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Abstract 
Inflation dynamics in the U.S. and Japan are investigated by estimating a 
“generalized” version of the Galí and Gertler (1999) New Keynesian Phillips curve 
(NKPC) with Bayesian GMM. This generalized NKPC (GNKPC) differs from the 
original only in that, in line with the micro evidence, each period some prices 
remain unchanged even under non-zero trend inflation. Yet the GNKPC has 
features that are significantly distinct from those of the NKPC. Model selection 
using quasi-marginal likelihood shows that the GNKPC empirically outperforms 
the NKPC in both the U.S. and Japan. Moreover, it explains U.S. inflation 
dynamics better than a constant-trend-inflation variant of the Cogley and Sbordone 
(2008) GNKPC. According to our selected GNKPC, when trend inflation fell after 
the Great Inflation of the 1970s in the U.S., the probability of no price change rose. 
Consequently, the GNKPC’s slope flattened and its inflation-inertia coefficient 
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1 Introduction

In�ation is an issue that has long been of central interest in economics. In particular, short-

run in�ation dynamics have continued to be the subject of intense investigation. In the

literature, the so-called New Keynesian Phillips curve (henceforth NKPC) has been much

analyzed from both theoretical and empirical points of view.1 A canonical form of the NKPC

can be obtained by either assuming zero trend in�ation (e.g., Woodford, 2003; Galí, 2008)

or introducing price indexation (e.g., Yun, 1996; Christiano, Eichenbaum, and Evans, 2005).

While zero trend in�ation can be optimal (e.g., Schmitt-Grohé and Uribe, 2010), it is not

a realistic assumption because actual average in�ation is not (necessarily) zero. Besides,

the introduction of price indexation implies that all prices change in every period, which

contradicts the micro evidence that some prices remain unchanged for several months, as

argued by Woodford (2007). Against this background, there has been a surge of interest in

the e¤ects of non-zero trend in�ation on the NKPC, particularly without price indexation.

Speci�cally, recent studies have examined a generalized NKPC (henceforth GNKPC) and

shown that the GNKPC is signi�cantly distinct from the canonical NKPC in terms of its

in�ation dynamics, macroeconomic stability, and welfare and policy implications.2

This paper investigates in�ation dynamics in the U.S. and Japan by estimating a �gen-

eralized�version of the Galí and Gertler (1999) NKPC. This GNKPC is based on Calvo�s

(1983) staggered price model with constant trend in�ation and backward-looking price set-

ters. It di¤ers from the NKPC only in that, in line with the micro evidence, each period a

fraction of prices remains unchanged even under non-zero trend in�ation.3 This di¤erence,

1As shown by Roberts (1995), the NKPC can be derived from staggered price models à la Calvo (1983)
and Taylor (1980) and price adjustment cost models à la Rotemberg (1982). Other prominent models used
in the literature are state-dependent pricing models developed by Sheshinski and Weiss (1977), Caplin and
Spulber (1987), Caplin and Leahy (1991), Dotsey, King, and Wolman (1999), Golosov and Lucas (2007),
Nakamura and Steinsson (2010), and Midrigan (2011) among others.

2See, e.g., Ascari (2004), Ascari, Castelnuovo, and Rossi (2011), Ascari, Florio, and Gobbi (2017), Ascari
and Ropele (2007, 2009), Cogley and Sbordone (2008), Coibion and Gorodnichenko (2011), Coibion, Gorod-
nichenko, and Wieland (2012), Hirose, Kurozumi, and Van Zandweghe (2017), Kobayashi and Muto (2013),
Kurozumi (2014, 2016), Kurozumi and Van Zandweghe (2016a, b, 2017), Lago Alves (2014), and Shirota
(2015). This strand of the literature has been reviewed by, for example, Ascari and Sbordone (2014).

3The NKPC can be derived by altering our model so that prices which remain unchanged in the model
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however, causes the GNKPC to have two features that are signi�cantly distinct from those

of the NKPC. First, the driving force of in�ation includes not only the current real marginal

cost but also the expected growth rates of future demand and the expected discount rates on

future pro�ts under non-zero trend in�ation. Besides, the real marginal cost re�ects relative

price distortion in addition to the real unit labor cost.4 Second, the GNKPC�s slope and

in�ation-inertia coe¢ cient (i.e., its coe¢ cients on the real marginal cost and past in�ation)

depend on the level of trend in�ation as well as the probability of no price change and the

fraction of backward-looking price setters.

Our paper adopts a Bayesian GMM approach to estimate the GNKPC.5 The use of clas-

sical GMM in estimating NKPCs is known to have the drawback that some parameters can

be unidenti�ed or only weakly identi�ed.6 The Bayesian approach enables econometricians

to exploit their prior knowledge in identifying the parameters.7 Empirical performance of

the GNKPC is then examined using quasi-marginal likelihood (henceforth QML), as sug-

gested by Inoue and Shintani (2014). Taking account of a possible shift in trend in�a-

tion, the GNKPC is estimated during the Great In�ation (1966:Q1�1982:Q3) and thereafter

(1982:Q4�2012:Q4) in the U.S., and during the Moderate In�ation (1981:Q4�1997:Q4) and

thereafter (1998:Q1�2012:Q4) in Japan.

Three main �ndings of the paper are as follows. First, model selection (using QML) shows

that the GNKPC empirically outperforms the NKPC of Galí and Gertler (1999) in both the

U.S. and Japan. The improved �t of the GNKPC to U.S. and Japanese macroeconomic data

are updated by indexing to trend in�ation as in Yun (1996). Therefore, the GNKPC and the NKPC coincide
only when trend in�ation is zero. This implies that they are not nested and that the GNKPC does not
necessarily literally generalize the NKPC.

4As stressed by Galí and Gertler (1999), the real unit labor cost is a theoretically justi�ed measure of
the real marginal cost in the NKPC, where there is no �rst-order e¤ect of the relative price distortion. By
contrast, in the GNKPC, this distortion has a �rst-order e¤ect on the cost when trend in�ation is non-zero.
In this case, the log-linearized distortion is equal to a weighted sum of current and past in�ation rates.

5For Bayesian GMM, see, e.g., Kim (2002) and Chernozhukov and Hong (2003).
6See, e.g., Mavroeidis (2005), Nason and Smith (2008), Kleibergen and Mavroeidis (2009), and Magnusson

and Mavroeidis (2014). This strand of the literature has been reviewed by, for example, Mavroeidis, Plagborg-
Møller, and Stock (2014).

7This is analogous to the use of full-information Bayesian methods in the estimation of dynamic stochastic
general equilibrium models by, for example, Smets and Wouters (2007).

3



suggests the empirical importance of retaining some unchanged prices in each quarter in

line with the micro evidence. Our �nding for the U.S. is consistent with Hirose, Kurozumi,

and Van Zandweghe (2017), who use a full-information Bayesian approach to compare a

GNKPC and an NKPC in a dynamic stochastic general equilibrium (henceforth DSGE)

model.8 Compared with their system approach to estimate the fully speci�ed DSGE model,

an advantage of our approach to estimate the GNKPC is free from misspeci�cation issues

on any other equations in the system.

Second, the model selection also demonstrates that the GNKPC (with backward-looking

price setters) explains U.S. in�ation dynamics better than a constant-trend-in�ation variant

of the Cogley and Sbordone (2008) GNKPC.9 Their paper estimates a GNKPC during the

period 1960�2003, with drifting trend in�ation and price indexation only to past in�ation.10

They �nd that such indexation plays no role, and thus conclude that there is no need for any

backward-looking component in their GNKPC. The drifting trend in�ation helps drive their

conclusion because it makes the gap between actual and trend in�ation less persistent. Our

paper estimates the constant-trend-in�ation variant of their GNKPC to examine whether the

drifting trend in�ation is the main driver of their result. The model selection shows that the

role of price indexation to past in�ation may have become negligible after the Great In�ation

even in the absence of the drifting trend in�ation. Moreover, compared with such indexation,

the backward-looking price setters employed in our paper is a better speci�cation of the

backward-looking component in the GNKPC with constant trend in�ation. These results

suggest that the conclusion of Cogley and Sbordone may also depend on the speci�cation of

8Hirose, Kurozumi, and Van Zandweghe (2017) estimate the two DSGE models with the GNKPC and
with the NKPC during and after the Great In�ation. Restricting attention to a post-Great In�ation period,
Ascari, Castelnuovo, and Rossi (2011) estimate three DSGE models with distinct NKPCs: the NKPC of
Christiano, Eichenbaum, and Evans (2005), a variant of the Cogley and Sbordone (2008) GNKPC (with price
indexation only to past in�ation), and a GNKPC with price indexation only to trend in�ation. Their model
selection with marginal likelihood shows that the third model performs best, while the �rst does worst.

9Moreover, the model selection shows that backward-looking price setters played a non-negligible role in
our GNKPC both during and after the Great In�ation, thus suggesting that the GNKPC requires such a
backward-looking component to better explain U.S. in�ation dynamics.
10To introduce the drifting trend in�ation, Cogley and Sbordone (2008) assume subjective expectations

à la Kreps (1998) instead of rational expectations. The price indexation to past in�ation implies that all
prices change in every period, whereas the backward-looking price setters do not.
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backward-looking components of their GNKPC.

Third, our selected GNKPC indicates that when trend in�ation fell after the Great In�a-

tion in the U.S., the probability of no price change increased, while the fraction of backward-

looking price setters remained almost unchanged. This increase in the probability of no

price change is in line with the micro evidence reported by Nakamura et al. (2017) that the

frequency of (regular) price changes declined after the Great In�ation.11 The increased prob-

ability of no price change �attened the GNKPC�s slope and decreased its in�ation-inertia

coe¢ cient. This decrease in the inertia coe¢ cient is consistent with the empirical result of

Cogley, Primiceri, and Sargent (2010) that the persistence of the gap between actual and

trend in�ation declined after the Volcker disin�ation. As for Japan, when trend in�ation

turned slightly negative after the Moderate In�ation, the fraction of backward-looking price

setters increased, while the probability of no price change remained almost constant.12 This

caused the GNKPC�s in�ation-inertia coe¢ cient to increase and its slope to �atten, thus

obviating a severe de�ation in the period 1998�2012.

The remainder of the paper proceeds as follows. Section 2 presents a GNKPC. Section 3

explains a methodology and data for estimating the GNKPC. Sections 4 and 5 show empirical

results on in�ation dynamics in the U.S. and Japan, respectively. Section 6 concludes.

2 Generalized New Keynesian Phillips Curve

This section presents a GNKPC. It is a �generalized�version of the Galí and Gertler (1999)

NKPC. The GNKPC is derived from a Calvo (1983)-style staggered price model with con-

stant trend in�ation and backward-looking price setters. It di¤ers from the NKPC only in

that, in line with the micro evidence, each period a fraction of prices remains unchanged

even when trend in�ation is non-zero. Yet this di¤erence causes the GNKPC to have features

11The concurrence of the increase in the probability of no price change and the fall in trend in�ation in the
estimated GNKPC is consistent with the literature on endogenous price stickiness, such as Ball, Mankiw,
and Romer (1988), Levin and Yun (2007), and Kurozumi (2016).
12According to the model selection, backward-looking price setters played no role in the GNKPC during

the Moderate In�ation, but their role became important thereafter.
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that are signi�cantly distinct from those of the NKPC.

2.1 Model

In the economy there are a representative �nal-good �rm and a continuum of intermediate-

good �rms f 2 [0; 1]. The �nal-good �rm produces homogeneous goods Yt under perfect

competition. Given the �nal-good price Pt and the intermediate-good prices fPt(f)g, the

�rm chooses a combination of intermediate goods fYt(f)g so as to maximize pro�t PtYt �R 1
0
Pt(f)Yt(f) df subject to the CES production technology Yt =

hR 1
0
(Yt(f))

(��1)=� df
i�=(��1)

,

where � > 1 denotes the elasticity of substitution between intermediate goods.

The �rst-order condition for pro�t maximization yields the �nal-good �rm�s demand

curve for each intermediate good

Yt(f) = Yt

�
Pt(f)

Pt

���
; (1)

and thus the CES production technology leads to

Pt =

�Z 1

0

(Pt(f))
1�� df

� 1
1��

: (2)

Each intermediate-good �rm f produces one kind of di¤erentiated good Yt(f) under

monopolistic competition. Given the real rental rate on capital rk;t and the real wage rate

Wt, the �rm chooses capital and labor inputs fKt(f); lt(f)g so as to minimize cost rk;tKt(f)+

Wtlt(f) subject to the Cobb�Douglas production technology Yt(f) = (Kt(f))
� (Ztlt(f))

1��,

where � 2 (0; 1) denotes the capital elasticity of output and Zt represents the level of

(neutral) technology. Its log level is assumed to follow a random walk process

logZt = log gy + logZt�1 + "t; (3)

where gy is the steady-state rate of technological change Zt=Zt�1 and "t is white noise. Note

that gy corresponds to the steady-state rate of output growth gyt = Yt=Yt�1. The process

(3) implies that

log
yt
yt�1

= log
gyt
gy
� "t; (4)
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where yt � Yt=Zt denotes detrended output.

The �rst-order conditions for capital and labor inputs are given by rk;tKt(f) = �mct(f)Yt(f)

and Wtlt(f) = (1� �)mct(f)Yt(f), where mct(f) denotes �rm f�s real marginal cost. It can

then be shown that the marginal cost is identical among all intermediate-good �rms, i.e.,

mct = mct(f) = (rk;t=�)
� [(Wt=Zt) =(1� �)]1��. Moreover, aggregating the �rst-order con-

dition for labor input over the �rms f and using the demand curve (1) leads to

mct =

R 1
0
Wtlt(f) df

(1� �)
R 1
0
Yt(f) df

=
Wtlt

(1� �)Ytdt
=

ulct
(1� �)dt

; (5)

where lt �
R 1
0
lt(f) df is aggregate labor, ulct � Wtlt=Yt denotes the �nal-good-based real

unit labor cost, and

dt �
Z 1

0

�
Pt(f)

Pt

���
df (6)

represents the relative price distortion. This distortion captures relative demand dispersion

(i.e., dt =
R 1
0
(Yt(f)=Yt) df) and measures the loss of intermediate goods in producing �nal

goods (i.e., Yt � Ytdt =
R 1
0
Yt(f) df).13

One point to be noted in the marginal cost equation (5) is that, given the �nal-good-based

real unit labor cost ulct and the labor elasticity of output 1� �, an increase in the relative

price distortion dt (� 1) reduces each intermediate-good �rm�s real marginal cost mct. One

might have considered that a larger distortion in production would raise �rms�marginal cost.

However, as equation (5) indicates, each intermediate-good �rm�s real marginal cost mct is

equal to the intermediate-good-based real unit labor cost
R 1
0
Wtlt(f) df

.R 1
0
Yt(f) df divided

by the labor elasticity 1��. Therefore, the distortion dt e¤ectively acts to shift the basis of

unit labor cost from �nal-good to intermediate-good production.

Intermediate-good �rms set the prices of their products on a staggered basis à la Calvo

(1983). In each period, a fraction � 2 (0; 1) of �rms keeps prices unchanged, while the

remaining fraction 1�� sets prices in the following two ways. As in Galí and Gertler (1999),

a fraction ! 2 [0; 1) of price-setting �rms uses a backward-looking rule of thumb, while the

remaining fraction 1� ! optimizes prices.

13These follow from the demand curve (1), the �nal-good price equation (2), and Jensen�s inequality.
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The price set by the backward-looking rule of thumb is given by

P rt = P
a
t�1�t�1; (7)

where

P at � (P rt )
! (P ot )

1�! (8)

and P ot is the price chosen by optimizing �rms in period t.

The optimized price P ot is set to maximize the pro�t functionEt
P1

j=0 �
jQt;t+j(Pt(f)=Pt+j�

mct+j)Yt+jjt(f) with regard to Pt(f) subject to the demand curve Yt+jjt(f) = Yt+j(Pt(f)=Pt+j)��,

where Et denotes the (rational) expectation operator conditional on information available in

period t and Qt;t+j is the real stochastic discount factor between period t and period t + j,

which satis�es Qt;t+j =
Qj
k=1Qt+k�1;t+k. The �rst-order condition for the optimized price

becomes

Et

1X
j=0

�jQt;t+j
Yt+j
Yt

jY
k=1

��t+k

 
pot

jY
k=1

1

�t+k
� �

� � 1mct+j

!
= 0; (9)

where pot � P ot =Pt and �t � Pt=Pt�1 is the (gross) in�ation rate of the �nal-good price.

Under the aforementioned price setting, the �nal-good price equation (2) and the relative

price distortion equation (6) can be reduced to

1 = (1� �)
h
(1� !)(pot )

1�� + !(prt )
1��
i
+ ����1t ; (10)

dt = (1� �)
h
(1� !)(pot )

�� + !(prt )
��
i
+ ���tdt�1; (11)

where prt � P rt =Pt.

With one-period (nominal) bonds, their (gross) interest rate rt satis�es

1 = Et

�
Qt;t+1

rt
�t+1

�
: (12)

For the steady state to be well de�ned, the following condition is assumed.

��� < min (1; �) ; (13)

where � is the steady-state value of �t, that is, (gross) trend in�ation.
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2.2 Generalized New Keynesian Phillips curve for estimation

As shown in Appendix, under the assumption (13), equations (3), (4), (5), (7), (8), (9), (10),

and (12) give rise to the GNKPC

�̂t = b�̂t�1 + fEt�̂t+1 + �
�
ûlct � d̂t

�
+ �f

1X
j=1

(�����1)j
�
Etĝyt+j + �Et�̂t+j � Etr̂t+j�1

�
;

(14)

where hatted variables denote log-deviations from steady-state values and � 2 (0; 1) is

the subjective discount factor, which is the steady-state value of the growth-adjusted real

stochastic discount factor �t;t+1 � Qt;t+1Zt+1=Zt. The coe¢ cient b � !=�, where � �

����1 + ![1� ����1(1� ��)], represents the degree of intrinsic in�ation inertia (generated

in the presence of backward-looking price setters), and � � (1� ����1)(1� ����)(1� !)=�

is the so-called �slope�of the GNKPC (i.e., the elasticity of in�ation with respect to real

marginal cost). The others are given by f � ����=� and �f � (��1)(1�����1)(1�!)=�.

In the GNKPC (14), two points are worth noticing. First, the real marginal cost m̂ct

re�ects the relative price distortion d̂t as well as the real unit labor cost ûlct, i.e., m̂ct =

ûlct � d̂t.14 Besides, not only the real marginal cost but also the expected growth rates

of future demand and the expected discount rates on future pro�ts drive in�ation in the

GNKPC under non-zero trend in�ation (i.e., � 6= 1).

Second, the GNKPC�s slope � and in�ation-inertia coe¢ cient b depend not only on the

probability of no price change � and the fraction of backward-looking price setters ! but also

on the level of trend in�ation � and the elasticity of substitution �.15 Table 1 summarizes

how the slope � and the in�ation-inertia coe¢ cient b are related with the model parameters

�, !, �, and �.

14The real unit labor cost is the only force that drives in�ation in the NKPC of Galí and Gertler (1999)
(see Section 2.3).
15The slope � and the in�ation-inertia coe¢ cient b depend on the subjective discount factor � as well. As

� decreases, the slope � steepens and the inertia coe¢ cient b increases. This is because only optimizing �rms
take account of the discount factor �. A decline in � makes optimizing �rms myopic, so that they respond
more to the current and less to the future real marginal cost. Their increased sensitivity to the current
steepens the slope �, while their comparative indi¤erence to the future reduces the in�ation-expectation
coe¢ cient f and increases the in�ation-inertia coe¢ cient b in the presence of backward-looking price
setters.
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Table 1: E¤ects of model parameters on the GNKPC�s slope and in�ation-inertia coe¢ cient

� ! � � (if � > 1) � (if � < 1)
slope � # " " " " #
in�ation inertia b # " # " " #

Notes: The model parameters �, !, �, and � denote the probability of no price change, the fraction of

backward-looking price setters, trend in�ation, and the elasticity of substitution, respectively.

A �atter slope � is caused (ceteris paribus) by a higher probability �, a larger fraction

!, or higher trend in�ation �. It is also generated by a higher elasticity � if trend in�ation

is positive (i.e., � > 1) and by a lower elasticity � if trend in�ation is negative (i.e., � < 1).

These factors except a larger fraction ! bring about a lower in�ation-inertia coe¢ cient b,

which is also caused by a smaller fraction !. In understanding these relationships, the

following log-linearization of the �nal-good price equation (10) is particularly helpful.

0 = (1� !)(1� ����1) p̂ot + !(1� ����1) p̂rt + ����1 (��̂t)

This equation shows that the steady-state contributions to the current aggregate price level

of optimizing �rms (p̂ot ), backward-looking �rms (p̂
r
t ), and �rms keeping prices unchanged

from the previous period (��̂t) are given by (1 � !)(1 � ����1), !(1 � ����1), and ����1,

respectively. The slope � �attens when the contribution of optimizing �rms decreases, since

only these �rms respond (directly) to the real marginal cost. The in�ation-inertia coe¢ cient

b lowers when the contribution of backward-looking �rms decreases. Because a higher prob-

ability of no price change � reduces the contributions of price-setting �rms, that is, both op-

timizing and backward-looking �rms, it �attens the slope and decreases the in�ation-inertia

coe¢ cient. A smaller fraction of backward-looking price setters ! reduces the contribution

of backward-looking �rms while raising that of optimizing �rms, thus decreasing the inertia

coe¢ cient and steepening the slope. These e¤ects of � and ! on the slope and the in�ation-

inertia coe¢ cient of the GNKPC are shared with the NKPC of Galí and Gertler (1999)

(see Section 2.3). However, unlike in the NKPC, higher trend in�ation � �attens the slope

and decreases the inertia coe¢ cient in the GNKPC, since it reduces the contributions of

both optimizing and backward-looking �rms. Likewise, a higher elasticity of substitution �
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reduces them under positive trend in�ation (i.e., � > 1) and therefore �attens the slope and

decreases the inertia coe¢ cient. If trend in�ation is negative (i.e., � < 1), a higher elasticity

raises them, thus steepening the slope and increasing the inertia coe¢ cient.

The relative price distortion dt appears in the GNKPC (14); yet there is no available

data on the distortion (to the best of our knowledge). This issue is addressed by using the

log-linearization of the distortion�s law of motion (11),

d̂t = ��
�d̂t�1 + �d�̂t or d̂t = �d

1X
j=0

(���)j�̂t�j; (15)

where �d � �����1(� � 1)=(1� ����1). By substituting this equation, the GNKPC can be

rewritten as

�̂t =
b

1 + �d�
�̂t�1 +

f
1 + �d�

Et�̂t+1 +
�

1 + �d�
ûlct �

�d�

1 + �d�

1X
j=1

(���)j�̂t�j

+
�f

1 + �d�

1X
j=1

(�����1)j
�
Etĝyt+j + �Et�̂t+j � Etr̂t+j�1

�
: (16)

This alternative representation of the GNKPC is convenient for estimation purposes in the

ensuing sections.16

2.3 Galí and Gertler (1999) New Keynesian Phillips curve

To evaluate the empirical performance of the GNKPC, this paper also considers the NKPC

of Galí and Gertler (1999)

�̂t = b;1�̂t�1 + f;1Et�̂t+1 + �1ûlct; (17)

where the coe¢ cients b;1, f;1, �1 correspond respectively to b, f , � with � = 1.
17 This

NKPC can be derived by altering the model so that intermediate-good �rms which keep

prices unchanged in the aforementioned setting instead update prices by indexing to trend

16The model also implies that dt = K�
t (Ztlt)

1��
=Yt. It is thus theoretically possible to estimate the

GNKPC (14) using this identity. However, the GNKPC (16) is chosen for estimation in this paper because
there is no available data on Zt. Note that total factor productivity is given by Z

1��
t =dt in the model.

17Note that the elasticity of substitution � does not appear in the coe¢ cients b;1, f;1, and �1. Indeed,
b;1 � !=�1, f;1 � ��=�1, �1 � (1� �)(1� ��)(1� !)=�1, and �1 � �+ ![1� �(1� �)].
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in�ation as in Yun (1996). The parameter � in the NKPC then represents the probability of

trend in�ation-indexed price setting.

One point to be emphasized here is that the GNKPC (16) and the NKPC (17) coincide

only when trend in�ation is zero (i.e., � = 1).18 This suggests that they are not nested. Thus,

to compare the empirical performance of the two non-nested models, QML is exploited in

the ensuing sections, as suggested by Inoue and Shintani (2014).

3 Econometric Methodology and Data

This section explains our methodology and data for estimating both the GNKPC and the

NKPC presented in the preceding section.

3.1 Bayesian GMM

This paper estimates the GNKPC (16) and the NKPC (17) with Bayesian GMM. In previous

literature, classical GMM has often been used in estimating NKPCs. Yet a drawback of

such estimation is that some parameters of NKPCs can end up unidenti�ed or only weakly

identi�ed. This issue has been extensively discussed in a considerable number of studies,

including Mavroeidis (2005), Nason and Smith (2008), Kleibergen and Mavroeidis (2009),

Magnusson and Mavroeidis (2014), and Mavroeidis, Plagborg-Møller, and Stock (2014).

These studies list a number of conditions that can help identify parameters of NKPCs.

Our paper adopts a Bayesian approach to GMM estimation of the GNKPC (16) and

the NKPC (17) similarly to empirical work on DSGE models that utilizes full-information

Bayesian methods.19 The Bayesian GMM estimator enables econometricians to exploit their

prior knowledge about model parameters, thereby mitigating the identi�cation issue. Within

the framework of Bayesian GMM, the classical GMM estimator can be viewed as the special

case with a �at prior.

18When � = 1, the coe¢ cients coincide (i.e., b = b;1, f = f;1, � = �1, and �f = 0) and �d = 0 implies

d̂t = 0 from the log-linearized law of motion of the relative price distortion (15). Hence, the GNKPC (16)
and the NKPC (17) are mutually consistent under zero trend in�ation.
19Recently, Bayesian GMM has been used to estimate a DSGE model by, for example, Gallant, Giacomini,

and Ragusa (2017).
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In the econometrics literature, the Bayesian GMM estimator belongs to the class of

limited-information quasi-Bayesian estimators. Its asymptotic properties, such as consis-

tency and asymptotic normality, have been established by Kim (2002) and Chernozhukov

and Hong (2003). The latter authors emphasize a computational advantage of the Bayesian

GMM estimator over the classical estimator, since the Markov Chain Monte Carlo (hence-

forth MCMC) method can be utilized even if its GMM objective function cannot be expressed

in a simple form. Model selection procedures in the quasi-Bayesian framework have been

developed by Kim (2014) and Inoue and Shintani (2014).

Let � denote an m� 1 vector of model parameters to be estimated and gt(�) be an n� 1

vector of moment functions that satis�es E(gt(�)) = 0 at � = �0. In our estimation, trend

in�ation � is assumed to meet the condition log � = E log �t (i.e., E�̂t = 0), where E is the

unconditional expectation operator, and thus gt(�) is de�ned as

gt(�) =

24 ut
ztut
u�;t

35; (18)

where zt is an (n� 2)� 1 vector of instruments and u�;t = log �t � log �. Moreover, in the

case of the GNKPC (16), � = [� � ! �]0 and

ut = (log �t � log �)�
b

1 + �d�
(log �t�1 � log �)�

f
1 + �d�

(log �t+1 � log �)

� �

1 + �d�
ûlct +

�d�

1 + �d�

1X
j=1

(���)j (log �t�j � log �)

� �f
1 + �d�

1X
j=1

(�����1)j
�
ĝyt+j + �(log �t+j � log �)� r̂t+j�1

�
:

Then, following Galí, Gertler, and López-Salido (2005), truncated sums are used to approx-

imate the in�nite sums of log-deviations of in�ation, output growth, and the interest rate

from their steady-state values.20 In the case of the NKPC (17), � = [� � !]0 and

ut = (log �t � log �)� b;1(log �t�1 � log �)� f;1(log �t+1 � log �)� �1ûlct:

20For the quarterly model, this paper employs 16 lags of the log-deviation of in�ation and 16 leads of
the log-deviations of in�ation, output growth, and the interest rate. We also experimented with 12 lags
and 12 leads, and with 20 lags and 20 leads, and con�rmed that the results presented in this paper are not
qualitatively a¤ected.
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This paper employs the e¢ cient two-step GMM estimator.21 This estimator maximizes

the objective function q̂(�) = �(1=2)g(�)0 Ŵ g(�) with regard to � 2 �, where g(�) =

(1=
p
T )
PT

t=1 gt(�) and Ŵ is a consistent estimator of an n�n positive semide�nite optimal

weighting matrix, which is based on the Newey and West (1987) HAC estimator and is given

by Ŵ = [�j(~�)+
PJ

j=1(j=J)(�j(
~�)+�j(~�)

0)]�1, where J is the lag length set by the Andrews

(1991) automatic bandwidth selection method, �j(�) = [1=(T �j)]
PT

t=j+1 gt(�)gt�j(�)
0, and

~� is a �rst-step consistent estimator of the true value �0.22

Next, Bayesian methods are applied to GMM estimation. Following Chernozhukov and

Hong (2003), the quasi-posterior distribution for � is de�ned as

exp(q̂(�)) p(�)R
�
exp(q̂(�)) p(�) d�

;

where p(�) is the prior distribution for �. The Bayesian GMM estimator is typically de�ned

as the mean of the quasi-posterior distribution. This estimator is particularly useful when

the GMM objective function q̂(�) is not tractable, since the mean and credible intervals of

the quasi-posterior distribution can be computed using the MCMC method.23

3.2 Quasi-Bayesian model selection

In conducting model selection, this paper follows Inoue and Shintani (2014) to use the QML

de�ned as24 Z
�

exp(q̂(�)) p(�) d�:

21Following most of the previous studies, including Galí and Gertler (1999) and Galí, Gertler, and López-
Salido (2001, 2005), our paper uses the two-step GMM estimator rather than the continuous updating GMM
estimator proposed by Hansen, Heaton, and Yaron (1996).
22The HAC covariance matrix estimator of the moment functions (18) is employed for two reasons. First,

the in�ation gap u�;t = log �t � log � in (18) is possibly serially correlated. Second, the use of the HAC
estimator makes the resulting estimation valid not only for the exact speci�cation of the GNKPC (16) but
also for the case in which a disturbance (e.g., a mark-up shock) is incorporated in the GNKPC.
23In our estimation, 210; 000 MCMC draws that meet the assumption (13) were generated and the �rst

10; 000 draws were discarded. The Random-Walk Metropolis-Hastings algorithm was applied to generate
draws from the quasi-posterior distribution. The scale factor for the jumping distribution in the algorithm
was adjusted so that an acceptance ratio of around 25 percent would be obtained.
24The use of the QML in model selection is theoretically justi�ed by Inoue and Shintani (2014), who show

the consistency of model selection for procedures with the QML. Christiano, Eichenbaum, and Trabandt
(2016) also utilize QML in the selection of DSGE models estimated with a minimum distance approach for
impulse response functions.
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Similarly to the model selection with marginal likelihood in full-information Bayesian esti-

mation, a model with a higher QML is regarded as a better speci�cation.

The QML is calculated using the modi�ed harmonic mean method. This method com-

putes the QML as the reciprocal of

E

�
w(�)

exp(q̂(�)) p(�)

�
;

which is evaluated using MCMC draws, given a weighting function w(�). This paper con-

siders two alternative choices for the weighting function proposed in the literature. The �rst

choice is suggested by Geweke (1999), who sets w(�) to be the truncated normal density

w(�) =
exp[�(1=2)(� � ��)0 �V �1� (� � ��)]

(2�)m=2j �V�j1=2
1f(� � ��)0 �V �1� (� � ��) � �2m;�g

�
;

where �� is the quasi-posterior mean, �V� is the quasi-posterior covariance matrix, � in this

subsection is the circular constant, 1f�g is an indicator function, �2m;� is the 100�th percentile

of the chi-square distribution with m degrees of freedom, and � 2 (0; 1) is a constant.25 The

second choice is the one proposed by Sims, Waggoner, and Zha (2008). They point out that

Geweke�s choice may not work well when the posterior distribution is non-elliptical, and

suggest the weighting function given by

w(�) =
�(m=2)

2�m=2jV̂�j1=2
f(r)

rm�1
1fq̂(�) + log p(�) > L1�qg

��
;

where V̂� is the second moment matrix centered around the quasi-posterior mode �̂, f(r) =

[vrv�1=(cv90=0:9 � cv1)]1fc1 < r < c90=(0:9)
1=vg, v = log(1=9)= log(c10=c90), r = [(� �

�̂)0V̂ �1� (�� �̂)]1=2, cj is the jth percentile of the distance r, L1�q is the 100(1�q)th percentile

of the log quasi-posterior distribution, q 2 (0; 1) is a constant, and � is the quasi-posterior

mean of 1fq̂(�) + log p(�) > L1�qg1fc1 < r < c90=(0:9)1=vg.

The ensuing analysis assesses the QML using various values of the truncation parameters,

� in the Geweke (1999) estimator and q in the Sims-Waggoner-Zha (2008) estimator, for

robustness. Following Herbst and Schorfheide (2015), this paper chooses � = 0:5 and 0:9 for

the former estimator and q = 0:5 and 0:9 for the latter.

25Recall that m denotes the number of model parameters to be estimated.
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3.3 Data and estimation periods

Primary data for estimation of the GNKPC (16) are four quarterly time series: in�ation �t,

the real unit labor cost ulct, output growth gyt, and the interest rate rt. As for instruments zt

in (18), this paper follows Galí, Gertler, and López-Salido (2001, 2005): four lags of in�ation

and two lags of wage in�ation as well as of the other three variables that appear in the

GNKPC, i.e., ulct, gyt, and rt.

For the U.S., the data on �t is based on the GDP implicit price de�ator, and that on

ulct is the labor income share in the non-farm business sector, as in Galí and Gertler (1999)

and Galí, Gertler, and López-Salido (2001, 2005). Those on gyt and rt are, respectively,

the per-capita real GDP growth rate and the three-month Treasury bill rate. The wage

in�ation data is based on the hourly compensation for the non-farm business sector. To

take account of a possible shift in trend in�ation, estimation is performed separately for the

Great In�ation period (1966:Q1�1982:Q3) and the period thereafter (1982:Q4�2012:Q4), as

well as for the full sample period since 1966:Q1.26

For Japan, the data on �t is based on the CPI (excluding fresh foods), and that on ulct

is the labor income share obtained by dividing the nominal compensation of employees by

nominal GDP.27 The data on gyt is the growth rate of per-capita nominal GDP de�ated with

the CPI, while that on rt is the uncollateralized overnight call rate. The wage in�ation data

is based on the wage measure constructed in Sugo and Ueda (2008). Estimation is conducted

separately for the Moderate In�ation period (1981:Q4�1997:Q4) and the period thereafter

(1998:Q1�2012:Q4), as well as for the full sample period since 1981:Q4.28

26In estimating the GNKPC (16) with the quarterly data, this paper uses 16 leads of in�ation, output
growth, and the interest rate, so that the second sample period ends in 2012:Q4.
27Our measure of the labor income share di¤ers quantitatively from that of Tsuruga and Muto (2008).

Their measure takes into account compensation in self-employed �rms, while it assumes that the labor income
share for such �rms is the same as for other �rms. Although our measure takes no account of self-employed
�rms, it assumes that movements in the ratio of nominal compensation to nominal GDP are the same for the
self-employed as for employees at other �rms. Because the level of the labor income share does not matter
to estimation of the GNKPC or the NKPC, there is no qualitative di¤erence between the two measures
inasmuch as each of them makes some assumptions regarding self-employed �rms. Their measure thus seems
to have no clear advantage over ours.
28Our estimation is not performed during the high in�ation period from the early 1970s to the early 1980s,

because there are limitations to the data prior to 1970 and this paper uses 16 lags of in�ation in estimating

16



For the real unit labor cost, output growth, and the interest rate, the time series of

their log-deviations from steady-state values fûlct; ĝyt; r̂tg are constructed separately for

each sample period; they are all demeaned using their respective sample-period averages.

3.4 Prior distributions for parameters

In each estimation, the subjective discount factor � is �xed at 0:99. All of the remaining

parameters in the GNKPC (16) and the NKPC (17) are estimated. The prior distributions

for the parameters are presented in Table 2.

Table 2: Prior distributions for parameters

Parameter Distribution Mean (U.S./Japan) Std. dev.
�� annualized trend in�ation rate Normal 3:67/0:65 1:50
� probability of no price change Beta 0:50/0:50 0:10
! fraction of backward-looking price setters Beta 0:50/0:50 0:10
� elasticity of substitution Gamma 9:32/7:67 1:00

Notes: �� � 400 log �. In the NKPC (17), � represents the probability of trend in�ation-indexed price setting.

For the U.S., the prior for the annualized trend in�ation rate �� (� 400 log �) is centered

around the full-sample-period average 3:67 with standard deviation of 1:5. The prior dis-

tributions for the probability of no price change � and for the fraction of backward-looking

price setters ! are set to be the beta distributions with mean 0:5 and standard deviation of

0:1. For the prior for the elasticity of substitution �, the gamma distribution is chosen with

mean 9:32 and standard deviation of unity. The prior mean of 9:32 follows the estimate by

Ascari and Sbordone (2014).

For Japan, the prior distributions are the same as for the U.S., except that the prior

mean of the trend in�ation �� is set at the full-sample-period average 0:65, while that of

the substitution elasticity � is chosen at 7:67, a value often used in the macroeconomics

literature.

the GNKPC (16) with the quarterly data, so that the sample size for that period is not large enough. The
second sample period ends in 2012:Q4, as is the case with the U.S.
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4 Empirical Results for the United States

This section presents empirical results on U.S. in�ation dynamics that can be seen to support

our speci�cation of the GNKPC.

4.1 Model selection for U.S. in�ation dynamics

This section begins by comparing the empirical performance of the GNKPC and the NKPC.

As noted in the preceding section, performance is examined with QML, which is computed

using the two alternative modi�ed harmonic mean estimators proposed by Geweke (1999)

and by Sims, Waggoner, and Zha (2008).

Table 3: Log quasi-marginal likelihood (QML) of the GNKPC and the NKPC: United States

Baseline ! = 0
Period Estimator of QML GNKPC NKPC GNKPC NKPC
Great In�ation Geweke, � = 0:5 �9:17 �10:95 �15:70 �13:05
(1966:Q1�1982:Q3) Geweke, � = 0:9 �9:16 �10:95 �15:69 �13:04

SWZ, q = 0:5 �7:10 �8:34 �12:30 �10:21
SWZ, q = 0:9 �7:49 �9:31 �13:65 �11:41

Post-Great In�ation Geweke, � = 0:5 �18:11 �20:11 �20:81 �22:44
(1982:Q4�2012:Q4) Geweke, � = 0:9 �18:10 �20:10 �20:81 �22:44

SWZ, q = 0:5 �15:13 �17:17 �17:65 �19:43
SWZ, q = 0:9 �16:42 �18:43 �18:95 �20:64

Full sample Geweke, � = 0:5 �15:56 �17:32 �29:16 �21:76
(1966:Q1�2012:Q4) Geweke, � = 0:9 �15:56 �17:31 �29:11 �21:70

SWZ, q = 0:5 �12:56 �14:59 �23:55 �19:04
SWZ, q = 0:9 �13:83 �15:82 �25:95 �20:13

Note: In the second column, �Geweke� represents the Geweke (1999) modi�ed harmonic mean estimator,

while �SWZ�represents the Sims-Waggoner-Zha (2008) estimator.

Table 3 reports log QML for the GNKPC and the NKPC, with truncation parameter

values of � = 0:5; 0:9 for the Geweke estimator, and q = 0:5; 0:9 for the Sims-Waggoner-Zha

estimator. For both estimators with both parameter values, the third and fourth columns

of the table show that the GNKPC has a higher QML than the NKPC during each of the

three estimation periods. This result clearly indicates that the GNKPC provides a better

speci�cation for U.S. in�ation dynamics than the NKPC, and that the GNKPC�s improved
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�t to the U.S. macroeconomic data can be attributed to retaining some unchanged prices

in each quarter in line with the micro evidence. As noted in Introduction, recent studies

have shown that GNKPCs are signi�cantly distinct from canonical NKPCs in terms of their

in�ation dynamics, macroeconomic stability, and welfare and policy implications. Therefore,

our �nding suggests that GNKPCs should be preferred to canonical NKPCs for the analysis

of the U.S. economy.

Table 3 also reports log QML in the cases where the GNKPC and the NKPC have no

backward-looking price setters (i.e., ! = 0). For both estimators with both truncation pa-

rameter values, the third to sixth columns of the table show that both the GNKPC and

the NKPC have a higher QML during all the three estimation periods in the presence of

backward-looking price setters than in their absence. This result indicates that backward-

looking price setters played a non-negligible role in accounting for U.S. in�ation dynamics

during and after the Great In�ation. Thus, to better explain U.S. in�ation dynamics, such

a backward-looking component needs to be included in the GNKPC along with some un-

changed prices in each quarter.29

Our empirical result on the non-negligible role of backward-looking price setters in the

GNKPC may be considered as contrasting with Cogley and Sbordone (2008) (henceforth

CS). Under the assumption of subjective expectations based on the anticipated utility model

of Kreps (1998), CS incorporate drifting trend in�ation in a GNKPC with price indexation

only to past in�ation. This GNKPC is crucially di¤erent from ours in that all prices change

every period as long as there is the price indexation. CS follow Sbordone (2002) and Cogley

and Sargent (2005) to conduct limited-information estimation of their GNKPC for the period

29Hirose, Kurozumi, and Van Zandweghe (2017) use a full-information Bayesian approach to compare a
GNKPC and an NKPC in a DSGE model during the Great In�ation (1966:Q1�1979:Q2) and thereafter
(1982:Q4�2008:Q4). Their model selection using marginal likelihood shows that the model with the GNKPC
empirically outperforms that with the NKPC, in line with our result. Yet it suggests no role for backward-
looking price setters in the model with the GNKPC, which contrasts somewhat with our result. This
di¤erence can be ascribed to the fact that our model selection is conducted only for the speci�cation of
in�ation dynamics, while theirs is done for the full system of the model. In their model, habit formation in
consumption preferences gives rise to output persistence and thus in�ation persistence through the GNKPC;
therefore, it enables their model to simultaneously explain both U.S. output and in�ation dynamics without
the need of backward-looking price setters, which generate only in�ation persistence.
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1960:Q1�2003:Q4. CS�s estimate indicates no role of the price indexation to past in�ation

and thus they conclude that there is no need for any backward-looking component in their

GNKPC. One of the drivers of this conclusion is the drifting trend in�ation, which makes

the gap between actual and trend in�ation less persistent.

To better grasp the di¤erence between CS�s and our results, this paper estimates a

GNKPC that is almost the same as theirs except that trend in�ation is constant, for their

sample period 1960:Q1�2003:Q4, as well as for the two subsample periods before 1982:Q3 and

after 1982:Q4. Speci�cally, instead of (13), assume that �cs��(1�!cs) < min (1; �1�!cs), where

�cs 2 (0; 1) denotes the probability of past in�ation-indexed price setting and !cs 2 [0; 1]

represents the degree of price indexation to past in�ation. The GNKPC can then be derived

as

�̂t = b;cs�̂t�1 + f;csEt�̂t+1 + �csûlct

+ �f;cs

1X
j=1

(��cs~�)
j
�
Etĝyt+j + (� � 1)(Et�̂t+j � !csEt�̂t+j�1)� (Etr̂t+j�1 � Et�̂t+j)

�
;

(19)

where b;cs � !cs=�cs, f;cs � ��1�!cs=�cs, �cs � (1 � �cs~�)(1 � ��cs��(1�!cs))=(�cs~��cs),

�f;cs � (�1�!cs � 1)(1 � �cs~�)=(�cs~��cs), ~� � �(��1)(1�!cs), and �cs � 1 + !cs��1�!cs . Note

that this GNKPC takes no account of the relative price distortion d̂t as in CS.30

In estimating the CS-GNKPC (19), � and ut in the moment functions (18) are given by

� = [� �cs !cs �]
0 and

ut = (log �t � log �)�
b;cs

1 + ~!cs�f;cs
(log �t�1 � log �)�

f;cs
1 + ~!cs�f;cs

(log �t+1 � log �)

� �cs
1 + ~!cs�f;cs

ûlct �
�f;cs

1 + ~!cs�f;cs

1X
j=1

(��cs~�)
j
�
ĝyt+j + (� � ~!cs)(log �t+j � log �)� r̂t+j�1

�
;

where ~!cs � !cs��cs~�(� � 1). The prior distributions for �cs and !cs are set to be the same

as those for � and ! that are presented in Table 2.31

30We con�rmed that the results presented in this paper are qualitatively robust even when the relative
price distortion d̂t is present in the GNKPC (19) as theory suggests.
31As in the estimation of our GNKPC (16), this paper also uses 16 leads of in�ation, output growth, and

the interest rate in estimating the CS-GNKPC (19).
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Table 4: Log quasi-marginal likelihood (QML) of GNKPCs: United States

Period Estimator of QML CS-GNKPC !cs = 0 GNKPC
Great In�ation Geweke, � = 0:5 �17:39 �22:83 �12:49
(1960:Q1�1982:Q3) Geweke, � = 0:9 �17:39 �22:83 �12:48

SWZ, q = 0:5 �14:72 �19:60 �9:49
SWZ, q = 0:9 �15:99 �20:92 �10:68

Post-Great In�ation Geweke, � = 0:5 �17:64 �16:68 �14:12
(1982:Q4�2003:Q4) Geweke, � = 0:9 �17:64 �16:67 �14:11

SWZ, q = 0:5 �14:29 �13:21 �11:06
SWZ, q = 0:9 �15:56 �14:54 �12:30

Full sample Geweke, � = 0:5 �24:32 �30:26 �14:37
(1960:Q1�2003:Q4) Geweke, � = 0:9 �24:33 �30:26 �14:38

SWZ, q = 0:5 �21:15 �27:41 �11:02
SWZ, q = 0:9 �22:46 �28:68 �12:28

Notes: In the second column, �Geweke�represents the Geweke (1999) modi�ed harmonic mean estimator,

while �SWZ� represents the Sims-Waggoner-Zha (2008) estimator. The third to �fth columns report log

QML for the CS-GNKPC (19), the CS-GNKPC with !cs = 0, and our GNKPC (16), respectively.

Table 4 reports log QML for the CS-GNKPC (19), the CS-GNKPC with !cs = 0, and our

GNKPC (16).32 The third and fourth columns of the table show that the CS-GNKPC (19)

has a higher QML during the �rst subsample period 1960:Q1�1982:Q3 (and the full sample

period) in the presence of price indexation to past in�ation than in its absence (i.e., !cs = 0),

whereas it has a slightly lower QML during the second subsample period 1982:Q4�2003:Q4.

This result indicates that the role of price indexation to past in�ation may have become

negligible in the CS-GNKPC after the Great In�ation even in the absence of the drifting

trend in�ation introduced by CS. The table also demonstrates that our GNKPC (16) has

the largest QML among the three GNKPCs in all the three estimation periods, for the full

sample and both subsamples. This result implies that, compared with the price indexation to

past in�ation used in CS, the backward-looking price setters employed in our paper provide a

better speci�cation of the backward-looking component in the GNKPC with constant trend

in�ation. Therefore, these results suggest that the conclusion of CS may depend on the

speci�cation of backward-looking components of their GNKPC in addition to the drifting

32Note that the estimation here sets the prior mean of the annualized trend in�ation rate �� at its average
over the full sample period here (1960:Q1�2003:Q4), i.e., 3:68.
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trend in�ation.

4.2 Quasi-posterior estimates of the GNKPC selected for the U.S.

The preceding subsection has shown that, among those considered, the GNKPC (16) (with

backward-looking price setters) is the best representation of U.S. in�ation dynamics both

during and after the Great In�ation. The present subsection thus analyzes this GNKPC in

detail.

For each of the model parameters and reduced-form coe¢ cients of the GNKPC, its quasi-

posterior mean and 90 percent credible interval are reported in Table 5. The quasi-posterior

mean estimates show that when the annualized trend in�ation rate �� (� 400 log �) fell from

5:54 percent during the Great In�ation to 2:41 percent during the Post-Great In�ation,

the probability of no price change � increased from 0:61 to 0:83, while both the fraction

of backward-looking price setters ! and the elasticity of substitution � remained almost

unchanged. The GNKPC�s slope � diminished from 0:04 to 0:01, and its in�ation-inertia

coe¢ cient b decreased from 0:43 to 0:36. These evolutions are also detected in the quasi-

posterior distributions for the model parameters and reduced-form coe¢ cients illustrated in

Figure 1.

Table 5: Quasi-posterior estimates of the GNKPC selected for U.S. in�ation dynamics

Model parameter Great In�ation Post-Great In�ation Full sample
or reduced-form (1966:Q1�1982:Q3) (1982:Q4�2012:Q4) (1966:Q1�2012:Q4)
coe¢ cient Mean 90% interval Mean 90% interval Mean 90% interval

�� 5:537 [4:568; 6:504] 2:411 [1:810; 3:005] 4:700 [3:529; 5:870]
� 0:611 [0:532; 0:693] 0:834 [0:790; 0:877] 0:760 [0:701; 0:817]
! 0:513 [0:384; 0:644] 0:490 [0:341; 0:645] 0:643 [0:505; 0:774]
� 9:380 [7:818; 11:066] 9:597 [7:973; 11:347] 9:487 [7:885; 11:210]
b 0:426 [0:347; 0:504] 0:356 [0:275; 0:432] 0:432 [0:366; 0:493]
f 0:575 [0:497; 0:654] 0:643 [0:567; 0:723] 0:568 [0:507; 0:635]
� 0:041 [0:019; 0:065] 0:006 [0:002; 0:010] 0:006 [0:003; 0:010]
�f 0:002 [0:001; 0:003] 0:000 [0:000; 0:000] 0:000 [0:000; 0:001]
�d 0:120 [0:064; 0:194] 0:193 [0:081; 0:357] 0:158 [0:066; 0:287]

Here, three points are worth mentioning. First, the increase in the probability of no price
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Figure 1: Quasi-posterior distribution for the model parameters and reduced-form coe¢ cients
of the GNKPC selected for U.S. in�ation dynamics
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change in the estimated GNKPC is in line with the micro evidence reported by Nakamura

et al. (2017) that the frequency of regular price changes declined after the Great In�ation.

Besides, the concurrence of the increase in the probability of no price change and the fall in

trend in�ation in the GNKPC is consistent with the literature on endogenous price stickiness,

such as Ball, Mankiw, and Romer (1988), Levin and Yun (2007), and Kurozumi (2016).

Moreover, it is the increased probability of no price change that �attens the slope of the

GNKPC. As previously indicated in the discussion of Table 1, theoretical factors behind

a �attening of the GNKPC�s slope are a higher probability of no price change, a larger

fraction of backward-looking price setters, higher trend in�ation, and a larger elasticity of

substitution under positive trend in�ation.

Second, the decrease in the in�ation-inertia coe¢ cient of the estimated GNKPC after the

Great In�ation is in line with the empirical result of Cogley, Primiceri, and Sargent (2010)

that the persistence of the gap between actual and trend in�ation fell after the Volcker

disin�ation. The decrease in the inertia coe¢ cient is also ascribed to the increase in the

probability of no price change. As shown in Table 1, theoretical factors behind a lower

in�ation-inertia coe¢ cient are a higher probability of no price change, a smaller fraction of

backward-looking price setters, higher trend in�ation, and a larger elasticity of substitution

under positive trend in�ation.

Third, the probability of no price change in the estimated GNKPC is consistent with the

most recent micro evidence. The quasi-posterior distribution for the probability of no price

change after the Great In�ation is centered around 80 percent, implying a duration of about

5 quarters (15 months). This duration is in line with the micro evidence provided by Kehoe

and Midrigan (2015), who report that the implied duration of regular price changes is 14:5

months.33

33The duration of regular price changes reported by Kehoe and Midrigan (2015) is longer than that by
Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008), who show a �gure of 7 to 11 months.
This di¤erence is because the latter two studies identify temporary price increases as regular price changes,
which unsurprisingly shortens the duration.

24



5 Empirical Results for Japan

Empirical results on Japan�s in�ation dynamics that o¤er further support for our GNKPC

are provided in this section.

5.1 Model selection for Japan�s in�ation dynamics

This section also begins by comparing the empirical performance of the GNKPC and the

NKPC. Table 6 reports log QML using the Geweke (1999) estimator with � = 0:5; 0:9

and the Sims-Waggoner-Zha (2008) estimator with q = 0:5; 0:9. For both estimators with

both parameter values, the third and fourth columns of the table show that the GNKPC

has a higher QML than the NKPC during each of the three estimation periods. As is

the case with the U.S., this result indicates that the GNKPC is a better speci�cation for

Japan�s in�ation dynamics than the NKPC, and that the GNKPC�s improved �t to the

Japanese macroeconomic data can be achieved through retaining some unchanged prices in

each quarter in line with the micro evidence. Therefore, our �nding suggests the use of

GNKPCs rather than canonical NKPCs in analysis of Japan�s economy.

Table 6: Log quasi-marginal likelihood (QML) of the GNKPC and the NKPC: Japan

Baseline ! = 0
Period Estimator of QML GNKPC NKPC GNKPC NKPC
Moderate In�ation Geweke, � = 0:5 �15:32 �17:20 �12:26 �13:66
(1981:Q4�1997:Q4) Geweke, � = 0:9 �15:32 �17:19 �12:26 �13:66

SWZ, q = 0:5 �13:36 �15:15 �9:97 �11:50
SWZ, q = 0:9 �14:53 �16:32 �11:15 �12:63

De�ation Geweke, � = 0:5 �13:62 �14:39 �15:67 �16:64
(1998:Q1�2012:Q4) Geweke, � = 0:9 �13:63 �14:40 �15:67 �16:65

SWZ, q = 0:5 �12:40 �13:09 �14:19 �15:16
SWZ, q = 0:9 �13:32 �14:03 �15:25 �16:19

Full sample Geweke, � = 0:5 �15:74 �17:11 �14:07 �15:48
(1981:Q4�2012:Q4) Geweke, � = 0:9 �15:75 �17:09 �14:08 �15:48

SWZ, q = 0:5 �14:45 �15:94 �12:87 �14:21
SWZ, q = 0:9 �15:44 �16:86 �13:82 �15:15

Note: In the second column, �Geweke� represents the Geweke (1999) modi�ed harmonic mean estimator,

while �SWZ�represents the Sims-Waggoner-Zha (2008) estimator.
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Table 6 also reports log QML in the cases where the GNKPC and the NKPC have no

backward-looking price setters (i.e., ! = 0). For both estimators with both truncation

parameter values, the third to sixth columns of the table show that the GNKPC and the

NKPC have a higher QML during the Moderate In�ation and the full sample period in the

absence of backward-looking price setters than in their presence, whereas they have a lower

QML during the De�ation. This result indicates that backward-looking price setters played

no role in accounting for Japan�s in�ation dynamics during the Moderate In�ation, but that

their role became important during the De�ation.

5.2 Quasi-posterior estimates of the GNKPC selected for Japan

The preceding subsection has shown that the best representation of Japan�s in�ation dynam-

ics among those considered is the GNKPC without backward-looking price setters during

the Moderate In�ation and the GNKPC with them during the De�ation. This subsection

thus investigates in detail the GNKPC selected in each of the two periods.

Table 7: Quasi-posterior estimates of the GNKPC selected for Japan�s in�ation dynamics

Model parameter Moderate In�ation De�ation Full sample
or reduced-form (1981:Q4�1997:Q4) (1998:Q1�2012:Q4) (1981:Q4�2012:Q4)
coe¢ cient Mean 90% interval Mean 90% interval Mean 90% interval

�� 1:471 [0:836; 2:113] �0:285 [�0:652; 0:082] 0:458 [�0:400; 1:307]
� 0:760 [0:704; 0:822] 0:764 [0:684; 0:836] 0:804 [0:760; 0:851]
! 0 � 0:565 [0:414; 0:713] 0 �
� 7:744 [6:150; 9:465] 7:651 [6:091; 9:376] 7:700 [6:105; 9:423]
b 0 � 0:426 [0:342; 0:505] 0 �
f 0:994 [0:992; 0:995] 0:572 [0:494; 0:654] 0:991 [0:989; 0:993]
� 0:067 [0:030; 0:109] 0:020 [0:009; 0:032] 0:048 [0:024; 0:074]
�f 0:001 [0:001; 0:002] �0:000 [�0:000; 0:000] 0:000 [�0:000; 0:001]
�d 0:106 [0:049; 0:185] �0:008 [�0:022; 0:002] 0:041 [�0:030; 0:125]

For each of the model parameters and reduced-form coe¢ cients of the selected GNKPC,

its quasi-posterior mean and 90 percent credible interval are reported in Table 7. The

quasi-posterior mean estimates show that when the annualized trend in�ation rate �� (�

400 log �) declined from 1:47 percent during the Moderate In�ation to �0:29 percent during
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Figure 2: Quasi-posterior distribution for the model parameters and reduced-form coe¢ cients
of the GNKPC selected for Japan�s in�ation dynamics
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the De�ation, the fraction of backward-looking price setters ! increased from 0 to 0:57.

Meanwhile, both the probability of no price change � and the elasticity of substitution �

remained almost constant. The increase in the fraction of backward-looking price setters

causes the GNKPC�s in�ation-inertia coe¢ cient b to increase from 0 to 0:43, along with

the decline in trend in�ation. It also causes the GNKPC�s slope � to diminish from 0:07 to

0:02. These evolutions are also observed in the quasi-posterior distributions for the model

parameters and reduced-form coe¢ cients illustrated in Figure 2. Owing to the increase of the

in�ation-inertia coe¢ cient and the �attening of the slope, severe de�ation was not observed

during the De�ation from 1998 through 2012.

The quasi-posterior distribution for the probability of no price change is centered around

75 percent, implying a duration of about 4 quarters (12 months). This duration is longer

than the micro evidence provided by previous studies, for example, Kurachi, Hiraki, and

Nishioka (2016). To reconcile model-implied duration with micro evidence, real rigidity may

be needed in the GNKPC in addition to nominal rigidity; alternatively, studies with micro

data may need to identify regular price changes by excluding temporary price changes along

the lines suggested by Kehoe and Midrigan (2015).

6 Conclusion

This paper has investigated in�ation dynamics in the U.S. and Japan by estimating a �gen-

eralized�version of the Galí and Gertler (1999) NKPC with Bayesian GMM. The GNKPC

di¤ers from the NKPC only in that, in line with the micro evidence, each period a fraction

of prices remains unchanged even under non-zero trend in�ation. Yet this di¤erence causes

the GNKPC to have features that are signi�cantly distinct from those of the NKPC. Model

selection using QML has shown that the GNKPC empirically outperforms the NKPC in

both the U.S. and Japan. It has also demonstrated that the GNKPC explains U.S. in�ation

dynamics better than a constant-trend-in�ation variant of the Cogley and Sbordone (2008)

GNKPC. Our selected GNKPC has indicated that when trend in�ation fell after the Great

In�ation in the U.S., the probability of no price change rose� a �nding that is consistent
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with the micro evidence reported by Nakamura et al. (2017) as well as with the literature

on endogenous price stickiness, including Ball, Mankiw, and Romer (1988). Consequently,

the GNKPC�s slope �attened, while its in�ation-inertia coe¢ cient decreased in line with the

empirical result of Cogley, Primiceri, and Sargent (2010). As for Japan, when trend in�a-

tion turned slightly negative after the Moderate In�ation, the fraction of backward-looking

price setters increased. This caused the in�ation-inertia coe¢ cient to increase and the slope

to �atten in the GNKPC, thus obviating a severe de�ation during the De�ation period of

1998�2012.

Our estimates of the probability of no price change and the fraction of backward-looking

price setters (or equivalently, the in�ation-inertia coe¢ cient) in the GNKPC may be con-

sidered somewhat high. A possible approach to address this issue is to incorporate variable

elasticity demand curves into our model. Kurozumi and Van Zandweghe (2016b) show that

introducing such demand curves along the lines of Kimball (1995), Dotsey and King (2005),

Levin et al. (2008), and Kurozumi and Van Zandweghe (2016a) generates not only real rigid-

ity but also in�ation persistence through strategic complementarity in price setting under

non-zero trend in�ation.34 This extension of our paper would be one fruitful avenue for

future research.

34The real rigidity generated by variable elasticity demand curves takes the place of the nominal rigidity
represented by the probability of no price change when trend in�ation declines. See also Shirota (2015).
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Appendix

This appendix presents the derivation of the GNKPC (14). Using �t;t+1 � Qt;t+1Zt+1=Zt,

yt � Yt=Zt, and gy exp("t) = Zt=Zt�1 (from eq. (3)), the optimizing price-setting equation

(9) and the stochastic discount factor equation (12) can be rewritten as

0 = Et

1X
j=0

(���)j

"
jY
k=1

�t+k�1;t+k
yt+k
yt+k�1

��t+k
�

��# 
��jpot

jY
k=1

�

�t+k
� �

� � 1mct+j

!
;

1 = Et

�
�t;t+1

gy exp("t+1)

rt
�t+1

�
:

Log-linearizing these equations as well as equations (4), (5), (7), (8), and (10) around the

steady state with trend in�ation � under the assumption (13) and combining the resulting

equations leads to the GNKPC (14).
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