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1 Introduction

In the wake of the Global Financial Crisis, central banks in many advanced economies moved

aggressively in response to de�ationary pressures by introducing various unconventional mon-

etary policy measures. In that process, central banks also lowered their policy rates swiftly,

but were soon constrained by the e¤ective lower bound of nominal interest rates. Central

banks became concerned over the risk of falling into and being trapped in de�ation, �rst

raised by Benhabib, Schmitt-Grohé, and Uribe (2001).1 The authors argue that once the

policy rate is stuck at its lower bound, the economy may fall into a long-run equilibrium

(or steady state) at a lower in�ation rate than its target. They employ a simple model

consisting of an interest-rate feedback rule of the sort proposed by Taylor (1993) and the

Fisher relation among in�ation and the nominal and real rates of interest. They then show

that the active rule leads to two long-run equilibria in the presence of a lower bound on the

policy rate.2 One equilibrium is consistent with the in�ation target, but the other is not.

In the second equilibrium, the policy rate stays at its lower bound and the in�ation rate is

below its target, possibly negative. Moreover, they demonstrate that an in�nite number of

equilibrium paths exist starting from regions close to the �rst equilibrium, then converging

to the second equilibrium.

This study revisits the issue initiated by Benhabib, Schmitt-Grohé, and Uribe (2001).

In particular, this study examines conditions for achieving the target in�ation rate even

after hitting the lower bound of policy rates. More precisely, the study investigates what

economic circumstances are required to establish credibility of the in�ation target and how

the economy evolves from its current state to a long-run equilibrium at the target in�ation

rate. Our study examines the questions by using a dynamic model based on evolutionary

game theory starting from Maynard-Smith and Price (1973).3 The study analyzes transition

1St. Louis Fed President Bullard (2013) applies the analytical framework of Benhabib, Schmitt-Grohé,
and Uribe (2001) to the U.S. and Japanese data, and discusses the possibility that the U.S. economy may
become enmeshed in a Japanese-style de�ationary outcome within the next several years.

2A Taylor (1993)-type monetary policy rule is called active if it raises the policy rate by more than the
increase in in�ation. Otherwise, it is called passive.

3Another modeling approach is to use a global game as in, for example, Carlsson and van Damme (1993),
Morris and Shin (1998), and Katagiri (2016). In that game, an equilibrium is determined solely on the basis
of signals about future fundamentals regardless of the current state of the economy. Moreover, the selection
from multiple equilibria is done without considering transition dynamics of the economy. Our study chooses
to employ an evolutionary game because it allows us to take into account the current state and transition
dynamics in the analysis of multiple long-run equilibria.
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mechanism of the economy on the basis of both the best-response dynamics (Gilboa and

Matsui [1991]) and the perfect-foresight dynamics (Matsui and Matsuyama [1995]).4 To

the best of our knowledge, this study is the �rst to apply evolutionary game theory to the

analysis of the macroeconomic issue on multiple long-run equilibria.

The model includes two types of players: entrepreneurs and workers. Each entrepreneur

owns a �rm and hires a worker to produce a good under monopolistic competition. Entrepre-

neurs and workers iteratively play a stage game to make investment decisions.5 As in Levin

and Reiss (1988), these investments are a combination of demand-creating and cost-reducing

innovations.6 Moreover, complementarity exists between entrepreneurs�and workers�invest-

ments, just like complementarity between physical and human capital investments discussed

in Bartel and Lichtenberg (1987) and Blundell et al. (1999). This complementarity is in line

with the capital�skill complementarity analyzed by Griliches (1969) and Krusell et al. (2000).

Note, however, that our study ignores the accumulation of physical and human capitals for

the sake of analytical simplicity.

As is similar to Acemoglu (1997) and Redding (1996), the presence of the complemen-

tarity results in producing two (pure-strategy) long-run equilibria: all players invest or no

player invests. In these equilibria the in�ation rate is not necessarily consistent with the

target. Under certain conditions, however, the in�ation rate converges to its target in the

equilibrium where all players invest.

This study shows two necessary conditions for achieving a long-run equilibrium at the

target in�ation rate. The �rst condition is that entrepreneurs choose investments in demand-

creating innovation rather than cost-reducing innovation. If entrepreneurs engage in cost-

reducing innovation, the economy is expected to su¤er from de�ation.7 Thus, even in the

long-run equilibrium where all players invest, no player views the in�ation target as credible.

4Roughly speaking, the perfect-foresight dynamics corresponds to equilibrium paths under rational
expectations in macroeconomics, while the best-response dynamics corresponds to those under adaptive
expectations.

5Workers�investments can be interpreted in various ways. For example, workers incur costs to acquire
general or �rm-speci�c skills or make more e¤ort to increase demand for goods or reduce production costs.

6For demand-creating innovation, see, e.g., Jovanovic and Rob (1987), Romer (1986, 1990), Grossman
and Helpman (1991), Aghion and Howitt (1992), and Kesteloot and De Bondt (1993). For cost-reducing
innovation, see, e.g., Dasgupta and Stiglitz (1980), Reinganum (1983), and Spence (1984). Following the
arguments of Capon et al. (1992), Athey and Schmutzler (1995), and Gilbert (2006), our model considers
both types of innovation.

7Cost-reducing innovation leads to �erce competition among �rms by decreasing prices of their products
to increase their market shares.
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The second condition is that, according to the analysis with the best-response dynamics,

the proportions of entrepreneurs and workers currently investing are su¢ ciently large. If

only a small part of players invest in the current state of the economy, each player expects

its investment counterpart to be less likely to invest and as a consequence, the player�s

pro�t increase arising from its investment is presumed to be lower. Therefore, the economy

continues to evolve toward the long-run equilibrium in which no player invests, and in�ation

never occurs. Thus, even if the �rst condition is met, no player views the in�ation target as

credible and the target in�ation rate is not achievable.

These two conditions are needed to guide the economy successfully toward the long-run

equilibrium where all players invest and the in�ation rate is at its target. Unless both

conditions are satis�ed, policies to stimulate investments in demand-creating innovation are

called for.

The remainder of this paper is organized as follows. Section 2 presents the model setting.

Section 3 analyzes equilibrium strategies of the stage game, while Section 4 investigates the

dynamics of the strategies using the evolutionary game theory approach. Section 5 concludes.

2 Model Setting

There are two types of players: entrepreneurs and workers. The population of each type of

player is a continuum of mass one. One entrepreneur and one worker are randomly chosen

from the population. The entrepreneur owns a �rm and hires the worker to produce a good

under monopolistic competition. They play the two-period stage game, which is iteratively

conducted for an in�nite number of continuous rounds indexed by � 2 [0;1).

[Figure 1 here]

The timing of the stage game is summarized in Figure 1. In period 0, the worker chooses

its amount of (human capital) investment h 2 R+, while the entrepreneur chooses its amount
of (physical capital) investment k 2 R+ and (its �rm chooses) output in period 0 and 1,

(x0; x1) 2 R2+.8 Both players make their decisions simultaneously.

8It is implicitly assumed that in period 1, the �rm can change its current-period output x1 2 R+ on the
basis of currently available information, although this is not explicitly analyzed in the model.
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In period 1, the entrepreneur pays a �xed fraction � 2 (0; 1) of its �rm�s total pro�t to
the worker after production. The �rm�s total real pro�t � 2 R is given by

� =
p0 � v0
0

x0 +
1

1 + r

p1 � v1
1

x1;

where (p0; p1) 2 R2++ are prices of the �rm�s product in period t = 0; 1, (v0; v1) 2 R2+ are its
variable production costs other than its payments to the worker, (0; 1) 2 R2++ are the price
levels in the economy, and r 2 R is the real interest rate. The value of 1 is not observable
until the stage game ends, and thus each player is assumed to set 1 = ~1, where ~1 is

calculated from the period-0 price level 0 and the target in�ation rate announced by the

central bank.9 All players are assumed to be risk neutral.10 Then, the entrepreneur�s payo¤

is (1� �)� � k, while the worker�s payo¤ is �� � h.

The demand functions for the good in period t = 0; 1 are assumed to take the form

xt = dt � �(pt � t);

where dt 2 R++ denotes the �fundamental� amount of demand, which is demand for the
good when pt = t, and � 2 R++ is the elasticity of demand with respect to the relative price
(pt � t).

Based on the above setting, the inverse demand functions are given by

p0 = 0 +
1

�
(d0 � x0); (1)

p1 = 1 +
1

�
(d1 � x1): (2)

These functions are linearly decomposed into the price-competition e¤ect (0; 1) and the

goods-property e¤ect (d0=�; d1=�). From (2), the expected period-1 price in period 0 is given

by

E[p1] = ~1 +
1

�
(E[d1]� x1): (3)

9This assumption is related to rational inattention analyzed by, for example, Sims (2003). That is, if
information acquisition on future prices is su¢ ciently costly, players rationally gather no information on
their own and rely heavily on the central bank�s target in�ation rate.
10We con�rm that qualitatively the same result is obtained even in the case of risk-averse players.
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We assume that each player�s investment is comprised of demand-creating innovation

and cost-reducing innovation.11 Speci�cally, the fundamental demand and variable cost in

period 0, d0 and v0, are constants, whereas those in period 1, d1 and v1, are random variables

whose distribution depends on the amount of investments k and h, that is, d1 and v1 follow

the probability density functions f(d1jk; h) and g(v1jk; h), respectively.12

Further, we assume that when the amount of each type of investment is greater than

the respective threshold value k 2 R+ or h 2 R+, the investment stochastically leads to
an increase in the fundamental demand and a reduction in the variable cost. That is, the

cumulative density functions F (d1jk; h) and G(v1jk; h) are assumed to satisfy

F (d1jk 2 [0; k); h 2 [0; h)) > F (d1jk 2 [k;1); h 2 [0; h))

= F (d1jk 2 [0; k); h 2 [h;1)) > F (d1jk 2 [k;1); h 2 [h;1))

for all d1, and

G(v1jk 2 [0; k); h 2 [0; h)) < G(v1jk 2 [k;1); h 2 [0; h))

= G(v1jk 2 [0; k); h 2 [h;1)) < G(v1jk 2 [k;1); h 2 [h;1))

11Our model implicitly assumes that innovation can be both demand-creating and cost-reducing in di¤erent
combinations and that entrepreneurs face a continuous interval of innovation types w 2 [0; 1] from which to
choose.
12The probability density functions f(d1jk; h) and g(v1jk; h) may also depend on the expected in�ation

rate ~1=0, because there may exist income e¤ects and intertemporal substitution e¤ects on d1 and because
v1 may depend on ~1. We do not explicitly incorporate these e¤ects into our model for the sake of analytical
simplicity. As for g(v1jk; h), if it depends fully on ~1=0; non-linearity arises in the calculations presented
in the following sections. However, we con�rm that this does not detract from our arguments. Regarding
f(d1jk; h), future work should aim to incorporate the e¤ects listed above. Yet note that even when we
endogenize the consumption choices of entrepreneurs and workers, the income e¤ect on d1 is only half of the
increase in real income and d0 also increases as 1=(2 + 2r) (see Appendix A.1). Therefore, the ratio of the
increment of d1 to that of d0 is always (1 + r) � 1.
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for all v1. In addition, the mean of each distribution is denoted by

dI � E[d1jk 2 [k;1); h 2 [h;1)];

dN � E[d1jk 2 [0; k); h 2 [0; h)];

vI � E[v1jk 2 [k;1); h 2 [h;1)];

vN � E[v1jk 2 [0; k); h 2 [0; h)]:

The values of dI and vI represent, respectively, the expected fundamental demand and

variable cost when the player and its counterpart both invest, while dN and vN represent,

respectively, those when no player invests. Consequently, when only one player invests

more than the threshold, the expected fundamental demand and variable cost are denoted

respectively by

�ddI + (1� �d)dN = E[d1jk 2 [k;1); h 2 [0; h)] = E[d1jk 2 [0; k); h 2 [h;1)];

�vvI + (1� �v)vN = E[v1jk 2 [k;1); h 2 [0; h)] = E[v1jk 2 [0; k); h 2 [h;1)];

where �d and �v are assumed to satisfy dI > �ddI + (1� �d)dN > dN for dI > d0 � dN and

vN > �vvI + (1 � �v)vN > vI for v0 � vN > vI . For the sake of analytical simplicity, it is

assumed that �d = �v = �.

A smaller value of � implies a greater degree of complementarity between both players�

investments. We assume that � 2 (0; 1=2). If only one player invests, the fundamental

demand increases little and the variable cost decreases only slightly. For the fundamental

demand and the variable cost to change substantially, both players need to invest. In the

analysis, dI and vI are exogenously given; however, we will discuss each entrepreneur�s choice

of the type of innovation in Section 3.3.2.

3 Stage Game

This section analyzes equilibrium strategies of the stage game presented in the preceding

section.

6



3.1 Best Responses

3.1.1 Entrepreneur

Each entrepreneur�s problem is given by13

max
x0;x1;k

(1� �)

�
p0 � v0
0

x0 +
1

1 + r
E

�
p1 � v1
~1

�
x1

�
� k:

This problem can be separated into three problems, because the optimal choices of x0, x1,

and k can be independently determined. The value of x0 is determined by

x�0 � argmax
x0

p0 � v0
0

x0 = argmax
x0

�
1 +

1

�0
(d0 � x0)�

v0
0

�
x0 =

1

2
[d0 + � (0 � v0)] : (4)

Substituting (4) into the inverse demand function (1) yields

p�0 =
1

2

�
d0
�
+ 0 + v0

�
:

We assume only symmetric equilibria in which all members of each population (i.e., en-

trepreneurs and workers) choose the same strategy. Then, p�0 = 0 must hold, and thus

p�0 = 0 = (d0 + �v0)=�. Because ~1 is exogenously determined and (d1,~1) and (v1,~1) are

independent, the optimal amount of production in period 1 is determined by

x�1 � argmax
x1

E

�
p1 � v1
~1

�
x1 = argmax

x1

�
1 +

1

�~1
(E[d1]� x1)�

E[v1]

~1

�
x1

=
1

2
[E[d1] + � (~1 � E[v1])] : (5)

Substituting (5) into (2) yields

E[p�1] =
1

2

�
E[d1]

�
+ ~1 + E[v1]

�
:

Turning to the maximization problem for k, although k can take a continuous value, the

optimal choice of k is actually binary, that is, k 2 f0; kg. A strategy k 2 (0; k) is always
strictly dominated by k = 0, because this investment does not a¤ect d1 but the entrepreneur

13The problems of each entrepreneur and each worker are consistent with maximization problems of indirect
utility functions derived from log utility, as shown in Appendix A.1.
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needs to pay k. Similarly, k 2 (k;1) is strictly dominated by k = k. Thus it su¢ ces to

consider the binary choice k 2 f0; kg. For the same reason, each worker faces the binary
choice h 2 f0; hg. Letting �1 denote the �rm�s real pro�t in period 1, we have

E[�1jk; h] �
1

1 + r
E

�
p1 � v1
~1

�
x1 =

1

4~1(1 + r)�
(�~1 + E[d1jk; h]� �E[v1jk; h])2:

Moreover, let A and B be de�ned as follows.

A � E[�1jk = k; h 2 [0; h)]� E[�1jk = 0; h 2 [0; h)]

=
� [(dI � �vI)� (dN � �vN)]

4 ~1(1 + r)�
[2�~1 + � (dI � �vI) + (2� �) (dN � �vN)] ;

B � E[�1jk = k; h 2 [h;1)]� E[�1jk = 0; h 2 [h;1)]

=
(1� �) [(dI � �vI)� (dN � �vN)]

4 ~1(1 + r)�
[2�~1 + (1 + �) (dI � �vI) + (1� �) (dN � �vN)] :

The value of A represents the increase in the �rm�s expected pro�t as a result of the en-

trepreneur�s investment when h 2 [0; h), while B represents that increase when h 2 [h;1).
Therefore, given h 2 [0; h), the increase in the entrepreneur�s expected payo¤ from invest-

ment is positive if (1 � �)A > k, while it is negative if (1 � �)A < k. Similarly, given

h 2 [h;1), the increase is positive if (1 � �)B > k, while it is negative if (1 � �)B < k.14

From the assumption that � 2 (0; 1=2), it follows that B > A. This is because

B > A

, 1� �

�
>

2�~1 + � [(dI � �vI)� (dN � �vN)] + 2 (dN � �vN)

2�~1 + � [(dI � �vI)� (dN � �vN)] + [(dI � �vI) + (dN � �vN)]
;

and � 2 (0; 1=2) implies that the left-hand side of the last inequality, ((1��)=�), is greater
than 1, while the right-hand side is smaller than 1.

Suppose that (1 � �)A < k < (1 � �)B. The entrepreneur chooses k = k if it expects

the worker to choose h 2 [h;1); otherwise (i.e., it expects the worker to choose h 2 [0; h)),
the entrepreneur chooses k = 0. Moreover, the entrepreneur may choose a mixed strategy

in which k = k with probability �e 2 [0; 1] and k = 0 otherwise. Similarly, the worker may

14If (1��)A = k holds for h 2 [0; h) or (1��)B = k holds for h 2 [h;1), then the entrepreneur�s expected
payo¤ from k = k and the one from k = 0 are the same.

8



choose a mixed strategy in which h = h with probability �w 2 [0; 1] and h = 0 otherwise.
Based on these mixed strategies, the entrepreneur�s expected payo¤ from investment is given

by

(1� �) (�wE[�1jk = k; h = h] + (1� �w)E[�1jk = k; h = 0])� k; (6)

while the expected payo¤ from no investment is given by

(1� �) (�wE[�1jk = 0; h = h] + (1� �w)E[�1jk = 0; h = 0]) : (7)

The entrepreneur strictly prefers to invest when (6) is greater than (7), i.e., (1 � �)[(1 �
�w)A+ �wB] > k. Thus, the entrepreneur invests when �w > ��w, where

��w �
k=(1� �)� A

B � A
:

Note that ��w 2 (0; 1), because (1 � �)A < k < (1 � �)B. Then, the best-response corre-

spondence �e(�w) is given by

�e(�w)

8>>><>>>:
= 1 if �w > ��w

2 [0; 1] if �w = ��w

= 0 if �w < ��w:

Consequently, the best-response correspondence of the entrepreneur is given by

k� =

8>>><>>>:
k if k < (1� �)A

�e(�w) if (1� �)B > k > (1� �)A

0 if k > (1� �)B:

3.1.2 Worker

Each worker�s problem is given by

max
h

�

�
p0 � v0
0

x0 +
1

1 + r
E

�
p1 � v1
~1

�
x1

�
� h:

In what follows, we ignore the period-0 payo¤ �([p0� v0]=0)x0, because it is not a¤ected by
h. Thus, when k 2 [0; k), the expected increase in the �rm�s pro�t as a result of the worker�s

9



investment is given by

E[�1jk 2 [0; k); h = h]� E[�1jk 2 [0; k); h = 0] = A;

otherwise (i.e., k 2 [k;1)), it is given by

E[�1jk 2 [k;1); h = h]� E[�1jk 2 [k;1); h = 0] = B:

Thus, given k 2 [0; k), the increase in the worker�s expected payo¤from investment is positive
if �A > h, while it is negative if �A < h. Similarly, given k 2 [k;1), the increase is positive
if �B > h, while it is negative if �B < h.15

When �A < h < �B, the worker�s best response depends on the entrepreneur�s mixed

strategy. De�ne ��e as

��e �
h=� � A

B � A
:

Note that ��e 2 (0; 1), because �A < h < �B. Then, from a similar calculation to that in

the entrepreneur�s problem, it follows that the best-response correspondence �w(�e) is given

by

�w(�e)

8>>><>>>:
= 1 if �e > ��e

2 [0; 1] if �e = ��e

= 0 if �e < ��e:

Therefore, the best-response correspondence of the worker is given by

h� =

8>>><>>>:
h if h < �A

�w(�e) if �B > h > �A

0 if h > �B:

3.2 Equilibrium

Based on the best responses of the entrepreneur and the worker, the Nash equilibria are

determined as follows.16

15When �A = h holds for k 2 [0; k) or �B = h holds for k 2 [k;1), the worker�s expected payo¤ from
h = h and the one from h = 0 are the same.
16When k = (1 � �)A (h = �A) holds, players choose k� = k (h� = h) if h � �B (k � (1 � �)B);

otherwise, they are indi¤erent between k� = k (h� = h) and k� = 0 (h� = 0). When k = (1� �)B (h = �B)

10



Proposition 1 Suppose k 62 f(1��)A; (1��)Bg and h 62 f�A; �Bg. Then, the stage game
has the following equilibria.

1. Both the entrepreneur and the worker invest (k� = k and h� = h) if (i) k < (1� �)A

and h < �B or (ii) k < (1� �)B and h < �A.

2. Only the entrepreneur invests (k� = k and h� = 0) if k < (1� �)A and h > �B.

3. Only the worker invests (k� = 0 and h� = h) if k > (1� �)B and h < �A.

4. No one invests (k� = 0 and h� = 0) if (i) k > (1��)B and h > �A or (ii) k > (1��)A
and h > �B.

5. The following three equilibria exist if A < k=(1� �) < B and A < h=� < B:

(a) Both the entrepreneur and the worker invest (k� = k and h� = h).

(b) No one invests (k� = 0 and h� = 0).

(c) Both the entrepreneur and the worker choose the mixed strategies ��e and �
�
w,

respectively.

Proof : When (1��)B < k (�B < h), the entrepreneur (worker) does not invest regard-

less of its counterpart�s strategy. When (1� �)A > k (�A > h), the entrepreneur (worker)

invests regardless of its counterpart�s strategy. When A < k=(1 � �) < B (A < h=� < B),

the entrepreneur (worker) invests if the probability that the worker (entrepreneur) will invest

is su¢ ciently high and vice versa. There also exists a mixed-strategy equilibrium, because

both players�strategies are the best responses to each other when �e = ��e and �w = ��w. �

These results are summarized in Table 1 and Figure 2. If the marginal increases in the

expected payo¤s from investing (A andB) are su¢ ciently high, both players invest. However,

if both values are low, they do not invest. When A < k=(1 � �) < B and A < h=� < B,

there exist multiple equilibria, meaning that the complementarity between both players�

investments plays a crucial role.

[Figure 2 here]

holds, players choose k� = 0 (h� = 0) if h � �A (k � (1 � �)A); otherwise, they are indi¤erent between
k� = k (h� = h) and k� = 0 (h� = 0). Note that a mixed-strategy equilibrium (��e; �

�
w) exists only when

A < k=(1� �) < B and A < h=� < B even when the cases in which players are indi¤erent between k� = k
(h� = h) and k� = 0 (h� = 0) are included.
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Table 1: Ranges of k and h and equilibrium strategy (k�; h�)

h < �A A < h=� < B h > �B

k < (1� �)A (k; h) (k; h) (k; 0)
A < k=(1� �) < B (k; h) (k; h); (0; 0); or (��e; �

�
w) (0; 0)

k > (1� �)B (0; h) (0; 0) (0; 0)

3.3 Discussion

3.3.1 Types of Innovation

This subsection analyzes the e¤ects of each type of innovation on the in�ation rate. As

explained above, d1 = dI and v1 = vI hold in the equilibrium with k� = k and h� = h,

whereas d1 = dN and v1 = vN hold in the equilibrium with k� = 0 and h� = 0. Therefore,

the expected price level is given by (~1 + dI=�+ vI) =2 in the former equilibrium, while it is

given by ( ~1 + dN=�+ vN) =2 in the latter equilibrium.

Suppose that all entrepreneurs and workers invest in the economy. Then, each entrepreneur-

worker pair�s expected price level should be the same as the expected price level in the

economy when all players have rational expectations, i.e.,

~1 =
dI + �vI

�
:

When none of the entrepreneurs or workers invest, the expected price level in the economy

is given by

~1 =
dN + �vN

�
:

While all pairs do not necessarily choose the same strategies, the range of ~1 should be

~1 2
�
min

�
dN + �vN

�
;
dI + �vI

�

�
; max

�
dN + �vN

�
;
dI + �vI

�

��
:

Thus, the expected in�ation rate between period 0 and period 1, ~1=0 � 1, meets

~1
0
� 1 2

�
min

�
dN + �vN
d0 + �v0

;
dI + �vI
d0 + �v0

�
� 1;max

�
dN + �vN
d0 + �v0

;
dI + �vI
d0 + �v0

�
� 1
�
:

Note that (dN + �vN)=(d0+ �v0)� 1 � 0 always holds. If dI + �vI > d0+ �v0 or, equivalently,

12



dI � d0 > �(v0� vI), the in�ation rate is positive in the equilibrium with k� = k and h� = h,

while in the one with k� = 0 and h� = 0 the in�ation rate is at most zero and likely to be

negative. Otherwise (i.e., dI � d0 � �(v0� vI)), the in�ation rate is at most zero even in the
equilibrium with k� = k and h� = h and therefore the in�ation rate is at most zero in both

of the equilibria with k� = k and h� = h and with k� = 0 and h� = 0. Thus, the following

observation is obtained.

Observation 1 Both equilibria, that with a positive in�ation rate and that with a zero or

negative in�ation rate, exist if and only if dI � d0 > �(v0 � vI). In�ation occurs in the

equilibrium with k� = k and h� = h (where both types of players invest), while no in�ation

occurs in the equilibrium with k� = 0 and h� = 0 (where no player invests). When dI � d0 �
�(v0� vI), there is no in�ation in either of the equilibria. Therefore, a positive in�ation rate
is attainable in an equilibrium only if dI � d0 > �(v0 � vI).

This observation highlights one of the necessary conditions for achieving the (positive)

target in�ation rate in an equilibrium. When entrepreneurs invest in demand-creating inno-

vation rather than cost-reducing innovation (a high value of dI such that dI�d0 > �(v0�vI)
holds), players can view the target in�ation rate as credible. On the contrary, when entre-

preneurs stick to cost-reducing innovation (a low value of vI such that dI � d0 < �(v0 � vI)

holds), no player views the target rate as credible. This is because in this case the upper

bound of ~1 is zero. Note that dN + �vN � d0 + �v0 always holds from the assumptions

dN � d0 and vN � v0. In such a case, policies to stimulate investments in demand-creating

innovation (e.g., structural reforms, tax incentives, subsidies) are called for so that players

could view the target in�ation rate as credible (see Figure 3). In what follows, it is assumed

that dI � d0 > �(v0 � vI).

[Figure 3 here]

3.3.2 Choice of Innovation Types

This subsection simply supposes that entrepreneurs can decide the type of innovation they

engage in, that is, w 2 f0; 1g, where w = 1 denotes demand-creating innovation and w = 0
denotes cost-reducing innovation.17 When demand-creating innovation is chosen, expected

17For the sake of analytical simplicity, this subsection assumes the binary choice, i.e., w 2 f0; 1g.
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demand creation is d�(> dN) and the expected production cost is vN in the case of k 2
[k;1) and h 2 [h;1). On the contrary, if cost-reducing innovation is selected, expected
demand creation is dN and the expected production cost is v�(< vN). Therefore, d� and

v� represent the expected fundamental demand and variable cost achieved through each

investment, respectively. Note that d� and v� may correspond to dI and vI in the baseline

model presented above when dI = d� > dN and vI = vN for w� = 1 as well as dI = dN

and vI = v� < vN for w� = 0. From the �rm�s expected period-1 pro�t E[�1jk; h] =
f1=[4~1(1+ r)�]g(�~1+E[d1jk; h]� �E[v1jk; h])2, the optimal choice of innovation types w is
given as follows.

Corollary 1 Given the expected demand-creation e¤ect (d� � dN) and the expected cost-

reduction e¤ect (vN � v�), the entrepreneurs� decision with regard to w� 2 f0; 1g is given
by

w� =

8<: 1 if d� � dN > �(vN � v�)

0 if d� � dN < �(vN � v�):

Proof : See Appendix A.2. �

The elasticity of demand (�) plays a key role here. As the elasticity increases, �rms are

more likely to choose cost-reducing innovation and vice versa. If demand for a good is elastic

to its relative price, a decrease in the price leads to an increase in revenue, meaning that it

is more attractive for entrepreneurs to reduce costs. On the contrary, if demand is inelastic,

entrepreneurs can raise prices and at the same time, increase demand for their product

through demand-creating innovation, as pointed out by Kamien and Schwartz (1970) and

Spence (1975).

Therefore, to satisfy the condition in Observation 1, entrepreneurs should have an incen-

tive to choose demand-creating innovation, which means that � should be low enough. A

su¢ ciently low value of � is necessary for in�ation to occur in an equilibrium. If this is not

the case, policies to raise d� are called for so that the condition d� � dN > �(vN � v�) could

hold.
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3.3.3 Economic Performance

The performance of the economy can be measured by output growth

g � x1
x0
� 1 = �1 + d1 � �v1

�0 + d0 � �v0
� 1: (8)

Because there are an in�nite number of entrepreneurs and workers, the range of 1 is identical

to that of ~1 given by [(dN + �vN)=�; (dI + �vI)=�]. Thus, by substituting the values of

1 2 [(dN + �vN)=�; (dI + �vI)=�], 0 = (d0 + �v0)=�, and d1 � �v1 2 [dN � �vN ; dI � �vI ] into

(8), the range of g is given by

g 2
�
dN
d0
� 1; dI

d0
� 1
�
:

Therefore, the economic performance in the equilibrium with k� = k and h� = h, which is

given by dI=d0 � 1, is greater than that in the equilibrium with k� = 0 and h� = 0, given by

dN=d0 � 1. Consequently, the following observation holds.

Observation 2 The output growth rate in the equilibrium with k� = k and h� = h, where

both players invest, is higher than that in the equilibrium with k� = 0 and h� = 0, where

neither player invests.

Therefore, as long as investments contain demand-creating innovation, the equilibrium

with k� = k and h� = h has better economic performance than that with k� = 0 and h� = 0.

In this sense, the former equilibrium is the one policymakers should target and aim to guide

the economy toward.18

4 Evolutionary Game

This section investigates the dynamic transition of strategies of the stage game played itera-

tively for continuous round � 2 [0;1) by applying the method of evolutionary games.19 We
concentrate on the case in which (1� �)A < k < (1� �)B and �A < h < �B hold, because

18Letting the social surplus � � �1(k; h) � k � h be de�ned as the sum of entrepreneurs�and workers�
surplus, the social surplus in the equilibrium with k� = k and h� = h is higher than that in the equilibrium
k� = 0 and h� = 0 unless the potential increase in demand dI � dN or the potential decrease in variable cost
vN � vI is too small to cover the total investment cost k + h.
19In our evolutionary game, an entrepreneur and a worker are randomly matched from each population

and they play the same stage game iteratively for all the rounds.
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in the other cases the Nash equilibrium is unique and players�strategies simply converge to

the equilibrium in the long run.

4.1 Forward-Looking versus Backward-Looking

This section analyzes the evolutionary dynamics of players�strategies between investment

and non-investment, using the perfect-foresight dynamics introduced by Matsui and Mat-

suyama (1995) and the best-response dynamics initiated by Gilboa and Matsui (1991). In the

perfect-foresight dynamics, players are forward-looking about other players�strategies and

take into account the whole future path of the economy. By contrast, in the best-response

dynamics, players are backward-looking about others� strategies and presuppose that the

same situation continues in the future.

In existing studies using evolutionary game theory approach (e.g., Vega-Redondo [1997],

Kaneda [2003], Oyama [2009]), the perfect-foresight dynamics might be more popular, be-

cause the uniquely absorbing and globally accessible equilibrium is determined solely on the

base of the payo¤ matrix and is independent of the initial state of the economy.20 However,

our study focuses on the best-response dynamics because in the macroeconomics literature

there has a limited understanding of how the economy evolves from its initial state toward an

equilibrium in the long run, given that the initial state is interpreted as the round of the stage

game right after the implementation of a policy. The comparison of the dynamics illustrates

the e¤ects of players�expectation formation processes not only on the transition dynamics

but also on the conditions for achieving a long-run equilibrium at the target in�ation rate.

Our approach is closely related to the macroeconomics literature that compares re-

sults under rational expectations (forward-looking) and those under adaptive expectations

(backward-looking). While rational expectations have been widely used, they impose the

strong assumption that economic agents exploit all currently available information in form-

ing their expectations. Thus, some pioneering studies (e.g., Mankiew and Reis [2002], Sims

[2003], Woodford [2002]) investigate modeling that postulates deviations from rational expec-

tations, particularly the implications of information frictions for the expectation formation

20An equilibrium is uniquely absorbing if it is the only absorbing state, that is, the only state from which
it is impossible to leave once the state is entered. An equilibrium is globally accessible if, for any initial state,
there exists a path toward the equilibrium. Therefore, if an equilibrium is uniquely absorbing and globally
accessible, then the economy will converge to the equilibrium in the long run regardless of its initial state.
Because of this property, the perfect-foresight dynamics is widely used for equilibrium selection.
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and their macroeconomic consequences. Our research is in the same vein as these studies.

In both the cases of the perfect-foresight dynamics and the best-response dynamics, there

are certain conditions for guiding players to a long-run equilibrium at the target in�ation

rate. This implies that, given the exogenously determined upper bound of ~1, both of the

dynamics con�rm that the target in�ation rate is not always attainable in the long run.

However, the e¤ects of the current state of the economy (i.e., history) on the conditions

are totally di¤erent between the two dynamics: with the perfect-foresight dynamics the

current state of the economy never a¤ects for the conditions, whereas with the best-response

dynamics the conditions become more severe the closer the current state of the economy is

to the equilibrium with a zero or negative in�ation rate.21

In preparing for the derivation of the dynamics, we de�ne �H , �M , and �L as

�H �
1

4~1(1 + r)�
(�~1 + dI � �vI)

2 ;

�M � 1

4~1(1 + r)�
[�~1 + �(dI � �vI) + (1� �)(dN � �vN)]

2 ;

�L �
1

4~1(1 + r)�
(�~1 + dN � �vN)

2 ;

where �H is the expected total pro�t when both players invest, �M is that when only one

player invests, and �L is that when no player invests. Table 2 presents the expected payo¤

matrix for entrepreneurs and workers.

Table 2: Expected payo¤ matrix

h = h h = 0

k = k ((1� �)�H � k; ��H � h) ((1� �)�M � k; ��M)
k = 0 ((1� �)�M ; ��M � h) ((1� �)�L; ��L)

From Proposition 1, it follows that when (1 � �)A < k < (1 � �)B and �A < h < �B

hold, there exist two pure-strategy Nash equilibria (k�; h�) 2 f(k; h); (0; 0)g and one mixed-
strategy Nash equilibrium (��e; �

�
w). Using �H ; �M ; and �L, the mixed-strategy equilibrium

can be rewritten as

21If the size of each player�s sample is very small, the equilibrium to which the economy converges from its
initial state depends weakly on the initial state but strongly on the payo¤ matrix (Oyama, Sandholm, and
Tercieux [2015]). However, generally speaking, the sample size of entrepreneurs and workers is less likely to
be small when they decide their investment plans.
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(��e; �
�
w) =

�
h=� � (�M � �L)

�H + �L � 2�M
;
k=(1� �)� (�M � �L)

�H + �L � 2�M

�
:

In what follows, we continue to assume that the population of each type of player is

a continuum of mass one. Therefore, we denote the share of entrepreneurs investing by

se 2 [0; 1] and that of workers investing by sw 2 [0; 1].

4.2 Forward-Looking Players: Perfect-Foresight Dynamics

Under the perfect-foresight dynamics, players are highly rational and choose their strategies

to maximize their expected discounted payo¤s. The key assumption is that players cannot

switch actions at each instantaneous time. Every player must commit to a particular strategy

in the short run. We assume that the opportunity to switch strategies arrives randomly and

that the arrival time follows a Poisson process with a mean arrival rate of one. Moreover,

we assume that players� discount rate in each round is � > 0. Then, from Matsui and

Matsuyama (1995), we have the following result.

Proposition 2 Denote s�e � ��e and s
�
w � ��w. For � ! 0, the equilibrium with k = k

and h = h, where the in�ation rate is positive, is a unique absorbing and globally accessible

equilibrium if and only if A + B � h=� � k=(1� �) > 0 holds. By contrast, the equilibrium

with k = 0 and h = 0, where the in�ation rate is zero or negative, is a unique absorbing and

globally accessible equilibrium if and only if A+B � h=� � k=(1� �) < 0 holds.

Proof : See Appendix A.3. �

Therefore, when the expected increment in �rms�pro�ts from investment is su¢ ciently

large, the economy converges to the equilibrium with k = k and h = h in the long run,

regardless of the initial state of the economy. Note that Proposition 2 can be restated: the

economy converges eventually to the risk-dominant Nash equilibrium (Harsanyi and Selten

[1988]). Intuitively, the risk-dominant Nash equilibrium is the Nash equilibrium that is less

risky for players.

As shown in Proposition 2, if players are provident (� ! 0), then the equilibrium to

which the economy eventually converges is uniquely determined by the condition above. In

contrast, if players are myopic (� ! 1), the initial state of the economy matters for the
equilibrium selection as follows.
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Corollary 2 (Proposition 2 of Matsui and Matsuyama [1995]) For � !1, both the equilib-
rium with a positive in�ation rate and that with a zero or negative in�ation rate are absorbing

for any (s�e; �
�
e).

4.3 Backward-Looking Players: Best-Response Dynamics

This section derives the dynamics of backward-looking players�strategies and explicitly pro-

vides the initial conditions used to select the equilibrium to which the economy eventually

converges. To analyze the dynamics of the game with backward-looking players, the best-

response dynamics introduced by Gilboa and Matsui (1991) is used, because it is natural to

assume that the players best know the structure of the game. This assumption is equivalent

to the situation in which players are strongly interested in the payo¤s and therefore try to

procure all the necessary information.22

In the best-response dynamics, each player observes the ex post share of each action

and revises its belief about the payo¤s from its own action in the next round. The key

di¤erence from the perfect-foresight dynamics is that players in the best-response dynamics

only consider expected payo¤s in the round (i.e., this is the case if � !1 as in the previous

subsection), which can be interpreted that players consider future rounds but presuppose

that the same situation continues in the future. At each instantaneous time, d� players

revise their strategies, and each player chooses its best response given se and sw in each

game. The arrival time of the opportunity to switch strategies follows a Poisson process

with a mean arrival rate of one. Thus, the following proposition holds.

Proposition 3 Letting s�e � ��e and s
�
w � ��w, the best-response dynamics of the game is

given by

dse
d�

8>>><>>>:
= 1� se if sw > s�w

2 [�se; 1� se] if sw = s�w

= �se if sw < s�w;

22In other dynamics, such as trial and error dynamics (e.g., Roth and Erev [1995, 1999]) and imitation
dynamics (e.g., Bjornerstedt and Weibull [1996]), it does not seem easy to derive the transition dynamics
from a model with uncertainty.
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dsw
d�

8>>><>>>:
= 1� sw if se > s�e

2 [�sw; 1� sw] if se = s�e

= �sw if se < s�e:

The stable stationary equilibria are (se; sw) 2 f(1; 1); (0; 0)g.

Proof : See Appendix A.4. �

Therefore, the stable stationary equilibrium to which the economy converges depends on

initial shares of the strategies. By solving the di¤erential equation with the initial shares se0
and sw0, we have the trajectories

se� =

8<: 1� e�� (1� se0) if sw0 > s�w

e��se0 if sw0 < s�w;

sw� =

8<: 1� e�� (1� sw0) if se0 > s�e

e��sw0 if se0 < s�e:

Therefore, the speed of the convergence to each equilibrium is positively related to the

distance between the current (initial) shares and the equilibrium shares. When the current

shares are far from the equilibrium shares, the economy evolves rapidly toward the equilib-

rium. By contrast, when they are close to the equilibrium shares, the economy converges

slowly to the equilibrium.

An exception is the case in which se0 = s�e and sw0 = s�w. In this case, the economy

can converge to both (se; sw) = (1; 1) and (se; sw) = (0; 0) with a possible delay. Thus,

the trajectories are not unique if the economy reaches (s�e; s
�
w), whereas other trajectories

converge to one of the pure-strategy Nash equilibria of the stage game.

Corollary 3 The equilibrium to which the economy eventually converges is uniquely deter-

mined by initial shares (se0 ; sw0) except in the case of initial shares whose trajectories reach

(s�e; s
�
w).

Proof : See Appendix A.5. �

This corollary highlights another necessary condition for achieving the (positive) target

in�ation rate in an equilibrium. The economy converges to the equilibrium with the target
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in�ation rate when the initial shares of entrepreneurs and workers who choose to invest are

su¢ ciently large. Otherwise, it converges to the equilibrium with a zero or negative in�ation

rate.

To be precise, two main sets of initial shares exist: SD for converging to the equilibrium

with a zero or negative in�ation rate and SI for converging to the equilibrium with a positive

in�ation rate. In addition, another set of initial shares exists which the economy passes

through (s�e; s
�
w) and eventually converges to both equilibria. Such a trajectory that passes

(s�e; s
�
w) is a line, and this line divides S

I and SD, as shown in Figure 4. In this �gure, the

horizontal axis represents the share of entrepreneurs currently investing se, which increases

from right to left. The vertical axis represents the share of workers currently investing sw,

which increases along the axis. Thus, the upper left point is the equilibrium with a positive

in�ation rate, while the lower right point is the equilibrium with a zero or negative in�ation

rate.

[Figure 4 here]

The following proposition can be obtained.

Proposition 4 Suppose that s�w (s
�
e) is �xed. Then, as s

�
e (s

�
w) decreases, S

I becomes larger,

whereas SD becomes smaller.

Proof : See Appendix A.6. �

Figure 5 shows the simulation results of the best-response dynamics.23

[Figure 5 here]

This �gure presents two possible cases based on the range of ~1 that was discussed

in Section 3.3. Panel (a) shows the dynamics with the lower bound of this range (i.e.,

~1 = (dN + �vN)=�), where no player invests. In this case, the economy converges from

most of the initial shares to the shares in the equilibrium with a zero or negative in�ation

rate. On the other hand, panel (b) illustrates the dynamics with the upper bound of the

range of ~1 (i.e., ~1 = (dI + �vI)=�), where all players invest. The economy converges from

23Figure 5 was created using Dynamo, developed by Sandholm, Dokumaci, and Franchetti (2012).
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most of the initial shares to the shares in the equilibrium with a positive in�ation rate. The

colors indicate the speed of the evolution along convergence paths, with red representing the

highest convergence speed, followed by yellow, green, and blue. As both panels show, the

speed declines as the current shares approach the equilibrium shares.

Note that we measure the in�ation rate between period 0 and 1, not over � , because the

stage game is the same in all rounds. As a consequence, the price level always declines from

period 1 of round � � 1 to period 0 of round � , which might be unrealistic. In what follows,
it is assumed without loss of generality that the price level is the same between period 1 of

round � � 1 and period 0 of round � .24 The price level thus increases over � .

4.4 E¤ects of the Target In�ation Rate

To analyze the e¤ects of the target in�ation rate, we decompose the real interest rate into

the nominal interest rate and the expected in�ation rate (i.e., ~1=0) as follows.

1 + r =
1 + i

~1=0
:

Then we can examine the policy channels (i.e., intervention to lower the nominal interest

rate i and an announcement of the target in�ation rate ~1=0). We assume that at least

in the short to medium run, i is �xed at a low rate (possibly zero or slightly negative).25

When an entrepreneur expects other entrepreneurs to raise prices of their products (~1=0
increases), the optimal price for the entrepreneur rises and therefore the equilibrium price

level increases. This leads to an increase in expected pro�t. Then, the comparative statics

of ~1 are as follows.

24Speci�cally, we assume the following situation. First, at the start of period 1 of round � � 1, the
innovation is realized, �rms earn their pro�ts, which are distributed to entrepreneurs and workers. Then, at
the end of the period, technological spillovers occur and the e¤ect of the technology of all �rms on the price
level becomes equal to the average of the e¤ect of the technology of each �rm. Therefore, all prices in period
0 of round � are equal to the price level in period 1 of round � � 1.
25In the long run, a rise in expected in�ation may lead to an increase in the nominal interest rate. However,

our results remain unchanged as long as it is assumed that the nominal interest rate is �xed for a while.
Once the economy embarks on the path toward the equilibrium with a positive in�ation rate, it moves
closer to the equilibrium over time. Therefore, even if the nominal interest rate rises and entrepreneurs�
and workers�expected payo¤s decline in the long run, the economy should still evolve to the equilibrium
with a positive in�ation rate, because players expect the probability of successful coordination between
entrepreneurs and workers to be high. For consistency, when the economy is located in the equilibrium
with a positive in�ation rate, the nominal interest rate is assumed to be endogenously determined to satisfy
(1 + i) = (dI + �vI)=(d0 + �v0), given that the real interest rate is assumed to be zero in the long run.
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Corollary 4 (1) A and B increase with ~1. (2) S
I becomes larger with ~1.

Proof : See Appendix A.7. �

This corollary shows that the equilibrium with a positive in�ation rate is more likely

to occur in the long run with the higher ~1. First, as the expected period-1 price level ~1
increases, both A and B rise, meaning that in Figure 2 the area where only the equilibrium

with a positive in�ation rate exists becomes larger. Because the increase in B is greater than

that in A, the distance (B�A) increases, which means that the area with multiple equilibria
(A < k=(1 � �) < B and A < h=� < B) also becomes larger. Moreover, even in the case

that there are multiple equilibria in the economy (A < k=(1 � �) < B and A < h=� < B),

the increase in ~1 transforms the evolutionary dynamics such that the economy is more

likely to converge to the equilibrium with a positive in�ation rate through the increase in

(A+ B) under the perfect-foresight dynamics and through the decrease in s�e and s
�
w under

the best-response dynamics. Therefore, if ~1 increases, investment is expected to be more

likely.

4.5 Do Players Have an Incentive to Invest More?

This subsection examines whether players necessarily have an incentive to invest more. That

is, will the economy always converge to the equilibrium with a positive in�ation rate? Our

answer is that such a convergence does not necessarily occur for the following reasons.

Players may not expect the in�ation target to be realized. Our study assumes that all

players fully expect the target period-1 price level ~1 to be de�nitely realized as long as the

value is inside the range of ~1 rational players view as credible. However, if each player

does not view ~1 as credible or if it does not consider that other players view ~1 as credible,

there is little e¤ect of announcing ~1.
26 Moreover, if the shares of entrepreneurs and workers

currently investing in demand-creating innovation are small, then the upper bound of the

range of ~1 for rational players may be low, because it may be conditional on the shares of

entrepreneurs and workers who invested in the last round. Because only d� players revise

their strategies at each instantaneous time, the upper bound of the range of ~1 may depend

26If players perceive uncertainty about 1, they may also take into account the covariance terms between
the variables 1, d1, and v1.
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on se� + d� and sw� + d� even if this leads all players with the opportunity to revise their

strategies to invest for certain.

Moreover, the range of ~1 is exogenously determined by entrepreneurs� choices of the

type of innovations. As long as dI � �vI is su¢ ciently larger than dN � �vN , that is, dI � dN
or �(vI � vN) is large, investment should increase the expected payo¤ in period 1. However,

if entrepreneurs choose cost-reducing innovation, then the upper bound of ~1 for rational

players takes a low or possibly negative value. Thus, the real interest rate (the discount

rate) becomes high and the present value of the expected payo¤ will not be high enough to

give an incentive for entrepreneurs to invest. As a consequence, investment is not boosted if

entrepreneurs select cost-reducing innovation.27

Furthermore, even if the upper bound of ~1 is positive, the increase in expected in�ation

may be insu¢ cient to encourage all players to invest. Suppose that the current shares (se; sw)

are at or near the equilibrium with a zero or negative in�ation rate. If the increase in the

expected in�ation rate is high and both A and B increase su¢ ciently, which means that

only the equilibrium with a positive in�ation rate exists (k < (1 � �)A and h < �B, or

k < (1� �)B and h < �A), all players will then have an incentive to invest and the shares

converge to that equilibrium. However, an increase in the expected in�ation rate does not

ensure that only that equilibrium exists.

Our results show that the main role of raising ~1 is to make the payo¤ structures more

likely to stimulate investments. Under the best-response dynamics, changes in ~1 shift the

threshold between SI and SD. However, there is an upper bound of ~1 for rational players.

Therefore, the policy is not always su¢ cient to encourage players to invest.

In addition, if players are backward-looking, the e¤ectiveness of the policy depends heav-

ily on the current state of the economy (i.e., the share of players who invested in the most

recent round) and is thus history-dependent, whereas the current state does not matter if

players are forward-looking. Suppose that the current shares (se; sw) are already near the

equilibrium with a zero or negative in�ation rate. To give an incentive for players to invest,

~1 should be raised so that only the equilibrium with a positive in�ation rate would exist.

However, this may not be possible, as shown in panel (a) of Figure 6.

27Even if the highest ~1 within its range for rational players is non-positive, there is still room for stimulat-
ing the economy by preventing in�ation expectations from falling deeper into negative territory. However, in
this case, the more entrepreneurs invest (in cost-reducing innovation), the more de�ationary pressure arises,
meaning it becomes increasingly di¢ cult to escape from the de�ationary environment.
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Observation 3 If the current shares (se; sw) in the economy are included in SD even under

the upper bound of the expected price (~1 = dI + �vI), then the equilibrium with a positive

in�ation rate is not achievable.

[Figure 6 here]

In this case, other policy measures are essential to further lower the threshold, as shown

in panel (b) of Figure 6.28 More speci�cally, we suggest the following policies. First, the

government can expand SI by lowering the investment cost k through investment subsidies

or tax incentives for investment.29 Second, initiatives to resolve any potential mismatch

between the needs of entrepreneurs and workers, such as e¤orts to achieve higher female

labor participation, can help expand SI by lowering h. The reason is that workers have

an incentive to invest in their human capital if they expect to work for longer periods.

Third, aggressive public expenditure (investment) and the expansion of social bene�ts can

help expand SI by directly increasing both the expected fundamental demand dI and dN .

Yet another potential measure is the so-called �technology push channel� (Sherer [1967],

Rosenberg [1974]), in which, for example, the promotion of collaboration among industry,

academia, and the government leads to a reduction in investment costs and an increase in

expected returns.30

Further, when players are backward-looking, the speed of evolution along convergence

paths in Figure 5 has a key implication. Suppose that the economy is at SD but is also close

to SI . Then, the aforementioned policies can easily guide the economy toward the equilibrium

with a positive in�ation rate. However, because the speed of evolution in that state is higher

than that in states near the equilibrium, the economy evolves rapidly from the current state

to the equilibrium with a zero or negative in�ation rate if the economy does not satisfy

the conditions mentioned above. As a consequence, it becomes much harder to achieve

the equilibrium with a positive in�ation rate, con�rming the importance of the prompt

28If the condition A+B�h=��k=(1��) > 0 is not met, then other policy measures are required to guide
the economy toward the equilibrium with a positive in�ation rate even when players are forward-looking.
29Many studies provide empirical evidence on the e¤ect of R&D tax credits and subsidies (Hall and Van

Reenen [2000], David, Hall, and Toole [2000], Bloom, Gri¢ th, and Van Reenen [2002], Jaumotte and Pain
[2005], Harris, Li, and Trainor [2009], Czarnitzki, Hanel, and Rosa [2011], Lokshin and Mohnen [2012], Yang,
Huang, and Hou [2012], Czarnitzki and Lopes Bento [2012], Mulkay and Mairesse [2013]).
30Several studies show that promoting networked innovation activities can play an important role in

boosting innovation (Lundvall [1992], Kamien, Mueller, and Zang [1992], Nelson [1993], Zucker, Darby, and
Brewer [1998], Feldman and Audretsch [1999], Etzkowitz and Leydersdor¤ [2000], Autant-Bernard [2001],
Hagedoorn [2002], Cassiman and Veugelers [2002], Adams, Chiang, and Jensen [2003]).
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implementation of policies once the economy has started to evolve toward the equilibrium

with a zero or negative in�ation rate.

5 Conclusion

This study has examined conditions for achieving an equilibrium at the target in�ation rate

in the long run even after the policy rate hits its lower bound, by employing a dynamic

model based on evolutionary game theory. The model consists of an iteratively played

stage game where entrepreneurs and workers make investment decisions. In the presence

of complementarity between entrepreneurs�and workers�investments, two equilibria exist.

In one equilibrium all players invest, whereas no player invests in the other equilibrium.

The study has shown two necessary conditions for achieving the target in�ation rate in the

equilibriumwith all players investing in the long run. The �rst condition is that entrepreneurs

choose investments in demand-creating innovation rather than cost-reducing innovation. The

second condition is that the proportions of entrepreneurs and workers currently investing are

large enough. If these conditions are not in place, policies to meet them are called for.

The model employed in this study is special in several respects. Some important ex-

tensions to the model are listed in closing. First, players are to be modeled to utilize all

available information in forming expectations of the next-period price level, which should

be the average of next-period prices across �rms. In the model, the expectations are always

consistent with the target in�ation rate announced by the central bank as long as the current

state of the economy implies that the target rate is attainable. Second, the accumulation of

physical and human capital in the economy is to be taken into consideration. Addressing

these issues, although they are technically challenging in terms of evolutionary game theory,

will lead to a deeper understanding of the conditions for successfully achieving the target

in�ation rate.
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A Appendix

A.1 Indirect Utility Functions

Suppose that an entrepreneur maximizes its utility function as follows.

max
ce0;c

e
1;x0;x1;k

ln(ce0) + ln(c
e
1) s:t: ce0 + k + ae0 = (1� �)�0; ce1 = (1� �)�1 + (1 + r)ae0;

where ae0 is the real bond held by the entrepreneur. The budget constraints can be rewritten

as

ce0 + k +
1

1 + r
ce1 = (1� �)

�
�0 +

1

1 + r
�1

�
:

From the �rst-order conditions for ce0 and c
e�
1 , we have the Euler equation and the optimal

ce�0 and c
e�
1 as follows.

ce0 =
1

1 + r
ce1;

ce�0 =
1

2

�
(1� �)

�
�0 +

1

1 + r
�1

�
� k

�
;

ce�1 =
1

2
(1 + r)

�
(1� �)

�
�0 +

1

1 + r
�1

�
� k

�
:

By substituting ce�0 and ce�1 into the maximization problem, we obtain the indirect utility

functions given by

max
x0;x1;k

2 ln

�
(1� �)

�
�0 +

1

1 + r
�1

�
� k

�
+ 2 ln

�
1

2

�
+ ln (1 + r) :

Here, the terms 2 ln(1=2) and ln[1=(1+r)] are purely exogenous variables for the entrepreneur.

Moreover, ((1��)f�0+[1=(1+r)]�1g�k) is monotonic to 2 ln((1��)f�0+[1=(1+r)]�1g�k)
because of the property of the log function. Therefore, the entrepreneur�s maximization

problem can be restated as

max
x0;x1;k

(1� �)

�
�0 +

1

1 + r
�1

�
� k:
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Similarly, a worker maximizes its utility function as follows.

max
cw0 ;c

w
1 ;h

ln(cw0 ) + ln(c
w
1 ) s:t: cw0 + h+ aw0 = ��0; cw1 = ��1 + (1 + r)aw0 ;

where aw0 is the real bond held by the worker. Therefore, from a similar argument to the

above, we can obtain

max
h

�

�
�0 +

1

1 + r
�1

�
� h:

A.2 Proof of Corollary 1

When w� = 1, we have

E[�1jw� = 1] =
1

4~1(1 + r)�
[�~1 + �w(d

� � �vN) + (1� �w)(�d
� + (1� �)dN � �vN)]

2 :

On the other hand, when w� = 0, we have

E[�1jw� = 0] =
1

4~1(1 + r)�
[�~1 + �w(dN � �v�) + (1� �w)(dN � ��v� � (1� �)�vN ]

2 :

Thus, E[�1jw� = 1] > E[�1jw� = 0] holds if and only if

[(d� � dN)� �(vN � v�)](�w + (1� �w)�) > 0:

Under the assumption that � > 0, if d��dN > �(vN � v�) holds, we have E[�1jw� = 1] >
E[�1jw� = 0]:�

A.3 Proof of Proposition 2

De�ne the discounted expected payo¤s of entrepreneurs and workers as

V e
t � (1 + �)

1Z
0

(sw;t+s � s�w)e
�(1+�)sds; V w

t � (1 + �)
1Z
0

(se;t+s � s�e)e
�(1+�)sds:

Then, from Proposition 2 of Matsui and Matsuyama (1995), it follows that an equilibrium

is an unique absorbing and globally accessible equilibrium if and only if it is risk-dominant

equilibrium. Thus, the equilibrium with k = k and h = h is a unique absorbing and globally
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accessible equilibrium if and only if

s�e + s�w < 1,
h=� � (�M � �L)

�H + �L � 2�M
+
k=(1� �)� (�M � �L)

�H + �L � 2�M
< 1

, A+B � h

�
� k

1� �
> 0:

Similarly, the equilibrium with k = 0 and h = 0 is an unique absorbing and globally

accessible equilibrium if and only if s�e + s�w > 1, A+B � h=� � k=(1� �) < 0: �

A.4 Proof of Proposition 3

To derive the dynamics of se, de�ne entrepreneurs�expected payo¤s from choosing k = k

and k = 0 as follows.

�ek = sw [�H(1� �)� k] + (1� sw) [�M(1� �)� k] ;

�e0 = sw�M(1� �) + (1� sw)�L(1� �):

At each instantaneous time, d� players revise their strategies, and each player chooses

k� = k (h� = h) with probability  2 [0; 1], which depends on the di¤erence between the
expected payo¤s from the two actions. Entrepreneurs observe the share of workers currently

investing and choose k� = k with probability  (�ek � �e0) at � and k
� = 0 with probability

1�  (�ek � �e0). Because �H � �M > �M � �L,  is an increasing function of sw.

The share of entrepreneurs who change their strategies from k� = 0 to k� = k is given by

d�(1� se) (�
e
k � �e0);

while the share of entrepreneurs who change their strategies from k� = k to k� = 0 is given

by

d�se(1�  (�ek � �e0)):

Thus, the net share of entrepreneurs who change their strategies from k� = k to k� = 0 is

given by

dse = d�(1� se) (�
e
k � �e0)� d�se

�
1�  (�ek � �e0)

�
:
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Dividing by d� yields

dse
d�

= (1� se) (�
e
k � �e0)� se

�
1�  (�ek � �e0)

�
=  (�ek � �e0)� se:

Assume that each player who revises its strategy takes the better choice with probability

one. That is,  = 1 if �ek��e0 > 0,  2 [0; 1] if �ek� �e0 = 0, and  = 0 if �ek� �e0 < 0. Then,
because

�ek � �e0

8>>><>>>:
> 0 if sw > s�w

= 0 if sw = s�w

< 0 if sw < s�w;

we have

 (�ek � �e0)

8>>><>>>:
= 1 if sw > s�w

2 [0; 1] if sw = s�w

= 0 if sw < s�w:

Finally, the dynamics dset=d� are given by

dse
d�

8>>><>>>:
= 1� se if sw > s�w

2 [�se; 1� se] if sw = s�w

= �se if sw < s�w:

Next, to derive the dynamics of sw, de�ne workers�expected payo¤s from choosing h� = h

and h� = 0 as follows.

�wh = se (�H� � h) + (1� se) (�M� � h) ; �w0 = se�M� + (1� se)�L�:

Workers observe se, the share of entrepreneurs currently investing, and choose h� = h

with probability  (�wh ��w0 ) and h� = 0 with probability 1� (�wh ��w0 ). Because �H��M >

�M � �L,  is an increasing function of se.

The share of workers who change their strategy from h� = 0 to h� = h is given by

d�(1� sw) (�
w
h � �w0 ):

On the other hand, the share of workers who change their strategies from h� = h to h� = 0
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is given by

d�sw(1�  (�wh � �w0 )):

Thus, the net share of workers who change their strategies from h� = h to h� = 0 is given by

dsw = d�(1� sw) (�
w
h � �w0 )� d�sw

�
1�  (�wh � �w0 )

�
:

Dividing by d� yields

dsw
d�

= (1� sw) (�
w
h � �w0 )� sw

�
1�  (�wh � �w0 )

�
=  (�wk � �w0 )� sw:

Assume  = 1 if �wh � �w0 > 0,  2 [0; 1] if �wh � �w0 = 0, and  = 0 if �wh � �w0 < 0.

Because

�wh � �w0

8>>><>>>:
> 0 if se > s�e

= 0 if se = s�e

< 0 if se < s�e;

we have

 (�wh � �w0 )

8>>><>>>:
= 1 if se > s�e

2 [0; 1] if se = s�e

= 0 if se < s�e:

Finally, the dynamics dsw=d� are given by

dsw
d�

8>>><>>>:
= 1� sw if se > s�e

2 [�sw; 1� sw] if se = s�e

= �sw if se < s�e:

Based on the dynamics above, (se; sw) 2 f(1; 1); (0; 0)g are stable stationary equilibria.
The solution trajectory starting from (se; sw) = (s�e; s

�
w) is ambiguous. If we assume that

the share never changes from (s�e; s
�
w), it might be stationary. However, without such an

assumption, it follows a trajectory to (se; sw) = (1; 1) or (0; 0) possibly with initial delay. �
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A.5 Proof of Corollary 3

� Case 1: se0 > s�e and sw0 > s�w

Because both se� and sw� are increasing and the initial condition satis�es se0 > s�e and

sw0 > s�w, the trajectory is given by

se� = 1� e�� (1� se0); sw� = 1� e�� (1� sw0):

� Case 2: se0 < s�e and sw0 < s�w

Because both se� and sw� are decreasing and the initial condition satis�es se0 < s�e and

sw0 < s�w, the trajectory is given by

se� = e��se0 ; sw� = e��sw0 :

� Case 3: se0 > s�e and sw0 < s�w

First, the trajectory in the region se0 > s�e and sw0 < s�w is given by

se� = e��se0 ; sw� = 1� e�� (1� sw0):

However, because se� is decreasing and sw� is increasing and the initial condition is

given by se0 > s�e and sw0 < s�w, the economy intersects dse=d� = 0 or dsw=d� = 0 at

some time � �. Thus, the economy would be on the trajectory of Case 1 or Case 2 with

new initial conditions. Moreover, the economy would be at se�� = s�e or sw�� = s�w when

it passes through dse=d� = 0 or dsw=d� = 0. This means that there will be multiple

trajectories as shown in Proposition 3. However, it should be noted that the economy

eventually converges to (1; 1) if it reaches sw�� = s�w, while it converges to (0; 0) if it

reaches se�� = s�e. Only if it reaches (se�� ; sw�� ) = (s�e; s
�
w) does it randomly converge

to (se; sw) = (1; 1) or (0; 0). In that sense, the equilibrium to which the economy

eventually converges is uniquely determined by the initial shares, except for the initial

shares which pass through (se�� ; sw�� ) = (s
�
e; s

�
w).

� Case 4: se0 < s�e and sw0 > s�w
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The trajectory in the region se0 < s�e and sw0 > s�w is given by

se� = 1� e�� (1� se0); sw� = e��sw0 :

However, because se� is increasing, sw� is decreasing, and the initial condition is given

by se0 < s�e and sw0 > s�w, the economy intersects dse=d� = 0 or dsw=d� = 0 at some

time � �. Thus, the economy would be on the trajectory of Case 1 or Case 2 with new

initial conditions. Further, the economy would be on se�� = s�e or sw�� = s�w when it

crosses dse=d� = 0 or dsw=d� = 0. Based on the same logic as in Case 3, multiple

trajectories exist, but the equilibrium to which the economy eventually converges is

still uniquely determined by the initial conditions except for the initial shares which

pass through (se�� ; sw�� ) = (s
�
e; s

�
w). �

A.6 Proof of Proposition 4

Denote S � [0; 1]2. The �rst lemma proves the existence of the unique line SM composed of

the initial shares which pass through (s�e; s
�
w).

Lemma 1 Denote the set of initial shares which pass through (s�e; s
�
w) on their trajectories

by SM . Thus, SM is a continuous line.

Proof : From Corollary 3, it follows that the initial shares in the region of (se > s�e; sw >

s�w) and (se < s�e; sw < s�w) do not move toward (s
�
e; s

�
w). On the other hand, there exist

initial shares that reach (s�e; s
�
w) in (se > s�e; sw < s�w) or (se < s�e; sw > s�w).

Regarding the case of (se > s�e; sw < s�w), the trajectories are given as se� = e��se0 and

sw� = 1 � e�� (1 � sw0). Therefore, by substituting s
�
e and s

�
w into se� and sw� respectively,

the initial shares for each �xed � are uniquely determined as (e�s�e; e
�s�w + (1 � e� )). Here,

e�s�e is increasing in � , while e
�s�w + (1 � e� ) is decreasing in � , since s�w < 1 holds. Thus,

based on the constraint se0 2 [0; 1] and sw0 2 [0; 1], initial shares that belong to SM in this

region are determined as

(e�s�e; e
�s�w + (1� e� )) for 0 < � � min

�
max

�
ln

�
se0
s�e

��
;max

�
ln

�
1� sw0
1� s�w

���
:

Next, as for the case of (se < s�e; sw > s�w), the trajectories are given by se� = 1� e�� (1�
se0) and sw� = e��sw0. Hence, by substituting s

�
e and s

�
w into se� and sw� , for each �xed
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� , the unique initial share is given by (e�s�e + (1 � e� ); e�s�w). Moreover, e
�s�e + (1 � e� ) is

decreasing in � and e�s�w is increasing in � . Thus, based on the constraint (se0 ; sw0) 2 S,

initial shares which are in SM in this region are given by

(e�s�e + (1� e� ); e�s�w) for 0 < � � min
�
max

�
ln

�
1� se0
1� s�e

��
;max

�
ln

�
sw0
s�w

���
:

Needless to say, (s�e; s
�
w) 2 SM holds. Thus SM is given as follows.

(s�e; s
�
w) [

n
(e�s�e; e

�s�w + (1� e� )) for 0 < � � min
�
ln

�
1

s�e

�
; ln

�
1

1� s�w

��o
[
n
(e�s�e + (1� e� ); e�s�w) for 0 < � � min

�
ln

�
1

1� s�e

�
; ln

�
1

s�w

��o
:

Obviously, the second and third sets are compositions of continuous functions of � and

therefore they are continuous lines as well. Further, because (e0s�e; e
0s�w+(1� e0)) = (e0s�e+

(1� e0); e0s�w) = (s
�
e; s

�
w) holds, S

M is continuous. �
The next lemma proves that this line SM separates S=SM into SI and SD.

Lemma 2 SM separates S=SM into SI and SD.

Proof : Combinations of initial shares can be classi�ed into six cases.

1. se0 > s�e; sw0 > s�w: The initial shares belong to S
I from Corollary 3.

2. se0 < s�e; sw0 < s�w: The initial shares belong to S
D from Corollary 3.

3. se0 > s�e; sw0 = s�w, and se0 = s�e; sw0 > s�w: The initial shares belong to S
I , since all of

them enter the region (se > s�e; sw > s�w) following the dynamics.

4. se0 < s�e; sw0 = s�w, and se0 = s�e; sw0 < s�w: The initial shares belong to S
D, since they

enter the region (se < s�e; sw < s�w) following the dynamics.

5. se0 > s�e; sw0 < s�w: There are two sub-cases.

(a) se0 � e�s�e and sw0 � e�s�w + (1 � e� ) with at least one strict inequality for any

t 2 (0;minfln(1=s�e); ln(1=(1 � s�w))g): The initial shares belong to SI because
Lemma 1 implies that such shares intersect one of the points (se > s�e; sw = s�w)

following their trajectories.
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(b) se0 � e�s�e and sw0 � e�s�w + (1� e� ) with at least one strict inequality for any

� 2 (0;minfln(1=s�e); ln(1=(1 � s�w))g): The initial shares belong to SD, since
they intersect one of the points (se = s�e; sw < s�w) following their trajectories by

Lemma 1.

6. se0 < s�e; sw0 > s�w: There are two sub-cases.

(a) se0 � e�s�e + (1 � et) and sw0 � e�s�w with at least one strict inequality for

any t 2 (0;minfln(1=(1 � s�e)); ln(1=s
�
w)g): The initial shares belong to SI , since

they intersect one of the points (se = s�e; sw > s�w) following their trajectories by

Lemma 1.

(b) se0 � e�s�e + (1 � e� ) and sw0 � e�s�w with at least one strict inequality for any

t 2 (0;minfln(1=(1 � s�e)); ln(1=s
�
w)g): The initial shares belong to SD, since

they intersect one of the points (se < s�e; sw = s�w) following their trajectories by

Lemma 1.

Therefore, S=SM is divided into SI and SD by SM . �
Fix s�w and pick the new s�e, which is denoted by s

��
e < s�e. Then, by Lemma 2, the new

SM with (s��e ; s
�
w) is given by

(s��e ; s
�
w) [

n
(e�s��e ; e

�s�w + (1� e� )) for 0 < � � min
�
ln

�
1

s��e

�
; ln

�
1

1� s�w

��o
[
n
(e�s��e + (1� e� ); e�s�w) for 0 < � � min

�
ln

�
1

1� s��e

�
; ln

�
1

s�w

��o
:

One of the main di¤erences from SM with (s�e; s
�
w) is that for each �xed sw0, the cor-

responding se0 belonging to the new SM is smaller than se0 in S
M with (s�e; s

�
w) because

et(s�e � s��e ) > 0. Further, from the relationship s��e < s�e, we have

min

�
ln

�
1

s��e

�
; ln

�
1

1� s�w

��
� min

�
ln

�
1

s�e

�
; ln

�
1

1� s�w

��
min

�
ln

�
1

1� s��e

�
; ln

�
1

s�w

��
� min

�
ln

�
1

1� s�e

�
; ln

�
1

s�w

��
:
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Then, by Lemma 2, the following set can be transferred from SD to SI .

n
((e�s��e ;minfe�s�e; 1g] ; e�s�w + (1� e� ))for 0 < � � min

�
ln

�
1

s��e

�
; ln

�
1

1� s�w

��o
[
n
((maxfe�s��e + (1� e� ); 0g; e�s�e + (1� e� )] ; e�s�w)for 0 < � � min

�
ln

�
1

1� s�e

�
; ln

�
1

s�w

��o
;

which is non-empty for any s��e < s�e. This is because (s
�
e; s

�
w) always belongs to this set.

Regarding the case that s�w decreases for a �xed s
�
e, the same proof applies. �

A.7 Proof of Corollary 4

(1) It is obvious because A and B are given by

A � � [(dI � �vI)� (dN � �vN)]

4(1 + i)0�
[2�~1 + � (dI � �vI) + (2� �) (dN � �vN)] ;

B � (1� �) [(dI � �vI)� (dN � �vN)]

4(1 + i)0�
[2�~1 + (1 + �) (dI � �vI) + (1� �) (dN � �vN)] :

(2) First, �H , �M , and �L are given by

�H �
1

4(1 + i)0�
(� ~1 + dI � �vI)

2 ;

�M � 1

4(1 + i)0�
[� ~1 + �(dI � �vI) + (1� �)(dN � �vN)]

2 ;

�L �
1

4(1 + i)0�
(� ~1 + dN � �vN)

2 :

Then, �H > �M > �L and @�H=@~1 > @�M=@~1 > @�L=@~1 > 0 hold. Moreover, because

� 2 (0; 1=2) and �H , �M , and �L are convex, the following inequalities hold.

@�H
@~1

� @�M
@~1

>
@�M
@~1

� @�L
@~1

> 0

Thus, @s�e=@~1 < 0 and @s
�
w=@~1 < 0 are obtained. From Proposition 4, SI becomes larger

with ~1. �
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Figure 1: Timing of the Stage Game 
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Figure 2: Region of (𝒌𝒌,𝒉𝒉) and Equilibrium 
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Figure 3: Types of Innovation and Players’ Views on the Target Inflation Rate 
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Figure 4: Phase Diagram of The Game 
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Figure 5: Simulation Results of the Best Response Dynamics 
 

(a) The Expected Inflation Rate is 0% 

 

(b) The Expected Inflation Rate is 2% 

 
 

Note: The parameter values are as follows: 𝜖𝜖 = 1,𝑑𝑑0 = 100,𝑑𝑑𝐼𝐼 = 400,𝑑𝑑𝑁𝑁 = 100,𝑣𝑣0 =
9900,𝑣𝑣𝐼𝐼 = 9800, 𝑣𝑣𝑁𝑁 = 9900,𝛼𝛼 = 0.45,𝛽𝛽 = 0.49, 𝑖𝑖 = 0,𝑘𝑘 = 2.5,ℎ = 2.5. The range of the 
expected inflation rate is 𝛾𝛾1� /𝛾𝛾0 − 1 ∈ [0, 0.02], which means that the inflation rate is 0% 
in the equilibrium with 𝑘𝑘∗ = 0 and ℎ∗ = 0, while it is 2% in the equilibrium with 
𝑘𝑘∗ = 𝑘𝑘 and ℎ∗ = ℎ. Panel (a) shows the best response dynamics for the lower bound of 
this range (0%), while panel (b) shows those for the upper bound (2%). 
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Figure 6: Combination of the Target Inflation Rate and Other Measures 

 
(a) Without Other Policy Measures 
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