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1. Introduction 

It is widely recognized that a number of factors besides fundamentals affect security 

prices.
1
 Market participants frequently observe that the announcement of a stock split and 

stock buyback by a firm triggers an immediate rise in the firm’s equity price, even though 

such actions do not substantially affect its profitability. In addition, the sharp drops in 

trading volume accompanied a plunge in equity prices following the collapse of Lehman 

Brothers in 2008 and during the European debt crisis of 2009 are a recent memory.  

The recognition is supported by numerous empirical studies. For example, Amihud and 

Mendelson (1991) demonstrate the existence of a significant price difference between U.S. 

Treasury bills and notes with the same remaining maturities and cash flows. Amihud, 

Mendelson and Lauterbach (1997) use price data from the Tel Aviv stock exchange to 

show that stock prices increase with greater frequency of trading. Uchida and Yoshikawa 

(2014) show that a stock split and a change in the floating stock ratio cause substantial price 

changes in Japanese stock market. Concerning several major currency pairs, Mancini, 

Ranaldo, and Wrampelmeyer (2013) provide evidence on the relationship between the 

foreign exchange rate and the short-term funding costs that reflect the creditworthiness of 

individual financial institutions. Earlier studies suggest that the actual transacted prices 

depend on a range of factors other than fundamentals, regardless of the type of the assets.  

Because traditional finance theory, which assumes a frictionless market where the risk 

premium is described only by price volatility, cannot analyze the effect of a number of 

factors on prices, many theoretical studies have sought to overcome such a limitation. 

These studies can be divided broadly into two schools.
2
 The first, which we call ―Market 

Microstructure,‖ constructs a specific model that analyzes the market microstructure and 

                                            
1
 These factors consists of a range of elements: for example, the number of securities issued, the 

frequency of the trading related to the ease of finding counterparties, the size of orders, a wide 

difference in risk appetite among market participants, and information asymmetry. 

2
 Several streams of research do not belong to the two schools described; for example, Acharya and 

Pedersen (2005) propose a liquidity-adjusted capital asset pricing model (CAPM). This is an extension 

of the CAPM and considers the effect of liquidity explicitly.  
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incorporates the detailed market structure to derive price, trade volume, and trade strategy. 

For example, Duffie, Gârleanu, and Pederson (2005) and Kijima and Uchida (2005), utilize 

dynamic matching and bargaining games to consider a securities market with a finite 

number of participants who cannot immediately find each other as counterparties. They 

incorporate the explicit structure of trading frequency to derive security prices in the market. 

Almgren and Chriss (2000) and Alfonsi and Schied (2010) derive optimal execution 

strategies for a large size of orders by considering the market impact. The second school, 

which we call ―Mathematical Finance,‖ constructs an elegant theoretical model that deals 

with incompleteness in the market to show a pricing theory. Kijima and Tamura (2012) 

derive mathematical conditions for security prices to be in equilibrium with the existence of 

transaction costs. Çetin, Jarrow, and Protter (2004) consider security prices dependent on 

trading size. They derive the no-arbitrage and complete conditions considering the size of 

trades, although they do not impose any constraint on the finiteness of securities issued. 

Once we construct the no-arbitrage complete market model incorporating factors in the 

market, security prices can be expressed by the discounted expectation of the underlying 

asset at the time of maturity with the equivalent martingale measure. This representation is 

convenient because of the ease of calculation under normal conditions. Gerhold et al. 

(2014) consider the liquidity premium as one factor that lowers security prices to derive the 

pricing formulas, trading policy, and trading volume explicitly.
3
  

Our paper presents the no-arbitrage and complete model with the explicit consideration 

of the market microstructure regarding the finiteness of securities issued.
4
 From the 

theoretical perspective, our model is a synthesis of the two schools of studies described 

above in that it makes it possible to derive a pricing theory under a constraint on a finite 

                                            
3
 They do not discuss no-arbitrage and completeness directly. However, their research deals with 

liquidity risk utilizing the shadow price, which formulates transaction costs under no-arbitrage and 

completeness. In this sense, we categorize it as mathematical finance.  

4
 This paper also implies that the security price depends on the difference between market participants’ 

preferences. Utilizing our model, Uchida and Yoshikawa (2014) consider whether the difference in the 

presence in the market between two types of market participants affects security prices. 
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number of securities issued. We also calibrate the model to show that prices in the Japanese 

government bond (JGB) futures market are significantly affected by the number of 

securities issued.  

This paper is structured as follows. Section 2 gives the assumptions and preliminary 

calculations to derive the model. Section 3, the main part of the paper, derives the pricing 

formula explicitly. In Section 4, we demonstrate the numerical application of our model to 

the long-term JGB futures market. Finally, in Section 5, we summarize the conclusion and 

make some brief comments concerning future research. The proofs of the theorem and 

propositions are provided in the Appendix. 

 

2. Model 

We introduce a filtered probability space (Ω, ℱ, 𝔽, ℙ). For simplicity, we consider a 

one-period binomial model that consists of time 0  and 𝑇 > 0 . More precisely, 

Ω: = {ω1, ω2} , ℱ =  ∅, {ω1 , {ω2}, Ω}  and 𝔽 =  ℱt t=0,T  with the structure 

ℱ0 = {∅, Ω} , ℱT = ℱ . The probability measure is defined as ℙ 𝜔1 = 𝑝  and 

ℙ 𝜔2 = 1 − 𝑝. 

In this paper, we only consider one risky asset and one risk-free asset. Let 𝑉 = {𝑉𝑡 , 𝑡 =

0, 𝑇} be a random variable defined on the filtered probability space given above. We 

describe 𝑉 as the total value of the underlying asset. 𝑋 = {𝑋𝑡 , 𝑡 = 0, 𝑇} stands for the 

price of the risky security. We assume the number of the securities issued, 𝜃𝑀 , to be 

constant. Therefore, the equality 𝑉𝑡 = 𝜃𝑀𝑋𝑡  is satisfied at 𝑡 = 0, 𝑇.  

Let 𝑉𝑇 𝜔1 = 𝑉1 and 𝑉𝑇 𝜔2 = 𝑉2 . We can assume 𝑉2 < 𝑉1  without loss of 

generality. At the same time, 𝑋𝑇 is given by 𝑋𝑇(𝜔1) = 𝑋1 = 𝑉1/𝜃𝑀 and 𝑋𝑇 𝜔2 =

𝑋2 = 𝑉2/𝜃𝑀. We also postulate that the risk-free rate is zero.  

We assume that market participants consist of two types, where the type is given by 

𝑖 ∈ {𝐻, 𝐿}. Let 𝑈𝑖 ⋅  be utility functions of these types. We also assume that the support 

of 𝑈𝑖  is a positive line and that they are continuous and second-order differential functions 

that satisfy 𝑈𝑖
′ > 0 and 𝑈𝑖

′′ < 0. Now, we consider a portfolio that is owned by each 

participant. It consists of 𝜃𝑖  of the risky security and 𝜂𝑖  of the risk-free asset. We describe 
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it as (𝜃𝑖 , 𝜂𝑖). With given initial endowments 𝑐𝑖 , the participants allocate them to risky 

securities and the risk-free asset at 𝑡 = 0 as  𝜃𝑖 , 𝜂𝑖 ; i.e., 𝑐𝑖 = 𝜃𝑖𝑋0 + 𝜂𝑖 . We call 

 𝜃𝑖 , 𝜂𝑖  the strategy of the participant 𝑖 ∈ {𝐻, 𝐿}. In this setting, we also assume that the 

following market clearing condition holds:  

𝜃𝐻 + 𝜃𝐿 = 𝜃𝑀 , 𝜃𝐻 ≥ 0, 𝜃𝐿 ≥ 0. 5 

Each participant maximizes his/her expected utility given by the following expected 

utility maximization problem for 𝑖 ∈ {𝐻, 𝐿}: 

𝑢𝑖 𝑐𝑖 ≔ max
θ∈Θ

 𝑝𝑈𝑖 𝑐𝑖 + 𝜃𝑖 𝑋1 − 𝑋0  +  1 − 𝑝 𝑈𝑖 𝑐𝑖 + 𝜃𝑖 𝑋2 − 𝑋0   , 

where Θ is the set of all feasible strategies. This entails that a strategy in Θ satisfies the 

market clearing condition. 

Now we consider the first-order condition. It is difficult for both participants to attain the 

optimal strategies simultaneously because of the finiteness of the number of securities 

issued. Indeed, a strategy of one participant is often blocked by that of the other participant, 

because the sum of orders by each participant does not always satisfy the market clearing 

condition. At the same time, the traded security price must be based on the agreement of 

both market participants. Therefore, we introduce the dependency of 𝑋0 on 𝜃𝑖 , one of the 

key features of our model,
6
 such that 

𝜕𝑋0 𝜕𝜃𝑖 ≠ 0 for 𝑖 ∈  𝐻, 𝐿 . 

At the same time, we do not impose any concrete form of this derivative, because each 

participant cannot control the security price in the way he/she wants.  

                                            
5
 We impose the short-selling constraint here.  

6
 Lucas (1978) also consider the case where the price of goods is dependent on the economic states 

and derives an equilibrium under the market clearing condition and market completeness. The 

difference between Lucas (1978) and this paper can be summarized as follows: (1) Lucas (1978) 

admits the existence of a representative agent, and (2) Lucas (1978) imposes independency between 𝜃𝑖  

and 𝑋0. 
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Since neither participant can control the future value of the underlying asset, we need the 

following condition:  

𝜕𝑋1 𝜕𝜃𝑖 = 0, 𝜕𝑋2 𝜕𝜃𝑖 = 0 for 𝑖 ∈ {𝐻, 𝐿}. 

Therefore, we obtain the first-order condition as follows: 

 
𝑝𝑈𝑖

′ 𝑐𝑖 + 𝜃𝑖 𝑋1 − 𝑋0     𝑋1 − 𝑋0 − 𝜃𝑖

𝜕𝑋0

𝜕𝜃𝑖

   

+(1 − 𝑝)𝑈𝑖
′ 𝑐𝑖 + 𝜃𝑖 𝑋2 − 𝑋0     𝑋2 − 𝑋0 − 𝜃𝑖

𝜕𝑋0

𝜕𝜃𝑖

  = 0. 

 

(1) 

For each type 𝑖 ∈  𝐻, 𝐿 , we call 𝑋0 satisfying (1) an optimal security price and denote 

it as 𝑋0
𝑖 . We rewrite (1) as 𝐺𝑖 𝜃𝑖 , 𝑋0

𝑖  = 0. Note that 𝑋0
𝑖  does not mean the traded 

security price, up to this point. To attain the trading feasibility, we need  𝑋0
𝐻 = 𝑋0

𝐿 . Then, 

we reach the security price 𝑋0 as the solution of the following equations 

 

 
 
 
 
 

 
 
 
 
𝐺𝐻 𝜃𝐻 , 𝑋0

𝐻 = 0

𝐺𝐿 𝜃𝐿 , 𝑋0
𝐿   = 0

𝑋0 = 𝑋0
𝐻 = 𝑋0

𝐿

𝜃𝑀 = 𝜃𝐻 + 𝜃𝐿

𝜃𝐻 ≥ 0, 𝜃𝐿 ≥ 0 

.  

 

 

(2) 

 

Remark 1 

The price 𝑋0
𝑖 , 𝑖 ∈ {𝐻, 𝐿} can be considered as an extension of Davis’s price (Davis 

[2007]). Davis (2007) proposes a pricing principle of contingent claims in the incomplete 

market. Let 𝜉 be ℱT-measurable random variable, which generates a contingent payoff of 

a security at 𝑡 = 𝑇. Davis (2007) concludes that the security price can be represented by 

𝐸ℚ𝑖 [𝜉], utilizing a martingale measure ℚ𝑖  that is derived by the utility maximization of 

the participant who is concerned only with the uncertainty of the underlying assets. Note 
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that Davis’s price only reflects the premium against this kind of uncertainty,
7
 while it does 

not take account of the effect of the finiteness of the number of securities issued. If we 

apply Davis’s pricing principle to a one-period binomial model, like our model, the 

martingale measure ℚ𝑖  is given by ℚ𝑖 = {𝑞𝑖 , 1 − 𝑞𝑖} for 𝑖 ∈ {𝐻, 𝐿}: 

𝑞𝑖 =
𝑝𝑈𝑖

′ 𝑊1 

𝐸 𝑈𝑖
′ 𝑊𝑇   

, 

where 𝑊𝑇 = {𝑊1, 𝑊2} is the terminal wealth. With the notation of our model, we have 

𝑊𝑇 ≔ 𝑐𝑖 + 𝜃𝑖(𝑋𝑇 − 𝑋0
𝑖 ). Utilizing ℚ𝑖 , the first-order condition 𝐺𝑖 𝜃𝑖 , 𝑋0

𝑖  = 0 in (2) 

can be rewritten as, 

𝐸ℚ𝑖  𝑋𝑇 − 𝑋0
𝑖 − 𝜃𝑖

𝜕𝑋0
𝑖

𝜕𝜃𝑖
 = 0 

⇔ 𝑋0
𝑖 = 𝐸ℚ𝑖  𝑋𝑇 − 𝜃𝑖

𝜕𝑋0
𝑖

𝜕𝜃𝑖
. 

This explicitly shows that 𝑋0
𝑖  is the extension of Davis’s price. Indeed, the second term of 

the right-hand side of the above equation, 𝜃𝑖 𝜕𝑋0
𝑖 𝜕𝜃𝑖 , will vanish if participants attain the 

optimal solution independently. This independence seems to result in the similar meanings 

that the assumption of introducing the representative agents embeds.  

 

Hereafter, we apply the exponential utility function with risk aversion 𝛾𝑖  for 𝑖 ∈ {𝐻, 𝐿}, 

where we postulate 𝛾𝐻 ≥ 𝛾𝐿 > 0 without loss of generality. With this specification, 𝑈𝑖  

and 𝑞𝑖  for 𝑖 ∈  {𝐻, 𝐿} can be expressed as:  

 

 
 

 
𝑈𝑖 𝑥 ≔ −𝑒−𝛾𝑖𝑥

𝑞𝑖 =
𝑝𝑒−𝛾𝑖𝜃𝑖𝑋1

𝑝𝑒−𝛾𝑖𝜃𝑖𝑋1 + (1 − 𝑝)𝑒−𝛾𝑖𝜃𝑖𝑋2

 . 

 (3) 

In the next section, we obtain the pricing formula by solving (2) under (3). 

  

                                            
7
 This premium can be calculated when the degree of the convexity of the utility function is given.  
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3. Main result  

We explain the main theorem and the related propositions. All the proofs are provided in 

the Appendix.  

 

THEOREM 1 (Pricing formula and uniqueness) 

For the exponential utility function, security price 𝑋0 satisfies the following equation 

(4), which is a unique solution of (2):  

  𝜃𝑀𝑋0 =  −
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  −

1

𝛾𝐿
ln 𝐸 𝑒−𝛾𝐿𝜃𝐿𝑋𝑇  + 𝐶𝐻 + 𝐶𝐿 , (4) 

where 𝜃𝐻 , 𝜃𝐿 are optimal strategies of market participants, and 𝐶𝐻 , 𝐶𝐿 are constants of 

integration. 

 Therefore, 𝑋0 uniquely exists with given 𝐶𝐻 , 𝐶𝐿. 

 

PROOF. See Appendix 1. 

 

Incorporating the no-arbitrage condition in the assumption, we can modify (4) into 

another form that does not contain 𝐶𝐻 , 𝐶𝐿. 

 

Remark 2 

In this paper, we consider the no-arbitrage condition as 𝑋2 < 𝑋0 < 𝑋1 , which is 

equivalent to 𝑉2 < 𝜃𝑀𝑋0 < 𝑉1 . Because we impose the short-selling constraint, we 

cannot find an arbitrage strategy even under the case of 𝑋2 < 𝑋1 < 𝑋0. The expected 

price of the security is, however, strictly below the present one when 𝑋2 < 𝑋1 < 𝑋0 holds. 

This fact leads to a contradiction of the zero risk-free interest rate assumption, so that the 

value of cash denominated by the risky security diverges under the multi-period setting. 

Therefore, we exclude 𝑋2 < 𝑋1 < 𝑋0 from our no-arbitrage condition. 

 

PROPOSITION 2 (Quasi-risk-neutral representation) 

The no-arbitrage condition holds if and only if there exists 𝛾 𝑀  satisfying the following 

equation:  
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𝜃𝑀𝑋0 =  −
1

𝛾 𝑀
ln 𝐸[𝑒−𝛾 𝑀𝜃𝑀𝑋𝑇 ]. 

In this case, the security price is also given by  

𝜃𝑀𝑋0 = 𝐸ℚ  𝜃𝑀𝑋𝑇 , 

where ℚ ≔ {𝑞 , 1 − 𝑞 } is defined as  

𝑞 ≔ −
1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)). 

This implies 𝑞 ∈ [0,1].  

 

PROOF. See Appendix 2. 

 

We call 𝛾 𝑀  quasi-risk aversion and ℚ  quasi-risk-neutral measure. In our model, 

quasi-risk-neutral measure reflects all kinds of market frictions. Comparing the pricing 

formulas utilizing the quasi-risk-neutral measure ℚ  with the formula utilizing the 

risk-neutral measure ℚ𝑖  shown in Davis-type representation Eℚ𝑖  𝑋𝑇 − 𝜃𝑖 𝜕𝑋0
𝑖 𝜕𝜃𝑖 , we 

find that the difference lies in the adjustment term 𝜃𝑖 𝜕𝑋0
𝑖 𝜕𝜃𝑖 . 

The next proposition shows the range that the no-arbitrage condition holds for 𝐶𝐻 + 𝐶𝐿.  

 

PROPOSITION 3 (No-arbitrage condition) 

The no-arbitrage condition holds, if  

𝐾2 < 𝐶𝐻 +  𝐶𝐿 < 𝐾1, 

where 𝐾2 ≔ 1/𝛾𝐻 ln 𝐸𝑒−𝛾𝐻 𝑉𝑇−𝑉2 , 𝐾1 ≔  1 − 𝑝  𝑉1 − 𝑉2 . 

 

PROOF. See Appendix 3.  
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Note that the security price reflects the distribution of the underlying asset and is always 

between 𝑋1 and 𝑋2 under the no-arbitrage condition. To satisfy this condition, even if the 

probability of going to the upper node is close to one, the security price needs to be less 

than 𝑋1 . To meet this upper restriction, 𝐶𝐻 + 𝐶𝐿  cannot exceed the value of 𝐾1 . 

Concerning the lower restriction, we impose the additional condition, V2 ≥ 0, to reach a 

similar result and get 𝐶𝐻 + 𝐶𝐿 > 𝐾2. Notice that the asymmetry between the value of 𝐾1 

and 𝐾2 comes from V2 ≥ 0. 

 

Now we proceed to detailed interpretations of the previous theorem and propositions. 

First, to prepare for the discussion, we define 𝑓 𝛾 (𝜃) ≔ − 1 𝛾𝜃 ln 𝐸 𝑒−𝛾𝜃𝑋𝑇  , which 

can be thought to be certainty equivalent
8
 for the agent whose risk aversion and risky 

security inventory are 𝛾 > 0  and 𝜃 > 0 , respectively. Second, we consider the 

hypothetical situation that the inventory of the security does not affect the price. We can 

describe it as 𝜕𝑋0 𝜕𝜃𝑖 = 0 for each 𝑖 so that the optimal solution for this case is 

 

𝜃𝐻
ℎ𝑦𝑝𝑜

=
𝛾𝐿

𝛾𝐻 + 𝛾𝐿
𝜃𝑀

𝜃𝐿
ℎ𝑦𝑝𝑜

=
𝛾𝐻

𝛾𝐻 + 𝛾𝐿
𝜃𝑀

 . 

The sum of certainty-equivalent values of all the securities issued is given by 

𝜃𝐻
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐻  𝜃𝐻
ℎ𝑦𝑝𝑜

 + 𝜃𝐿
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐿  𝜃𝐿
ℎ𝑦𝑝𝑜

 . Then, we can find the following 

relationship through easy calculation: 

𝜃𝐻
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐻  𝜃𝐻
ℎ𝑦𝑝𝑜

 + 𝜃𝐿
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐿  𝜃𝐿
ℎ𝑦𝑝𝑜

 = 𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀 , 

where 
1

𝛾ℎ−𝑎𝑣𝑒
𝑀 =

1

𝛾
𝐻

+
1

𝛾
𝐿

. 

                                            
8
 As is well known, the value of a security under certainty-equivalence reflects the premium against 

the uncertainty of the underlying assets. The size of this premium is determined by the degree of 

convexity of the utility function. 
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𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀  denotes the certainty-equivalent value of all the issued securities 

owned by the single hypothetical agent whose risk aversion is 𝛾ℎ−𝑎𝑣𝑒
𝑀 .

9
  

Now we can rewrite our pricing formula (4) in the following form:  

 𝜃𝑀𝑋0 = 𝜃𝑀𝐸 𝑋𝑇 + 𝜃𝑀 𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀 − 𝐸 𝑋𝑇  

+  𝜃𝐻𝑓 𝛾𝐻  𝜃𝐻 + 𝜃𝐿𝑓 𝛾𝐿  𝜃𝐿 − 𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀  

+  𝐶𝐻 + 𝐶𝐿  

⇔  𝑋0 = 𝐸 𝑋𝑇 +  𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀 − 𝐸 𝑋𝑇  

+
1

𝜃𝑀
 𝜃𝐻𝑓 𝛾𝐻  𝜃𝐻 + 𝜃𝐿𝑓 𝛾𝐿  𝜃𝐿 − 𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒

𝑀   𝜃𝑀  

+
1

𝜃𝑀
 𝐶𝐻 + 𝐶𝐿 . 

 

 

 

 

(5) 

The above equation shows that the security price is the sum of the fundamental value 

and three types of premiums related to uncertainty and finiteness of the securities issued. 

The first term of the right-hand side of (5), 𝐸 𝑋𝑇 , is the fundamental value per unit size of 

the securities issued.
10

 The second term, 𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀  (𝜃𝑀) − 𝐸 𝑋𝑇 , expresses the 

uncertainty of the underlying asset, and we call this term the uncertainty premium (UP). 

Note that if the agent is risk neutral, then his/her certainty-equivalent value of the security is 

the expectation 𝐸[𝑋𝑇] under the physical measure. Therefore, if 𝛾ℎ−𝑎𝑣𝑒
𝑀  goes to zero, 

this term also approaches zero. On the other hand, the second term is less than zero for 

𝛾ℎ−𝑎𝑣𝑒
𝑀 > 0. Furthermore, this term does not reflect the constraint of the finiteness of the 

securities issued. This is because we consider the hypothetical case, 𝜕𝑋0 𝜕𝜃𝑖 = 0. The 

                                            
9
 Back (2010) argued the case that risk aversion of the representative agent can be substituted for that 

of two types of agents, and that it is given by the harmonic mean of the two. The discussion here has a 

formal similarity with Back (2010).  

10
 In this discussion, we assume that the expectation of the future value of the underlying asset is equal 

to the fundamental value. A similar argument is used by Brunnermeier and Pedersen (2009), for 

example. 
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third term, 1 𝜃𝑀  𝜃𝐻𝑓 𝛾𝐻  𝜃𝐻 + 𝜃𝐿𝑓 𝛾𝐿  𝜃𝐿 − 𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀  , appears as the 

reflection of the constraint of the finiteness of the number of securities issued, and we call 

this term the first type of finite number premium (FNP1). As shown above, when the 

constraint does not bind, we need the condition that 𝜕𝑋0 𝜕𝜃𝑖 = 0 for each 𝑖, so that  

𝜃𝐻
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐻  𝜃𝐻
ℎ𝑦𝑝𝑜

 + 𝜃𝐿
ℎ𝑦𝑝𝑜

𝑓 𝛾𝐿  𝜃𝐿
ℎ𝑦𝑝𝑜

  is equal to 𝜃𝑀𝑓 𝛾ℎ−𝑎𝑣𝑒
𝑀   𝜃𝑀 . In this case, 

this term is zero. However, because the main purpose of our model is to consider this type 

of constraint, it does not usually hold. The fourth term, 1 𝜃𝑀  𝐶𝐻 + 𝐶𝐿 , reflects the 

finiteness of the number of securities issued and we call it the second type of finite number 

premium (FNP2). This comes from the fact that we do not specify the boundary condition 

of the first and second equations in (2). In other words, this contains the constants of 

integration shown in (4). To define the boundary condition, we need to consider the 

security price when the number of securities issued is zero or infinite. However, we do not 

have any criteria to determine such hypothetical cases. Therefore, we discuss 𝑋0 with 

given 𝐶𝐻 , 𝐶𝐿 in this paper.
11

  

According to Proposition 2, under the no-arbitrage condition the pricing formula is 

simplified as 𝑋0 = 𝐸ℚ  𝑋𝑇  with the quasi-risk-neutral measure. Because one of the key 

features of mathematical finance is characterized by the risk-neutral pricing rule, this 

proposition shows the formal similarity between methods of mathematical finance and 

                                            
11

 Aside the specification of the boundary condition, there might be several methods for specifying 

FNP2. One would be to utilize the game-theoretic method. Because our model consists of a zero-sum 

economy with two agents, this might help to derive an equilibrium price in our model. However, a 

solution in game theory is often an ordinal number, not a cardinal number, and this is not appropriate 

for the application of real market data. A second method would be to introduce another optimization 

principle. However, it is difficult to specify which method is better than others with distinct criteria. A 

third method would be to incorporate a dynamics into 𝐶𝐻 , 𝐶𝐿 and discuss the convergence. Although 

it might be effective, our model is not a multi-period model but a one-period model, so its application 

might be excessive. Furthermore, as Proposition 2 shows, FNP2 is absorbed into the quasi-risk 

aversion 𝛾 𝑀 . Therefore, we do not apply these methods, but we do not consider it to be a flaw in our 

model. Because our model is simple, there are many possibilities for its extension. We will discuss 

several directions of such an extension in the conclusion.  
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those of our model, although our model contains elaborate assumptions concerning the 

market microstructure. Furthermore, utilizing this proposition, we can incorporate all of UP, 

FNP1, and FNP2 into the quasi-risk-aversion 𝛾 𝑀  at once. This facilitates the direct 

understanding of our model. For example, the higher the quasi-risk aversion 𝛾 𝑀 , the lower 

the security price.  

 

4. Numerical experiments on the JGB futures market  

In this section, we apply our model to JGBs and the JGB futures market. In the 

application, first, we determine model parameters. Second, we calculate the range of the 

no-arbitrage condition. Finally, we show the existence of FNP2.  

Recall that our model parameters consist of 𝑋0, 𝑉𝑇 , 𝜃𝑀 , ℙ, 𝛾𝐻 , 𝛾𝐿 , 𝐶𝐻 and 𝐶𝐿. At first, 

we specify 𝑋0, 𝑉𝑇 , 𝜃𝑀  and ℙ through market data and refer to the earlier empirical 

research, Pardo (2012), for 𝛾𝐻 and 𝛾𝐿. With these parameters in hand, we get 𝐶𝐻 and 𝐶𝐿 

by calibrating the model and 𝜃𝐻  and 𝜃𝐿  by using 𝑋0
𝐻 = 𝑋0

𝐿 and 𝜃𝐻 + 𝜃𝐿 = 𝜃𝑀 . 

We consider the price of JGB futures as 𝑋 and use the data of 10 JGB futures with 

delivery months from March 2011 to September 2013. JGB futures are a product for 

trading the hypothetical underlying JGB called the ―standard‖ JGB
12

 on the future fixing 

date. Because JGB futures are settled by the cheapest deliverable JGB, we describe the 

issued number of this cheapest JGB as 𝜃𝑀 .
13

 The price is defined as that of the end of the 

day. The sampling period of the data is from 40 to 10 days before the last trading date.
14

  

                                            
12

 The hypothetical underlying JGB is defined as a bond with a 10-year maturity and a 6 % coupon. 

This standardization provides more liquid trading circumstances. There are two types of JGB futures, a 

medium-term one and a long-term one. The details mentioned above are for the long-term one that we 

deal with. 

13
 More precisely, we consider the quotient of the total amount of issued bonds and the unit price at the 

issue date.  

14
 The last trading date is defined as seven days before the settlement dates, which are on the 20th of 

March, June, September, and December. If the 20th is a holiday, then the settlement date is the 

following business day. For example, the data of JGB futures with a delivery month of September 

2013 consists of closing prices from July 19, 2013 to August 30, 2013. We use Bloomberg for the 
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We describe the growth rate of price as 𝑢 (upward) and 𝑑 (downward), assuming 

𝑢𝑑 = 1. We refer to the volatility index Japan distributed by Osaka University for 

volatility, σ.15 Without loss of generality, we approximate that the interest rate is zero. 

Then, we obtain ℙ =  𝑝, 1 − 𝑝 , utilizing 𝑢, 𝑑, and σ.  

Let 𝑌 ≔ {𝑌𝑡 , 𝑡 = 0, 𝑇} be the price of JGB.
16

 Note that 𝑢, 𝑑 are the growth rate of 𝑌, 

because they are obtained with the volatility of JGBs.
17

 However, 𝑋 is settled by 𝑌 at 

𝑡 = 𝑇, then we define 𝑋𝑇 , applying 𝑋1 = 𝑌1 = 𝑢𝑌0 and 𝑋2 = 𝑌2 = 𝑢𝑌0  and specify 

𝑉𝑇 = 𝜃𝑀𝑋𝑇 .18 Many empirical studies on risk aversion have been conducted, so we can 

utilize much information from them.
19

 In this paper, we apply the risk aversion estimated 

by Pardo (2012).
20,21

  

We show an application of Theorem 1 and Proposition 2. Utilizing calibrated parameters, 

we calculate model prices and the range of the no-arbitrage condition. Figures 1 and 2 

show them on the delivery month of September 2013 and March 2013, respectively. We 

observe the model and market price are in the range of no-arbitrage. The difficulty in 

finding the arbitrage opportunity is due to the large and liquid characteristics of the JGB 

futures market. JGB futures with other delivery months show similar traits.  

                                                                                                                                

price data. 

15
 Data collection period is the same that that of JGB futures. 

16
 The price of JGBs is also available on Bloomberg, and the data collection period is the same as that 

that for JGB futures. 

17
 The probability space is common for JGBs and JGB futures, because JGB futures are derivatives of 

JGBs. 

18
 We use the price of JGB futures as 𝑋0. 

19
 Friend and Blume (1975) is one of the best-known studies. 

20
 Our model can also calibrate the risk aversion from market data. However, this is outside our focus. 

21
 Risk aversion by Pardo (2012) is implicitly given as pertaining to the representative agent. Since the 

representative agent’s risk aversion is given by the harmonic mean of each participant under the 

assumption of constant absolute risk aversion (CARA) utility, we define 𝛾𝐻 , 𝛾𝐿 such that 1 γH +

1 𝛾𝐿 = 1 0.9690 , where 0.9690 is that of Pardo (2012). In Figure 1 and Figure 2, below, we apply 

𝛾𝐻 = 10.659,  𝛾𝐿 = 1.066, which are consistent with Pardo (2012) in the sense of the harmonic 

mean. 
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Figure 1: Market price of JGB futures with a delivery month of September 2013, 

corresponding model price, and the range of no-arbitrage 

 

Figure 2: Market price of JGB futures with a delivery month of March 2013, corresponding 

model price, and the range of no-arbitrage  
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Because FNP2 is the constant of integration in (4), it might be zero. If 𝐶𝐻 = 𝐶𝐿 = 0, the 

security price given by our formula is identical to that explained by Davis’s price. We 

conduct a statistical test, comparing Akaike information criterions (AICs), to confirm that 

the FNP2 term is not zero. For almost all JGB futures, FNP2 is not equal to zero.  

Figures 3 and 4 show the estimated FNP2. The horizontal axis of each figure is the 

number of securities issued, and the vertical axis is the ratio of FNP2, (𝐶𝐻 + 𝐶𝐿)𝑋0/𝜃𝑀. 

Figures next to the triangles indicate the delivery months of JGB futures. Figure 3 shows 

the case of 𝛾𝐻 = 𝛾𝐿 = 1.938. Figure 4 shows the case of 𝛾𝐻 = 10.659,  𝛾𝐿 = 1.066. 

Risk aversion refers to the estimate shown in Pardo (2012). In both Figures 3 and 4, FNP2 

increases as the number of securities issued decreases. Comparing these two figures, we 

observe that the absolute values of FNP2 in Figure 4 are smaller than those in Figure 3. 

This implies that the difference in risk aversion increases the impact of FNP2. We can 

conjecture, for example, that if a participant with extremely small risk aversion entered the 

JGB futures market, the risk premium due to FNP2 would decrease.  

 

Figure 3: FNP2 per total value. 𝛾𝐻 = 𝛾𝐿 = 1.938. Numbers next to the triangles are 

delivery months of JGB futures.  
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Figure 4: FNP2 per total value. 𝛾𝐻 = 10.659, 𝛾𝐿 = 1.066. Numbers next to the triangles 

are delivery months of JGB futures.  

 

 

5. Conclusion 

This paper constructs a no-arbitrage and complete model incorporating the constraint on 

the number of securities issued as one of the market microstructure factors. The model 

clarifies the mechanism in which the constraint influences security prices. This mechanism 

consists of two effects, called the first and second types of the finite number premium 

(FNP1 and FNP2). In particular, FNP2 reflects the boundary condition at zero and the 

infinite number of securities issued. Because the condition is hypothetical, we do not 

specify FNP2 endogenously. Instead, we introduce the quasi-risk-neutral measure and give 

the risk-neutral pricing representation that contains all of the risk premiums related to the 

security pricing. We also show the numerical examples applying our model to the data of 

the JGB futures market and demonstrate the existence of FNP2 in the market.  

Here we briefly discuss potential topics for future research. First, because our model is 

simple in that the underlying asset is described by a one-period binomial model, it is 
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difficult to analyze the relationship between the security price and the higher-order moment 

of the price distribution. In this regard, we need to extend our pricing formula with the 

introduction of a multi-period or multinomial model. Second, with the quasi-risk-neutral 

measure, we can determine the security price without any endogenous specification of 

FNP2. At the same time, our model is insufficient to clarify the mathematical structure in 

terms of how the security price depends on the number of securities issued. To address this 

issue, it is desirable to deal with FNP2 endogenously with the optimization principle 

including the Max-Min principle.  
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Appendix 

Appendix 1 (Proof of Theorem 1) 

As shown in Section 2, the first-order condition 𝐺𝑖 𝜃𝑖 , 𝑋0
𝑖  = 0, 𝑖 ∈  𝐻, 𝐿  is rewritten 

as follows: 

 𝑋0
𝑖 = 𝐸ℚ 𝑖  𝑋𝑇 − 𝜃𝑖

𝜕𝑋0
𝑖

𝜕𝜃𝑖
 

⇔
𝜕𝜃𝑖𝑋0

𝑖

𝜕𝜃𝑖
= 𝐸ℚ𝑖  𝑋𝑇  

⇔ 𝜃𝑖𝑋0
𝑖 = ∫ 𝐸ℚ𝑖  𝑋𝑇 𝑑𝜃𝑖 + 𝐶𝑖 , 

where 𝐶𝑖  is a constant of integration. Plugging the definition of ℚ𝑖  shown in (3) into this 

formula, we obtain 

𝜃𝑖𝑋0
𝑖 = ∫  𝑞𝑖𝑋1 +  1 − 𝑞𝑖 𝑋2 𝑑𝜃𝑖 + 𝐶𝑖  

=  𝑋1 − 𝑋2 ∫ 𝑞𝑖𝑑𝜃𝑖 + ∫ 𝑋2𝑑𝜃𝑖 + 𝐶𝑖  

=  𝑋1 − 𝑋2 ∫
𝑝𝑒−𝛾𝑖𝜃𝑖𝑋1

𝑝𝑒−𝛾𝑖𝜃𝑖𝑋1 +  1 − 𝑝 𝑒−𝛾𝑖𝜃𝑖𝑋2
𝑑𝜃𝑖 + 𝑋2𝜃𝑖 + 𝐶𝑖   

=
 𝑋1 − 𝑋2 

−𝛾𝑖 𝑋1 − 𝑋2 
ln  𝑝𝑒−𝛾𝑖𝜃𝑖 𝑋1−𝑋2 +  1 − 𝑝  + 𝑋2𝜃𝑖 + 𝐶𝑖  

= −
1

𝛾𝑖
ln 𝑝𝑒−𝛾𝑖𝜃𝑖𝑋1 +  1 − 𝑝 𝑒−𝛾𝑖𝜃𝑖𝑋2 + 𝐶𝑖  

= −
1

𝛾𝑖
ln 𝐸 𝑒−𝛾𝑖𝜃𝑖𝑋𝑇  + 𝐶𝑖  

= 𝜃𝑖𝑓 𝛾𝑖  𝜃𝑖 + 𝐶𝑖 . 

Since 𝐸 𝑒−𝛾𝑖𝜃𝑖𝑋𝑇   is monotone and bounded on the interval 𝜃𝑖 ∈ [0, 𝜃𝑀] , so is 

𝜃𝑖𝑓 𝛾𝑖  𝜃𝑖 = − 1 𝛾𝑖 ln 𝐸 𝑒−𝛾𝑖𝜃𝑖𝑋𝑇  . Because of this boundedness, there exist 𝐶𝐻 and 

𝐶𝐿 satisfying 𝑋0
𝐻 = 𝑋0

𝐿 and 𝜃𝐻 + 𝜃𝐿 = 𝜃𝑀 .  

Through the summation of 𝜃𝐻𝑋0
𝐻  and 𝜃𝐿𝑋0

𝐿  with the condition X0 = 𝑋0
𝐻 = 𝑋0

𝐿, the 

security price (4) is derived and 𝑋0 is unique due to the monotonicity of 𝜃𝑖𝑓 𝛾𝑖  𝜃𝑖 . 

Q.E.D. 
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Appendix 2 (Proof of Proposition 2) 

First, we show ―if.‖ Note that for any 𝛾 > 0 and 𝜃 ∈ [0, 𝜃𝑀], we always have 

X2 ≤ 𝑓 𝛾  𝜃 ≤ 𝑋1. If there exists 𝛾 𝑀  satisfying 𝜃𝑀𝑋0 =  − 1 𝛾 𝑀 ln 𝐸[𝑒−𝛾 𝑀𝜃𝑀𝑋𝑇 ], 

we obtain 𝑋0 = 𝑓(𝛾 𝑀)(𝜃𝑀) . Then we obtain 𝑋2 ≤ 𝑋0 ≤ 𝑋1 , where both of the 

equalities hold if and only if 𝑋1 = 𝑋2. Therefore, we reach    

𝑋2 < 𝑋0 < 𝑋1. 

Next, we show ―only if.‖ To prepare, we show that it satisfies 𝑞 ∈ [0,1] for any 

positive 𝛾 𝑀 . Since 𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 +  1 − 𝑝 ≤ 1,  

 𝑞 = −
1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)) ≥ 0. 

On the other hand, 

 𝑞 = −
1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)) 

= −
ln[(𝑝𝑒−𝛾 𝑀𝑉1 + (1 − 𝑝)𝑒−𝛾 𝑀𝑉2 )𝑒𝛾 𝑀𝑉2 ]

𝛾 𝑀 𝑉1 − 𝑉2 
 

= −
ln[𝑝𝑒−𝛾 𝑀𝑉1 + (1 − 𝑝)𝑒−𝛾 𝑀𝑉2 ] + ln[𝑒𝛾 𝑀𝑉2 ]

𝛾 𝑀 𝑉1 − 𝑉2 
 

= −
ln 𝐸[𝑒−𝛾 𝑀𝑉𝑇 ] + 𝛾 𝑀𝑉2

𝛾 𝑀 𝑉1 − 𝑉2 
 

≤ −
𝐸[ln 𝑒−𝛾 𝑀𝑉𝑇 ] + 𝛾 𝑀𝑉2

𝛾 𝑀 𝑉1 − 𝑉2 
 

= 𝑝 ≤ 1. 

On line 5, we apply Jensen’s inequality. Since the no-arbitrage condition holds, a 

martingale measure exists and we can choose 𝛾 𝑀  so that 𝜃𝑀𝑋0 = 𝐸ℚ [𝜃𝑀𝑋𝑇].22
 By the 

utilization of this ℚ , it also holds that  

𝐸ℚ  𝜃𝑀𝑋𝑇 = 𝑞 𝜃𝑀𝑋1 +  1 − 𝑞  𝜃𝑀𝑋2 

                                            
22

 We implicitly assume that 𝑋0 ≤ 𝐸[𝑋𝑇], because the security price cannot exceed the fundamental 

value due to the risk premium. 
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= −
1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝))𝜃𝑀𝑋1  

                        +(1 +
1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)))𝜃𝑀  𝑋2 

= −
𝑉1

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)) 

                        +(𝑉2   +
𝑉2

𝛾 𝑀 𝑉1 − 𝑉2 
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝))) 

= 𝑉2 −
1

𝛾 𝑀
ln(𝑝𝑒−𝛾 𝑀  𝑉1−𝑉2 + (1 − 𝑝)) 

= −
1

𝛾 𝑀
ln(𝑝𝑒−𝛾 𝑀𝑉1 + (1 − 𝑝)𝑒−𝛾 𝑀𝑉2 ) 

= −
1

𝛾 𝑀
ln 𝐸 𝑒−𝛾 𝑀𝜃𝑀𝑋𝑇  . 

This argument shows that there exists 𝛾 𝑀  satisfying 𝜃𝑀𝑋0 = −
1

𝛾 𝑀 ln 𝐸 𝑒−𝛾 𝑀𝜃𝑀𝑋𝑇  , 

when the no-arbitrage condition holds.  

Q.E.D. 

 

Appendix 3 (Proof of Proposition 3) 

The no-arbitrage condition 𝑋2 < 𝑋0 < 𝑋1  is equivalent to 𝑉2 < 𝜃𝑀𝑋0 < 𝑉1 . 

Applying Jensen’s inequality to (3), we obtain  

 𝜃𝑀𝑋0 ≤ −
1

𝛾𝐻
𝐸 ln 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  −

1

𝛾𝐿
𝐸 ln 𝑒−𝛾𝐿𝜃𝐿𝑋𝑇  + 𝐶𝐻 + 𝐶𝐿 

= 𝐸 𝜃𝑀𝑋𝑇 + 𝐶𝐻 + 𝐶𝐿  

= 𝐸[𝑉𝑇] + 𝐶𝐻 + 𝐶𝐿 . 

(6) 

On the other side, we already have 𝐶𝐻 + 𝐶𝐿 < 𝐾1 =  1 − 𝑝  𝑉1 − 𝑉2  as the 

assumption. Therefore, utilizing (6), we obtain 

𝜃𝑀𝑋0 ≤ 𝐸 𝑉𝑇 + 𝐶𝐻 + 𝐶𝐿 

⇔ 𝜃𝑀𝑋0 < 𝐸 𝑉𝑇 +  1 − 𝑝  𝑉1 − 𝑉2  

⇔ 𝜃𝑀𝑋0 < 𝑉1 . 

Next, we need to specify a lower bound of 𝐶𝐻 + 𝐶𝐿 . For any 𝜃 ≥ 0 , 

− 1 𝛾𝐻 ln 𝐸 𝑒−𝛾𝐻𝜃𝑋𝑇  ≤ − 1 𝛾𝐿 ln 𝐸 𝑒−𝛾𝐿𝜃𝑋𝑇  , because 𝛾𝐻 ≥ 𝛾𝐿. Therefore,  
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𝜃𝑀𝑋0 = −
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  −

1

𝛾𝐿
ln 𝐸 𝑒−𝛾𝐿𝜃𝐿𝑋𝑇  +𝐶𝐻 + 𝐶𝐿 

≥ −
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  −

1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝜃𝐿𝑋𝑇  + 𝐶𝐻 + 𝐶𝐿  

≥ −
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  𝐸 𝑒−𝛾𝐻𝜃𝐿𝑋𝑇  + 𝐶𝐻 + 𝐶𝐿 . 

Here, we consider the minimal value of −𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  𝐸 𝑒−𝛾𝐻𝜃𝐿𝑋𝑇  . For simplicity, we 

define 𝛼 ≔ 𝜃𝐻/𝜃𝑀  and we introduce 

ℎ 𝛼 ≔ −𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  = −𝐸 𝑒−𝛾𝐻𝜃𝐻𝑋𝑇  𝐸 𝑒−𝛾𝐻𝜃𝐿𝑋𝑇  . 

By elementary calculation, we obtain  

𝜕ℎ

𝜕𝛼
= −

𝜕𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  

𝜕𝛼
𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  − 𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  

𝜕𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  

𝜕𝛼
 

= −𝐸 −𝛾𝐻𝑉𝑇𝑒
−𝛾𝐻𝛼𝑉𝑇  𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  − 𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  𝐸 𝛾𝐻𝑉𝑇𝑒

−𝛾𝐻 1−𝛼 𝑉𝑇   

= 𝛾𝐻𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇   
𝐸 𝑉𝑇𝑒

−𝛾𝐻𝛼𝑉𝑇  

𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  
−

𝐸 𝑉𝑇𝑒
−𝛾𝐻 1−𝛼 𝑉𝑇  

𝐸 𝑒−𝛾𝐻  1−𝛼 𝑉𝑇  
  

= 𝛾𝐻𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇   
𝑝𝑒−𝛾𝐻𝛼𝑉1

𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  
−

𝑝𝑒−𝛾𝐻  1−𝛼 𝑉1

𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  
  𝑉1 − 𝑉2  

= 𝛾𝐻 𝑝𝑒−𝛾𝐻𝛼𝑉1𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  − 𝑝𝑒−𝛾𝐻 1−𝛼 𝑉1𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇    𝑉1 − 𝑉2  

= 𝛾𝐻(𝑝𝑒−𝛾𝐻𝛼𝑉1 𝑝𝑒−𝛾𝐻 1−𝛼 𝑉1 +  1 − 𝑝 𝑒−𝛾𝐻 1−𝛼 𝑉2  

           −𝑝𝑒−𝛾𝐻 1−𝛼 𝑉1 𝑝𝑒−𝛾𝐻𝛼𝑉1 +  1 − 𝑝 𝑒−𝛾𝐻𝛼𝑉2 ) 𝑉1 − 𝑉2  

= 𝛾𝐻𝑝 1 − 𝑝  𝑒−𝛾𝐻 𝛼𝑉1+ 1−𝛼 𝑉2 − 𝑒−𝛾𝐻  1−𝛼 𝑉1+𝛼𝑉2   𝑉1 − 𝑉2 . 

On line 4, we use 
 1−𝑝 𝑒−𝛾𝐻𝛼𝑉2

𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  
= 1 −

𝑝𝑒−𝛾𝐻𝛼𝑉1

𝐸 𝑒−𝛾𝐻𝛼𝑉𝑇  
 and 

 1−𝑝 𝑒−𝛾𝐻  1−𝛼 𝑉2

𝐸 𝑒−𝛾𝐻  1−𝛼 𝑉𝑇  
= 1 −

𝑝𝑒−𝛾𝐻  1−𝛼 𝑉1

𝐸 𝑒−𝛾𝐻 1−𝛼 𝑉𝑇  
, and we obtain 

𝜕ℎ

𝜕𝛼
 0 = 𝛾𝐻𝑝 1 − 𝑝  𝑒−𝛾𝐻𝑉2 − 𝑒−𝛾𝐻𝑉1  𝑉1 − 𝑉2 > 0. 

Furthermore,  

𝜕2ℎ

𝜕𝛼2
= 𝛾𝐻𝑝 1 − 𝑝  −𝛾𝐻 𝑉1 − 𝑉2 𝑒

−𝛾𝐻 𝛼𝑉1+ 1−𝛼 𝑉2 

− 𝛾𝐻 𝑉1 − 𝑉2 𝑒
−𝛾𝐻  1−𝛼 𝑉1+𝛼𝑉2   𝑉1 − 𝑉2  

= −𝛾𝐻
2𝑝 1 − 𝑝  𝑒−𝛾𝐻 𝛼𝑉1+ 1−𝛼 𝑉2 + 𝑒−𝛾𝐻  1−𝛼 𝑉1+𝛼𝑉2   𝑉1 − 𝑉2 

2 ≤ 0. 
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Therefore, minα∈ 0,1 ℎ 𝛼 = ℎ 0 = ℎ 1 = −𝐸 𝑒−𝛾𝐻𝑉𝑇  , and it holds that 

 𝜃𝑀𝑋0 ≥ −
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝑉𝑇  +  𝐶𝐻 + 𝐶𝐿 . (7) 

By the no-arbitrage condition, it needs to satisfy 𝜃𝑀𝑋0 ≥ 𝑉2. Plugging this into (7), we 

obtain 

−
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝑉𝑇  +  𝐶𝐻 + 𝐶𝐿 > 𝑉2 

⇔ 𝐶𝐻 + 𝐶𝐿 > 𝑉2 +
1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻𝑉𝑇  =

1

𝛾𝐻
ln 𝐸 𝑒−𝛾𝐻(𝑉𝑇−𝑉2) . 

Q.E.D. 
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