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Abstract 
This paper conducts a comparative analysis of the diverse methods for 

estimating the Japanese government bond (JGB) zero coupon yield curve 
(hereafter, zero curve) according to the criteria that estimation methods should 
meet. 

Previous studies propose many methods for estimating the zero curve from 
the market prices of coupon-bearing bonds. In estimating the JGB zero curve, 
however, an undesirable method may fail to accurately grasp the features of 
the zero curve. In order to select an appropriate estimation method for the JGB, 
we set the following criteria for the zero curve: (1) estimates should not fall 
below zero, (2) estimates should not take abnormal values, (3) estimates 
should have a good fit to market prices, and (4) the zero curve should have 
little unevenness. The method which meets these criteria enables us to 
estimate the zero curve with a good fit to the JGB market prices and a proper 
interpolation to grasp the features of the zero curve. 

Based on our analysis, we conclude that the method proposed in Steeley 
[1991] is the best in light of the criteria for the JGB price data. In fact, the zero 
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zero curve in a prolonged period of accommodative monetary policy. 
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1. Introduction 

  The zero coupon yield (hereafter, zero yield) is defined as the yield to maturity of 

discount bonds. This is used for calculating the present value of future cash flow at any 

point of time. The zero coupon yield curve (hereafter, zero curve) which connects zero 

yields with different maturities enables us to calculate the present value of any financial 

product. Furthermore, using this, we can conduct a comparative analysis between interest 

rates with different maturities. Therefore, the zero curve is essential for researchers, 

analysts, policymakers and other users.  

If bonds with all maturities are traded, we can calculate the zero curve from their market 

prices. However, this is usually not the case in the actual market. Therefore, we have to 

estimate zero yields for maturities of bonds traded in the market and interpolate them to 

obtain zero yields for maturities of bonds which are not traded.1 If discount bonds are 

traded, then zero yields with their maturities can be directly derived from their market 

prices, and thus the remaining problem is how zero yields for maturities of non-traded 

bonds are interpolated. However, in the Japanese Government Bond (JGB) market, there 

are few discount bonds with remaining maturities of a year or more. Thus, it is difficult to 

derive the JGB zero curve from the market prices of discount bonds,2 and the zero curve 

must be estimated from the market prices of coupon-bearing government bonds, which 

have a greater variety of maturities.  

Diverse methods for estimating the zero curve from the market prices of coupon-bearing 

                                                   
1 In Japan, discount bonds presently issued by the government have a maturity of one year or less. However, 
the Act on Book-Entry Transfer of Company Bonds, Shares, etc. permits separation of the principal and 
interest portions of all fixed-interest government bonds (excluding index-linked government bonds and 
government bonds for individuals) issued after January 27, 2003 (makes these bonds “strippable”), making it 
possible to trade discount government bonds with a maturity of one year or more on the secondary market. 
However, we have to note that the liquidity of that market is poor compared with the fixed-interest 
government bond market.  
2 JGB interest rate data can be obtained from information vendors and the Ministry of Finance homepage. 
However, as far as the authors know, the methodology for the zero curve estimates provided by the 
information vendors have not been disclosed. Moreover, the interest rates released by the Ministry of Finance 
are the yields to maturity of fixed-interest government bonds on a semiannual compounded basis, not the zero 
yield. In addition to these sources, some researchers release data used for their research on their homepages. 
For example, Johns Hopkins University Professor Jonathan Wright releases zero coupon curve estimates for 
each country including Japan on a monthly basis on his homepage. He notes that these estimates are based on 
the Svensson [1995] method handled in this paper, but the data sources are not identified. 
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government bonds have been proposed in previous studies. Representative methods include 

(1) the piecewise polynomial method (McCulloch [1971, 1975], Steeley [1991], etc.) which 

models the discount function with piecewise polynomials, (2) the non-parametric method 

(Tanggaard [1997], etc.) which does not assume any specific structure for the discount 

function, (3) the polynomial method (Schaefer [1981], etc.) which models the discount 

function with polynomials, and (4) the parsimonious function method (Nelson and Siegel 

[1987], Svensson [1995], etc.) which assumes specific functional forms for the zero yield or 

instantaneous forward rate. In utilizing the zero curve for an analysis on interest rates, the 

zero curve is estimated by one of these four estimation methods. BIS [2005] summarizes 

the methods used by the central banks in estimating their government bond zero curves, and 

each central bank uses one of the above methods.  

  When we estimate the JGB zero curve, selecting a method without careful consideration 

might result in the estimation of a curve that does not grasp the characteristics of the JGB 

yield curve. Moreover, research and analysis using such a zero curve could lead to wrong 

conclusions. In order to avoid such problems and select an estimation method that can 

accurately grasp the characteristics of the JGB yield curve, this paper compares several 

estimation methods proposed in previous studies. 

Prior papers that compare multiple zero curve estimation methods include Ioannides 

[2003] for U.K. government bonds and Kalev [2004] for Australian government bonds. 

However, good estimation methods in previous studies may not necessarily be good for the 

JGB market since developments in government bond market prices and market practices 

differ from country to country. Previous studies and surveys on the estimation of the JGB 

zero curve include Komine et al. [1989], Oda [1997], Inui and Muromachi [2000], and 

Kawasaki and Ando [2005]. However, only Komine et al. [1989] compare multiple 

estimation methods. Since that paper uses JGB price data from the second half of the 1980s 

to compare five estimation methods, we have to note that there is a great difference 

between the JGB market environments in the 1980s and since the late 1990s.3 Accordingly, 

                                                   
3 In addition to differences in the interest rate term structure itself including the level and the curve shape, as 
a market practice, there was the so-called benchmark issue in the 1980s. There was intensive trading of the 
benchmark issue, while there were few trades of other issues. The concentration of trading on the benchmark 
issue declined from the mid-1990s, and the benchmark issue disappeared in the late-1990s.  
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using JGB price data from 1999 to 2010, we compare the representative estimation methods 

proposed in previous studies and select an estimation method that can grasp the 

characteristics of the JGB yield curve. 

For JGB yield curves since 1999, yield curves under the zero interest rate policy and the 

quantitative easing policy are distinctive. As a feature of yield curves during these periods, 

we can point out that the yield curve has a flat shape near zero at the short-term maturities. 

Some estimation methods cannot grasp this kind of curve shape, and sometimes estimate 

zero yields below zero. Thus, it is necessary to compare the estimation methods for the JGB 

zero curve. In this paper, we set the criteria to make an appropriate selection of the 

estimation method. We then select the optimal estimation method based on these criteria. 

This approach has not been tried in previous studies. Specifically, we first reject 

inappropriate methods based on the following criteria: (1) zero yield estimates should not 

fall below zero and (2) zero yield estimates should not take abnormal values. Next, from 

among the remaining estimation methods, the most desirable method is chosen based on the 

criteria of (3) good fit to JGB market prices and (4) little unevenness in the zero curve. As a 

result of this selection process, the estimation method in Steeley [1991] is selected.  

The remainder of this paper is organized as follows. Section 2 explains the zero curve 

estimation methods. Section 3 presents the selection criteria for the zero curve estimation 

methods and uses these criteria to compare several representative estimation methods 

proposed in the prior studies. Section 4 clarifies the characteristics of the method in Steeley 

[1991] when applied to the JGB market through comparisons with other estimation 

methods. Section 5 presents our conclusions.  

As reference materials so that readers can reproduce the estimation methods, Appendix 1 

summarizes the JGB market conventions required to calculate theoretical JGB prices such 

as the definition of the timing of when cash flows are paid, the method of calculating the 

number of days until when cash flow is paid, and the method of calculating accrued interest. 

Appendix 2 explains the details of the estimation algorithm in Steeley [1991]. As a 

supplement, we also attach the daily JGB zero curve data from January 1999 through 

December 2011 estimated using the method in Steeley [1991].4 
                                                   
4 The data can be obtained from http://www.imes.boj.or.jp/research/papers/english/12-E-04.txt. 
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2. Zero Curve Estimation Methods  

In this section we first define the zero yield and the zero curve, and summarize other 

basic items regarding interest rates required in this paper. Next, as a premise for considering 

the suitability of the estimation methods, we summarize the characteristics of undesirable 

zero curves. We then explain representative methods for the zero curve estimation and 

examine the characteristics of each method based on the two concepts of “degree of 

freedom” and “locality” from the perspectives of not estimating an undesirable zero curve 

and estimating a zero curve that accurately expresses market prices.  

 

A. Basic Items Concerning Interest Rates 

  We define the present time as t and the present value of bonds called discount bonds that 

will certainly pay cash flow 1 at the future time T as ( , )Z t T . The zero yield ( , )y t T  from 

t to T is defined as the yield to maturity of the discount bond.  

 )).,(log(1),( TtZ
tT

Tty
�

��  (1) 

This paper estimates zero yields for all maturities since we anticipate the potential use of 

zero yields for comparative analysis between yields with different maturities, as well as the 

use of the zero yield of a specific maturity. In other words, we estimate the curve 

connecting the zero yields with different maturities, which is called the zero curve. 

Specifically, we describe the zero curve at time t as a function of the remaining maturity x,  

 ),,( xtty �  (2) 

and estimate the curve ),( xtty �  for x at time t. As explained in Section 2D below, in 

previous studies, the discount rate ),( xttZ �  is modeled through functional form, etc. 

Hereafter ),( xttZ �  is sometimes referred to as the discount function, as a function of x. 

  With the zero curve, it becomes possible to calculate the instantaneous spot interest rate, 

that is, the instantaneous interest rate at time t. The instantaneous spot interest rate ( )r t  at 
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time t is defined as Equation (3).  

 ).,(lim)(
0

xttytr
x

��
�

 (3) 

  Furthermore, with the zero curve it also becomes possible to calculate the implied 

forward rate. The implied forward rate is the interest rate over a period from a future point 

in time, defined at the present time. Specifically, the implied forward rate from time S to 

time T (S < T) at t is defined so that the value derived when the cash flow 1 at T is 

discounted through S by the implied forward rate and then discounted by the zero yield 

from t to S is equal to the present value when the cash flow 1 at T is discounted by the zero 

yield from t to T. Therefore, the implied forward rate ),,( TStf  from S to T at t is defined 

by Equation (4).  

 )).)(,(exp()))(,,(exp(),( tSStySTTStfTtZ �����  (4) 

From Equation (1) and Equation (4), the implied forward rate ),,( TStf  is calculated as 

Equation (5) using the discount bond price at t. 

 .
),(
),(log1),,( ��
�

�
		



�
�

��
StZ
TtZ

ST
TStf  (5) 

Additionally, the instantaneous forward rate at t for S as seen from t, ),( Stf  is defined as 

shown in Equation (6). 

 )).,(log(
),(
),(log1lim),,(lim),( StZ

SStZ
TtZ

ST
TStfStf

STST �
�

����
�

�
		



�
�

���
��

 (6) 

From Equation (6) and 1),( �SSZ , the following equation expresses the relation between 

the discount function ),( xttZ �  and the instantaneous forward rate. 

 .),(exp),(
0

�
�
�	



� ���� 


x
dssttfxttZ  (7) 

Furthermore, from Equation (1) and Equation (7), the relation between the zero yield and 

the instantaneous forward rate is as follows. 
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 .),(1),(
0
 ���
x

dssttf
x

xtty  (8) 

 

B. Undesirable Zero Curves 

  Estimation methods that can fully grasp the market prices of the bonds are preferable for 

estimating zero curves. If a zero curve is derived with an estimation method that does not 

adequately fit the market prices, there are concerns that the zero curve might not fully 

reflect the information contained in the prices. Using such zero curves in interest rate 

analyses may lead to erroneous conclusions. On the other hand, methods selected based 

solely on the good fit to the market prices could result in an undesirable zero curve with 

improper interpolations. We now show the types of undesirable zero curves that may be 

estimated.  

Figure 1: Zero curve that does not meet the zero interest rate constraint 
(conceptual diagram) 

Remaining
maturity

Zero

 
 

(1) Violation of the Zero Interest Rate Constraint 

Because the estimated zero curve is the nominal interest rate, zero curves falling below 

zero for some maturities like the curve in Figure 1 are considered to be undesirable. 
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(2) Excessive Unevenness in the Zero Curve 

  Even for estimation methods with zero curves that do not go below zero, the zero curve 

may have an excessively uneven shape due to the characteristics of the estimation method. 

 
Figure 2: Unevenness of the zero curve (conceptual diagram) 

10 year

A B

9 year 11 year Remaining
Maturity  

Notes 
Zero yield calculated from discount bond market prices 
Zero yield estimate calculated using estimation method A 
Zero yield estimate calculated using estimation method B 

Figure 2 is a conceptual diagram which shows the differences in the unevenness of the 

zero curves estimated using two estimation methods. In Figure 2, we assume that discount 

bonds with some maturities are traded on the market and zero curves are estimated based 

on those discount bond prices. Figure 2 shows that the two curves based on estimation 

method A and B both fit the market prices very well. However, method B has far greater 

unevenness. It is likely that curve B is unreasonable from the principle of the zero curve 

characteristic of little variation in zero yields with proximate maturities. The excessive 

unevenness of this type of zero curve, rather than reflecting the information contained in 

bond prices, may result from the peculiar characteristics of the estimation method. Thus 

conducting analyses using a zero curve with very great unevenness like curve B could lead 

to erroneous results. For that reason, estimation methods with great unevenness in the zero 

curve like method B in Figure 2 cannot be considered desirable. 
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(3) Abnormal Values 

Some methods estimate zero yields with excessively high or excessively low values that 

are abnormal. Either those kinds of the estimation methods have a poor fit with bond 

market prices due to their weak expressive power, or they have an over-fit with the market 

prices.  

Figure 3: Zero curve with abnormal values (conceptual diagram) 

Remaining
maturity  

Figure 3 is a conceptual diagram presenting a zero curve with abnormal values. The 

curve in this figure overestimates the interest rate for some short-term maturities. This type 

of problem results from the characteristics of the estimation method and does not reflect the 

information contained in the bond prices. 

 

C. Definitions of Notations  

Before explaining the contents of previous studies in Section 2D, we prepare the 

notations used in this paper.  

For the sake of simplicity hereafter, the date when the zero curve is estimated is set at 

0�t  and each point in time is expressed as the number of years from 0�t . The discount 

function ),0( xZ , the zero curve ),0( xy  and the instantaneous forward rate ),0( xf  are 

abbreviated as )(xZ , )(xy , and )(xf . 
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Next, we define the notations concerning fixed-coupon bearing bonds traded on the 

market. All bonds issued on or prior to the estimation date ( 0�t ) are expressed as  

}),,1{( namenii ��  with the notional amount of bond i expressed as iN and the coupon 

rate (annual rate) as ic . All the times when bond i generates cash flow are expressed in 

terms of the number of years from 0�t , as },,{ 1
i

n
ii

i
cf

TT ��T . Here i
cfn  represents the 

number of times that bond i's cash flows are paid after 0�t . We assume that if lk � , then 
i

l
i

k TT � . Additionally, T  is defined as the union of the iT  of all the bonds issued at or 

before 0�t  as follows.  

 .min},;{min},,,{:
1

},,1{11

1
},,1{1

1

i
k

nk
nij

i
k

i
k

nk
nijn

n

i

i TTTTTTTT
i
cf

name
i
cf

name
cf

name

��
�

�

��
��

�����
��

�� TT   

We also define the notations regarding bonds traded on the market at the present time 

( 0t � ). First, the bonds traded on the market at the present time are expressed as 

},,{ 1 Invv ��I . Then the present market price of each bond is expressed as 
T),,( 1 Invv PP ��P  where the price is the bare value, and the accrued interest at execution 

of transactions is denoted by T),,( 1 Invv AA ��A . 5  The superscript T indicates a 

transposition of a vector or a matrix (here and hereafter, except as otherwise noted). For the 

details of the accrued interest calculation method, see Appendix 1D(2).  

Finally, we prepare the notations used to express the theoretical price of bond iv  on the 

date which the zero curve is estimated. First we define the vector ivc  concerning the cash 

flow of bond iv  as follows;6 

                                                   
5 We note that P  and A  are dependent on the present time. Here, for simplicity, the present time 0�t   
is omitted. The model parameter α  introduced hereafter is also a variable dependent on the present time.  
6 The cash flow from fixed-coupon bonds issued since March 2001 are handled in this way, while a slightly 
different form is used for fixed-coupon bonds issued before March 2001. See Appendix 1D(1) for the details. 
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� �

,

otherwise0

if
2

,if
2

),,(

,),,(,),,,(,),,,(
T

1

�
�
�

�

�
�
�

�

�

��

��

�

�

i
iv

cfn
i

ii

i
iv

cfn
i

ii

ii

cf

iiiiiii

v
j

v
vv

v
j

v
j

vv

j
vv

n
vv

j
vvvvv

TTNNc

TTTNc

TNcg

TNcgTNcgTNcg

T

c ��

  

where ivc  is a vector of 1�cfn . If the jth element of ivc is expressed as iv
jc , the 

theoretical price ivQ  of bond iv  on the estimation date is as shown in Equation (9).  

 .)(
1

i

cf

ii v
n

j
j

v
j

v ATZcQ ���
�

 (9) 

The next subsection 2D presents an outline of the representative previous studies on zero 

curve estimation. Previous studies all directly or indirectly model the discount function 

)(xZ  as a function of parameter α . To emphasize this point, we sometimes express the 

discount function )(xZ  as );( αxZ . Since the discount function depends on parameter α , 

the theoretical price of each bond also depends on parameter α  through Equation (9). 

Thus, we express the theoretical price of bond iv  as )(αivQ  and write the theoretical 

prices of all bonds traded at 0�t  as the vector form T))(,),(() 1 ααQ(α Invv QQ �� . 

 

D. Representative Estimation Methods Proposed in Previous Studies 

In estimating the zero curve from the market prices of bonds, how we model the discount 

function ( )Z x  is important. All previous studies which model the discount function ( )Z x  

adopt one of the following four methods: (1) the piecewise polynomial method, (2) the 

non-parametric method, (3) the polynomial function method, and (4) the method which 

assumes a specific functional form for the discount function. In this subsection, we present 

an outline of all the estimation methods which we deal with later in Section 3C.  

In estimating the zero curve, in addition to modeling the discount function ( )Z x , it is 
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also necessary to set the objective function in order to determine the parameters. In some 

previous studies, the objective function taking the weighted residual sum of squares is used, 

instead of the simple residual sum of squares of errors between the market prices and the 

theoretical prices based on the model. 

For example, according to BIS [2005], the Bank of Canada and the Bank of Spain adopt 

the objective function taking the residual sum of squares weighted by the inverse of the 

bond durations. That objective function places an emphasis on the fit to the prices of 

short-term bonds over long-term bonds. However, since we use fixed-coupon JGBs (2 year, 

5 year, 10 year, 20 year, and 30 year) for the zero curve estimation, there are more 

short-term bonds than long-term bonds. Therefore, using the residual sum of squares 

weighted by the squares of the inverse of the durations as the objective function might 

result in the under-fitting to the market prices of long-term JGBs. Accordingly, we adopt 

the objective function with the simple residual sum of squares without taking any weights, 

as in McCulloch [1975], Steeley [1991] and many other previous studies. As Inui and 

Muromachi [2000] point out, adopting the simple residual sum of squares as the objective 

function may lead to heterogeneity of variance of residuals. Taking the weighted residual 

sum of squares of errors as the objective function is a solution to this problem. However, 

depending on the setting of weights, heterogeneity of variance of residuals does not always 

disappear; moreover, the estimation may result in a poor fit to a bond price. Considering 

these points, in this paper, we assume the simple residual sum of squares as the objective 

function. 

Furthermore, some of the previous studies adopt a function that adds a penalty term 

concerning the curvature of the instantaneous forward rate term structure to the residual 

sum of squares as the objective function, in order to estimate a zero curve with a smooth 

instantaneous forward rate term structure (Fisher, Nychka and Zervos [1995], Waggoner 

[1997], Jarrow, Ruppert and Yu [2004], etc.). This is called the smoothing spline method. 

While the zero curve estimated using such an objective function has a smoothed forward 

rate term structure, smoothing results in less fit to market prices. Additionally, in the 

smoothing method, there remains arbitrariness in selecting criteria determining the level of 

smoothness. Therefore, we exclude the smoothing spline method from the several 
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estimation methods analyzed in Section 3. We select the models which estimate 

comparatively smooth zero curves without smoothing. 

  Considering the above, in this section, we assume the objective function is the simple 

residual sum of squares.  

 

(1) The Piecewise Polynomial Method7 

We here introduce previous studies which model the discount function by using the 

piecewise polynomial. As means of modeling the discount function, most of all previous 

studies directly model the discount function or indirectly model the discount function 

through modeling the instantaneous forward rate.  

First, we define the piecewise polynomial function. For this purpose, we have to set the 

sequence of points known as knot points. The knot points are the following sequence, 

 nnmm uuuu ���� �� 11 � ,  

where m  and n  are integers. When the knot points are given, for integer j, the piecewise 

polynomial function of degree l , ( , )B j x  is continuous with respect to the real number x, 

and is the polynomial function on )1(],[ 1 ���� nhmuu hh , ],( mu�� , and ),[ �nu . 

 

Methods Directly Modeling the Discount Function 

(i) The McCulloch [1975] Method 

McCulloch [1975] models the discount function ( )Z x  as a linear combination of 

piecewise polynomial functions. First, in this method, the knot points are set as 

knotnuuuuu ������ � �21010 . Then McCulloch [1975] defines the piecewise 

polynomial ( , ) ( 0, , )knotB k x k n� , )knot,  as the third-degree piecewise polynomial shown 

below in Equation (10). 

                                                   
7 Many of previous studies model the discount function using piecewise polynomials known as spline 

functions. Hence, the piecewise polynomial method is also called the spline function method. The spline 
function of degree l is the piecewise polynomial whose derivatives from the first order to the l-1th order are 
all continuous. 
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 (10) 

McCulloch [1975] expresses the discount function ( )Z x  as a linear combination of 

piecewise polynomials defined in Equation (10) as follows, 

 .),(1)(
0

�
�

��
knotn

k
kxkBxZ �  (11) 

From the characteristics of the discount function, (0) 1Z �  must hold true. Modeling the 

discount function as in Equation (11) is consistent with 1)0( �Z  because 

),,0(0)0,( knotnkkB ���  from Equation (10). 

When we substitute Equation (11) into Equation (9), the theoretical price ivQ  for bond 

iv  is expressed as a function of parameter T
10 ),,,(

knotn��� ��α  as follows, 

 ,)(),()( T

10 11
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where B  is the )1( �� knotcf nn  matrix with ),( jTkB  as the ),( kj th element. ivc is the 

1�cfn  vector with iv
jc as the j th element.  

As mentioned at the beginning of this section, the zero curve estimation in this paper 

uses the residual sum of squares of errors between bond market prices and theoretical prices 

as the objective function. In this case the estimated value α̂  of parameter α  is obtained 

as the solution to the following optimization problem.  
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Since )(~ αQ  is a linear function of α , Equation (13) can be regarded as a least squares 

optimization problem. Thus, the optimal solution α̂  for parameter α  is obtained as 

Equation (14), 

 ,~)())((ˆ T1T PBcBcBcα ��  (14) 

where c  is set with T),,( 1 Invv ccc ��  and it is the cfI nn �  matrix. 1�X  is the inverse 

matrix of the square matrix X .  

Hereafter, this method is sometimes referred to as the “McCulloch [1975] Method 

Modeling Discount Rates.”  

 

(ii) The Steeley [1991] Method 

Steeley [1991], like McCulloch [1975], represents the discount function ( )Z x  as a 

linear combination of piecewise polynomial functions. However, there is a difference in 

that Steeley [1991] models the discount function ( )Z x  as shown in Equation (15).  

 .),()(
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�
knotn

k
kxkBxZ �  (15) 

Steeley [1991] also proposes a different functional form than McCulloch [1975] for the 

piecewise polynomial function ( , )B k x . Steeley [1991] sets the knot points as 

3213 ���� �����
knotknotknotknot nnnn uuuuu � . Then ( , )B k x  is recursively defined as shown in 

Equation (16). 
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The function in Equation (16) is called a B-spline function. Steeley [1991] proposes a 

model based on a piecewise cubic polynomial with 4D �  in Equation (16). Here, we note 

that the following equation holds true from Equation (15) and (0) 1Z � .  

 .1)0,(
1

3
��

�

��

knotn

k
kkB �  (17) 

When we substitute Equation (15) into Equation (9), the theoretical price ivQ  for bond 

iv  is represented as follows, 
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where B  is the )3( �� knotcf nn  matrix with ),( jTkB  as the ),( kj th element. 

From Equation (17) and Equation (18), parameter α  is estimated as the solution to the 

following constrained least squares optimization problem.  
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(19) 

Solving this, the optimal solution α̂  is as shown in Equation (20), 
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where T
0 ))0,1(,),0,3(( ��� knotnBB �B .  
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  Hereafter, this method is sometimes referred to as the “Steeley [1991] Method Modeling 

Discount Rates.” The details of the estimation algorithm for this method are presented in 

Appendix 2.  

Methods Modeling Instantaneous Forward Rates 

(iii) The Fisher, Nychka and Zervos [1995] Method 

Fisher, Nychka and Zervos [1995] represent the zero curve estimation methods using 

piecewise polynomial functions in the general form to model the discount function )(xZ , 

the zero yield )(xy  and the instantaneous forward rate )(xf , respectively. In this paper, 

among these we explain the case when )(xf  is modeled directly.8 

Fisher, Nychka and Zervos [1995] model the instantaneous forward rate )(xf  as a 

linear combination of piecewise polynomial functions as follows, 

 ,),()( �
�

�
n

mk
kxkBxf �  (21) 

where ),( xkB  is a piecewise polynomial. 

Using Equation (7) and Equation (21), the discount function can be expressed as follows. 
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When we substitute Equation (22) into Equation (9), the theoretical price ivQ  can be 

                                                   
8 The primary objective in Fisher, Nychka and Zervos [1995] is to estimate a smooth instantaneous forward 
rate term structure, and their estimate is conducted with smoothing. In our paper, however, as stated at the 
beginning of this section, the goal is to estimate a zero curve that simultaneously achieves a good fit with 
market prices and an appropriate interpolation. Therefore, our paper does not place emphasis on making the 
instantaneous forward rate term structure smooth. In this respect, the Fisher, Nychka and Zervos [1995] model 
explained here has the different objective function from their research. We advance our discussion using the 
simple sum of the squares of the residuals of the theoretical prices and the market prices as the objective 
function.  
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written as follows, 
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where ),(, jkj TkB�B . 

Because )(αivQ  is a nonlinear function of α , it is necessary to solve a nonlinear 

optimization problem in order to find the optimal solution for α . Accordingly, Fisher, 

Nychka and Zervos [1995] simplify the optimization problem by conducting a first order 

Taylor approximation around an arbitrary point 0αα �  in Equation (23). Specifically, 

)(αivQ  is approximated as follows,9 
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where 1  is the ( 1)knotn �  dimensional vector of T(1,...,1)�1 . The asterisk *  in 

Equation (24) represents the element-by-element product of vectors or matrices. With the 

following Equation (25), 
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the optimal solution 0ˆ ( )α α  based on an approximation of Equation (23) around an 

arbitrary point 0�α α  is the solution of the following optimization problem. 

                                                   
9 There are errors in the formula equivalent to Equation (24) in the original paper. 
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(26) 

There is no need to consider the constraint condition (0) 1Z �  on the discount function for 

the optimization problem in Equation (26) because the following equation holds from 

Equation (22).  
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Equation (26) can be solved as an unconstrained least squares problem as follows. 

 � � ).()()()()(ˆ 0T010T00 αYαXαXαXαα
�

�  (27) 

However, this solution depends on the point where the Taylor approximation is conducted,  
0αα � . Thus, Fisher, Nychka and Zervos [1995] conduct a Taylor approximation of  

)(αivQ  around the point 10)(ˆ ααα &  like that in Equation (24), and calculate the optimal 

solution 21)(ˆ ααα &  like in Equation (27). They also repeat the same operation for 2α  

and propose the convergence point of the optimal solution )(ˆ iαα  as the optimal solution 

of the parameter. 

While this is the estimation method proposed in Fisher, Nychka and Zervos [1995], in 

implementing the estimation under this method, the piecewise polynomial function ),( xkB  

in Equation (21) must be determined. In the choice of estimation methods in Section 3C 

below, the methods considered for selection include (1) the method using the piecewise 

quadratic polynomial10 proposed in McCulloch [1971] as ),( xkB  (hereafter, sometimes 

referred to as the “McCulloch [1971] Method Modeling Instantaneous Forward Rates”) and 

(2) the method using the B-spline function of degree two in Steeley [1991] as ),( xkB  

(when D=3 in Equation (16)) (hereafter, sometimes referred to as the “Steeley [1991] 

Method Modeling Instantaneous Forward Rates”). Like the cases when the discount 

                                                   
10 This is the differential function with respect to x of Equation (10) (see McCulloch [1971]). 
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function is directly modeled in D(1)(i) and (ii) of this section, the discount functions for 

both (1) and (2) are cubic functions.  

 

(2) The Non-parametric Method 

(i) The Tanggaard [1997] Method 

Unlike the above approaches, Tanggaard [1997] does not use a piecewise polynomial 

function to represent the discount function, but rather deals with the discount function of 

each term as a parameter.11 In other words, Tanggaard [1997] represents the theoretical 

price )(αivQ  as follows. 

 T

1
( ) , ( ).
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i i i

n
v v v

j j j j
j

Q c Z T� �
�

� � �� c α  (28) 

Because the theoretical price )(αivQ  is a linear function of α , the optimal solution α̂  

can be obtained by solving Equation (29).  

 # $.))(())((min T αQPαQP
α

��
 (29) 

Solving this, the optimal solution α̂  is as shown in Equation (30), 

 ,)(ˆ T1T Pcccα ��  (30) 

where, T),,( 1 Invv ccc �� .  

 

(3) The Polynomial Method 

(i) The Schaefer [1981] Method 

Schaefer [1981] represents the discount function ( )Z x  using a linear combination of 

polynomials known as Bernstein polynomials. The Bernstein polynomial ),( xkBD  of 

degree D is the polynomial defined as follows. 
                                                   
11 Aside from Tanggaard [1997] introduced here, other non-parametric methods include Carleton and Cooper 
[1978] and Houglet [1980].  
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(31) 

Schaefer [1981] represents the discount function as a linear combination of the Bernstein 

polynomials as follows. 
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Since 1)0( �Z  and ,0for0)0,( �� kkBD  we obtain 0 1� �  from the above equation. 

Therefore, )(xZ  is represented in the following form. 
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When we substitute Equation (32) into Equation (9), the theoretical price ivQ  of bond 

iv  is expressed as a function of the parameter 1( , , )T
D� ��α , )T
D,  as follows, 
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where B  is the cfn D�  matrix with ),( jD TkB  as the ),( kj th element. 

From Equation (33), the optimal parameter α̂  can be obtained by solving the following 

least squares problem. 
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Thus, the optimal solution α̂  becomes as shown in Equation (35).  
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 .~)())((ˆ T1T PBcBcBcα ��  (35) 

(4) Parsimonious Function Methods 

(i) The Nelson and Siegel [1987] Method 

Nelson and Siegel [1987] use a parametric function in Equation (36) to model the 

instantaneous forward rate )(xf . 
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From Equation (8) and Equation (36), the zero curve )(xy  is calculated as follows, 
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Here, the theoretical price ivQ  of bond iv  is expressed by Equation (9). Since the 

discount function );( αxZ  is a nonlinear function of the parameter T
3210 ),,,(: �����α  

as shown in Equation (37), the optimal solution α̂  is obtained by solving the following 

nonlinear optimization problem. 

 � �' (Tˆ arg min ( ) ( ( )) .� � �
α

α P Q α P Q α  (38) 

 (ii) The Svensson [1995] Method 

Svensson [1995] adds a new term to the functional form proposed in Nelson and Siegel 

[1987] (see Equation (36)) for modeling the instantaneous forward rate to improve the 

expressive power of the instantaneous forward rate )(xf . Specifically, )(xf  is modeled 

using the following functional form.  
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From Equation (39), the zero yield )(xy  is calculated as follows. 
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From Equation (40), as in the Nelson and Siegel [1987] method, the theoretical price 
ivQ  of bond iv  is a nonlinear function of the parameter; therefore, the parameter 

estimation is solved using a nonlinear optimization problem.  

 

E. Degree of Freedom and Locality of the Estimation Methods 

In subsection B, we presented undesirable zero curves. In this subsection, we introduce 

the two concepts, “degree of freedom” and “locality” into the estimation methods to select 

methods which estimate desirable zero curves and reject ones which estimate undesirable 

zero curves. We then examine each of the zero curve estimation methods based on this 

perspective.  

We begin with the explanation of the degree of freedom of the estimation method. In 

previous studies on the zero curve estimation methods introduced in subsection D, the 

discount functions or the instantaneous forward rates are modeled with some functions. In 

this paper, we define the degree of freedom as the difference between the number of 

parameters of those functions and the number of constrained conditions imposed on those 

parameters. For example, the degree of freedom of the McCulloch [1975] Method 

Modeling Discount Rates explained in D(1)(i) is equal to the number of knot points + 1, 

while the degree of freedom of the Nelson and Siegel [1987] Method in D(4)(i) is equal to 
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4. In general, estimation methods with a low degree of freedom give a poor fit to the market 

prices, while methods with a high degree of freedom give a good fit to the prices. However, 

as shown in subsection B, estimation methods with an excessively high degree of freedom 

may estimate zero curves with excessive unevenness or inappropriate interpolations. In 

order to avoid such an undesirable zero curve, it is necessary to use an estimation method 

without an excessively high degree of freedom.  

  Next, we explain the locality of the estimation method. For the sake of simplicity, we 

assume that the discount bonds are traded on the market and the zero curve is estimated 

from the discount bond prices. The concept of locality means the extent to which the shape 

of the estimated zero curve is changed when a discount bond price changes. In other words, 

if a change in the price of a discount bond with a given maturity greatly changes the zero 

curve estimates with other maturities, the estimation method is said to have low locality. 

Conversely, if the price change of a discount bond does not greatly change the zero curve 

estimates for other maturities, the estimation method is said to have high locality. One 

advantage of estimation methods with high locality is that even when a bond with a 

remaining maturity has an abnormal price, this has almost no effect on the zero curve 

estimates for the other maturities. Another advantage of methods with high locality is that 

they are likely to estimate complex shaped zero curves with multiple inflection points. 

  We now formulate the concept of locality described above. The original discount bond 

price data are denoted by P , and ivP)�P  denotes the price data obtained when only the 

price of bond iv  with a remaining maturity i
iv

cf

v
nT  changes by ivP)  while there are not 

any price changes in the other bonds. The zero curve estimated with method X  from P  

is denoted by );(~ PxyX , and the zero curve estimated from ivP)�P  is denoted by  

);(~ iv
X Pxy )�P . Then, the following index );,( i

iv
cf

v
nX Tl *)  defined in Equation (41) may be 

considered as an index to measure the locality for the maturity i
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v
nT  of method X , 
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where *  is a sufficiently small positive real number and )  is a real number. If the value 
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calculated in Equation (41) is small compared with those of the other estimation methods, 

at least, it is said that method X  has higher locality around the remaining maturity i
iv

cf

v
nT of 

bond iv  than the other methods. If the values calculated from Equation (41) for all bonds 

(or all maturities) are small compared with those of the other estimation methods, then the 

method X has high locality for all maturities. 

However, Equation (41) cannot be considered an easy-to-use index because it depends on 

the choice of *  and ) . In addition, we have to calculate indexes of all bonds to judge the 

locality for any maturity. Therefore, as an index to comparatively easily evaluate the 

locality of estimation methods, we now consider the ratio of the number of parameters that 

contribute to the determination of the discount rate with a remaining maturity to the degree 

of freedom. The lower this ratio is, the higher the locality. For example, the ratio for the 

Nelson and Siegel [1987] method for any maturity is equal to 1. Next, we calculate the ratio 

for the Steeley [1991] Method Modeling Discount Rates in subsection D(1)(ii). If the knot 

points are set as )33,,3( ���� llul , the degree of freedom becomes 32. Using this, we 

calculate the ratios as follows. The ratio for maturities of less than a year is 125.032/4 � , 

the ratio for maturities of 2-30 years in annual increments is 0625.032/2 � , and the ratio 

for all other maturities is 09375.032/3 � . Hence, the Steeley [1991] Method Modeling 

Discount Rates has higher locality than the Nelson and Siegel [1987] method for all 

maturities.  

Next, we see how the locality differs according to the kind of piecewise polynomial 

method. The locality of the Steeley [1991] Method Modeling Discount Rates is different 

from that of the McCulloch [1975] Method Modeling Discount Rates. Under the 

McCulloch [1975] Method Modeling Discount Rates, setting the knot points as 

0),30,,0( 1 ��� �ullul � , the degree of freedom is equal to 31. The ratio between the 

number of parameters that contribute to the determination of the discount function and the 

degree of freedom is 0645.031/2 �  for maturities of one year or less, 0968.031/3 �  for 

maturities of 2 years or less, and 129.031/4 �  for maturities of three years or less. In this 

way, it rises as the maturities increase. This shows that except for remaining maturities of 

one year or less, the Steeley [1991] Method Modeling Discount Rates has lower values than 

the McCulloch [1975] Method Modeling Discount Rates. We therefore conclude that the 
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Steeley [1991] Method Modeling Discount Rates has higher locality.12 

Figure 4: Characteristics of each method (conceptual diagram) 
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Figure 4 arranges the previous studies in subsection D from the viewpoints of the 

concepts of degree of freedom and locality. The Tanggaard [1997] method, one of the 

non-parametric methods, directly estimates discount rates corresponding to times when all 

cash flows of all bonds are paid. Consequently, the degree of freedom of this method is 

much higher compared with the others. This method also has extremely high locality 

because it models the discount rate without assuming any specific functional form. In 

contrast, there are limits to the locality of the polynomial method and the parsimonious 

function method because they express the entire term structure of the discount function or 

the instantaneous forward rate as a single functional form. As for the degree of freedom, we 

can deal with polynomial methods with various degrees of freedom by changing the degree 

of the polynomial used in the modeling. This is also true of the degree of freedom of the 

parsimonious function method. For the piecewise polynomial method, the degree of 

                                                   
12 Like the McCulloch [1975] method, the McCulloch [1971] method also has lower locality compared with 

the Steeley [1991] method. 
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freedom depends on the number of knot points. The degree of freedom of this method rises 

as the number of knot points increases; as a result, the ratio of the number of parameters 

contributing to the discount rate of a given maturity to the degree of freedom decreases. 

This means that the locality of the piecewise method rises as the number of knot points 

increases. Thus the locality of the piecewise polynomial method is higher compared with 

the localities of the polynomial method and the parsimonious function method. 

In the next section we conduct comparative analyses on the eight zero curve estimation 

methods introduced in subsection D. Here we briefly explain why we narrowed down the 

target to the eight estimation methods from among the many methods discussed in previous 

studies. The range of the previous studies on the non-parametric methods, the parsimonious 

function methods and the polynomial methods is somewhat narrow. Hence, we have chosen 

one or two representative examples of each. On the other hand, various piecewise 

polynomial methods have been proposed in previous studies. We include the McCulloch 

[1971, 1975] methods and the Steeley [1991] method which have different locality in our 

analysis. Since some of the methods with piecewise polynomials model the discount rate as 

in subsection D(1)(i) and (ii) and others model the instantaneous forward rate as in 

subsection D(1)(iii), we analyze four piecewise polynomial methods based on the 

McCulloch [1971, 1975] methods and the Steeley [1991] method. Aside from these 

methods, other piecewise polynomial methods include Vasicek and Fong [1982] and 

McCulloch and Kochin [2000].13 The localities of these methods are between or below 

those of the McCulloch [1971, 1975] methods and the Steeley [1991] method. Accordingly, 

we do not deal with any other piecewise polynomial methods in this paper’s analysis aside 

from the four methods specified above.  

 

                                                   
13 Vasicek and Fong [1982] conduct the variable change )exp(1 sx ����  on the discount function )(xZ , 

and then use a piecewise polynomial to model the newly defined function ))(()(~ xZsZ � . However, Vasicek 

and Fong [1982] do not propose the specific form of the piecewise polynomial used to model )(~ sZ . The 
McCulloch and Kochin [2000] method uses a piecewise polynomial to model the logarithmic function of the 
discount function. 
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3. Estimation Method Selection Criteria and Comparison Results 

In this section, we select the estimation method that accurately grasps the characteristics 

of the term structure of JGB interest rates from the representative zero curve estimation 

methods introduced in Section 2. To those ends, we summarize the JGB interest rate term 

structure characteristics in Section 3A. In Section 3B, we set criteria to exclude those zero 

curve estimation methods that generate undesirable zero curves as shown in Section 2B and 

to select a zero curve estimation method that grasps the JGB interest rate term structure 

characteristics. In Section 3C, we select the most appropriate zero curve method from the 

representative methods in light of our selection criteria through an analysis based on JGB 

market prices.  

 

A. Characteristics of JGB Interest Rate Term Structure  

In this subsection, we note two representative characteristics of the term structure of JGB 

interest rates from the late 1990s until recently.  

The first feature is that the interest rate term structure with remaining maturities of up to 

around three years shows a flat curve near zero. Especially during the quantitative easing 

policy period from 2001 to 2006 and the global financial crisis since the summer of 2007, 

the JGB interest rate term structure generally had that kind of shape. Figure 5 compares the 

term structures of U.S. and Japanese government bond interest rates since the financial 

crisis. During this period, both countries implemented de facto zero interest rate policies, 

but at certain points in time the shapes of the term structures for short-term maturities 

differed. In Figure 5(a), the slope of the U.S. government bond yield curve increases from 

remaining maturities of two years, while the Japanese curve remains near zero through 

remaining maturities of around three years. 
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Figure 5: Government bond interest rate term structures of the U.S. and Japan 

(a) June 10, 2010 (b) September 2, 2011 
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Note 1: Bloomberg ticker GJGBn Index for Japanese n year interest rate ( 30,20,15,10,,2,1 ��n ). 
Note 2: Bloomberg ticker USGGn Index for U.S. n year interest rate of two years or more 

( 30,10,7,5,3,2,1�n ) and Bloomberg ticker USGG12M Index for one-year interest rate.  
Source: Bloomberg. 

 
When estimating the zero curve from JGB market prices, an undesirable method may fail 

to accurately grasp the curve characteristics introduced above. For example, a portion of the 

estimated zero curve for short maturities might fall below zero. As shown in Section 2D, 

the polynomial and parsimonious function methods express the entire zero curve as a 

polynomial or a specific function. Therefore, it may be difficult to fully capture the 

above-mentioned characteristics of the JGB term structure due to the low locality of these 

methods.  

In recent years, not only the JGB interest rate term structure, but government bond 

interest rate term structures in the U.S. and Europe have also been flattening near zero for 

short-term maturities. Looking at the U.S. interest rate term structure in Figure 5(b), 

compared with Figure 5(a), the term structure is turning flatter near zero through maturities 

up to around three years. For this reason, at present, estimations with low locality may not 

have sufficient expressiveness to estimate the zero curves in the U.S. and European 

countries.14 
                                                   
14 In the U.S., the Federal Reserve Board’s (FRB’s) economists estimate the zero curve based on the method 
in Svensson [1995] (see Gürkaynak, Sack and Wright [2007] for the details of the estimation method). Our 
calculations of the zero yield for short-term maturities of one or two months with the zero curve estimation 
parameters released on the FRB homepage frequently resulted in estimates below zero during periods when 
the yield curve becomes steep under the low interest rate environment since the middle of 2009.  
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The second feature frequently seen in the JGB interest rate term structure is that it has a 

complex shape with multiple inflection points. For example, as in Figure 6, the seven-year 

interest rate sometimes becomes relatively low compared with the six-year and eight-year 

rates.15 

Figure 6: JGB interest rate term structure (February 17, 2009) 

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
years

%

  
Note: n year interest rate – Bloomberg ticker GJGBn Index. 
Source: Bloomberg 

Zero curve estimation methods with a low degree of freedom cannot capture curves with 

this kind of complex shape. When the degree of freedom of the estimation method is too 

high, however, it may estimate a zero curve with excessive unevenness as seen in Section 

2B. Consequently we need an estimation method with a suitable degree of freedom that is 

neither too low nor too high, so that it can grasp such characteristics of the JGB interest rate 

term structure. In addition, an estimation method that has a large influence on the estimates 

for other maturities to capture such uneven shapes is undesirable. Therefore, we believe that 

the zero curve estimation method has to have high locality in order to grasp the 

characteristics of the JGB interest rate term structure, which has a complex shape with 

multiple inflection points. 

 
                                                   
15 The maturity of the cheapest-to-deliver of the JGB futures is around 7 years. Thus, the prices of JGBs with 
remaining maturities of around 7 years have often been influenced by the prices of JGB futures. In particular, 
when the prices of JGB futures rose substantially with the flight to quality since the second half of 2008, 
JGBs with remaining maturities of around seven years were traded at a higher price than those with remaining 
maturities of six and eight years. In other words, the 7 year interest rate was lower compared with interest 
rates of other maturities.  
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B.  Estimation Method Selection Criteria  

  In this subsection, we set criteria to exclude methods which estimate undesirable zero 

curves as shown in Section 2B and select methods which capture features of the JGB 

interest rate term structure shown in A above.  

 

Criterion (1): Zero curve estimates should not fall below zero 

As shown in Section 3A, the JGB interest rate term structure often takes a flat shape near 

zero for short-term maturities. Some estimation methods cannot capture this shape, and 

may estimate the zero curve below zero for some maturities. As explained in Section 2B, 

zero curves that fall below zero for some maturities are undesirable. Accordingly, we 

exclude estimation methods that estimate a comparatively large number of zero yield 

estimates for remaining maturities of 0.5, 1, 1.5 and 2 years falling below zero during the 

estimation period.  

 

Criterion (2): Zero curve estimates should not include abnormal values 

As shown in Section 2B, some estimation methods may estimate the zero curve with 

abnormal values such as extremely high or extremely low estimates. These methods end up 

with under-fitting to JGB market prices due to their low degree of freedom, or get into 

over-fitting due to their high degree of freedom. We estimate the zero yield with a specific 

maturity using each estimation method on each estimation date; in addition, we calculate 

the standard deviation of those zero yield estimates. Based on this, we regard estimates 

outside the range of ±2 standard deviations as abnormal values. We then reject estimation 

methods with a relatively high frequency of abnormal values. This selection criterion 

excludes estimation methods with degrees of freedom that are either too high or too low.  

 

Criterion (3): Theoretical prices should have a good fit with market prices 

As noted in Section 3A, the JGB interest rate term structure often has a complex shape 

with multiple inflection points. We judge the extent of the fit of the theoretical prices to the 

market prices by whether this complex shape is accurately grasped. Specifically, we 
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evaluate it using the residual sum of squares of errors of the market prices and the 

theoretical prices on the estimation date. This criterion is used to reject estimation methods 

that have poor fits to the market prices. While it does not reject estimation methods that 

have over-fits to the market prices, those methods can be rejected by criteria (2) above and 

(4) below.  

 

Criterion (4): The shape of curve should not be extremely uneven 

As stated in Section 2B, it is undesirable for the zero curve to be extremely uneven. If the 

zero yield estimates include abnormal values, there may be large rises and falls in the zero 

curve. Those are rejected by criterion (2). Estimation methods that are not rejected by 

criterion (2), however, may include methods which estimate zero curves with extreme 

unevenness. Thus, in order to exclude this possibility, we check whether or not the 

curvature calculated using the zero yield estimates for specific maturities ranging from 0.5 

to 20 years in half-year increments from Equation (42) shows excessive values .  

 .)))1(5.0()5.0(2))1(5.0((
39
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In this paper, we exclude those estimation methods that frequently generate undesirable 

zero curves in light of criteria (1) and (2) from the selection candidates. The selection 

results are presented in subsection C(3). Next, the most desirable estimation method is 

selected based on the perspectives in (3) and (4) from among those estimation methods that 

are not excluded in the above process.  

 

C. Comparative Analysis of Estimation Methods 

In this subsection, we select the most suitable estimation method for JGB price data from 

the representative zero curve estimation methods in Section 2 in light of the criteria 

presented in Section 3B.  

 

(1) Outline of the JGB Price Data Used in the Estimations  
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In our comparative analysis, we use price data on fixed coupon-bearing JGBs (2-year, 

5-year, 10-year, 20-year, and 30-year bonds). The price data are Japan Bond Trading Co., 

Ltd. JGB closing prices obtained from the NEEDS provided by Nikkei Digital Media Inc. 

The zero curve estimation period covers all business days from January 4, 1999 through 

December 30, 2010. 

Figure 7: Number of issues 
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Figure 7 presents the number of fixed coupon-bearing JGB issues over the estimation 

period. As shown in the figure, the total number of issues was around 150 in January 1999, 

while it has grown to about 300 recently. This is a result of increased issuance of five-year, 

20-year and 30-year bonds. 

In this way, the JGB issuance conditions have changed since the 2000s. In previous 

studies and surveys on the estimation of the JGB zero curve (Komine, Yamagishi et al. 

[1989], Oda [1997], Inui and Muromachi [2000], Kawasaki and Ando [2005]), price data 

before 2000 are used. In contrast, the estimation results in this paper take into consideration 

the change in issuance conditions from the 2000s described above.  

 

(2) Estimation Methods for Our Analysis 

The estimation methods for our analysis are the eight methods introduced in Section 2D. 

In this subsection, we present supplementary notes on each method.  

i. The McCulloch [1975] Method Modeling Discount Rates in Section 2D(1)(i) 

The knot points are set in annual increments ranging from year 0 through year 30.  
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ii. The Steeley [1991] Method Modeling Discount Rates in Section2D(1)(ii) 

The knot points are set in annual increments ranging from year -3 through year 33.  

iii. The McCulloch [1971] Method Modeling Instantaneous Forward Rates in Section 

2D(1)(iii)1 

The knot points are set in annual increments ranging from year 0 through year 30.  

iv. The Steeley [1991] Method Modeling Instantaneous Forward Rates in Section 

2D(1)(iii)2 

The knot points are set in annual increments from year -2 through year 32.  

v. The Tanggaard [1997] Method in Section 2D(2)(i) 

The discount rates corresponding to times until when cash flows are not paid cannot be 

directly estimated from this model. Hence, this paper estimates those yields by linear 

interpolation.  

vi. The Schaefer [1981] Method in Section 2D(3)(i) 

The Bernstein polynomial is of the fifth degree. 

vii. The Nelson and Siegel [1987] Method in Section2D(4)(i) 

The Nelder-Mead method is used in the parameter estimation.  

viii. The Svensson [1995] Method in Section 2D(4)(ii) 

Same as vii. 

(3) Comparison Results: Exclusion of Undesirable Estimation Methods 

We now summarize the results of comparing the eight methods in light of the criteria (1) 

and (2) presented in subsection 3B. 

(i) Number of Times That Zero Yield Estimates Fall Below Zero 

Table 1 shows the number of times that the zero yield estimates for remaining maturities 

of 0.5, 1, 1.5 and 2 years drop below zero during the estimation period under each method. 

The table shows that while the piecewise polynomial methods do not give any estimates 

below zero, the other methods do give estimates below zero. In particular, the polynomial 

method and the parsimonious function methods generate far larger numbers of estimates 
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below zero compared with the other methods. 

Table 1: The number of times that interest rate estimates are less than zero 
Piecewise polynomial methods 

Methods modeling discount rates Methods modeling instantaneous forward 
rates 

McCulloch 
[1975] 

Steeley 
[1991] 

McCulloch 
[1971] 

Steeley 
[1991] 

0 0 0 0 
 

Polynomial method Non-parametric 
method Parsimonious function methods 

Schaefer 
[1981] 

Tanggaard 
[1997] 

Nelson and Siegel 
[1987] 

Svensson 
[1995] 

1,084 30 2,162 619 
Note: Total of 11,788 samples (4 samples/day × 2,947 days). 

Figure 8 presents examples of zero curves on dates when estimates actually fell below 

zero for estimation methods with many estimates falling below zero. As shown in Figure 8, 

the polynomial method and the parsimonious function methods generate frequent 

estimation results with the zero yields below zero for certain maturities during the 

quantitative easing policy period. This is considered to result from the low locality of these 

methods as explained in Section 3A. Estimates below zero were also observed under the 

non-parametric method.  

Figure 8: Examples of zero yield estimates below zero 
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Given these results, we conclude that the polynomial method (the Schaefer [1981] 

method), the parsimonious function methods (the Nelson and Siegel [1987] method, and the 
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Svensson [1995] method) and the non-parametric method (the Tanggaard [1997] method) 

are not appropriate as methods to capture the characteristics of the JGB interest rate term 

structure. 

(ii) Number of Times That the Zero Yield Estimates Take Abnormal Values 

Table 2 summarizes the number of times that the zero yield estimates for each maturity 

take abnormal values during the estimation period under each method. 

Table 2: The number of abnormalities 

 
Piecewise polynomial method 

Polynomial 
method 

Non-parametric 
method 

Parsimonious function 

method Method modeling 
discount rates  

Method modeling 
instantaneous forward rates  

Remaining 
Maturity 

McCulloch 
[1975] 

Steeley
[1991] 

McCulloch 
[1971] 

Steeley 
[1991] 

Schaefer 
[1981] 

Tanggaard 
[1997] 

Nelson & 
Siegel 
[1987] 

Svensson 
[1995] 

1 year 0 0 2 2 36 11 0 88 

2 years 0 0 0 0 0 2 5 0 

3 years 0 0 0 0 0 0 101 0 

4 years 0 0 0 0 0 0 15 0 

5 years 0 0 0 0 0 0 0 0 

6 years 0 0 0 0 0 0 0 0 

7 years 0 0 0 0 0 0 0 0 

8 years 0 0 0 0 0 0 0 0 

9 years 0 0 0 0 0 0 0 0 

10 years 0 0 0 0 0 0 0 0 

11 years 0 0 0 0 0 0 0 0 

12 years 0 0 0 0 0 0 0 0 

13 years 0 0 0 0 0 0 0 0 

14 years 0 0 0 0 0 0 0 0 

15 years 0 0 0 0 0 0 0 0 

16 years 0 0 0 0 0 0 0 0 

17 years 0 0 0 0 0 0 0 0 

18 years 0 0 0 0 0 0 0 0 

19 years 0 0 0 0 0 0 0 0 

20 years 0 0 0 0 0 0 0 0 

Notes: 1. There are 2,947 samples for each item (Jan. 4, 1999 – Dec. 30, 2010).  
2. The mean and the standard deviation are calculated from the estimates generated by the 
eight estimation methods at each estimation date, and estimates outside the range of ±2 
standard deviations of the mean are defined as abnormal values. 
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The table shows that for short-term maturities, the polynomial method (the Schaefer 

[1981] method) and the parsimonious function methods (the Nelson and Siegel [1987] 

method, the Svensson [1995] method) give more abnormal values compared with the other 

estimation methods. Abnormal values under these methods are caused as a result of 

estimates below zero or estimates with far larger values than those of other methods. 

Figure 9 is an example of when the estimates for short-term maturities based on the 

polynomial method and the parsimonious method are higher than those of other methods. 

For a remaining maturity of 0.5 years, the zero yield estimate based on the Schaefer [1981] 

method is higher than the estimates based on the other methods.  

The reason why the zero yield estimates for short-term maturities under the polynomial 

method and the parsimonious function method take abnormal values is that these methods 

cannot capture the flat shape of the JGB yield curve near zero for short-term maturities 

often seen during the period of quantitative easing policy due to their low locality. 

Figure 9: Examples of zero yield estimates with abnormal values 
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In light of whether the zero yield estimates take abnormal values, we conclude that the 

polynomial method and the parsimonious function methods are not appropriate for JGB 

zero curve estimates.  

Given the above results, we conclude that aside from the McCulloch [1975] Method 

Modeling Discount Rates, the Steeley [1991] Method Modeling Discount Rates, the 

McCulloch [1971] Method Modeling Instantaneous Forward Rates, and the Steeley [1991] 
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Method Modeling Instantaneous Forward Rates, the other estimation methods do not meet 

the selection criteria. Thus, we exclude methods except the above four methods from our 

analysis.  

(4) Comparison Results: Selection of the Optimal Estimation Method 

In this subsection, we select the most appropriate estimation method from the four 

remaining methods (the McCulloch [1975] Method Modeling Discount Rates, the Steeley 

[1991] Method Modeling Discount Rates, the McCulloch [1971] Method Modeling 

Instantaneous Forward Rates, and the Steeley [1991] Method Modeling Instantaneous 

Forward Rates) from the perspectives of the fit of theoretical prices to market prices and the 

low unevenness of the zero curve. 

 (i) Fit of Theoretical Prices to Market Prices 

Table 3 compares the residual sum of squares under the four estimation methods during 

the estimation period. The table indicates that the residual sum of squares of the Steeley 

[1991] Method Modeling Discount Rates has the lowest mean value, standard deviation and 

maximum value among the four methods during the estimation period.  

It appears that this result is because the Steeley [1991] Method Modeling Discount Rates 

has the highest locality among these four methods. 

Table 3: Comparison Results for Fitness to Market Prices 
 Piecewise polynomial methods 

Methods modeling discount 
rates 

Methods modeling 
instantaneous forward rates  

McCulloch 
[1975] 

Steeley 
[1991] 

McCulloch 
[1971] 

Steeley 
[1991] 

Maximum 29.178 27.058 29.126 29.116 
Minimum 0.185 0.144 0.198 0.182 

Mean 3.414 3.093 3.598 3.807 
Standard 
deviation 

4.728 4.441 4.714 5.041 

Notes: 1. Mean, standard deviation, maximum and minimum denote the mean value, standard deviation, 
maximum value and minimum value of the residual sum of squares on each estimation date. 

2. The unit is the square of yen. 
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ii Unevenness of Zero Curves 

Table 4 summarizes the averaged value of the curvature measuring the extent of the 

unevenness of the zero curve during the estimation period. While the table does not show 

great differences among the methods, the curve estimated based on the Steeley [1991] 

Method Modeling Discount Rates has the lowest curvature.  

Table 4: Comparison of Curvatures  

Piecewise polynomial functions 
Methods modeling discount rates Methods modeling instantaneous  

forward rates 
McCulloch 

[1975] 
Steeley 
[1991] 

McCulloch 
[1971] 

Steeley 
[1991] 

1.587×10-2 1.470×10-2 1.930×10-2 1.991×10-2 
Notes: 1 The above figures show the mean values of the curvatures (Equation (42)) on each estimation 

date during the estimation period. 
      2 The unit is the square of percent. 

Figure 10: The zero curve using the Steeley [1991] Method Modeling Discount Rates  
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Note: Zero curve estimated on February 8, 2000, when the zero curve under the Steeley [1991] Method 

Modeling Discount Rates had its highest curvature during the estimation period. 

Figure 10 shows the estimation results on the date (February 8, 2000) when the zero 

curve under the Steeley [1991] Method Modeling Discount Rates has its highest curvature 

during the estimation period. In this figure, the zero yield with a maturity of 9.5 years is 

lower than those with maturities of both 9 years and 10 years. This is considered to lead to 
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the increase in the curvature of the zero curve. This reflects the fact that the price of the 

JGB with a remaining maturity of about 9.5 years was actually higher than the prices of the 

9- and 10-year JGBs; hence, the interpolation is deemed to be appropriate. Considering this, 

we conclude that the unevenness of zero curves under the Steeley [1991] Method Modeling 

Discount Rates is appropriate.   

Summarizing all the above results, among the eight methods considered in our analysis, 

the Steeley [1991] Method Modeling Discount Rates is judged the most appropriate for 

estimating the JGB market zero curve. In the next section, we clarify the characteristics of 

this method through comparisons with the other estimation methods.  

 

4. Characteristics of the Steeley [1991] Method Modeling Discount Rates 

In Section 3, the Steeley [1991] Method Modeling Discount Rates (hereafter, “the 

Steeley model”) was selected as the optimal estimation method in light of the criteria set in 

this paper. In this section, we first clarify the characteristics of the Steeley model in 

subsection 4A by comparing the Steeley model with the Nelson and Siegel [1987] Method 

(hereafter, “the NS model”). Specifically, we compare the two models’ results in terms of 

(1) the shape of curves, (2) the short-term interest rates, and (3) the long-term interest rates. 

Next, in subsection 4B, we consider the curve based on the smoothing spline method and 

compare it with the curve based on the Steeley model.  

A. Comparison of the Steeley Model with the NS Model 

(1) Comparison of Zero Curve Shapes 

Figure 11 presents the zero curves on December 30, 2010 estimated based on the Steeley 

model and the NS model. In Section 3A, we pointed out the flat shape of the curve near 

zero for short-term maturities as one of the features of the JGB interest rate term structure. 

The curve estimated based on the Steeley model takes that type of shape. 
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Figure 11: Comparison of curve shapes (December 30, 2010) 
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Figure 12 presents the comparison of the two models’ curves on August 20, 2008. 
Around that time, against the backdrop of a rise in the price of JGB futures, the prices of 
JGBs with remaining maturities of around seven years rose relative to those of other JGBs. 
This means that the seven-year interest rate was low compared with the six- and eight-year 
interest rates. In fact, the zero curve estimated by the Steeley model captures this kind of 
yield curve shape. In contrast, the zero curve estimated by the NS model does not capture 
this unevenness from the six-year through the eight-year interest rates. It seems that the 
Steeley model is able to capture this shape because of its high locality. 
 

Figure 12: Comparison of curve shapes (August 20, 2008) 
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year/month 

(2) Comparison of Short-Term Interest Rates  

Figure 13 presents the short-term interest rate estimates using the Steeley model and the 

NS model. 

Figure 13: Comparison of short-term interest rates (6-month yields) 
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Looking at the figure, the six-month zero yield estimates under the NS model frequently 

fall below zero during the quantitative easing policy period. In contrast, the six-month zero 

yield estimates during this period based on the Steeley model remain steady near zero, 

without falling below zero16.  

During periods other than the quantitative easing policy period as well, estimates based 

on the Steeley model remain steady without widely diverging from the movements of the 

uncollateralized overnight call rate, unlike the estimates using the NS model. In this way, 

the Steely model is deemed to steadily estimate short-term interest rates, especially 

short-term interest rates during monetary easing periods in Japan. 

                                                   
16 The 6-month zero yields in this period using the Steeley model are a little higher than the zero yields 
derived from the short-term discount bonds issued by the Japanese government. This seems to reflect that zero 
curves in this paper are estimated with only JGBs and our estimates of maturities of less than one year include 
some spreads compared to the zero yields of short-term discount bonds. In this paper, we do not use 
short-term discount bond prices for the zero curve estimation because the market participants of the 
short-term discount bond market are different from those of the JGB market. 
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(3) Comparison of Long-term Interest Rates 

Figure 14 presents the long-term interest rate estimates (10-year zero yield and 20-year 

zero yield) using the Steely model and the NS model. 

Figure 14: Comparison of long-term interest rate estimates  
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Comparing the estimates using the two models, we find that the largest divergence is 

only around 10bp for the 10-year zero yield. For the 20-year zero yield as well, the largest 

divergence is also around 10bp. This suggests that there is no substantial difference 

between the two models in the estimates of long-term interest rates. However, the selection 

of the estimation method is important for analyses using multiple estimates on the curve, 

such as analyses using the spread between the short-term and long-term interest rates, 

because the short-term interest rate estimates differ depending on the choice of models as 

seen in Section 4A(2). 
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B. Comparison of the Steeley Model with Smoothing Spline Methods that Can Estimate 

Smooth Instantaneous Forward Rates 

An important point to note in using the piecewise polynomial method including the 

Steeley model is that the term structure of the instantaneous forward rate may have 

excessive unevenness. To overcome this, previous studies focusing on estimations of a 

smooth instantaneous forward rates term structure adopt what are known as smoothing 

spline methods (Fisher, Nychka and Zervos [1995], Waggoner [1997], Anderson and Sleath 

[1999], Jarrow, Ruppert, and Yu [2004], etc.). As seen below, smoothing spline methods 

estimate a smooth instantaneous forward rate term structure; nevertheless, the estimates 

tend to have lower fits to market prices compared with estimates obtained when smoothing 

is not used. As noted above, in this paper, our purpose is to estimate a zero curve that 

accurately grasps the features of the JGB yield curve. Accordingly, we do not include 

smoothing spline methods in Section 3 because they do not meet the prerequisite of a good 

fit to the market prices.  

We do compare zero curves and instantaneous forward rate term structures estimated 

using the Steeley model and the Jarrow, Ruppert and Yu [2004] model (hereafter, “the JRY 

model”), one of the smoothing spline methods.  

We now outline the JRY model. In this approach, the instantaneous forward rate is 

modeled using a B-spline function based on Equation (21). This method tries to estimate 

the zero curve with a good fit to market prices and a smoothed instantaneous forward rate 

curve by solving the following optimization problem with a penalty term,  

 .)')'(())(())((1min
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The second term in Equation (43) represents the penalty with respect to the curvature of the 

instantaneous forward rate. In other words, the objective function value rises as the 

unevenness of the instantaneous forward curve increases. Consequently, the optimal 

solution to Equation (43) results in a zero curve estimate with a smooth instantaneous 

forward curve. The term )  is called the smoothing parameter. This parameter determines 

the unevenness of the instantaneous forward rate term structure. In Jarrow, Ruppert and Yu 
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[2004], this parameter is determined based on the information criteria proposed in Ruppert 

[1997].  

Figure 15 shows the zero curves and the instantaneous forward rate term structures 

estimated with the Steeley model and the JRY model. For the zero curves, the Steeley 

model’s curve shows a dip around the maturity of 7 years, while that is not seen in the JRY 

model’s curve. This implies that the Steeley model has a good fit to the market prices and 

grasps the characteristics of the JGB yield curve. On the other hand, the instantaneous 

forward rate curve based on the Steeley model shows great unevenness, while that of the 

JRY model is smooth.  

Figure 15: Comparison of Steeley model and JRY model estimation results 
(February 17, 2009) 
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In the financial business, problems in pricing derivatives underlying the forward interest 

rate occur when using an uneven instantaneous forward rate curve. The pricing of the 

derivatives is implemented by calculating the future forward curve based on some term 

structure model through the initial curve of the instantaneous forward rate. Hence, the price 

depends on the initial curve. Therefore, we end up deriving unreasonable prices of those 

derivatives if we use an uneven instantaneous forward curve as the initial curve of the term 

structure model.  

In order to avoid this problem, we can price the derivatives underlying the forward 

interest rate with a smooth instantaneous forward curve estimated using a smoothing spline 

method. However, as pointed out above, zero curves estimated using smoothing spline 
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methods have a worse fit to market prices. In this way, it is difficult to simultaneously 

achieve a good fit to JGB market prices and a smooth instantaneous forward rate term 

structure. Thus, we believe that the decision on whether to use the smoothing spline method 

or not should depend on how the estimated curve will be used.  

 

5. Conclusion 

In this paper, we set criteria to select an appropriate method from among estimation 

methods proposed in previous studies in order to grasp the characteristics of the JGB zero 

curve, and conducted a comparative analysis of the diverse methods according to the 

criteria. Specifically, we excluded estimation methods which did not meet the criteria that 

estimates should not fall below zero and take abnormal values. We then selected the most 

appropriate estimation method based on the criteria of a good fit to market prices and low 

unevenness in the zero curve. As a result, we found that the Steeley [1991] Method 

Modeling Discount Rates was the most appropriate in light of the criteria.  

The zero yields estimated with the Steeley model did not drop below zero during the 

estimation period, and captured the characteristics frequently seen in the JGB yield curves 

including the flat shape near zero for short-term maturities and the inflection points in the 

curve for mid-term maturities. Zero curves estimated appropriately in this manner are 

considered to be important as a starting point for numerous analyses on JGB interest rates. 

Since 2010, the U.S. and European government bond yield curves have also been showing 

a flat shape near zero for short-term interest rates, coming to resemble the characteristics of 

the JGB yield curve during quantitative easing policy periods and in recent years. Thus, the 

Steeley model is likely to prove effective for zero curve estimations of the U.S. and 

European countries.  

In conclusion, we would like to note two outstanding challenges for future research. First, 

the analysis in this paper is based on JGB data from the late 1990s through 2010. Hence, 

conducting similar analysis using data from a different time or market might lead to 

different conclusions. Consequently, one challenge is to conduct a comparative analysis on 

zero curve estimation methods using more wide-ranging data. Second, the analysis in this 
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paper uses the simple residual sum of squares of the market prices and theoretical prices as 

the objective function in estimating the parameters defining the zero curve. Depending on 

the market environment and the purpose of utilization of the zero curve, however, it may be 

more appropriate to conduct the estimation based on a different objective function. 

Therefore, another challenge for future research is to conduct the analysis using different 

objective functions. 
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Appendix 1. Market Conventions for Calculation of JGB Theoretical Prices 

To precisely calculate the theoretical prices, it is necessary to understand JGB market 

conventions including the definition of the timing of when cash flow is paid, the method of 

calculating the number of days until cash flow is paid, and the method of calculating 

accrued interest. This appendix explains the items required for a precise calculation of 

theoretical prices.17 
 
A. Definition of Terms 

Here we present the terms required to explain JGB market conventions.  

Interest Payment Dates 

The dates on which coupons are paid on a bond are referred to as the interest payment 

dates. For fixed-coupon bearing bonds, these are normally set once every half year, such as 

“June 20 and December 20 each year.” As explained in Appendix 1-B below, it is necessary 

to note that the interest payment dates sometimes differ from the dates on which coupons 

are actually paid. The interest payment dates are announced by the Ministry of Finance 

when JGB bond auctions are held. The interest payment dates on the five-year, 10-year, 

20-year and 30-year bonds are all either March 20 and September 20 or June 20 and 

December 20 each year18. The interest payment dates on two-year bonds are the 20th of 

each month for bonds issued through September 2007, and the 15th of each month for 

bonds issued since October 2007.  

Initial Interest Payment Date 

The first interest payment date after a given bond is issued, for the initial interest 

payment period, is referred to as the initial interest payment date. The initial interest 

payment date and the actual interest payment date are sometimes different. 

Initial Interest Payment 

The initial interest payment is the amount of cash flow obtained when the first interest 
                                                   
17 We referred to Ohta [2003] for an explanation of this Appendix. 
18 We here note that some of 30-year bond issues have either February 20 and August 20 or May 20 and 
November 20 as the interest payment dates. 
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payment occurs. Here we note that this is not the interest payment date. 

Prior Term Interest Payment Date 

The prior term interest payment date is defined as the date half a year prior to the initial 

interest payment date. For example, if the initial interest payment date is June 20, 2008 then 

the prior term interest payment date is December 20, 2007. 

Trade Date 

The trade date is the date on which the buyer and seller agree to the transaction. 

Settlement Date 

The settlement date is the date three business days after the trade is executed, counting 

from the day after the trade date. The settlement date, not the trade date, is used as the 

standard for the calculation of occurrence of cash flow and accrued interest.  

 

B. Market Conventions for Calculating the Number of Days until Cash Flow is Paid 

Here we explain the JGB market conventions for counting the number of days from the 

settlement date until the time when cash flow is paid. This is one of the factors used to 

calculate JGB theoretical prices. 

First we explain the case when the interest payment date is a business day. In this case 

the interest payment date is the date when cash flow is actually paid. With 365 days in a 

year, the number of the days from the settlement date to the interest payment date is 

counted as the number of days until each interest payment date including leap days for 

issues with less than a year remaining until the maturity date. For issues with a year or 

longer remaining until the maturity date, the count is the number of days from the 

settlement date to each interest payment date deducting any leap days during that interval. 

  The one-end method is applied to the calculation of the number of days between the 

settlement date and interest payment dates. In this method, the settlement date is not 

counted in calculation of the number of days, but each of the interest payment dates is 

counted. On the JGB market, the one-end method is applied to the day counting for all 
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fixed-coupon bearing bonds.19 

In cases when the interest payment date is not a business day, the modified following 

business day convention is applied on the JGB market. Under this convention, when the 

interest payment date is not a business day and the subsequent business day is in the same 

month as the coupon date, the cash flow is paid on that date, and when the subsequent 

business day is in the month after the interest payment date, the cash flow is paid on the 

business day immediately preceding the interest payment date. As a specific example, many 

JGBs had interest payment dates on June 20, 2009. Because that date was a Saturday, the 

modified following business day convention was applied and the cash flow was paid on 

June 22, 2009.20 In cases when the interest payment date is not a business day, the one-end 

method is also applied to the day counts between the settlement date and interest payment 

dates. 

 

C. Response to Changes in Legal and Market Systems 

Looking over the history of the JGB market, the times when cash flows were paid and 

the amount of cash flow had shifted along with changes in market and legal systems. As 

examples, we examine (1) the introduction of the immediate reopening rule, (2) the Happy 

Monday system, and (3) the settlement system.  

 

(1) Introduction of the Immediate Reopening Rule (Reopening System)  

The immediate reopening rule (hereafter, “reopening system”) introduced in March 2001 

is a system whereby upon issuance of a new bond with the same face value, coupon rate 

and maturity date of an already issued bond, the two bonds are treated as the same issue. 

Prior to the introduction of this system, the old and new bonds had to be treated as separate 

issues until the initial interest payment date even if the issuance conditions aside from the 

                                                   
19 Prior to the introduction of the reopening system in March 2001 (see C (1) in Appendix 1 below), the 
both-ends method was used for the calculation of accrued interest. The both-ends method is the method that 
counts both the settlement date and the coupon date in the day counting.  
20 The auction results for past interest-bearing JGBs are presented on the Ministry of Finance web page 
http://www.mof.go.jp/english/jgbs/auction/past_auction_schedule/auct_resul/index.htm.  
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issuance date were identical, because the initial interest payments were different. The 

reopening system was introduced to reduce such complexities of managing issues.  

The JGB initial interest payment calculation methods differ before and after the 

introduction of the reopening system. The accrued interest calculation methods also differ. 

The specific calculation methods are explained below.  

 

(2) The Happy Monday System 

The Happy Monday System moves a number of public holidays to Mondays, to create 

three-day weekends. This system began under the Act on Partial Revision of the Act on 

National Holidays, which came into effect from January 2001. This moved the Coming of 

Age Day (January 15) and Health and Sports Day (October 10) holidays to the second 

Mondays of their respective months. Then under the Act on Partial Revision of the Act on 

National Holidays and the Act on Social Welfare Service for Elderly, which came into 

effect from January 2003, the Marine Day (July 20) and Respect for the Aged Day 

(September 15) holidays were moved to the third Mondays of their respective months.  

The second revision had the greater effect from the perspective of calculating JGB 

theoretical prices. For example, July 20, which was a holiday prior to the revision, could 

now be a business day and the actual date when two-year JGB cash flow was paid changed 

by the revision of the act. In addition, with the revision, September 20 may now be 

Autumnal Equinox Day or Respect for the Aged Day. This could result in substitute 

holidays when Sundays and holidays overlap, potentially pushing the interest payment 

dates and the actual dates when cash flows are paid ahead or behind by even a few days.21 

For estimating the zero curve, it is necessary to specify exactly when such system 

changes were incorporated into market prices. Yet it is very difficult to accurately specify 

such information from the market prices.  

For this reason, in our analysis in this paper, when calculating theoretical prices on trade 

dates from June 22, 2001 (when the Act on Partial Revision of the Act on National 
                                                   
21 For example, in September 2009, interest payment date was changed from the 21st to the 24th of the month 
as a result of that Respect for the Aged Day was moved to the third Monday. This is because the weekday 
between Respect for the Aged Day (September 21) and Autumnal Equinox Day (September 23) became a 
national holiday under the provisions of the Act on National Holidays.  
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Holidays and the Act on Social Welfare Service for Elderly was published in the 

government gazette), the dates when cash flows are paid after January 2003 (when that Act 

came into effect) are assumed to be determined based on the revised holidays system.  

 

(3) Settlement System 

On the JGB market, settlements among large brokerages switched to T+7 (delivery seven 

business days later counting from the day after the trade) from September 19, 1996 and 

then to T+3 (delivery three business days later counting from the day after the trade) from 

April 1, 1997. Because the calculation of theoretical JGB prices is based not on the trade 

date but on the settlement date, changes in the number of days between the trade date and 

the settlement date influence the theoretical price calculations. Because the market price 

data for our analysis in this paper run from January 1999 through December 2010; however, 

the above changes in the settlement system do not affect the JGB theoretical price 

calculations herein.  

 

D. Initial Interest Payment and Accrued Interest Calculation Methods 

As noted above, the initial interest payment and accrued interest calculation methods 

vary before and after the introduction of the reopening system in March 2001. Thus, we 

explain the calculation methods before and after the introduction of the reopening system. 

 

(1) Initial Interest Payment Calculation Method 

Prior to the introduction of the reopening system, the initial interest payment for each 

issue was determined along with the issuance date as described below. As a result, issues 

with the same face value, coupon rate and maturity but with different issuance dates had 

different initial interest payments.  

The initial interest payment ),,( 1
iii vvv TNcg  before the introduction of the reopening 

system is defined below22. When the issuance date of the bond was before the prior term 
                                                   
22 In D (1) and D (2) of Appendix 1, we assume that the prior term interest payment date means the date after 
applying the modified following business day convention if it is not a business day. 
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interest payment date, the definition was as shown by the following equation with d  as 

the number of days from the issuance date to the prior term interest payment date using the 

both-ends method.  

.
3652

1),,( 1 �
�
�

	


� ��

dNcTNcg iiiii vvvvv  

When the issuance date of the bond was after the prior term interest payment date, the 

definition was as shown by the following equation with d  as the number of days from the 

prior term interest payment date to the date when the first interest payment occurs using the 

both-ends method.  

.
365

),,( 1
dNcTNcg iiiii vvvvv �  

For bonds issued since the introduction of the reopening system, the initial interest 

payment is defined as one half the product of the coupon rate multiplied by the face value 

as shown by the following equation, regardless of the issuance date.  

.
2

),,( 1

ii
iii

vv
vvv NcTNcg �  

 

(2) Accrued Interest Calculation Method 

When a bond is traded between two interest payment dates, the seller has the right to 

receive cash flow corresponding to the number of days from the last day that cash flow was 

paid to the settlement date. However, the cash flow for this period is all paid to the bond 

holder when the subsequent cash flow is paid. Hence, the buyer pays this cash flow which 

the seller should receive by adding it to the market price when the bond is traded. This 

amount added is referred to as accrued interest. As mentioned above, on the JGB market the 

method of calculating accrued interest changed with the introduction of the reopening 

system. Accordingly, the following discussion is divided into the cases before and after the 

introduction of the reopening system in March 2001.  

First, we present the accrued interest calculation method before the introduction of the 

reopening system. When the settlement date was prior to the date when the first interest 

payment occurs, the accrued interest ivA  was calculated as follows with 'd  as the 
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number of days from the issuance date to the settlement date according to the both-ends 

method, which includes leap days. 

 .
365

'dNcA iii vvv ��   

Before the introduction of the reopening system, when the settlement date was after the 

date when the first interest payment occurs, the accrued interest ivA  was calculated as 

follows with 'd  as the number of days from the last date that cash flow is paid to the 

settlement date. 
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The method of calculating accrued interest after the introduction of the reopening system 

is divided into the two cases (1) when the settlement date is before the initial interest 

payment date and (2) when the settlement date is after the initial interest payment date, as 

described below. In case (1), 'd  is the number of days from the settlement date to the prior 

interest payment date using the one-end method including leap days within the interval, and 

in case (2), 'd  is the number of days from the last day of occurrence of the cash flow to 

the settlement date using the one-end method including leap days within the interval. Then, 

the accrued interest is calculated using the following equation for both case (1) and case 

(2).  
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Appendix 2. Estimation Algorithms for the Steeley [1991] Method 

In Appendix 1, we summarized the market conventions required to calculate JGB 

theoretical prices regarding the definition of when cash flow is paid, the method of 

calculating the number of days until when cash flow is paid, and the determination of cash 

flow amounts (initial interest payments and accrued interest). The theoretical aspects of the 

Steeley [1991] model selected in Section 3 are presented in Section 2, but when actually 

making an estimate from JGB price data with this method, the calculations must be 

consistent with the market conventions explained in Appendix 1. In this Appendix 2 we 

now explain the algorithms to efficiently conduct estimations using the Steeley [1991] 

model while having the contents explained in Appendix 1 accurately reflected in the JGB 

theoretical price calculations. 

First we classify all JGBs traded at 0�t  into the following four groups.  

i. Issues with less than a year until maturity with interest payment dates on the 20th. 

ii. Issues with less than a year until maturity with interest payment dates on the 15th. 

iii. Issues with a year or more until maturity with interest payment dates on the 20th. 

iv. Issues with a year or more until maturity with interest payment dates on the 15th. 

Groups ii and iv cover all the two-year bonds issued after October 2007, as shown in 

Appendix 1-A. Groups i and iii cover all other bond issues. The reason why we separate 

bonds that will mature within one year from all other bonds is that the adjustment of the 

leap year to calculate the number of days until the payment of cash flow differs according 

to this difference in the remaining maturities (see Appendix 1-B).  

For simplicity, we show how to calculate the theoretical bond prices only for group iii 

below. First, we set 0�t  as a certain day of month W in year V. The maturity date of the 

issue with the longest time to maturity among all issues in group iii is assumed to be a 

certain day of month Y in year X. Then the number of months between these two dates, 

including both months to which both dates belong, is equal to 1)(12 ���� YWVX . 

Hereafter this value is referred to as “ monthn .” 

Next, we set the date on which issues in group iii can pay cash flow as the 20th of each 

month from month W year V to month Y year X in cases when the 20th is a business day, 
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and we set the date as the business day according to the modified following business day 

convention in cases when the 20th is not a business day. Then we calculate the number of 

years from 0�t  to each of those dates based on the number of days calculation method in 

Appendix 1-B. We set those as 
monthnTTT ��� �21 . 

Additionally, if issues in group iii at 0�t  are expressed as ),1( nivi �� , then the 

amount of cash flow for issue iv  on the 20th of each month (or on the date determined by 

the modified following business day convention in cases when the 20th is not a business 

day) from month W year V to month Y year X is determined. We denote these cash flows 

for issue iv  as T
1 )~,,~(:~ i

month

ii v
n

vv cc ��c . All JGB issues generate interest payments every 

half year; hence, it is important to note that some of elements of ivc~  take zero.  

In order to calculate all discount functions until dates when cash flows are paid, we 

define matrix B  with an element taking the value of a B-spline function for all points of 

time below. We define the ),( jk th element of matrix B  as ),4( kTjB �  where ),( xkB  

is calculated from Equation (16) introduced in subsection 2D(1)(ii). In other words, we 

define matrix B  as shown in Equation (A-1).  
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Here, we find that the discount rate )( jTZ  for jT  becomes the jth element of Bα  from 

Equation (15) if we set the parameter of the Steeley [1991] Method as 
T

13 ),,( ���
knotn�� �α . 

Thus, the theoretical price of issue iv , )(αivQ  is calculated as shown in Equation 

(A-2).  

 .)~()( T Bαcα ii vvQ �  (A-2) 

The efficiency of this algorithm is that when we calculate the discount function, it is not 

necessary to calculate the number of days until each cash flow is paid for each issue and a 

B-spline function for each day. In other words, within the same group of issues (the group 

iii issues), we have only to calculate the B  matrix just once following Equation (A-1).  

In the above, we present the calculation algorithm for the theoretical prices of group iii 
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issues. Like the above case, applying the same algorithm for the issues in the other groups 

(groups i, ii and iv), we can calculate the theoretical prices following Equation (A-2) by 

calculating the B  matrix just once for each group from Equation (A-1). Thus, this 

algorithm enables us to estimate the zero curve efficiently through calculating the B  

matrix for each of the four groups rather than calculating the spline functions for the cash 

flow paid at each point in time for each issue.  
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