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1 Introduction

In this paper we develop a framework to estimate the probability of default (PD) from listed

stock option prices. PD plays prominent roles both in academic and practical issues of

finance. Firstly, PD is one of the core elements of pricing models for defaultable financial

instruments (bonds, CDS, CDS options etc.). Secondly, PD (and the co-movement of PDs)

provides useful information both for investors and regulators when assessing the soundness

of financial systems and individual institutions (see, e.g.; Clare, 1995 and Tabak et al., 2011,

for a relevant discussion).

While it is possible to calculate the arbitrage price of debt instruments such as corporate

debts (Duffie and Singleton, 1999) and CDS (Duffie, 1999) from PD and loss given default

(LGD), it is usually difficult to uniquely specify the parameters from the market price: ob-

served prices are approximately given by the product of PD and LGD, and thus a continuum

of parameters is consistent with a unique market price. As a practical simplification, rating

agencies and financial institutions evaluated the PD of corporate debts with a 60% LGD

assumption to rate and price securitized products up to 2008 (Moody’s, 2001 and Krekel,

2010) although empirical research does not support the assumption (Altman et al., 2005, Qi

and Zhao, 2011, Das and Hanouna, 2009 and Takeyama et al., 2010). Most practitioners

only consider the homogeneous movement of LGD (Krekel, 2010 and Amraoui et al., 2009)

after the constant recovery assumption was found to be too simplistic in the turbulence of

the credit market due to the failure of Bear Sterns in March 2008. It is therefore of both

practical and theoretical importance to establish a reliable approach to specify the PD of

individual entities.

One solution to the above problem is a joint specification of the PD with other asset

prices of the same name: if the LGD is known at least for one of the assets then it is possible

to specify the PD. The existing approaches therefore differ in the choice of those same-name

assets. Schläfer and Uhrig-Homburg (2009) and Norden and Weber (2010) calculate PD

using different seniority CDS since a positive spread on senior CDS logically implies a 100%

LGD in the subordinate CDS under the absolute priority rule. Jarrow (2001) and Das and

Hanouna (2009) obtain the PD from stock prices by modeling the stock as a defaultable
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security with full loss (LGD = 100%). This idea can be extended to incorporate equity

options. Linetsky (2006) and Carr and Wu (2010) suggest the joint pricing model of stock

options with debt products.

We adopt the stock option approach for two important reasons. First, listed stock options

provide a rich source of data. Estimating PD from the different seniority CDS is only

applicable to companies that issue different seniority debts. The number of companies whose

stock options are traded is larger than that of companies which issue different seniority debt.1

On the other hand the PD estimation from the stock price requires some range of time series

data of the stock price as it is univariate time series data. Therefore, short term changes

in the PD are difficult to capture when the stock price data is the only available data. In

contrast to the stock price data, stock options provide a large cross section of data. Therefore,

even daily changes of PD can be captured for a large number of companies. The ability to

monitor credit risk daily is an important aspect of risk management following the subprime

crisis. The second property is that listed stock options are basically free from counterparty

risk. Since CDS are over-the-counter (OTC) securities, their prices depend on counterparty

risk as well as the credit risk of the reference entity. On the other hand, the daily mark

to market clearing of the exposure in the clearing house minimizes the counterparty risk of

the listed equity options. These two properties - richness of data and no counterparty risk -

underpin our choice of financial instruments to estimate the PD.

An important ingredient in our framework is to employ an option pricing model that

is sufficiently flexible (incorporating default risk, stochastic volatility and stochastic term

structure) in order to model the volatility surface over a wide range of strikes. A deterioration

in credit leads to a significant fall in equity prices resulting in traded options which are

drastically in or out of the money. We employ the model of Bayraktar and Yang (2011),

which has just these characteristics, to estimate the PD implied in listed stock options

although Bayraktar and Yang (2011) calibrate the volatility surface of stock options using

the PD inferred from corporate bonds. The main contribution of our paper is to construct

a framework to extract the PD from listed options using the Bayraktar and Yang (2011)

1For example, subordinate CDS are only available in financial institutions within the members of CDX

NA IG, US corporate CDS index, while equity options are available in all the listed stocks of the members.

2



model which we demonstrate needs to be modified with an appropriate description of the

term structure that goes beyond Vasicek (1977) in order to capture the significant twist

experienced during the subprime crisis in 2008-2009. The time inhomogeneous term structure

model of Hull and White (1990) [henceforth HW] by construction can capture any shape of

term structure and is an integral ingredient in our framework.

The framework employs a two-stage calibration procedure which is similar to the Cont and

Tankov (2004) method. In the first stage of the calibration, the non-credit related parameters

are estimated and these are then employed in the second stage to obtain an estimator for

the PD. We consider four models within the framework, however we demonstrate that one

that provides the best fit and an unbiased estimator of the PD is the case of the Bayraktar

and Yang (2011) model modified by HW. Other models considered such as the Bayraktar

and Yang (2011) model employing the Vasicek (1977) term structure model, may produce

close agreement with the market prices under certain circumstances, but the parameters

are biased in this case. An important byproduct of the framework is the ability to employ

the extracted PD to derive the implied LGD. As the daily estimator of the implied LGD

is positively correlated with PD and more volatile in higher rating companies, the daily

estimator of the implied LGD is consistent with observation on liquidity risk of CDS (Brigo

et al., 2011) as well as monthly and yearly LGD (Das and Hanouna, 2009; Altman et al.,

2005).

For estimation we use the listed stock option data of financial institutions and non-

financial companies in US and UK (Citi, Exxon, HSBC and BP) during July 2008 - July

2010. This sample period includes the financial crisis, which started from the Lehman

Brother collapse in September 2008, and the oil spill in the gulf of Mexico by BP in May

2010. The data therefore contains severe re-valuation of the financial institutions’ credit risk

and the twisted term structure of the funding interest rate, as well as the firm specific rise on

credit risk (oil spill). This period provides ideal stress-testing conditions for our approach.

The rest of the paper is organized as follows. Section 2 proposes an equity option pricing

model under credit risk and derives an approximation formula of the model and related

models using a perturbation method. Section 3 proposes a calibration algorithm of the

option pricing models. Section 4 discusses why the fitness of our model outperforms that of
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the other models. Section 5 analyze some properties of the PD and LGD estimators.

2 Option pricing under credit risk

In this section we construct the option pricing model to estimate the PD implied in stock

options. While we basically follow the Bayraktar and Yang (2011) model, we replace the

Vasicek term structure model with HW model which is more suitable for financial derivatives

pricing. Since our option pricing model is embedded with one factor stochastic volatility,

default risk and stochastic interest rate, it does not have an analytical solution. Therefore,

we derive an approximation of the model using the singular perturbation method.

The perturbation method based approximation allows an approximation of option pricing

models without the specification of their exact functional form (Kristensen and Mele, 2011).

In fact we derive an approximation formula of option pricing models just assuming that the

stochastic differential equations of the option pricing model satisfy regulatory conditions for

the existence of solutions. Moreover, we do not have to specify all of the parameters since the

coefficients of the approximation formula are expressed as the products of the parameters.

These features reduce both the computational burden and model misspecification risk.

2.1 The stochastic processes of the underlying stock price and

interest rate

We describe the set up of the equity option pricing model under credit risk. First we introduce

a Cox processes (Poisson processes of which intensity, λt is time varying)

Ñt = Nt

(
∫ t

0

λsds

)

(1)

and six correlated Brownian motions with the following correlation structure,

E[W
(0)
t , W

(i)
t ] = ρit , E[W

(i)
t , W

(j)
t ] = ρijt i, j ∈ {1, 2, 3, 4, 5}, t ≥ 0. (2)

4



We denote the time of the default of the reference entity in a CDS contract the stopping

time τ ,

Ñt =







0 τ > t

1 τ ≤ t
(3)

where the intensity of the Cox process, λt, is defined

λt = f(Yt, Zt), (4)

dYt =
1

ǫ
(m− Yt)dt+

υ
√
2√
ǫ
dW

(2)
t , (5)

dZt = δc(Zt)dt+ g(Zt)dW
(3)
t , (6)

f(Yt, Zt), c(Zt) and g(Zt) are respectively smooth and bounded functions of Zt and Yt. Yt

follows a mean reverting stochastic process characterized by positive constants m, υ and ǫ.

Since we assume that c(Zt) and g(Zt) satisfy Lipschitz continuity and growth conditions, the

diffusion process Zt has a uniquely strong solution. δ and ǫ respectively control the velocity

of stochastic processes (5) and (6).

Under this setting, the defaultable stock price process is defined as

dS̄t = S̄t

(

(rt − qt) dt+ σ(Ỹt)dW
(0)
t − d

(

Nt −
∫ t∨τ

0

λudu

))

, S̄0 = x , (7)

where qt is the instantaneous dividend rate. The credit event indicator of (7) is the jump

diffusion process, where the jump magnitude is fixed at unity.

Secondly, the stochastic volatility function is defined as a smooth and bounded function

of Ỹt. The stochastic process, Ỹt, follows a mean reverting process,

dỸt =

(

1

ǫ

(

m̃− Ỹt

)

+
υ̃
√
2√
ǫ
Λ(Ỹt)

)

dt+
υ̃
√
2√
ǫ
dW

(4)
t . (8)

Λ is a smooth, bounded function of one variable which represents the market price of volatility

risk. The parameter 1/ǫ is the rate of mean reversion of the process while ǫ also corresponds

to the time scale of the process. All the other parameters in equation (5)–(8) are positive

valued constants.

While the stock price drops to zero at the moment of the credit event (default) and

thereafter stays at zero, the pre-default stock price dynamics has continuous paths.

dSt = St

(

(rt + λt − qt) dt+ σ(Ỹt)dW
(0)
t

)

, S0 = x and λ0 = λ . (9)
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Finally the risk free interest rate, rt is assumed to follow the HW model

drt = (αHW
t − βHW rt)dt+ ηHW dW

(1)
t , r0 = r , (10)

where

αHW
t =

∂fM(0, t)

∂t
+ βfM(0, t) +

(ηHW )2

2βHW
(1− exp(−2βHW t)) (11)

and fM(t, T ) is the market forward rate from time t to time T .

2.2 Option Pricing under Credit Risk

We define It as the filtration generated by Ñt. In the framework, it is possible to construct

the enlargement filtration Gt of the filtration Ft generated by the vector of Brownian motions

and credit indicator filtration It (Gt = It∨Ft). We can calculate the price of the defaultable

contingent claim P (t, T ) as the conditional expectation of the pay off, h(S̄T )(= P (T, T )) by

Proposition 5.1.1 of Bielecki and Rutkowski (2002):

P (t, T ) = E

[

exp

(

−
∫ T

t

rsds

)

h(S̄T )1(τ>T )

∣

∣

∣

∣

Gt

]

= 1(τ>t)E

[

exp

(

−
∫ T

t

(rs + λs) ds

)

h(ST )

∣

∣

∣

∣

Ft

]

. (12)

Duffie and Singleton (1999) obtain the equivalent result for defaultable bonds.

Equation (12) provides some useful special cases. First, if h(S̄T ) ≡ 1, then P (t, T ) is a

(non-defaultable) risk free discount bond price, B0(t, T ).

B0(t, T ) = E

[

exp

(

−
∫ T

t

rsds

) ∣

∣

∣

∣

Ft

]

(13)

In the setting described by (10), it is possible to obtain the explicit solution of (13) as the

forward start bond price

B0(0, t, T ) = exp(aHW (t, T )− bHW (t, T )rt), (14)

where

bHW (t, T ) =
1− exp(βHW (T − t))

βHW
,

aHW (t, T ) =
fM(0, T )

fM(0, t)

(

bHW (t, T )fM(0, t)− (ηHW )2

4βHW
(1− exp(−2βHW t))bHW (t, T )2

)

.
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If h(S̄T ) ≡ 1(τ>T )+1(τ≤T )(1− l)P (t, τ1−) and l is the rate of loss at default, then P (t, T )

is a defaultable discount bond price, Bc(t, T ).

Bc(t, T ) = E

[

exp

(

−
∫ T

t

rsds

)

(1− 1(τ≤T )l)

∣

∣

∣

∣

Gt

]

= E

[

exp

(

−
∫ T

t

(rs + lλs) ds

)
∣

∣

∣

∣

Ft

]

. (15)

Finally, if h(S̄T ) ≡ (ST − K)+, P (t, T ) represents the price of a European call option

with strike price K (K > 0) which reduces to

Call(t, T ) = E

[

exp

(

−
∫ T

t

(rs + λs) ds

)

(XT −K)+
∣

∣

∣

∣

Ft

]

= xN(d1)−K E

[

exp

(

−
∫ T

t

(rs + λs) ds

) ∣

∣

∣

∣

Ft

]

N(d2) , (16)

where N() is the standard normal distribution function and

d1 =
log
(

x
KBc

0
(t,T )

)

+ 1
2
σ(t, T )

√

σ(t, T )
, d2 = d1 −

√

σ(t, T ) ,

σ(t, T ) = E

[
∫ T

t

σ
(

Ỹt

)2

dt

∣

∣

∣

∣

Ft

]

, Bc
0(t, T ) = E

[

exp

(

−
∫ T

t

(rs + λs) ds

) ∣

∣

∣

∣

Ft

]

.

The price of the put option is obtained by using put-call parity

Put(t, T ) = −xN(−d1) +K E

[

exp

(

−
∫ T

t

(rs + λs) ds

) ∣

∣

∣

∣

Ft

]

N(−d2)

+ K E

[

exp

(

−
∫ T

t

rs ds

)

− exp

(

−
∫ T

t

(rs + λs)ds

) ∣

∣

∣

∣

Ft

]

. (17)

2.3 Volatility Surface Modeling Using the Singular Perturbation

Method

The implementation of the perturbation method is achieved following a two-step process.

First, we formulate an analytically tractable model, P0, as the simplified modification of the

original option pricing model P̃ǫ,δ. By Corollary 3.2 of Bayraktar and Yang (2011), we derive

the call option price P0 assuming that the volatility of underlying stock price process and

the intensity of the hazard rate are fixed at σ̄2
1 and λ̄ respectively.

P0(t, T ) = xN(d1)−KE

[

exp

(

−
∫ T

t

(

rs + λ̄
)

ds

) ∣

∣

∣

∣

Ft

]

N(d2) , (18)

7



where

d1 =
log
(

x
KB̄c

0
(t,T )

)

+ 1
2
σ̄(t, T )

√

σ̄(t, T )
, d2 = d1

√

σ̄(t, T ) ,

σ̄(t, T ) = σ̄2
1(T − t) + (ηHW )2

∫ T

t

(bHW (s, T ))2 ds+ 2ηHW ρ̄σ̄1

∫ T

t

bHW (s, T ) ds ,(19)

B̄c
0(t, t, T ) = E

[

exp

(

−
∫ T

t

(

rs + λ̄
)

ds

) ∣

∣

∣

∣

Ft

]

,

= exp
(

aHW (t, T )− bHW (t, T )rt − λ̄(T − t)
)

, (20)

and ρ̄ is the correlation between the stock price process and risk free interest rate. The put

option price in the above assumption is given by put-call parity.

In the second step, we calculate the model option price P̃ǫ,δ using the first order asymp-

totics on the (small) positive constants,
√
ǫ and

√
δ, to approximate the actual option price

P ,

P̃ǫ,δ = P0 +
√
ǫP1,0 +

√
δP0,1 , (21)

where P1,0 and P0,1 are respectively the first order derivatives of P̃ǫ,δ with respect to
√
ǫ and

√
δ.

Fouque et al. (2003) demonstrate the validity of this approximation in their Theorem

3.6. The model price of a stock option, P̃ǫ,δ is then explicitly given by

P̃ǫ,δ(T,K, λ̄(z),V ) = P0(T,K, λ̄(z)) + V ǫ
1 g1(T,K, λ̄(z)) + V ǫ

2 g2(T,K, λ̄(z))

+ V ǫ
3 g3(T,K, λ̄(z)) + V ǫ

4 g4(T,K, λ̄(z)) + V ǫ
5 g5(T,K, λ̄(z))

+ V ǫ
6 g6(T,K, λ̄(z)) + V ǫ

7 g7(T,K, λ̄(z)) + V δ
1 g8(T,K, λ̄(z))

+ V δ
2 g9(T,K, λ̄(z)) . (22)

As shown in Appendix A, all coefficients V (=(V ǫ
1 , V

ǫ
2 , V

ǫ
3 , V

ǫ
4 , V

ǫ
5 , V

ǫ
6 , V

ǫ
7 , V

δ
1 , V

δ
2 )) in

(22) are the polynomials of the model parameters defined in (2.1)–(2.7) of Bayraktar and

Yang (2011). It follows that it is possible to estimate the option price under credit risk

without specification of the individual parameters, but rather the coefficients that arise in

the perturbation expansion, V (see Bayraktar and Yang, 2011 for details).

Before we calibrate the model to the actual data, we note some properties of the model,

especially P0. The default intensity λ̄ plays the same role as the risk free interest rate rt
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in call options, while it partially explains higher option premium in out of the money put

option (Figure 4). The following terms of (22) correct P0 to fit with the volatility skewness

with the asymptotic terms g1 to g9 which are also the ’Greeks’ of P0 or the partial derivatives

of P0.

2.4 Related option pricing models

The framework of the PD estimation defined in Section 2.1 is equivalent to the model defined

in (2.1)–(2.7) of Bayraktar and Yang (2011) except for the term structure model of interest

rates. They employ the Vasicek term structure model

drt = (αV − βV rt)dt+ ηV dW
(1)
t , r0 = r , (23)

where αV , βV and ηV are real valued constants and W
(1)
t is a standard Brownian motion.

Using (23), T − t term risk free discount bond price is given by

B0
V (t, T ) = exp(aV (t, T )− bV (t, T )rt) , (24)

where

bV (t, T ) =
1− exp(βV (T − t))

βV
,

aV (t, T ) =

((

αV

βV
− (ηV )2

2(βV )2

)

(bV (T − t)− T + t)− (ηV )2

4βV
bV (T − t)2

)

.

While stochastic interest rate models do not contribute to the goodness of fit in equity

option pricing models significantly (Bakshi et al., 1997), the selection of the term structure

model is critical in the estimation of the PD implied in equity options for two reasons. First

the HW model is an analytically tractable term structure model to reproduce the current

term structure of interest rates exactly.2 3 Thus, the perturbation method based numerical

2We can find other time inhomogeneous term structure models in which discount bond prices are an-

alytically solvable, such as CIR++ model (See Brigo and Mercurio, 2006 for details). However, the HW

model is the only time inhomogeneous and mean reverting term structure model which provides analytical

solutions of both discount bond prices and option prices (Gaussian model, see Musiela and Rutkowski, 2006

for details) as far as we know.
3As discussed in Section 5.2 of Brigo and Mercurio (2006), the HW term structure model belongs to the
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approximation is applicable to our model, while our model is equivalent to the use of the

actual interest rates which is adopted by recent articles on advanced option pricing in terms

of the interest rate modeling. Secondly the HW model accounts for the volatility of interest

rates. The primary reason of the insignificant contribution of the term structure models in

stock option pricing is that the sensitivity of the interest rate volatility change on option

prices is generally much smaller than that of the underlying stocks. On the other hand, the

short term interbank interest rates volatility reached record high level (Figures 1 - 2). Since

Moody’s (2010) documents that the historical average of senior debt’s LGD is about 20-50%,

the average CDS spread in CDS index such as CDX.NA.IG, 1-2% implies 2-8% PD (Figure

6). Therefore, the volatility of the interest rate is too high to neglect in the estimation of

the PD implied in equity options.

It is worthwhile recapping the model that has been developed here. It is a stochastic

volatility model that incorporates default risk and captures the term structure via HW. This

model is referred to as model I. It is an extension of other existing models, denoted II, III

and IV, which are now described. The original Bayraktar and Yang (2011) model contains

stochastic volatility, credit risk and time homogeneous term structure model described (the

Vasicek model). This model is denoted as model II, a special case of our model with αHW
t

fixed at constant αV . In this case, V ǫ
7 is zero and equation (22) becomes identical to equation

(4.6) of Bayraktar and Yang (2011). Models III and IV do not contain credit risk but

incorporate stochastic volatility and stochastic interest rates. They are the special cases

with λ̄t = 0 in the underlying stock price process, with the HW (model III) and the Vasicek

(model IV) term structure model. Models III and IV test the effect of the term structure

model and both are generalizations of Fouque et al. (2003), who assume a constant interest

rate. In model III, λ̄t, V
ǫ
1 , V

ǫ
3 , V

δ
1 and V δ

2 of (22) become zero, and in model IV, V ǫ
7 becomes

zero in addition. The four types of pricing models are listed in Table 1 and their non-zero

expansion coefficients listed in Table 2.

In the following sections we provide a detailed comparison of our key model I with the

class of forward rate models although the model is originally proposed as one of the (time inhomogeneous)

equilibrium model. In fact, when t equals 0, (14) is always equal to the actual discount bond price which is

independent of βHW and ηHW .
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three other models. The overriding requirement is to demonstrate that a stable and consistent

PD is obtained from model I. This is demonstrated by performing a fitting comparison against

models II, III and IV.

3 Data and Calibration Procedure

3.1 Data

We calibrate an approximation formula of the option pricing model (22) to actual option

prices and estimate the PD implied in stock options. The sample contains UK and US

financial institutions and non-financial companies; HSBC Holdings (HSBC), Citi Group

(Citi), BP Group (BP) and Exxon Mobil corporation (Exxon) during July 2008-July 2010.

In this sample period, we can test the efficiency of the models under two different types of

market conditions which impacted credit risk; the subprime crisis and the operational crisis

that engulfed BP subsequent to the Gulf of Mexico oil spill. Citi faced a severe drop in

market valuation during the financial crisis in 2008. BP in contrast, experienced a drastic

change of market valuation due to the oil spill in the Gulf of Mexico in April 2010, a period

when financial markets were relatively stable. We also investigate HSBC and Exxon which

experienced, in contrast, little or no adverse market valuation during this period.

The sources of data we use are listed below:

• Daily stock price data are obtained from Datastream.

• Daily listed stock option price data of the UK companies are obtained from Datastream.

The data contains options of all expiration dates and strike prices which were traded

on Euroclear over the sample period. Daily listed stock option price data of the US

companies traded in CBOE are obtained from OptionMetrics.

• Stock dividends of the sample companies are obtained from each web site of the sam-

ple companies. Unless the companies announce that they would cease or reduce the

dividend payment4, the sum of the last four quarterly dividends is assumed to be the

dividend in a year.

4US Department of the Treasury has decided to restrict the dividend of Citi in the capital injection on
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• The interbank interest rates, LIBOR and swap rate are obtained from DataStream .

• Daily 1 year CDS spreads are obtained from Datastream.

We estimate the PD over one year horizon using listed stock option data. However,

options with a maturity of exactly one year are not always available as Euroclear and CBOE

basically operate a three month expiring cycle. Hence we employ call and put options with

reamining maturities from 6 months to 18 months. Therefore, we effectively estimate the

average of the PD between 6 months and 18 months.

The listed options are American style and we convert the prices into European style by

extracting the early exercise premium following the methodology of Bayraktar and Yang

(2011) and Carr and Wu (2010). We calculate the European option prices substituting

the implied volatility of American options into the Black-Scholes formula. While the implied

volatility of the US companies is available in OptionMetrics dataset, we calculate the implied

volatility of the UK companies’ options from DataStream using the Bjerksund and Stensland

(2002) model.5 In the dataset from Datastream, we exclude the data which does not satisfy

the following arbitrage condition of American type options,






Pt > max (St −K, 0) if Pt is the price of a call option

Pt > max (K − St, 0) if Pt is the price of a put option

and where OptionMetrics does not provide the implied volatility of these options.

3.2 Calibration Procedure

The objective of the calibration is to obtain an accurate and unbiased estimate of the PD

implied in listed stock options. In the calibration of option pricing models, we have two

choices to calibrate the equilibrium term structure models of the interest rate. First following

Bayraktar and Yang (2011) means the calibration of the equilibrium term structure model

to the actual term structure separately and the calibration of the option pricing model to

option prices using the parameters of the term structure model. On the other hand Bakshi

14th October 2008 (Table 3). BP announced to stop the dividend payment due to the loss of the oil spill in

the Gulf of Mexico on 18th June 2010 (Table 6)
5The method is available in the financial derivatives toolbox of Matlab.
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et al. (1997) calibrate both the equilibrium term structure model (Cox et al., 1985 model)

and option pricing models to S&P index option prices simultaneously. As Merton (1973)

shows, the volatility function of option prices (19) depends on the volatility of the risk free

interest rate as well as that of the underlying stock price in option pricing with a stochastic

interest rate model. It implies that the parameters of the Vasicek model in model II and IV

must be calibrated to fit the term structure of interest rates and the volatility function (19).

As the best parameters to describe the term structure of interest rates does not necessarily

match those that best describe the term structure of interest rate volatilities, the separate

calibration with the term structure of interest rates is not always optimal in the option

pricing calibration. Moreover, the Vasicek model does not capture the term structure of

interest rates well in our sample period (figure 7). Therefore, we follow Bakshi et al. (1997)

and calibrate simultaneously the term structure model and the option pricing model to stock

option prices. In this procedure, we can optimize the term structure model parameters both

in terms of the volatility function (19) and the term structure of interest rates. We expect

that the fitness of the option pricing model would be better than the result from the separate

calibration, while the result may be inconsistent with the term structure of interest rates.

On the other hand, as the HW fits the current term structure perfectly, the parameters of

the HW term structure model are calibrated just to the volatility function (19). From an

optimization point of view, the term structure of interest rate is not a part of the calibration

objective but one of the constraints. This, as we demonstrate, is a key advantage of using

the HW model in option pricing models.

We calibrate the option pricing model via the optimization of the model parameter vector

Θ (V of (22), λ̄t and the term structure model parameter vector Ψh) with an algorithm

applied to the Merton (1976) model calibration by Cont and Tankov (2004). In this procedure

we minimize the weighted sum of absolute error to avoid the bias caused by the difference

of the number of options, Ni,t, at individual maturity i.
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1. First, we optimize V (= (V ǫ
1 , V

ǫ
2 , V

ǫ
3 , V

ǫ
4 , V

ǫ
5 , V

ǫ
6 , V

ǫ
7 , V

δ
1 , V

δ
2 )) and Ψh

t with λ̄t−1
6

[V̄ Ψ̄h] = arg min
V ,Ψh

∑

i

√

∑

j

(

σimpl(Ti, Ki,j)− σM
impl(Ti, Ki,j))

)2
/Ni,t , (25)

where j refers to the strike of the option and

σimpl(Ti, Ki,j)− σM
impl(Ti, Ki,j) ≈

P (t, Ti, Ki,j)− P̃ǫ,δ(Ti, Ki,j , λ̄t−1,V , Ψ
h)

vega(σimpl(Ti, Ki,j))
, (26)

Ni,t is the number of the maturity Ti options traded at t, the implied volatility

σimpl(Ti, Ki,j) and the option price sensitivity of the volatility vega(σimpl(Ti, Ki,j)) are

calculated using the Black-Scholes formula and

Ψh =







αV , βV and ηV h = II, IV

βHW and ηHW h = I, III .
(27)

2. Second, we estimate PD with the parameters V̄ and Ψ̄ h from (25),

λ̄t = argmin
λt

∑

i

√

∑

j

(

σimpl(Ti, Ki,j)− σM
impl(Ti, Ki,j))

)2
/Ni,t , (28)

where

σimpl(Ti, Ki,j)− σM
impl(Ti, Ki,j) ≈

P (t, Ti, Ki,j)− P̃ǫ,δ(Ti, Ki,j , λt, V̄ , Ψ̄h)

vega(σimpl(Ti, Ki,j))
. (29)

As model III and IV do not contain credit risk, the calibration terminates at the first step

(25). The calibration of models I and II consists of two steps, (25) and (28).

The estimator λ̄t in (28) is not yet equivalent to the one implied in credit instruments for

two reasons. The first is the credit risk implied in funding interest rates. The option pricing

models in Table 1 assume rt is a non-defaultable interest rate (a risk free interest rate. See

Musiela and Rutkowski, 2006 for details). However, the actual funding rate, rt obviously

contains two kinds of credit risks, the credit risk of the government and that of financial

institutions. Thus the estimated value λ̄t in (28) is possibly biased.

6The initial value of the probability of default, λ̄0, is calculated from 1 year CDS spread under 60% LGD.

To eliminate the dependency on the initial value we ignore the first 20 days results.
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We adjust the estimation result by accounting for the first type of credit risk, the credit

risk of the government. No government is perfectly free from credit risk. The CDS spread of

the UK and US government, whose bonds were rated AAA in 2008-2010, was non-zero even

before the financial crisis. This implies that λ̄t estimated in (28) can be lower than the true

value λt if the government bond yield is assumed to be the risk free interest rate. That is

the calibration optimizes the level of the sum, rt + λ̄t regardless of the credit risk embedded

in rt. To modify the bias of the credit risk contained in the funding rate, we estimate the

intensity of the Cox process, λ̂t using the estimated value, λ̄t and CDS spread of the UK

and US government, CDS(t, T ),

λ̂t = λ̄t + CDS(t, T ) . (30)

Therefore, even if λ̄t is zero, it implies that the credit risk does not influence the stock option

prices explicitly and the implied PD of the company is identical to the CDS spread of the

government.

The second adjustment is the risk premium implied in listed stock options. The adjusted

estimator λ̂t is the risk neutral intensity of the hazard process. Thus, it is not equivalent to

the intensity of the hazard rate in the credit instrument yet. As Berg (2010) demonstrates,

λ̂t does not contain a risk premium. Denote the intensity obtained in (30) λ̂RN

t to emphasize

it under risk neutral one. We follow Berg (2010) and adjust the risk premium with Sharpe

ratio (SRt) to obtain the intensity λ̂actt under the actual probability measure

λ̂actt = Φ
[

Φ−1
(

λ̂RN

t

)

− SRt,i

]

, (31)

where Φ is a cumulative distribution function of the standard normal distribution.

The problem in the conversion (31) is the calculation of the Sharpe ratio since the ex-

pected excess return of risky assets is often negative in short run estimation. Since Fama and

French (2002) report the long run Sharpe ratio of US stock market during 1951-2000, SRM

is 0.4, Berg (2010) calculate the Sharpe ratio of individual stocks with the long run Sharpe

ratio and the correlation between the individual stock price and the stock index, Cori,t,
7

SRi,t = Cori,tSR
M . (32)

7The correlation between the individual stock price and stock index is calculated using the 20 days

historical data.
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We calculate the Sharpe ratio of US and UK firms’ stocks using the results of Kyriacou et

al. (2006) who report that the Sharpe ratio of US and UK equity are 0.36 and 0.24.

4 The analysis of the model fitness

In this section we compare the fitness of the four option pricing models listed in Table

1 to determine which option pricing model is the most appropriate model to capture the

volatility surface. The criterion we employ to determine the performance of the models, is

the statistical properties of the time series of the weighted sum of absolute error, (28) for

model I and II, and (25) for model III and IV.

Before the comparison of the performance of option pricing models, we demonstrate the

comparison of the fitness between the term structure model calibration methods (Table 5).

As discussed in Section 3.2, we adopt the simultaneous calibration of the term structure

model with the other parameters of option pricing models since it is suitable for the option

pricing model calibration. In fact, the performance of the simultaneous calibration is better

than that of the separate calibration, especially in the calibration of the models with credit

risk (model II). In the separate calibration results, the fitness of model IV is better than that

of model II in all of the samples although model II is an extended model of model IV. In

general the choice of the term structure models does not matter in equity option pricing as

the volatility of interest rates is much smaller than that of the underlying stock. However,

Table 5 implies that the choice of the term structure models is one of the key issues in the

calibration of the option pricing model with credit risk.

However, as discussed later in this section, the better performance of the simultaneous

calibration does not necessarily imply more precise estimation of the parameters. The Vasicek

model is a kind of the linear projection of the instantaneous interest rate on the term structure

of interest rates (equation 24). In other words, the term structure model produces a term

structure of interest rates via the calibration although the actual term structure of interest

rates is directly observable. As a result, the simultaneous calibration may intentionally

choose a term structure which is inconsistent with the actual one when this intentional error

in the fitness of the term structure model contributes to the improvement of the option
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pricing model fitness. This intentional selection of wrong parameters brings about several

problems shown later.

The calibration results show that the fitness of the key model, model I is consistently

the most appropriate model, with the lowest mean, median and standard deviation among

the four models for all the sample companies. The results are tabulated in Table 6, and

demonstrate that a time inhomogeneous term structure model and default risk intensity

are both key to produce an improved fitness of the option pricing models to option prices

using the methodology developed in this paper. On the other hand, we cannot determine

the second best model since the performance of the other models depends on the particular

situation of the company it is applied too.

The fitness of model I and III is generally better than that of model II and IV respectively

in all the sample companies. This means that the time inhomogeneous term structure model

(HW model) can improve the fitness of the option pricing models. Moreover, the difference

between the median and mean in model II and IV is large while it is small in model I and III.

This implies that the option pricing models with equilibrium term structure model (Vasicek

model) do not perform well particularly when the term structure of interest rates is twisted

as it was, at the height of the subprime crisis September 2008 - March 2009 (Figures 1

and 2). As the discount bond price (24) is a function of the instantaneous interest rate rt

(overnight (1 day) LIBOR rate), the twist of the term structure, positive spreads in 1 day -

6 month and negative spread in 6 month – 1 year, results in the significant pricing error by

the equilibrium term structure model.

On the other hand the impact of credit risk on the option pricing model performance

is not straightforward. In the results of BP and Exxon, the fitness of model III is better

than that of model II. This implies that credit risk is not necessarily a critical risk factor in

pricing equity options of these companies. In fact, Figures 5 and 6 show that BP and Exxon

did not suffer severe market valuation of their credit, except for BP at the moment of the

oil spill in the Gulf of Mexico in April 2010.

Moreover, it is a counter-intuitive result that the fitness of model II is worse than that of

model IV in BP, Citi and Exxon. This means that the introduction of default risk intensity

λ̄t does not contribute to the improvement of the option pricing model fitness. As we
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demonstrate above, the fitness of model IV is generally worse than that of model III due to

the insufficient fitness of the equilibrium term structure model. In the calibration of model II,

we estimate the default intensity λ̄t in (28) after the calibration in (25) which is equivalent to

the calibration of model IV. As we calibrate model II with the PD of the previous day, λ̄t−1,

in (25), the poor fitness of model II, especially the term structure model, in the previous day

possibly expands the error of the PD estimation of the following day. As a result the fitness

of model II is worse than that of model IV although model II is a credit risk adjusted model

of model IV.

Finally we note that the combination of the poor fitness of the Vasicek model and the

credit risk causes model IV to outperform model III for Citi. As we calibrate the term

structure model parameter vector ΨV and the vector of coefficients V simultaneously, the

calibration result of the term structure model is not necessarily that which best fits the

term structure of interest rates, but which best fits to option pricing model. In this case,

overfitness of the term structure plays a complementary role of the credit risk in option

pricing, since the default intensity has a similar impact on option prices except for out of the

money put options (Figure 4). In contrast the fitness of model III is worse than that of model

IV as there is no room of the adjustment via the misidentification in model III. Of course

model IV cannot outperform model I as the contribution of this lucky misidentification is

limited.

In both cases, the goodness of fit of models II – IV is worse than that of model I since

the relatively good performance of these models is to some extent the local optimum due

to the part of misidentification of the option pricing models. That is, the poor fitness of

the term structure model in (25) brings about the misidentification of λ̂t in (28). Although

the behavior of the risk free interest rate rt is similar to that of the default intensity in the

option pricing model (4), they are not perfectly identical to each other. Therefore, the term

structure model can produce a critical misspecification which the default intensity never

cancels out. This implies that the calibration result of models II and IV is the failure of the

optimization, the local minimum.

These results demonstrate that the use of the time inhomogeneous term structure model

is a necessary condition to estimate PD accurately from equity options. Since Bayraktar and
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Yang (2011) estimate the volatility surface using the PD inferred from corporate bonds, the

time homogeneous term structure model does not bring about any serious problems. That

is, the term structure model does not affect the performance of the option pricing models

given the default intensity. In contrast the intentional error in the time homogeneous term

structure model can cause some serious misidentification in the estimation of PD from equity

options. We divide the calibration procedure into the two steps, (25) and (28) to improve

the efficiency of the parameter identification in our reverse modeling of PD. In this division,

we have to improve the fitness of the term structure model as the error of the term structure

model in (25) can bias the estimation of PD in (28). Therefore, the replacement of the term

structure model is not just a minor sophistication of the option pricing model but a crucial

improvement in the PD estimation.

5 The analysis of the PD estimators

The results in Section 4 confirmed that model I is the most appropriate model in comparison

to the other models listed in Table 1. In this section we demonstrate that the implied PD

extracted from model I is a reliable estimator and then discuss the numerical results.

To test whether the implied PD is unbiased, we investigate the property of the vector

of the term structure parameters Ψ. As the implied PD is not directly observable, we

have no criteria to examine the bias of the implied PD. As an alternative, we investigate the

properties of the other parameters, specifically the term structure model parameters Ψ in the

option pricing model. If we can demonstrate that all the parameters (except for the implied

PD) in model I are unbiased, we can then deduce that the implied PD is unbiased. To do

this we impose the theoretical requirement that in the calibration of the model, instruments

within the same market obtain statistically equivalent term structure parameters. Table

7 shows that the goodness of fit test (Kolmogorov and Smirnov test) does not reject the

null hypothesis “the difference between the parameters follow a normal distribution with

zero mean, N(0, σ2
i )” only in model I (see Lehmann and Romano, 2005 for details of the

test). The implication is that models II, III and IV are possibly misspecified even when the

fitness of these models is close to that of model I. We can therefore be confident that the PD
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obtained from model I is unbiased.

The properties of the PD extracted from model I are now discussed. For comparison we

also present the PD extracted from model II, and the PD obtained directly from the CDS

spreads. For the latter we use the model for the CDS spread employed by Bluhm et al.

(2002) with the LGD fixed at 60% (we call this the constant LGD model).

Figures 8 and 9 show the implied PD for UK and US sample companies. It is noted that

the PD extracted from model I is less volatile than that obtained via model II in all the

sample companies. As discussed in Section 4, the calibration of model II failed to satisfy the

goodness of fit criteria due to misspecification of the Vasicek term structure model and the

default intensity. Thus the PD estimator gets more biased day by day. On the other hand,

the parameters except for the PD estimator are consistent between the sample companies

while model I satisfies the goodness of fit criteria better than model II. This implies that the

estimator obtained via model I is more reliable than the one obtained via model II.

Before we examine the LGD implied in CDS obtained via model I (Figure 10), it should

be noted that there is a conceptual difference of LGD between CDS and bonds. In contrast to

the bond default data, the LGD implied in CDS is the expectation of LGD at credit events.

As early CDS contracts are designed to settle the payment of CDS via physical settlement,8

the exchange of the defaulted bond or loan and notional amount of cash after a credit event,

the similar movement of the LGD in CDS implies that the market efficiency of bond and

CDS. However, ISDA (2009) proposes the transfer of all the existing CDS contracts into the

cash settlement (the Big Bang in CDS). Although Howlege et al. (2009) demonstrate that

the results of the cash settlement in 2007-2008 are close to the bond prices at the date of

8There are three types of settlement in the CDS market. In a physical settlement, CDS buyers deliver the

debt of the reference entity (typically a loan or bond) and receive the same amount of money as the notional

amount of the CDS. In a cash settlement, sellers pay the difference between the market value of the debt

and the notional amount of the CDS to buyers. If the market value of the debt is not uniquely available, the

dealers of the CDS will determine the market value in the auction. Finally, in a fixed amount settlement,

sellers pay a fixed amount of money to buyers regardless of loss due to the credit event. BBA (2006) showed

that the market share of CDS contracts which are designed to settle in a cash settlement has increased from

13% to 26% in 2006 with the growth of CDS although the share of the contracts with physical settlement is

still 73%.
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the auction, the auction results and bond prices are not necesarily close to the final recovery

rate.

In fact, the implied LGD implies that CDS spreads reflect non credit risk factors such as

counterparty risk and liquidity risk. The fluctuation range of the daily estimator of LGD is

consisitent with that of the monthly variation obtained by Das and Hanouna (2009). One

of the causes of the relatively high volatility is liquidity risk. Brigo et al. (2011) document

that the CDS of AAA and AA rated companies reflect liquidity risk more than that of A

and BBB rated companies. The implied LGD of Exxon which was rated AAA during 2008-

2010 is more volatile than the other sample companies which were rated AA or A (Table

8) although Exxon did not experience systemic risk as did financial institutions, or a firm

specific distressed situation as did BP (Tables 3 and 6).

While the implied LGD obtained with the PD of model I reflects non-credit risk factors

as well as the expectation of the LGD at credit events, it is consistent with the observation

by the previous studies. Previous studies document the positive correlation between PD and

LGD (the yearly data of corporate bonds in Altman et al., 2005 and monthly CDS data in

Das and Hanouna, 2009). The correlation between PD and LGD is positive in all the sample

companies (Table 9). This means that the implied LGD obtained via the PD of model I

basically reflects the expectation of the LGD at credit events.

The implied LGD of the financial institutions indicates the impact of the regulation and

government intervention. The LGD of the financial institutions decreased after the Lehman

Brothers collapse on September 15, 2008 since the implied PD rose quicker than the CDS

spreads. This implies that the series of government actions to stabilize the financial system

contributed to the support of the financial institutions’ credit (Table 3). Debt investors as-

sessed that if banks were short of capital, they could raise capital via the mechanism provided

by governments to support banks during the financial crisis. In addition it is important to

consider the situation of financial institutions, especially commercial banks, in greater detail,

given the greater complexity of their capital structure. Most major banks in the industri-

alized countries issue various kinds of hybrid securities such as subordinate debts, preferred

trust security and preferred stock in addition to senior debt and common stock to meet

the regulatory capital requirement. Moreover, they have to keep their risk adjusted capital
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adequacy ratio and Tier I capital ratio greater than 8% and 4% respectively in the operating

regulatory capital requirement during the period considered in this paper. If these ratios

are below the required level and the financial institution cannot raise capital immediately, a

credit event (usually nationalization) is triggered. Under these specific conditions to banks,

the PD of commercial banks is expected to be higher while the LGD of the senior debt of

commercial banks remains low. This is indeed what is shown in Figure 10 for HSBC and

Citi. Therefore, the implied PD and LGD contradict the constant recovery assumption such

as Moody’s (2001).

6 Concluding Remarks

We have developed a framework to estimate the PD implied in listed stock options, which

consists of a flexible option pricing model and an implementation procedure. Our choice of

the HW term structure model allows for the perfect fit to the actual term structure of interest

rates. Thus it is possible to calibrate the term structure model only to the term structure

of interest rate volatilities instead of calibrating the term structure model to that of the

interest rate and interest rate volatility. It reduces the complexity of the calibration, since

the term structure of interest rates is one of the calibration constraints rather than a part of

the calibration objective from an optimization point of view. Moreover, this implementation

succeeds in removing the spiral of increasing error due to the poor performance of the Vasicek

model where the actual term structure exhibits twists. The arbitrage term structure model

is therefore not just a refinement of the term structure modeling but a crucial component

of the unbiased estimation of the PD. Our approach demonstrates several useful properties:

(1) the fitness of the option pricing model in this class of models, (2) an unbiased estimate

of the PD, (3) relatively smooth PD resulting from daily observations. The latter property

is both attractive from the perspective of risk management (a highly volatile PD is not very

informative about the actual risk of default) and indicative about the ability of markets to

properly price the PD.

As a byproduct of the PD estimation framework and as a consistency check we derive

the LGD embedded in CDS spreads. Our estimator confirms that the constant 60% LGD
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assumption is generally invalid both in the analysis of the individual entity’s credit risk and

the valuation of credit portfolio such as CDOs. The implied LGD of CDS obtained via the

PD implied in listed stock option prices is not constant both for the financial institutions

and non-financial companies. Moreover, the analysis of the bailed out financial institutions

indicates that the PD inferred from the CDS spread with the constant LGD assumption does

not plausibly reflect the default risk. It implies that the stochastic recovery modeling with

the homogeneous mark down cannot capture the risk of the heterogeneous recovery change

in responce to the event of the individual entities.

Finally we note the following two avenues for further research. The first one is the impact

of a series of the government actions to stabilize the financial system on the credit risk of the

financial institutions. Since the PD is common among the stock and debt of the same name

and the stock return is a predictor of the CDS spread in the sense of Granger causality, we

might expect that government interventions have different effects on the credit risk of the

securities of different seniorities. This implies that it should be possible to test the effect of

the policy actions on the PD clean of moral hazard or conflict of stakeholders’ interest.

The second issue refers to the impact of heterogeneous LGD on the pricing and rating

of CDO. Moody’s (2001) claim the robustness of their rating methodology with the con-

stant recovery assumption because there is no significant difference between CDO rating and

pricing with the constant recovery assumption and those with heterogeneous recovery rate.

Even after the constant recovery CDO pricing models failed to appropriately price CDO

tranches, especially super senior tranches in March 2008, practitioners considered the imple-

mentation of the homogeneous mark-up of LGD in the stochastic LGD modeling (Krekel,

2010; Amraoui et al., 2009; Amraoui and Hitier, 2008) although they already develop the

heterogeneous one. However, the homogeneous mark-up of LGD is not feasible for extremely

high PD like that of the financial institutions bailed out by the government. For example

the credit risk of financial institutions is accounted in the counterparty risk of the underlying

CDS contracts as well as in the credit risk of the underlying contract in pricing synthetic

CDO. Our framework allows the implementation of the heterogeneous LGD modeling.
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Table 1: A summary of the four option pricing models

Volatility Interest rate Default Risk

Model I Stochastic volatility HW Default risk

Model II Stochastic volatility Vasicek Default risk

Model III Stochastic volatility HW No default risk

Model IV Stochastic volatility Vasicek No default risk

Table 2: A summary of the non-zero expansion coefficient in equation (22)

V ǫ
1 V ǫ

2 V ǫ
3 V ǫ

4 V ǫ
5 V ǫ

6 V ǫ
7 V δ

1 V δ
2 λ̄(z)

Model I • • • • • • • • • •
Model II • • • • • • - • • •
Model III - • - • • • • - - -

Model IV - • - • • • - - - -

Note: • non-zero and - zero coefficient
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Table 3: The Major events of the subprime crisis

Date Event Country

09/15/2008 Lehman Brothers Bankruptcy United States

09/15/2008 Bank of America announces the takeover of United States

Meril Lynch

09/16/2008 FRB set the lending facility for AIG. United States

09/18/2008 Lloyds announces the takeover of HBOS. United Kingdom

09/21/2008 Goldman Sachs & Morgan Stanley transfer United States

the status to Bank Holding Company (BHC)

09/29/2008 Bradford&Bingley (B&B) is nationalized. United Kingdom

09/30/2008 US congress rejected TARP (Troubled Asset United States

Relief Program)

10/03/2008 UK raises the limit of the bank deposit guarantee. United Kingdom

10/12/2008 Capital injection for RBS, Lloyds and HBOS. United Kingdom

10/14/2008 Capital injection for the US major banks. United States

11/23/2008 Capital Injection (2nd) and Asset Guarantee United States

for Citi Group

01/16/2009 Capital Injection (2nd) and Asset Guarantee United States

for Bank of America

01/17/2009 UK announces Asset Protection Scheme (APS). United Kingdom

02/26/2009 2nd Capital Injection and APS for RBS United Kingdom

02/27/2009 The Treasury Department announces the conversion United States

of Citi’s preferred stock to common stock United States

03/02/2009 HSBC issued common stocks to shareholders United Kingdom

03/07/2009 UK announces conversion of preferred share to United Kingdom

common share and the ASP (Lloyds)
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Table 4: The major events of the BP oil leak

Date Event

04/20/2010 Explosion and fire on the BP-licensed Transocean drilling rig

the Deepwater Horizon in the Gulf of Mexico

04/22/2010 Deepwater Horizon rig sinks in 5,000ft of water.

The US National Response team begins search-and-rescue operation.

05/09/2010 BP started to address the undersea leak with a method called

“junk shot”

05/10/2010 BP announces plans to place a small containment dome, known as

a “top hat”, over the blown-out well to funnel oil to the surface

05/2/6/2010 BP pumps thousands of barrels of mud into the well in an attempt

to plug the leak. The process, known as top kill, fails to overcome

the flow of oil.

06/04/2010 S&P cuts BP’s credit rating (AA→ AA-)

06/15/2010 Fitch cuts BP’s credit rating (AA→ BBB)

BP agrees to a $20bn downpayment towards compensation

06/17/2010 S&P cut BP’s credit rating (AA-→ A)

06/18/2010 Moody’s cut BP’s credit rating (Aa3→ Baa1)

07/05/2010 BP announced the cost of the oil spill has now risen to over $3bn.

07/13/2010 BP successfully installed a new containment cap on the wellhead.

07/15/2010 BP stopped the flow of oil for the first time in 87 days.

07/26/2010 BP chief executive, Tony Hayward, announces to leave BP.
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Table 5: Descriptive statistics of the pricing errors in model II and IV (%)

Model II (sim) Model II (sep) Model IV (sim) Model IV (sep)

Mean Median S.D Mean Median S.D Mean Median S.D Mean Median S.D

BP 4.708 1.712 6.818 7.281 5.432 8.550 3.940 1.695 6.332 3.094 1.501 5.593

HSBC 1.717 1.084 2.656 7.078 4.827 7.493 2.632 1.381 4.168 2.740 2.197 3.505

Exxon 8.639 5.032 9.075 38.024 18.885 126.981 3.500 2.090 4.928 21.806 3.509 127.095

Citi 5.528 3.409 8.016 20.232 7.698 56.365 4.466 2.103 5.375 17.776 5.388 53.884

Notes: In this table, “sim” and “sep” indicate respectively the simultaneous and separate calibration of the term structure model interest

rates. In the separate calibration, the parameters of the term structure model, Ψ are separately calibrated to the term structure of interest

rates in advance of the calibration in (25) while all of the parameters are calibrated simultaneously in the simultaneous calibration.

.
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Table 6: Descriptive statistics of weighted mean absolute error(%)

Model I Model II Model III Model IV

Mean Median S.D Mean Median S.D Mean Median S.D Mean Median S.D

BP 1.032 0.828 0.818 4.708 1.712 6.818 1.590 1.472 0.758 3.940 1.695 6.332

HSBC 1.146 0.955 0.764 1.717 1.084 2.656 2.243 2.177 1.328 2.632 1.381 4.168

Exxon 1.873 1.465 1.271 8.639 5.032 9.075 2.791 2.378 1.626 3.500 2.090 4.928

Citi 2.931 1.535 4.037 5.528 3.409 8.016 5.834 3.477 6.328 4.466 2.103 5.375

Note: These are determined from equation (28) for model I and II and equation (25) for model III and IV.
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Table 7: Term structure model parameter test

Model I Model II Model III Model IV

∆β ∆η ∆α ∆β ∆η ∆β ∆η ∆α ∆β ∆η

(BP-HSBC)

Mean 0.060 0.137 -0.048 -0.483 -0.035 0.051 -0.056 -0.023 -0.795 -0.118

p-value 81.69% 13.43% 0.05% 0.00% 39.65% 21.51% 1.50% 6.17% 0.00% 0.45%

KS statistics 0.047 0.054 0.083 0.062 0.063 0.060 0.094 0.071 0.070 0.078

p-value 29.13% 13.01% 0.15% 5.13% 3.20% 3.99% 0.02% 0.98% 1.46% 0.34%

(Exxon-Citi)

Mean -0.286 0.379 -0.005 -0.063 -0.059 -0.266 -0.006 -0.140 0.344 -0.150

p-value 47.00% 16.99% 42.60% 13.81% 0.10% 1.37% 42.23% 0.00% 0.07% 0.00%

KS statistics 0.046 0.048 0.090 0.072 0.043 0.389 0.102 0.195 0.367 0.173

p-value 44.53% 35.03% 0.08% 1.36% 33.96% 0.00% 0.00% 0.00% 0.00% 0.00%

Notes: The p-values under the mean value are the superior values to reject the null hypothesis that the sample mean is zero. The

Kolmogorov-Smirnov test examines whether both the location parameter (sample mean) shape of the empirical distributions fit normal

distribution N(0, σ2
i ). The p-values under the KS statistics are the superior values to reject the null hypothesis that the parameter

difference follows a normal distribution. To exclude outliers, we cut off both 0.5% maximum and minimum data.
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Table 8: Standard deviation of LGD obtained via model I

HSBC BP Citi Exxon

Daily 4.84% 2.79% 9.37% 3.74%

Weekly 8.06% 3.01% 13.36% 9.58%

Note: The table shows the standard deviation of the daily and weekly change of the implied LGD

in the sample period, July 2008 - July 2010.

Table 9: Correlation between the implied PD and LGD

HSBC BP Citi Exxon

Daily 0.136 0.567 0.190 0.507

Weekly 0.370 0.123 0.224 0.487

Note: The table shows the correlation coefficient between the daily and weekly change of the implied

PD and LGD in the sample period, July 2008 - July 2010.
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Figure 1: Short Term Interest Rates in UK
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Note: We define the UK TED spread as the spread between 3 month LIBOR rate and 3 month gilt

yield.
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Figure 2: Short Term Interest Rates in US
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Note: We define the US TED spread as the spread between 3 month LIBOR rate and 3 month

treasury yield.
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Figure 3: The shape of term structure
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Note: Both UK and US term spreads of the interbank interest rates indicate the inversion in the

term structure of interest rates around 6 months. Time homogeneous term structure models such

as Vasicek (1977) often fail to reproduce the term structure due to the humps.
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Figure 4: The impact of credit risk on European option prices
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Note: The option prices are calculated using the common parameters (the underlying asset price: 50, maturity: 6 months and annualized

volatility: 30%).
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Figure 5: The stock price of the sample companies
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Notes: All of the stock prices and the stock index are indexed at 100 on July 1, 2008. While Citi’s

stock price declined sharply in 2008-2009, all the other stock return of the sample companies are

roughly equal to the market index except for BP in May 2010 during the BP oil spill.
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Figure 6: The 1 year CDS spread of the sample companies’ senior debt
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Figure 7: The fitness of the term structure model
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Notes: The solid line is the actual term structure of LIBOR (less than 1 year) and Swap rate (longer

than 1year). The dash line is the term structure of the Vasicek (1977) model. The parameters are

calibrated with 3 month - 10 year data.
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Figure 8: The implied PD of the UK sample companies
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Notes: The thin curve is the PD inferred from 1year CDS spread with 60% LGD. The implied PD

from model I (bold curve) and model II (dash curve), λ̂t, are adjusted using the 1year CDS spread

of the United Kingdom.
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Figure 9: The implied PD of the US sample companies
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Notes: The thin curve is the PD inferred from 1year CDS spread with 60% LGD. The implied PD

from model I (bold curve) and model II (dash curve), λ̂t, are adjusted using the 1year CDS spread

of the United States.
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Figure 10: The implied LGD of the senior CDS spread in the sample companies
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A The proof of equation (22)

A.1 Feynman - Kac formula for option pricing model

Here we denote the price of contingent claim of defaultable asset h(x) as Pǫ,δ to emphasize

the parameters, ǫ and δ. From the Feynman-Kac formula (See Karatzas and Shreve (1988)

for details), Pǫ,δ is a solution of

Lǫ,δPǫ,δ(t, x, r, y, ỹ, z) = 0 , (33)

Pǫ,δ(t, x, r, y, ỹ, z) = h(x) , (34)

where the operator Lǫ,δ is defined as

Lǫ,δ =
1

ǫ
L0 +

1√
ǫ
L1 + L2 +

√
δM1 + δM2 +

√
δ√
ǫ
M3 , (35)

in which respective operators are listed below,

L0 = ν2
∂2

∂y2
+ (m− y)

∂

∂y
+ ν̃2

∂2

∂ỹ2
+ (m̃− ỹ)

∂

∂ỹ
+ 2ρ24νν̃

∂2

∂y∂ỹ
,

L1 = ρ2σ(ỹ)ν
√
2x

∂2

∂x∂y
+ ρ12ην

√
2x

∂2

∂r∂y
+ ρ4σ(ỹ)ν̃

√
2x

∂2

∂x∂ỹ

+ρ14ην̃
√
2
∂2

∂ỹ∂r
− Λ(ỹ)ν̃

√
2
∂

∂ỹ
,

L2 =
∂

∂t
+

1

2
σ2(ỹ)x2

∂2

∂x2
+ (r + f(y, z))x

∂

∂x
+ (αt − βr)

∂

∂r
+ σ(ỹ)ηρ1x

∂2

∂x∂r

+
1

2
η2
∂2

∂r2
− (r + f(y, z)) ,

M1 = σ(ỹ)ρ3g(z)x
∂2

∂x∂z
+ ηρ13g(z)

∂2

∂r∂z
,

M2 = c(z)
∂

∂z
+

1

2
g2(z)

∂2

∂z2
,

M3 = ρ23ν
√
2g(z)

∂2

∂y∂z
+ ρ34ν̃

√
2g(z)

∂2

∂ỹ∂z
.

A.2 Asymptotic Expansions

We use an asymptotic expansion for the approximation of Pǫ,δ (see Bayraktar and Yang,

2011), as both
√
ǫ and

√
δ → 0 , to derive an expansion of Pǫ,δ in powers of

√
δ and

√
ǫ
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respectively. First we expand Pǫ,δ in powers of
√
δ

Pǫ,δ = P0 +
√
δP0,1 + δP0,2 + · · · . (36)

By substituting (36) into (33),

Lǫ,δPǫ,δ =

(

1

ǫ
L0Pǫ,0 +

1√
ǫ
L1Pǫ,0 + L2Pǫ,0

)

+
√
δ

(

1√
ǫ
L0Pǫ,1 +

1√
ǫ
L1Pǫ,1 + L2Pǫ,1 +M1Pǫ,0 +

1√
ǫ
M3Pǫ,0

)

+
(√

δ
)2
(

L2Pǫ,2 +M2Pǫ,0 +M2Pǫ,0 +
1√
ǫ
L1Pǫ,2 +

1

ǫ
L0Pǫ,2

)

+ · · ·

= 0 . (37)

Since Lǫ,δPǫ,δ = 0, the first term of (37) is

(

1

ǫ
L0 +

1√
ǫ
L1 + L2

)

Pǫ,0 = 0 (38)

and given
√
δ 6= 0, the second term is also zero,

(

1√
ǫ
L0 + L1 + L2

)

Pǫ,1 = −
(

M1 +
1√
ǫ
M3

)

Pǫ,0 . (39)

Secondly, we expand the solution to (38) and (39) in powers of
√
ǫ,

Pǫ,0 = P0 +
√
ǫP1,0 +

(√
ǫ
)2
P2,0 +

(√
ǫ
)3
P3,0 + · · · , (40)

Pǫ,1 = P0,1 +
√
ǫP1,1 +

(√
ǫ
)2
P2,1 +

(√
ǫ
)3
P3,1 + · · · . (41)

Inserting (40) into (38), we obtain

(√
ǫ
)−2 L0P0 +

(√
ǫ
)−1

(

L0P1,0 + L1P0

)

+

(

L0P2,0 + L1P1,0 + L2P0

)

+
√
ǫ

(

L0P3,0 + L1P2,0 + L2P1,0

)

+
(√

ǫ
)2

(L1P3,0 + L2P2,0) + · · ·

= 0 . (42)

Since
√
ǫ 6= 0, the first term of the equation (42) implies that P0 is independent of y and ỹ.

As a result P1,0 is also independent of y and ỹ (L0P1,0 = 0) from the second term and the

independence of P0 on y and ỹ (L1P0 = 0).
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Next we can reduce the third term using the independence of P1,0 on y and ỹ (L1P1,0 = 0),

L0P2,0 + L2P0 = 0 . (43)

This is a Poisson equation for P2,0 (see Fouque et al., 2000). The solvability of the equation

requires the centering condition

〈L2〉P0 = 0 , (44)

where 〈·〉 denotes the average with respect to the invariant distribution of (Yt, Ỹt), which

have joint density

Ψ (y, ỹ) =
1

2πνν̃
exp

(

− 1

2 (1− ρ224)

[

(

y −m

ν

)2

+

(

ỹ − m̃

ν̃

)2

−2ρ24
(y −m) (ỹ − m̃)

νν̃

])

. (45)

Let us denote the averaging of L2 as

〈L2〉 =
∂

∂t
+

1

2
σ̄2(ỹ)x

2 ∂
2

∂x2
+ (r + λ̄ (z))x

∂

∂x
+ (ᾱ− βr)

∂

∂r

+σ̄1(ỹ)ηρ1x
∂2

∂x∂r
− (r + λ̄ (z)) , (46)

where σ̄1 = 〈σ(ỹ)〉, σ̄2 = 〈σ2(ỹ)〉, λ̄(z) = 〈f(y, z)〉 and ᾱ = 〈αt〉. Under the terminal

condition

P0(T, x, r, z) = h(x) , (47)

equation (44) defines the leading order term P0. Using (43) we can also define the solution

to the Poisson equation,

P2,0 = −L−1
0 (L2 − 〈L2〉)P0 . (48)

Finally the fourth term of (42), term of
√
ǫ yields a Poisson equation

L0P3,0 + L1P2,0 + L2P1,0 = 0 . (49)

For the complete identification of P1,0, the solvability of this equation requires

〈L2P1,0〉 = −〈L1P2,0〉 =
〈

L1L−1
0 (L2 − 〈L2〉)

〉

P0 (50)
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under the terminal condition

P1,0(T, x, r, z) = 0 . (51)

Next, we will express the centoring condition (50) more explicitly. Using (46), we can rewrite

L0P2,0 as

(L2 − 〈L2〉)P0 =
1

2

(

σ2(ỹ)− σ̄2
)

x2
∂2P0

∂x2
+ (σ(ỹ)− σ̄1) ηρ1x

∂2P0

∂x∂r

+
(

f(y, z)− λ̄(z)
)

(

x
∂P0

∂x
− P0

)

+ (αt − ᾱ)
∂P0

∂r
. (52)

This is identical to equation (3.20) of Bayraktar and Yang (2010) except for the last term.

Therefore,

L−1
0 (L2 − 〈L2〉)P0 =

1

2
κ(y, ỹ)x2

∂2P0

∂x2
+ ψ(y, ỹ)ηρ1x

∂2P0

∂x∂r

+φ(y, ỹ, z)

(

x
∂P0

∂x
− P0

)

+ ς (y, ỹ, r)
∂P0

∂r
, (53)

where ψ, κ, φ and ς are the solutions to the Poisson equations

L0ψ(ỹ) = σ(ỹ)− σ̄1, (54)

L0κ(ỹ) = σ2(ỹ)− σ̄2, (55)

L0φ(y, z) =
(

f(y, z)− λ̄(z)
)

, (56)

L0ς (y, ỹ, r) = αt − ᾱ. (57)
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Applying the differential operator L1 to the last expression, we can calculate P1,0 explicitly,

〈

L1L−1
0 (L2 − 〈L2〉)

〉

P0 =
√
2

(

ρ2ν 〈σφy〉 (z)−
1

2
ν̃ 〈Λκỹ〉

)

x2
∂2P0

∂x2

+
√
2

(

ρ12ην 〈φy〉 (z)ν̃ 〈Λςỹ〉
)

∂

∂r

(

x
∂P0

∂x
− P0

)

+

√
2

2
ρ4ν̃ 〈σκỹ〉 x

∂

∂x

(

x2
∂2P0

∂x2

)

+
√
2ρ1ρ4ν̃η 〈σψỹ〉 x

∂

∂x

(

x
∂2P0

∂x∂r

)

+

√
2

2
ρ14ην̃ 〈κỹ〉

∂

∂r

(

x2
∂2P0

∂x2

)

+
√
2ρ1ρ14η

2ν̃ 〈ψỹ〉
∂

∂r

(

x
∂2P0

∂x∂r

)

+
√
2 (ρ2ν 〈σςy〉+ ρ4ν̃ 〈σςỹ〉 − ν̃ 〈Λψỹ〉 − ν̃ 〈Λςỹ〉) x

∂2P0

∂x∂r

+
√
2 (ρ12ην 〈ςy〉+ ρ14ην̃ 〈ςỹ〉)

∂2P0

∂r2
. (58)

It is possible to get the explicit expression of P ǫ
1 by inserting (41) into (39). Discussed above,

P0,1 is independent of y and ỹ and satisfies

〈L2〉 = −〈M1〉P0, P0,1(T, x, r; z) = 0 (59)

Using Propositions 3.2 and 3.3 and Remark 3.1 in Bayraktar and Yang (2011), the first order

expansions on
√
ǫ and

√
δ are derived respectively

√
ǫP1,0 = −(T − t)

(

V ǫ
1 (z)x

2∂
2P0

∂x2
+ V ǫ

2 x
∂

∂x

(

∂2P0

∂x2

))

+V ǫ
3 (z)

(

−x ∂
2P0

∂x∂α
− ∂P0

∂α

)

+ V ǫ
4 x

2 ∂
3P0

∂x2∂α
+ V ǫ

5 x
∂2P0

∂η∂x
+ V ǫ

6 x
∂2P0

∂x∂α

+V ǫ
7

∂2P0

∂r2
(60)

√
δP0,1 = V δ

1 (z)
(T − t)2

2

(

x2
∂2P0

∂x2

)

+ V δ
2

[(

x
∂2P0

∂α∂x
− ∂P0

∂α

)

−(T − t)

(

x
∂2P0

∂r∂x
− ∂P0

∂r

)

+
(T − t)2

2

(

x2
∂2P0

∂x2
− x

∂P0

∂x
+ P0

)]

(61)
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in which

V ǫ
1 (z) =

√
ǫ

(

ρ2ν
√
2 〈σφy〉 (z)−

1

2
ν̃
√
2 〈Λκỹ〉

)

, V ǫ
2 =

√
2

2

√
ǫρ4ν̃ 〈σκỹ〉 ,

V ǫ
3 (z) =

√
ǫ
(

ρ12ην
√
2 〈φy〉 (z) +

√
2ν̃ 〈Λςỹ〉

)

V ǫ
4 = −

√
ǫ

(

1

2
ρ14ην̃

√
2 〈κỹ〉 − ρ4ν̃

√
2 〈σψỹ〉 ηρ1 + ρ14ην̃

√
2 〈ψỹ〉 σ̄1ρ21

)

,

V ǫ
5 = −

√
ǫ
(

ρ14ην̃
√
2 〈ψỹ〉 ρ1

)

V ǫ
6 =

√
ǫ(−

√
2ρ4ν̃ 〈σψỹ〉 ηρ1 +

√
2ρ14ην̃ 〈ψỹ〉 σ̄1ρ21

−
√
2ν̃η 〈Λψỹ〉 ρ1ρ2ν 〈σςy〉+

√
2ρ4ν̃ 〈σςỹ〉 −

√
2ν̃ 〈Λςỹ〉)

V ǫ
7 =

√
ǫ
(√

2ρ12ην 〈ςy〉+
√
2ρ14ην̃ 〈ςỹ〉

)

V δ
1 (z) =

√
δλ̄(z)σ̄1ρ3g(z) , V

δ
2 (z) =

√
δλ̄(z)ηρ13g(z) .
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