𝛼 ൌ 1/𝐿, it is equivalent to the discrete Fourier transform of equation (67). 

Equation (69) extends 𝛼 ൌ 1/𝐿 to an arbitrary rational number 𝛼 ൌ 𝑟/𝐿  (𝑟 ൏ 𝐿, 𝑟 

and 𝐿 are relatively prime). Since 𝛼 is an arbitrary rational number and can be set so 

as to satisfy 𝛼 ൌ 𝜔𝜒/2𝜋 after determining 𝜔 and 𝜒 independently, the constraint 

condition of equation (68) can be avoided. Expansion to an arbitrary rational number 
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reduces to the discrete Fourier transform of 𝝓ഥ  obtained by sampling original data at 

regular intervals, as shown by equation (70). 

 

෍ 𝑒ି୧ଶగఈ௞௟𝜙௟

௅ିଵ

௟ୀ଴

ൌ ෍ 𝑒ି୧ଶగ௞ሺ௣௟ሻ௥
௅ 𝜙௣௟

௅ିଵ

௟ୀ଴

ൌ ෍ 𝑒ି୧ଶగ௞௟
௅ 𝜙௣௟

௅ିଵ

௟ୀ଴

ൌ FFT௞ሾ𝝓ഥሿ. (70) 

Here, 𝑝 is a value determined so that the remainder dividing 𝑝𝑟 by 𝐿 is 1 (ex. 𝑟 ൌ

41, 𝐿 ൌ 1024, 𝑝 ൌ 25). 𝝓ഥ  is obtained by sampling data every multiple of 𝑝 and 

extending the sequence 𝝓ഥ  to length 𝐿 by padding with zeros. 

In this method, since 𝜔 and 𝜒 are not dependent on each other, we can reduce the 

calculation cost by adjusting them independently, which is not allowed for the 

conventional discrete Fourier transform because of the constraint condition (68). Bailey 

and Swarztrauber (1991) further represent the following method to reduce the 

calculation cost. 

Since 2𝑘𝑙 ൌ 𝑙ଶ ൅ 𝑘ଶ െ ሺ𝑘 െ 𝑙ሻଶ, the right side of equation (69) is 

 

෍ 𝑒ି୧ଶగఈ௞௟𝜙௟

௅ିଵ

௟ୀ଴

ൌ ෍ 𝜙௟𝑒ିగ୧൛௟మା௞మିሺ௞ି௟ሻమൟఈ

௅ିଵ

௟ୀ଴

ൌ 𝑒ିగ୧௞మఈ ෍ 𝜙௟𝑒ି௟మగ୧ఈ

௅ିଵ

௟ୀ଴

𝑒ሺ௞ି௟ሻమగ୧ఈ ൌ 𝑒ିగ୧௞మఈ ෍ 𝑦௟𝑧௞ି௟

௅ିଵ

௟ୀ଴

. 

(71) 

We remark that 𝑦௟ ൌ 𝜙௟𝑒ି௟మగ୧ఈ, 𝑧௞ି௟ ൌ 𝑒ሺ௞ି௟ሻమగ୧ఈ. The outermost right hand side 

equation is the circular convolution. Let 𝒚, 𝒛 be ሺ𝑦௟ሻ௟ୀ଴
௅ିଵ, ሺ𝑧௟ሻ௟ୀ଴

௅ିଵ. In the case where 

𝑧௞ି௟ is periodic, it is calculated as a product of Fourier transforms as shown in equation 

(72). 

 

FFT௞ ቎൭෍ 𝑦௟𝑧௝ି௟

௅ିଵ

௟ୀ଴

൱
௝ୀ଴

௅ିଵ

቏ ൌ FFT௞ሾ𝒚ሿFFT௞ሾ𝒛ሿ. (72) 

The circular convolution in the most right-hand side of equation (71) is calculated by 

the inverse Fourier transform on the product of the Fourier transform calculated by 

equation (72) under the condition 𝑧௞ି௟ ൌ 𝑧௞ି௟ା௅. This condition is, however, violated 

in this case because 𝑧௞ି௟ ൌ 𝑒ሺ௞ି௟ሻమగ୧ఈ ് 𝑒ሺ௞ି௟ା௅ሻమగ୧ఈ ൌ 𝑧௞ି௟ା௅ . To deal with this 

problem, Bailey and Swarztrauber (1991) employ vectors 𝒚ഥ ൌ ሺ𝑦ത௟ሻ௟ୀ଴
ଶ௅ିଵ  and 𝒛ത ൌ

ሺ𝑧௟̅ሻ௟ୀ଴
ଶ௅ିଵ by adding 𝐿 new elements to 𝒚  and 𝒛. Following Chourdakis (2004), we 

apply weight vector ሺ0.5,1, … ,1,0.5ሻ to 𝒚. The elements of 𝒚ഥ are given as: 
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 𝑦ത௟ ൌ 0.5 ∗ 𝑦௟, 𝑙 ൌ 0,
𝑦ത௟ ൌ 𝑦௟, 𝑙 ൌ 1, … , 𝐿 െ 2,
𝑦ത௟ ൌ 0.5 ∗ 𝑦௟, 𝑙 ൌ 𝐿 െ 1,
𝑦ത௟ ൌ 0, 𝑙 ൌ 𝐿, … 2𝐿 െ 1,

𝑧௟̅ ൌ 𝑒௟మగ୧ఈ, 𝑙 ൌ 0, … , 𝐿 െ 1,

𝑧௟̅ ൌ 𝑒ሺଶ௅ି௟ሻమగ୧ఈ, 𝑙 ൌ 𝐿, … ,2𝐿 െ 1.

 (73) 

𝒚ഥ  and 𝒛ത  satisfy the periodic condition because 𝑧௞̅ି௟ାଶ௅ ൌ 𝑒ሺଶ௅ିሺ௞ି௟ାଶ௅ሻሻమగ୧ఈ ൌ

𝑒ሺ௞ି௟ሻమగ୧ఈ ൌ 𝑧௞̅ି௟. Using these vectors 𝒚ഥ and 𝒛ത, the FRFT of is expressed as equation 

(75) using the inverse discrete Fourier transform defined as equation (74). The 

algorithm is shown in Appendix A.5. 

 

IFFT௞ሾ𝒘ഥሿ ≔
1

2𝐿
෍ 𝑤ഥ௝𝑒୧ଶగ௞௝/ଶ௅,

ଶ௅ିଵ

௝ୀ଴

(74) 

 

𝑒ିగ୧௞మఈ ෍ 𝜙௝𝑒ି௝మగ୧ఈ

௅ିଵ

௝ୀ଴

𝑒ሺ௞ି௝ሻమగ୧ఈ ൌ 𝑒ିగ୧௞మఈ IFFT௞ሾ𝒘ഥሿ,

𝒘ഥ ൌ ൫FFT௝ሾ𝒚ഥሿFFT௝ሾ𝒛തሿ൯
௝ୀ଴

ଶ௅ିଵ
, 0 ൑ 𝑘 ൏ 𝐿. 

(75) 

 

3.4. Approximations 
 

3.4.1. Truncation of the characteristic function 

We set parameters of 𝑥୫ୟ୶, 𝑢୫ୟ୶, and 𝐿 of FRFT with allowable truncation error of 

10ି଺. The maximum value of the cumulative default intensity 𝑥 ൌ 𝛬௞ሺ𝑠, 𝑡ሻ, whose 

density is calculated as equation (65), is given by 𝑥୫ୟ୶ ൌ 15 since expሺെ15ሻ ≅ 10ି଺ 

where exp൫െ𝛬௞ሺ𝑠, 𝑡ሻ൯ corresponds to the survival probability from time 𝑠 to time 𝑡. 

The truncation value 𝑢୫ୟ୶  of the characteristic function is calculated as 𝑢୫ୟ୶ ൌ

minሼ𝑢||𝜙ሺ𝑢ሻ| ൏ 10ି଺ሽ  depending on the residual time 𝑇 െ 𝜏஼  and the default 

intensity of the reference firm 𝜆ோሺ𝜏஼ሻ at the time of counterparty default 𝜏஼. The 

number of grids 𝐿  is given as 𝐿 ൌ 2௟౩౫౦  where 𝑙ୱ୳୮ ൌ minሼ𝑙 ∈ ℤା: 2௟ ൐ 2𝑢୫ୟ୶ሽ . 

With these parameters, the space grid is given as 𝜒 ൌ 𝑥୫ୟ୶/𝐿 and the wavenumber 

grid is given as 𝜔 ൌ 𝑢୫ୟ୶/𝐿. 

Figure 7 plots the histogram of common logarithm of the absolute difference between 

analytical survival probabilities ℚ൫𝜏ோ ൐ 𝑡௠ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧, 𝜏ோ ൐ 𝑡௝൯ given by equation 

(55) and the numerically integrated survival probabilities. Following equation (18), the 

numerically integrated survival probability is calculated as 
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 ෍ 𝐹௸ೃሺ்ሻି௸ೃሺఛ಴ሻሺ𝑛𝜒ሻ𝑒௡ఞሺ𝑒ఞ െ 1ሻ
௅

௡ୀଵ

. (76)

The survival probabilities are calculated for the paths with 𝜏ோ ൐ 𝜏஼ among 100,000 

simulated paths with SI-Jump with 𝜌஼,ோ ൌ 0.3 (𝜌஼,ோ
௝௨௠௣ ൌ 0.361). The number of paths 

with 𝜏ோ ൐ 𝜏஼ is 19,281 in this case. We can see that the numerically integrated survival 

probability has the accuracy with small errors around 10ିହ. 

Figure 7 Histogram of common logarithm of absolute errors of survival probabilities 

 

 

3.4.2. Approximation of intermediate conditional survival probabilities 

Calculating ℚ൫𝜏ோ ൐ 𝑡ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯ using equation (18) for all remaining time 

grids 𝑡 ൌ 𝑡௟  for 𝑙 ൌ 𝑗 ൅ 1, … , 𝑚  is time consuming. Hence, following Li (2001) 

capturing the dependence between each default until maturity by a copula in the 

valuation of the collateralized debt obligation, we only calculate 

ℚ൫𝜏ோ ൐ 𝑡௠ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯  using equation (18) and approximate 

ℚ൫𝜏ோ ൐ 𝑡௟ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯ for 𝑙 ൌ 𝑗 ൅ 1, … , 𝑚 െ 1 as  

 ℚ൫𝜏ோ ൐ 𝑡௟ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯

≅ exp ቎log ℚ൫𝜏ோ ൐ 𝑡௠ห𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧൯
log ℚ ቀ𝜏ோ ൐ 𝑡௟ቚ𝜆ோ൫𝑡௝൯ቁ

log ℚ ቀ𝜏ோ ൐ 𝑡௠ቚ𝜆ோ൫𝑡௝൯ቁ
቏ . 

(77)

Here, ℚ ቀ𝜏ோ ൐ 𝑡௟ቚ𝜆ோ൫𝑡௝൯ቁ  for 𝑙 ൌ 𝑗 ൅ 1, … , 𝑚  are calculated analytically using 

equation (55). The idea of this approximation comes from the interpolation by the mean 

default intensity. 

Table 6 summarizes the average, standard deviation, and several percentiles with 0% 

(minimum), 1%, 10%, 25%, 50%, 75%, 90%, 99%, 100% (maximum) of error rates of 
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log10 of absolute errors

mean=-5.09
std.dev.=0.67
min=-8.34
25%=-5.34
50%=-5.02
75%=-4.59
max=-3.18
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the conditional exposure 𝑉஼஽ௌ
ே௢ ஼௏஺൫𝑡௝൯ at 𝜏஼ ∈ ൫𝑡௝ିଵ, 𝑡௝൧ calculated as equation (2) for 

each copula including Gaussian, Student’s t, Clayton, and Survival Gumbel. Each error 

rate is defined as ൛𝑉஼஽ௌ
஺௣௣௥௢௫൫𝑡௝൯ െ 𝑉஼஽ௌ

஻ி ൫𝑡௝൯ൟ 𝑉஼஽ௌ
஻ி ൫𝑡௝൯ൗ , where 𝑉஼஽ௌ

஺௣௣௥௢௫൫𝑡௝൯  is the 

conditional exposure using the approximation of equation (77) and 𝑉஼஽ௌ
஻ி ൫𝑡௝൯ is the 

conditional exposure without the approximation. The conditional exposures are 

calculated for the paths with 𝜏ோ ൐ 𝜏஼ among 100,000 simulated paths with SI-Jump 

with 𝜌஼,ோ ൌ 0.3 (𝜌஼,ோ
௝௨௠௣ ൌ 0.361) and 𝜌஼,ோ

௖௢௣௨௟௔ ൌ 0.1. The number of paths with 𝜏ோ ൐

𝜏஼ at least by one copula is 19,827 in this case. We can see that the approximation 

might underestimate slightly the precise value; however, the error is less than 6% even 

at one percentile. On the other hand, the calculation is about 86 times faster than a 

precise one. The precise calculation takes about two hundred hours over one week, on a 

standard spec computer. 

Table 6 Summary statistics of error rates for each copula 
 Gaussian Student’s t Clayton Sur. Gumbel 

average −0.46% −0.59% −0.77% −0.74% 
std. dev. 1.45%pt 3.30%pt 0.94%pt 1.40%pt 

min −175.56% −36.41% −7.65% −64.98% 
1% −1.60% −5.57% −3.36% −5.28% 

10% −1.26% −2.46% −2.20% −2.39% 
25% −0.90% −1.06% −1.42% −1.12% 
50% −0.27% −0.05% −0.41% −0.20% 
75% 0.00% 0.13% 0.00% 0.01% 
90% 0.09% 0.30% 0.09% 0.12% 
99% 0.26% 1.87% 0.26% 0.28% 
max 16.73% 409.92% 4.13% 81.65% 

 

4. Concluding remarks 

We have analyzed several copulas to capture the wrong-way risk in CVA for CDS. 

While Brigo and Chourdakis (2009) and Brigo and Capponi (2010) focus on the shifted 

square root diffusion process without jump for the default intensities of the counterparty 

and the reference firm under a Gaussian copula to evaluate the CVA, we focus on the 

shifted square root jump diffusion (SSRJD) process for the default intensities under 

several copulas including Student’s t, Clayton, and Survival Gumbel copula. After 

deriving the distribution function for the SSRJD cumulative default intensity by 

fractional fast Fourier transform (FRFT), we compare CVA of the four copulas. As 

shown in Glasserman and Yang (2018), the comparison implies the tail dependent 

copulas including Student’s t, survival Gumbel, and Clayton copulas better capture the 

wrong-way risk than the Gaussian copula. In particular, the tail dependent copulas well 
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capture the wrong-way risk represented by simultaneous jump with the very rare jump 

intensity. 

We also show the concrete implementation of the copula approach using FRFT and 

validate the numerical errors and approximate intermediate conditional survival 

probabilities. The method also includes single-layered Riemann surface for the 

characteristic function of SSRJD cumulative intensity. The approach is widely 

applicable to option pricing with SSRJD underlying price movements and stochastic 

volatility model.  

At the numerical analyses, we give the correlation parameter exogenously and do not 

calibrate them as in the preceding studies. If the counterparty and the reference firm are 

included in some traded CDO, the market implied correlation can be used for the 

correlation parameter. 

Regarding the single name CDS, the settlements are concentrated on central 

counterparties as indicated in BIS statistics. Though in this paper we focused on the 

settlement with non-central counterparties, the analyses of CVA of CDS themselves can 

be extended and applied to the analyses on default funds of the central counterparties. 

The proposed method in this paper is applicable to various fields. For example, it is 

of interest to study the valuation of CDS option, credit linked notes triggered by n-th to 

default, and derivative pricing with stochastic volatility of Affine jump diffusion (Carr 

et al., 2003) with various types of dependencies. 
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Appendix A. Implementation using R 
 

A.1. Common procedures 

The procedure to make the initial setting is implemented as the following codes in 

"initialSetting.R." The procedure includes a discounting factor from OIS market rates. 

initialSetting <- function(tgtYr,settingFile,paraFile,oisFile,spRFile){ 
  makeDiscountFactor <- function(oneYearNum,matNum,oisFile){ 
    oisMat <- read.csv(oisFile); 
    oisRate <- approxfun(oisMat); 
    DF <- NULL; 
    delta <- 1/oneYearNum; 
    lessOneYearIdx <- 1:(oneYearNum-1); 
    lessOneYear <- lessOneYearIdx*delta; 
    DF[lessOneYearIdx] <- 1/(1+oisRate(lessOneYear)*lessOneYear); 
    quarterNum <- oneYearNum/4; 
    quarterNums <- seq(quarterNum,matNum,by=quarterNum); 
    for(i in 4:length(quarterNums)){ 
      DF[quarterNums[i]] <- 
(1-oisRate(quarterNums[i]*delta)/4*sum(DF[quarterNums[1:(i-1)]]))/(1+oisRate
(quarterNums[i]*delta)/4); 
    } 
    if(matNum>oneYearNum){ 
      quarterIdxs <- seq(oneYearNum,matNum-1,by=quarterNum); 
      if(quarterNum>1){ 
        for(j in 1:(quarterNum-1)){ 
          zerob <- -log(DF[quarterIdxs])/(quarterIdxs*delta); 
          zeroa <- 
-log(DF[quarterIdxs+quarterNum])/((quarterIdxs+quarterNum)*delta); 
          DF[quarterIdxs+j] <- 
exp(-(zerob*(quarterNum-j)+zeroa*j)/quarterNum*delta*(quarterIdxs+j)); 
        } 
      } 
    } 
    return(DF); 
  } 
  makeIntensityAdjustment <- function(psiYrs,tgtYr,oneYearNum){ 
    psi <- NULL; 
    sy <- 0; 
    for(i in c(1:nrow(psiYrs))[psiYrs[,"yrs"]<=tgtYr]){ 
      ey <- psiYrs[i,"yrs"]; 
      psi[(sy*oneYearNum+1):(ey*oneYearNum)] <- psiYrs[i,"psi"]; 
      sy <- ey; 
    } 
    return(psi); 
  } 
  setMat <- read.csv(settingFile); 
  setting <- as.list(setMat[,"Value"]); 
  names(setting) <- setMat[,"Names"]; 
  oneYearNum <- setting$oneYearNum; 
  delta <- 1/oneYearNum; 
  matNum <- tgtYr*oneYearNum; 
  spRDat <- read.csv(spRFile); 
  setting$prem <- spRDat[spRDat[,"Year"]==tgtYr,"Spread"]/10000*delta; 
  paraMat <- read.csv(paraFile); 
  psiIdxs <- grep("^psi",paraMat[,"Names"]); 
  paraC <- as.list(paraMat[-psiIdxs,"ParaC"]); 
  paraR <- as.list(paraMat[-psiIdxs,"ParaR"]); 
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  names(paraR) <- names(paraC) <- paraMat[-psiIdxs,"Names"]; 
  psiMat <- paraMat[psiIdxs,]; 
  yrs <- as.numeric(substr(psiMat[,"Names"],4,5)) 
  psiYC <- cbind(yrs,as.numeric(psiMat[,"ParaC"])); 
  psiYR <- cbind(yrs,as.numeric(psiMat[,"ParaR"])); 
  colnames(psiYR) <- colnames(psiYC) <- c("yrs","psi"); 
  paraR$eta <- setting$eta; 
  setting$paraC <- paraC; 
  setting$paraR <- paraR; 
  setting$psiC <- makeIntensityAdjustment(psiYC,tgtYr,oneYearNum); 
  setting$psiR <- makeIntensityAdjustment(psiYR,tgtYr,oneYearNum); 
  setting$cumPsiR <- cumsum(setting$psiR)*delta; 
  setting$DF <- makeDiscountFactor(oneYearNum,matNum,oisFile); 
  setting$delta <- delta; 
  setting$matNum <- matNum; 
  return(setting); 
} 

The generating procedure of the default intensity and cumulative default probability 

is common among the default intensity model and the copula approach. The procedure 

is implemented as the following codes in "PathGeneratorCDS.R." 

CptyDefaultPathJump <- function(setting,seed,simNum){ 
  paraC <- setting$paraC; 
  psiC <- setting$psiC; 
  paraR <- setting$paraR; 
  psiR <- setting$psiR; 
  eta <- setting$eta; 
  delta <- setting$delta; 
  matNum <- setting$matNum; 
  rhoToRhoJump <- function(rhoCR,paraC,paraR,eta){ 
    zetaC <- paraC$zeta; 
    zetaR <- paraR$zeta; 
    sigC <- paraC$sigma; 
    sigR <- paraR$sigma; 
    varC <- sigC*sigC*paraC$theta+2*eta*zetaC*zetaC; 
    varR <- sigR*sigR*paraR$theta+2*eta*zetaR*zetaR; 
    if(JumpType==2){  ## Comonotone      
return((rhoCR*sqrt(varC*varR)-2*eta*zetaC*zetaR) / 
(sigC*sigR*sqrt(paraC$theta*paraR$theta))); 
    }else if(JumpType==1){ ## Independent 
      return((rhoCR*sqrt(varC*varR)-eta*zetaC*zetaR) / 
(sigC*sigR*sqrt(paraC$theta*paraR$theta))); 
    } 
  } 
  rho <- rhoToRhoJump(setting$rhoCR,paraC,paraR,eta,setting$JumpType); 
  set.seed(seed); 
  epsC <- matrix(rnorm(simNum*matNum),nrow=simNum,ncol=matNum); 
  eps0 <- matrix(rnorm(simNum*matNum),nrow=simNum,ncol=matNum); 
  epsR <- rho*epsC+sqrt(1-rho*rho)*eps0; 
  xi <- matrix(rpois(simNum*matNum,eta*delta),nrow=simNum,ncol=matNum); 
  z1 <- matrix(rexp(simNum*matNum),nrow=simNum,ncol=matNum); 
  commonJump <- z1*xi; 
  lambdaC <- lambdaR <- matrix(0,nrow=simNum,ncol=matNum+1); 
  lambdaC[,1] <- paraC$lambda0; 
  lambdaR[,1] <- paraR$lambda0; 
  for(j in 1:matNum){ 
    lambdaC[,j+1] <- lambdaC[,j]+paraC$kappa*(paraC$theta-lambdaC[,j])*delta +
paraC$sigma*sqrt(lambdaC[,j]*delta)*epsC[,j]+paraC$zeta*commonJump[,j]; 
    lambdaC[lambdaC[,j+1]<0,j+1] <- 0; 
    lambdaR[,j+1] <- lambdaR[,j]+paraR$kappa*(paraR$theta-lambdaR[,j])*delta +
paraR$sigma*sqrt(lambdaR[,j]*delta)*epsR[,j]+paraR$zeta*commonJump[,j]; 
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    lambdaR[lambdaR[,j+1]<0,j+1] <- 0; 
  } 
  AdjLambdaC <- t(lambdaC[,-1])+psiC; 
  lambdaR <- lambdaR[,-1]; 
  AdjLambdaR <- t(lambdaR)+psiR; 
  cumPD_C <- 1-exp(-delta*t(apply(AdjLambdaC,2,cumsum))); 
  cumPD_R <- 1-exp(-delta*t(apply(AdjLambdaR,2,cumsum))); 
  if(setting$IntCop==0){  ## Default Intensity 
    return(CptyDefaultPathInt(setting,simNum,cumPD_C,cumPD_R,lambdaR)); 
  }else{    ## Copula Approach 
    return(CptyDefaultPathCop(setting,simNum,cumPD_C,cumPD_R,lambdaR)); 
  } 
} 

 

A.2. Procedures for the default intensity model 

The procedure for sampling Cpty default paths under the default intensity model is 

implemented as the following codes in "PathGeneratorCDS.R" and is called in the 

function "CptyDefaultPathJump." 

CptyDefaultPathInt <- function(setting,simNum,cumPD_C,cumPD_R,lambdaR){ 
  matNum <- setting$matNum; 
  uC <- runif(simNum); 
  uR <- runif(simNum); 
  tauC <- matNum+1-apply(uC<cumPD_C,1,sum); 
  tauR <- matNum+1-apply(uR<cumPD_R,1,sum); 
  defIdxs <- as.logical((tauC<matNum) * (tauC<=tauR)); 
  defNum <- sum(defIdxs); 
  resMat <- matrix(0,nrow=defNum,ncol=6); 
  colnames(resMat) <- c("i","tauC","tauR","lambdaR","UC","UR_C"); 
  resMat[,"i"] <- c(1:simNum)[defIdxs]; 
  resMat[,"tauC"] <- tauC[defIdxs]; 
  resMat[,"tauR"] <- tauR[defIdxs]; 
  for(idx in 1:defNum){ 
    i <- resMat[idx,"i"]; 
    resMat[idx,"lambdaR"] <- lambdaR[i,tauC[i]]; 
    resMat[idx,"UC"] <- cumPD_C[i,tauC[i]]; 
    resMat[idx,"UR_C"] <- cumPD_R[i,tauC[i]]; 
  } 
  return(resMat); 
} 

The procedures for the default intensity model are implemented as the following 

codes in "DefaultIntensity.R." 

source("initialSetting.R"); 
source("PathGeneratorCDS.R"); 
source("SurviveProb.R") 
 
ConditionalValue_CDS_Int <- function(setting, lambdaR_tauC, resNum, resNum, 
tauC){ 
  paraR <- setting$paraR; 
  PsiR <- setting$cumPsiR; 
  delta <- setting$delta; 
  survProb <- numeric(resNum+1); 
  survProb[1] <- 1; 
  for(j in 1:resNum){ 
    survProb[j+1] <- SurProb_SSRJD(paraR,PsiR,lambdaR_tauC,j,tauC,delta); 
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  } 
  PD_R <- -diff(survProb); 
  SurvPCurr <- survProb[-1]; 
  V <- setting$ DF[(tauC+1):(tauC+resNum)]/setting$DF[tauC]*(paraR$LGD*PD_R - 
setting$prem*SurvPCurr); 
  return(sum(V)); 
} 
 
CVACalculator_CDS_Int <- function(tgtYr, simNum, seed, settingFile, paraFile,
oisFile){ 
  setting <- initialSetting(tgtYr,settingFile,paraFile,oisFile); 
  setting$IntCop <- 0; 
  cptyDefPath <- CptyDefaultPathJump(setting,seed,simNum); 
  matNum <- setting$matNum; 
  paraR <- setting$paraR; 
  paraC <- setting$paraC; 
  defNum <- nrow(cptyDefPath); 
  futExp <- count <- numeric(matNum); 
  simCVA <- numeric(defNum); 
  for(idx in 1:defNum){ 
    tauC <- as.numeric(cptyDefPath[idx,"tauC"]); 
    tauR <- as.numeric(cptyDefPath[idx,"tauR"]); 
    if(tauC == tauR){ 
      curExp <- paraR$LGD*setting$notional; 
    }else{ 
      resNum <-  matNum - tauC; 
      lambdaR_tauC <- as.numeric(cptyDefPath[idx,"lambdaR"]); 
      V <- ConditionalValue_CDS_Int(setting,lambdaR_tauC,resNum,tauC); 
      curExp <- max(V,0)*setting$notional; 
    } 
    count[tauC] <- count[tauC] + 1; 
    futExp[tauC] <- futExp[tauC] + curExp; 
    simCVA[idx] <- setting$DF[tauC]*curExp*paraC$LGD; 
  } 
  return(list(defNum=defNum,simCVA=simCVA,futExp=futExp,count=count)); 
} 

 

A.3. Procedures for the copula approach 

The procedure for sampling Cpty default paths under the copula approach is 

implemented as the following codes in "PathGeneratorCDS.R" and is called in the 

function "CptyDefaultPathJump." The following condCopSets(simNum,rho,nu) 

function generate random vectors൫𝑈𝐶௝, 𝑈𝑅𝐺𝑎௝, 𝑈𝑅𝑇௝, 𝑈𝑅𝐶𝑙𝑎𝑦௝, 𝑈𝑅𝑆𝑢𝑟𝐺𝑢𝑚௝൯ for 𝑗 ൌ

1, … , 𝑠𝑖𝑚𝑁𝑢𝑚  where the four pairs ൫𝑈𝐶௝, 𝑈𝑅𝐺𝑎௝൯, ൫𝑈𝐶௝, 𝑈𝑅𝑇௝൯, ൫𝑈𝐶௝, 𝑈𝑅𝐶𝑙𝑎𝑦௝൯,

൫𝑈𝐶௝, 𝑈𝑅𝑆𝑢𝑟𝐺𝑢𝑚௝൯ have the same Kendall’s tau with the Gaussian correlation of the 

parameter rho. The parameter nu denotes the degree of freedom parameter of the 

Student’s t copula for the pair ൫𝑈𝐶௝, 𝑈𝑅𝑇௝൯. In the function "condCopSets," the pair 

൫𝑈𝐶௝, 𝑈𝑅𝑆𝑢𝑟𝐺𝑢𝑚௝൯  is generated first following the latent variable 𝜃଴  having a 

positive stable distribution with the stable parameter 1 𝛾⁄  and the skewness parameter 

1. The three pairs ൫𝑈𝐶௝, 𝑈𝑅𝐺𝑎௝൯, ൫𝑈𝐶௝, 𝑈𝑅𝑇௝൯, ൫𝑈𝐶௝, 𝑈𝑅𝐶𝑙𝑎𝑦௝൯ are generated with the 

given 𝑈𝐶௝. 
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condCopSets <- function(simNum,rho,nu){ 
  ## Survival Gumbel 
  gam <- pi/(pi-2*asin(rho)); 
  V <- runif(simNum,max=pi); 
  W <- rexp(simNum); 
  th0 <- ((sin((gam-1)*V/gam)/W)^(gam-1))*sin(V/gam)/(sin(V)^gam); 
  I <- matrix(runif(2*simNum),ncol=2); 
  UC <- 1-exp(-((-log(I[,1])/th0)^(1/gam))); 
  URSurGum <- 1-exp(-((-log(I[,2])/th0)^(1/gam))); 
  ## Gaussian 
  URGauss <- pnorm(rho*qnorm(UC)+sqrt(1-rho*rho)*rnorm(simNum)); 
  ## Student-t 
  qtUC <- qt(UC,nu); 
  URT <- 
pt(rho*qtUC+sqrt(1-rho*rho)*sqrt((nu+qtUC*qtUC)/(nu+1))*rt(simNum,nu+1),nu); 
  ## Clayton 
  alpha <- 4*asin(rho)/(pi-2*asin(rho)); 
  URClay <- ((runif(simNum)^(-alpha/(alpha+1))-1)*UC^(-alpha)+1)^(-1/alpha); 
  list(C=UC,RGa=URGauss,RT=URT,RCl=URClay,RSGu=URSurGum); 
} 
 
CptyDefaultPathCop <- function(setting,simNum,cumPD_C,cumPD_R,lambdaR){ 
  matNum <- setting$matNum; 
  U <- condCopSets(simNum,setting$rhoCop,setting$nu); 
  tauC <- matNum+1-apply(U$C<cumPD_C,1,sum); 
  tauRGa <- matNum+1-apply(U$RGa<cumPD_R,1,sum); 
  tauRT <- matNum+1-apply(U$RT<cumPD_R,1,sum); 
  tauRCl <- matNum+1-apply(U$RCl<cumPD_R,1,sum); 
  tauRSGu <- matNum+1-apply(U$RSGu<cumPD_R,1,sum); 
  defIdxs <- as.logical(tauC<matNum); 
  defNum <- sum(defIdxs); 
  colNames <- 
c("i","tauC","tauRGa","tauRT","tauRCl","tauRSGu","lambdaR","UC","UR_C"); 
  resMat <- matrix(0,nrow=defNum,ncol=length(colNames)); 
  colnames(resMat) <- colNames; 
  resMat[,"i"] <- c(1:simNum)[defIdxs]; 
  resMat[,"tauC"] <- tauC[defIdxs]; 
  resMat[,"tauRGa"] <- tauRGa[defIdxs]; 
  resMat[,"tauRT"] <- tauRT[defIdxs]; 
  resMat[,"tauRCl"] <- tauRCl[defIdxs]; 
  resMat[,"tauRSGu"] <- tauRSGu[defIdxs]; 
  for(idx in 1:defNum){ 
    i <- resMat[idx,"i"]; 
    resMat[idx,"lambdaR"] <- lambdaR[i,tauC[i]]; 
    resMat[idx,"UC"] <- cumPD_C[i,tauC[i]]; 
    resMat[idx,"UR_C"] <- cumPD_R[i,tauC[i]]; 
  } 
  return(resMat); 
} 

The procedures for the copula approach are implemented as the following codes in 

"CopulaApproach.R." 

source("initialSetting.R"); 
source("PathGeneratorCDS.R"); 
source("SurviveProb.R") 
 
ConditionalValue_CDS_Cop <- function(setting, lambdaR_tauC, resNum, tauC, UC,
UR_C){ 
  paraR <- setting$paraR; 
  PsiR <- setting$cumPsiR; 
  delta <- setting$delta; 
  lsurvProb <- matrix(0,nrow=resNum+1,ncol=4); 
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  lsurvProb[resNum+1,] <- log(SurProb_SSRJD_Cops(setting, lambdaR_tauC, resNum,
tauC, UR_C, UC)); 
  lsurvProbIntMat <- log(SurProb_SSRJD(paraR, PsiR, lambdaR_tauC, resNum, tauC,
delta)); 
  for(j in 2:resNum){ 
    lsurvProbIntj <- log(SurProb_SSRJD(paraR, PsiR, lambdaR_tauC, j-1, tauC, 
delta)); 
    lsurvProb[j,] <- lsurvProb[resNum+1,]*lsurvProbIntj/lsurvProbIntMat; 
  } 
  survProb <- exp(lsurvProb); 
  PD_R <- -diff(survProb); 
  SurvPCurr <- survProb[-1,]; 
  V <- setting$DF[(tauC+1):(tauC+resNum)]/setting$DF[tauC]*(paraR$LGD*PD_R - 
setting$prem*SurvPCurr); 
  return(apply(V,2,sum)); 
} 
 
CVACalculator_CDS_Cop <- function(tgtYr, simNum, seed, rhoCop, settingFile, 
corrFile, paraFile, oisFile,spRFile){ 
  setting <- initialSetting(tgtYr, settingFile, corrFile, paraFile, oisFile, 
spRFile); 
  setting$rhoCop <- rhoCop; 
  setting$IntCop <- 1; 
  cptyDefPath <- CptyDefaultPathJump(setting,seed,simNum); 
  matNum <- setting$matNum; 
  paraR <- setting$paraR; 
  paraC <- setting$paraC; 
  defNum <- nrow(cptyDefPath); 
  count <- numeric(matNum); 
  futExp <- matrix(0,nrow=matNum,ncol=4); 
  simCVA <- matrix(0,nrow=defNum,ncol=4); 
  for(idx in 1:defNum){ 
    tauC <- as.numeric(cptyDefPath[idx,"tauC"]); 
    tauRGa <- as.numeric(cptyDefPath[idx,"tauRGa"]); 
    tauRT <- as.numeric(cptyDefPath[idx,"tauRT"]); 
    tauRCl <- as.numeric(cptyDefPath[idx,"tauRCl"]); 
    tauRSGu <- as.numeric(cptyDefPath[idx,"tauRSGu"]); 
    tauR <- c(tauRGa,tauRT,tauRCl,tauRSGu); 
    curExp <- numeric(length(tauR)); 
    if(sum(tauC<tauR)){ 
      UC <-  as.numeric(cptyDefPath[idx,"UC"]); 
      UR_C <-  as.numeric(cptyDefPath[idx,"UR_C"]); 
      resNum <-  matNum - tauC; 
      lambdaR_tauC <- as.numeric(cptyDefPath[idx,"lambdaR"]); 
      V <- ConditionalValue_CDS_Cop(setting, lambdaR_tauC, resNum, tauC, UC, 
UR_C); 
      curExp <- V*setting$notional; 
      curExp[curExp<0] <- 0; 
    } 
    curExp[tauC == tauR] <- paraR$LGD*setting$notional; 
    curExp[tauC > tauR] <- 0; 
    count[tauC] <- count[tauC] + 1; 
    futExp[tauC,] <- futExp[tauC] + curExp; 
    simCVA[idx,] <- setting$DF[tauC]*curExp*paraC$LGD; 
  } 
  return(list(defNum=defNum,simCVA=simCVA,futExp=futExp,count=count)); 
} 

 

A.4. Survival probabilities 

The procedures for survival probabilities are implemented as the following codes in 
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"SurviveProb.R." For survival probabilities until a short maturity, the calculation cost 

using FRFT, that is the number of 𝐿, skyrockets when the default intensity of the 

reference firm 𝜆௞ሺ𝜏𝐶ሻ at the time of the counterparty default 𝜏஼ is small. Therefore, 

we do not use the characteristic function for the short residual maturity less than 

setting$midTerm. Instead, we interpolate the cumulative distribution function for the 

cumulative intensity until time 𝑡 ൏ setting$midTerm using the distribution function at 

time setting$midTerm and the distribution function at the current time represented by 

the step function with 0 less than the current default intensity and 1 more than or equal 

to the intensity. We set setting$midTerm ൌ 0 without using the interpolation in the 

main analysis. 

source("CDFSRJD.R"); 
 
## Survival Probability with Shifted Square Root Jump Diffusion 
SurProb_SSRJD <- function(paraR,PsiR,lambda_tauC,resNum,tauC,delta){ 
  mat <- resNum*delta; 
  kappa <- paraR$kappa; 
  sigma <- paraR$sigma; 
  eta <- paraR$eta; 
  h <- sqrt(kappa^2+2*sigma^2); 
  kappah <- kappa+h; 
  zeta <- paraR$zeta; 
  as <- kappah+2*zeta; 
  A <- 
(2*h*exp(as*mat/2)/(2*h+as*(exp(h*mat)-1)))^(2*eta*zeta/(sigma^2-2*kappa*zet
a-2*zeta^2)); 
  B <- 2*(exp(h*mat)-1)/(2*h+kappah*(exp(h*mat)-1)); 
  C <- 
(2*h*exp(kappah*mat/2)/(2*h+kappah*(exp(h*mat)-1)))^(2*kappa*paraR$theta/(si
gma^2)); 
  surProb <- A*C*exp(-B*lambda_tauC-PsiR[tauC+resNum]+PsiR[tauC]); 
  return(surProb); 
} 
 
## Survival Probabilities with four copulas (with Jump) 
## (Gaussian, Student’s t, Clayton, Surival Gumbel) 
SurProb_SSRJD_Cops <- function(setting,lambda_tauC,resNum,tauC,UR_C,UC){ 
  delta <- setting$delta; 
  mat <- resNum*delta; 
  xmax <- setting$xmax; 
  paraR <- setting$paraR; 
  PsiR <- setting$cumPsiR; 
  rho <- setting$rhoCop; 
  midTerm <- setting$midTerm; 
  if(mat < midTerm){ 
    temp <- uniroot(CharFuncIntSRJD, c(0,setting$uupper/(midTerm^2)), 
para=paraR, lambdat=lambda_tauC, mat=midTerm, censorpoint=setting$ulower); 
    umax <- temp$root; 
    L <- 2^(ceiling(log(2*umax,2)); 
    pMid <- CDFIntSRJD(xmax,umax,L,paraR,lambda_tauC,midTerm); 
    F <- numeric(L)+1; 
    F[1] <- 0; 
    F <- (F*(midTerm-mat)+pMid*mat)/midTerm; 
  }else{ 
    temp <- uniroot(CharFuncIntSRJD, c(0,setting$uupper/(mat^2)), para=paraR, 
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lambdat=lambda_tauC, mat=mat, censorpoint=setting$ulower); 
    umax <- temp$root; 
    L <- 2^(ceiling(log(2*umax,2)); 
    F <- CDFIntSRJD(xmax,umax,L,paraR,lambda_tauC,mat); 
  } 
  uR <- 1-(1-UR_C)*exp(-seq(0,xmax,length=L)); 
  ## Gaussian 
  xR_C <- (qnorm(UR_C)-rho*qnorm(UC))/sqrt(1-rho*rho); 
  xR <- (qnorm(uR)-rho*qnorm(UC))/sqrt(1-rho*rho); 
  CR_C <- (pnorm(xR)-pnorm(xR_C))/(1-pnorm(xR_C)); 
  PDs <- F[-L]*diff(CR_C); 
  surPG <- sum(PDs); 
  ## Student-t 
  nu <- setting$nu; 
  qtUC <- qt(UC,nu); 
  coef <- sqrt((nu+1)/((nu+qtUC*qtUC)*(1-rho*rho))); 
  xR_C <- coef*(qt(UR_C,nu)-rho*qtUC); 
  xR <- coef*(qt(uR,nu)-rho*qtUC); 
  CR_C <- (pt(xR,nu+1)-pt(xR_C,nu+1))/(1-pt(xR_C,nu+1)); 
  PDs <- F[-L]*diff(CR_C); 
  surPT <- sum(PDs); 
  ## Clayton 
  alpha <- 4*asin(rho)/(pi-2*asin(rho)); 
  pdcopC <- function(u2,alpha){ 
    (UC^(-alpha-1))*((UC^(-alpha)+u2^(-alpha)-1)^(-1/alpha-1)); 
  } 
  CR_C <- (pdcopC(uR,alpha)-pdcopC(UR_C,alpha))/(1-pdcopC(UR_C,alpha)); 
  PDs <- F[-L]*diff(CR_C); 
  surPC <- sum(PDs); 
  ## Survival Gumbel 
  gam <- pi/(pi-2*asin(rho)); 
  pdcopSGu <- function(u2,gam){ 
    mlu1 <- (-log(1-UC)); 
    argCGu <- mlu1^gam+(-log(1-u2))^gam; 
    CGu <- exp(-argCGu^(1/gam)); 
    1-CGu*(argCGu^(1/gam-1))*(mlu1^(gam-1))/(1-UC); 
  } 
  CR_C <- (pdcopSGu(uR,gam)-pdcopSGu(UR_C,gam))/(1-pdcopSGu(UR_C,gam)); 
  PDs <- F[-L]*diff(CR_C); 
  surPSGu <- sum(PDs); 
  surP <- cbind(surPG,surPT,surPC,surPSGu); 
  names(surP) <- c("Gaussian","Student-t","Clayton","Survival Gumbel"); 
  surP <- surP * exp(-PsiR[tauC+resNum]+PsiR[tauC]); 
  return(surP); 
} 

 

A.5. Distribution function for the cumulative SRJD intensity 

The distribution function for the cumulative SRJD intensity is calculated as the 

following codes in "CDFSRJD.R." The procedures are implemented using the signal 

package which provides the unwrap function to make a single layer Riemann surface. 

library(signal) 
 
## Log vector of a complex vector zs 
logVec <- function(zs){ 
  return(log(abs(zs))+1i*unwrap(Arg(zs))); 
} 
 
## Algorithm for the characteristic function of the integrated SRJD 
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CharFuncIntSRJD <- function(us, para, lambdat, mat, censorpoint){ 
  kappa <- para$kappa; 
  sigma <- para$sigma; 
  h <- sqrt(kappa^2-2*sigma^2*1i*us); 
  kappah <- kappa+h; 
  zeta <- para$zeta; 
  as <- kappah-2*1i*zeta*us; 
  A_J <- 2*h*exp(as*mat/2)/(2*h+as*(exp(h*mat)-1)); 
  alpha_J <- 2*para$eta*zeta*logVec(A_J)/(sigma^2-2*kappa*zeta + 
2*zeta^2*1i*us); 
  B <- 2*(exp(h*mat)-1)/(2*h+kappah*(exp(h*mat)-1)); 
  C_D <- 2*h*exp(kappah*mat/2)/(2*h+kappah*(exp(h*mat)-1)); 
  alpha_D <- 2*kappa*para$theta*logVec(C_D)/(sigma^2); 
  phi <- exp(alpha_J+alpha_D+B*lambdat*1i*us); 
  if(censorpoint != 0){return(abs(phi)-censorpoint);} 
  else{return(phi);} 
} 
 
## Algorithm for the cumulative distribution function of the integrated SRJD 
CDFIntSRJD <- function(xmax, umax, L, para, lambdat, mat){ 
  us <- seq(0,umax,length=L); 
  phi <- CharFuncIntSRJD(us, para, lambdat, mat, 0); 
  xgrid <- xmax/L; 
  ugrid <- umax/L; 
  piAlpha <- xgrid*ugrid/2; 
  js <- seq(0,L-1); 
  rjs <- seq(L,1); 
  z1 <- exp(1i*piAlpha*js*js); 
  z2 <- exp(1i*piAlpha*rjs*rjs); 
  weight <- c(0.5,seq(1,1,length=L-2),0.5); 
  fybar <- fft(c(phi*ugrid/z1*weight, seq(0,0,length=L))); 
  fzbar <- fft(c(z1, z2)); 
  ifwbar <- fft(fybar*fzbar, inverse = TRUE)/(2*L); 
  cdf <- cumsum(Re(ifwbar[1:L]/z1)*xgrid/pi); 
  cdf[cdf<0] <- 0; 
  cdf[cdf>1] <- 1; 
  return(cdf); 
} 

 

Appendix B. Solution for a Riccati equation 

Assume an ordinary differential equation 

 
𝑑𝛽ሺ𝑠, 𝑡ሻ

𝑑𝑠
ൌ െ

𝜎ଶ

2
𝛽ሺ𝑠, 𝑡ሻଶ ൅ 𝜅𝛽ሺ𝑠, 𝑡ሻ െ 𝜉, (B.1) 

with the boundary condition 

 𝛽ሺ𝑡, 𝑡ሻ ൌ 0. (B.2) 

Then the ordinary differential equation has a solution of 

 𝛽ሺ𝑠, 𝑡ሻ ൌ
2𝜉ሺexpሼℎሺ𝑡 െ 𝑠ሻሽ െ 1ሻ

2ℎ ൅ ሺ𝜅 ൅ ℎሻሺexpሼℎሺ𝑡 െ 𝑠ሻሽ െ 1ሻ
, (B.3) 

where 

 ℎ ൌ ඥ𝜅ଶ െ 2𝜉𝜎ଶ. (B.4) 

 

Proof. Equation (B.1) is equivalent to: 
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𝑑𝛽ሺ𝑠ሻ

𝑑𝑠
ൌ െ

𝜎ଶ

2
ሺ𝛽ሺ𝑠ሻ െ 𝛽ଵሻሺ𝛽ሺ𝑠ሻ െ 𝛽ଶሻ, (B.5) 

where 

 𝛽ሺ𝑠ሻ ൌ 𝛽ሺ𝑠, 𝑡ሻ, 𝛽ଵ ൌ
𝜅 ൅ ℎ

𝜎ଶ , 𝛽ଶ ൌ
𝜅 െ ℎ

𝜎ଶ , ℎ ൌ ඥ𝜅ଶ െ 2𝜉𝜎ଶ. (B.6) 

Integrating equation (B.5) yields: 

 

െ
𝜎ଶ

2
ሺ𝑡 െ 𝑠ሻ ൌ න

𝑑𝛽ሺ𝑢ሻ
ሺ𝛽ሺ𝑢ሻ െ 𝛽ଵሻሺ𝛽ሺ𝑢ሻ െ 𝛽ଶሻ

௧

௦

ൌ
1

𝛽ଵ െ 𝛽ଶ
න ൜

1
𝛽ሺ𝑢ሻ െ 𝛽ଵ

െ
1

𝛽ሺ𝑢ሻ െ 𝛽ଶ
ൠ

௧

௦
𝑑𝛽ሺ𝑢ሻ

ൌ
1

𝛽ଵ െ 𝛽ଶ
ቊln

𝛽ሺ𝑡ሻ െ 𝛽ଵ

𝛽ሺ𝑠ሻ െ 𝛽ଵ
െ ln

𝛽ሺ𝑡ሻ െ 𝛽ଶ

𝛽ሺ𝑠ሻ െ 𝛽ଶ
ቋ

ൌ െ
𝜎ଶ

2ℎ
ቊln

𝜎ଶ𝛽ሺ𝑠, 𝑡ሻ െ ሺ𝜅 ൅ ℎሻ
𝜎ଶ𝛽ሺ𝑠, 𝑡ሻ െ ሺ𝜅 െ ℎሻ

൬
𝜅 െ ℎ
𝜅 ൅ ℎ

൰ቋ .

(B.7) 

Rearranging equation (B.7) gives the solution (B.3). 

 




