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I Introduction

In credit risk valuations for loans, a lender’s potential loss is given by default probabil-

ity, recovery rate, and discount interest rate. Uncertainties related to loss include the

correlation between default rate and recovery rate, as well as the independent volatility

of these two rates. Empirical studies show a negative correlation between default rates

and recovery rates (see Altman et al. [2005]). In the recent period of financial turmoil,

regulators have paid much attention to the negative correlation associated with the

countercyclicality of default rates and the procyclicality of recovery rates.

Against this backdrop, Yamashita and Yoshiba [2010] analytically evaluate the m-

th moment of loss distribution with the square-root default intensity process, focusing

on the negative correlation between default intensity and recovery rate. The study

improves on Kijima and Miyake [2004] by keeping default intensity nonnegative. The

model adopts the square-root process, a kind of affine process for default intensity (see,

among others, Chen and Joslin [2011]; Duffie [2005]; Duffie, Pan, and Singleton [2000])

and solves the loss distribution with a zero fixed discount interest rate.

Another approach to representing nonnegative default intensity is to adopt a quadratic

Gaussian process for default intensity. Assuming a fixed recovery rate and a discount

interest rate, evaluations of the expected loss from a loan are reduced to that of survival

probability. The discount bond price for a quadratic Gaussian short-term interest rate

process can be applied to evaluate survival probability, since the relationship between

survival probability and default intensity is the same as that between discount bond

price and short-term interest rate. Most studies of quadratic Gaussian processes focus

on the term structure of the interest rate (see, among others, Ahn, Dittmar, and Gal-

lant [2002]; Chen, Filipović, and Poor [2004]; Constantinides [1992]; Jamshidian [1996];

Leippold and Wu [2003]; Piterbarg [2009]; Rogers [1997]). Here, we apply the discount

bond price derived by Pelsser [1997], who assumes that the short-term interest rate

follows a square function of a state variable with a Gaussian Ornstein-Uhlenbeck pro-

cess. The author derives integral forms for the discount bond price. Kijima, Tanaka,

and Wong [2009] give explicit closed form solutions for the discount bond price.

In a study that applies the quadratic Gaussian process to default intensity, Duffie

and Liu [2001] evaluate defaultable bond prices with quadratic Gaussian default inten-

sity and short-term interest rates, fixing the recovery rate and focusing on the negative

correlation between default intensity and short-term interest rates. The defaultable

discount bond price is represented as the exponential quadratic form of the state vari-

ables, similar to the non-defaultable discount bond price of Pelsser [1997]. However,

in contrast to the explicit closed form solution for the discount bond price in Kijima,

Tanaka, and Wong [2009], the defaultable discount bond price is given as the solution

of ordinary differential equations, not as the closed form solution.

In this study, we extend the model of Duffie and Liu [2001] to incorporate stochastic
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recovery rates by the stochastic collateral value process. We evaluate the expected

discounted loss and them-th moment of the discounted loss as a general case. Solutions

are represented by an integral of an exponential quadratic form of the state vector. We

derive the ordinary differential equations satisfied by the coefficients of the form. In

particular, we show closed form solutions for the coefficients with no correlation between

a state variable of the discount interest rate and that of the default intensity.

The remainder of this paper is organized as follows. Section II describes our model.

Section III derives solutions for the expected loss and the m-th moment of the loss

for a collateralized loan. Section IV gives numerical examples of expected losses and

the standard deviations of the losses. We analyze the effects of the correlation on the

expected loss and the standard deviation of the loss distribution. Section V derives

the condition whereby the correlation between default intensity and collateral value

has the same sign as the correlation between the driving Brownian motions of the two

state variables. Section VI presents our conclusions.

Appendix 1 gives a proof of the measure-changed Brownian motions used to evaluate

the expected loss and the m-th moment of the discounted loss distribution. Appendix

2 demonstrates a simplified version of integration by partial integration.

II Our model

Suppose that a bank supplies a collateralized loan D with maturity T to a firm. The

collateral value is denoted by At. Let default time τ be a nonnegative random variable

defined on a probability space (Ω,F , P ).1 The loss incurred by the bank at time τ is

assumed2 to be

Lτ = D − δAτ , (1)

where δ is a constant denoting the portion recovered of the collateral value.

The discount value of the loss depends on the discount interest rate, default in-

tensity, and the collateral value, which to some extent are correlated. To represent

the correlation, we assume a three-dimensional state vector (yt, zt, lnAt)
⊤ with the

correlated Gaussian Ornstein-Uhlenbeck process below.

d

 yt

zt

lnAt

 =

 −κyyt

−κzzt

µA − σ2
A/2

 dt+ Sd

W1,t

W2,t

W3,t

 , (2)

1Here, we assume a risk-neutral probability P to simplify the evaluation.
2Similar to Yamashita and Yoshiba [2010], this assumption implies that the recovery rate may

exceed 100% when the collateral value is greater than the loan amount. In fact, market recovery rates

sometimes exceed 100%. If we set appropriate parameters, including δ, the recovery rate will rarely

exceed 100%.
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where Σ = SS⊤ is given as a constant variance-covariance matrix:

Σ =

 σ2
y ρyzσyσz ρyAσyσA

ρyzσyσz σ2
z ρzAσzσA

ρyAσyσA ρzAσzσA σ2
A

 . (3)

To keep discount interest rate rt and default intensity λt nonnegative, we assume that

these variables are represented as quadratic forms of the state variables

rt = (yt + αr + βrt)
2, (4)

and

λt = (zt + αλ + βλt)
2. (5)

To evaluate the m-th moment of the loss (1), we define filtrations. Let (Ht)t≥0

be a filtration generated by Ht = σ(1{τ≤t}). Let (Ft)t≥0 be auxiliary filtration Ft =

σ({WA
s ,W y

s ,W
z
s : s ≤ t}) generated by the Brownian motions in equation (2). We also

define an augmented filtration (Gt)t≥0 by Gt = Ft ∨Ht. The default time τ is assumed

to be a doubly stochastic random variable with respect to the filtration Ft, and the

default time is assumed to have a hazard rate process defined by equation (5).3

Now we evaluate the expected discounted loss of a collateralized loan. Let Et[·] be
an expectation given filtration Ft:

Et[·] = E[·|Ft]. (6)

If we assume
∫ T

t
|Lsλs|e−

∫ s
t (ru+λu)duds is integrable, the expected loss for the bank is

E[e−
∫ τ
t ruduLτ1{t<τ≤T}|Gt]

= DE[e−
∫ τ
t rudu1{t<τ≤T}|Gt]− δE[e−

∫ τ
t ruduAτ1{t<τ≤T}|Gt]

= 1{t<τ}D

∫ T

t

Et[e
−

∫ s
t (ru+λu)duλs]ds− 1{t<τ}δ

∫ T

t

Et[e
−

∫ s
t (ru+λu)duλsAs]ds.

(7)

In this setting, the evaluation of the expected loss for the bank is decomposed by

that of the discounted default probability in the first term of the right-hand side of

equation (7) and that of the expected recovered collateral value in the second term of

the right-hand side of the same equation.

III Solution for the expected loss and m-th moment of the

loss distribution

In this section, we evaluate components in the expected loss (7) and derive an analytical

solution for the expected loss. We also derive an analytical solution for higher moments

of the loss.
3See McNeil, Frey, and Embrechts [2005] for the technical conditions for doubly stochastic random

variables.
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This section is organized as follows. Proposition 1 gives the first term of the ex-

pected loss (7), which indicates the discounted default probability. Proposition 2 gives

the term in the special case in which no correlation exists between the discount interest

rate and default intensity. In this case, the first term of the expected loss is given as a

time integral of multiples of a discount rate and a time differential of a survival prob-

ability. These components of the multiple have closed form solutions. Proposition 3

gives the second term of the expected loss (7), corresponding to the expected recovered

collateral value. Proposition 4 gives the term in the special case in which no correla-

tion exists between discount interest rate and default intensity. In this case, the second

term of the expected loss is given as a time integral of multiples of a measure-changed

discount rate and a time differential of a measure-changed survival probability. These

components of the multiple have closed form solutions. Theorem 1 gives the analytical

form of the expected loss by applying Proposition 1 and Proposition 3 to equation (7)

and by applying Proposition 2 and Proposition 4 to equation (7). Corollary 1 of the

theorem gives the higher moments of the loss distribution.

Proposition 1. The discounted default probability is given by∫ T

t

Et[e
−

∫ s
t (ru+λu)duλs]ds = − lim

w→0

∫ T

t

dζ(t, s|Xt,α, 1, w)

dw
ds, (8)

where ζ(t, s|Xt,α,m,w) is an evaluation of the expectation

ζ(t, s|Xt,α,m,w) = Et[exp

(
−
∫ s

t

(mru + λu)du

)
ewλs ], (9)

with the two-dimensional state vector Xt = (yt, zt)
⊤ and the two-dimensional parame-

ter vector α = (αr, αλ)
⊤. The expectation ζ(t, s|Xt,α,m,w) is given by an exponential

quadratic form of the state vector

ζ(t, s|Xt,α,m,w) = exp(H0(t, s)−H1(t, s) ·Xt −X⊤
t H2(t, s)Xt). (10)

The coefficients H2(t, s), H1(t, s) and H0(t, s) in equation (10) are given by the solution

for the ordinary differential equations below,4

dH2(t, s)

dt
= −

[
m 0

0 1

]
+ (H2(t, s)

⊤ +H2(t, s))

[
κy 0

0 κz

]
+ 2H2(t, s)

⊤ΣH2(t, s), (11)

dH1(t, s)

dt
= −2

[
m(αr + βrt)

αλ + βλt

]
+

[
κy 0

0 κz

]
H1(t, s) + 2H2(t, s)ΣH1(t, s), (12)

dH0(t, s)

dt
= m(αr + βrt)

2 + (αλ + βλt)
2 + tr[ΣH2(t, s)]−

1

2
H1(t, s)

⊤ΣH1(t, s), (13)

4The coefficients H2(t, s), H1(t, s) and H0(t, s) depend on α, m and w but do not depend on Xt.
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with boundary conditions

H2(s, s) = −

[
0 0

0 w

]
, H1(s, s) = −2w

[
0

αλ + βλs

]
, H0(s, s) = w(αλ + βλs)

2. (14)

Proof. The integrand of the discounted default probability is transformed as follows:

Et[e
−

∫ s
t (ru+λu)duλs] = lim

w→0
Et[e

−
∫ s
t (ru+λu)duewλsλs] = − lim

w→0

dζ(t, s|Xt,α, 1, w)

dw
, (15)

Here, ζ(t, s|Xt,α,m,w) on the right-hand side of equation (15) is the expectation

having the form of equation (9). This leads to equation (8). Since the expectation (9)

is the expectation for the two-dimensional quadratic Gaussian process, we can evaluate

this as the exponential quadratic form of equation (10). On the other hand, let

Mt = Et[e
−

∫ s
0 (mru+λu)duewλs ] = e−

∫ t
0 (mru+λu)duζ(t, s|Xt,α,m,w). (16)

Then, Mt is a martingale, and the drift of dMt is zero. By Ito’s formula, this condition

is reduced to the following partial differential equation:

0 =− (mrt + λt)ζ(t, s) +
∂ζ(t, s)

∂t
− κyyt

∂ζ(t, s)

∂yt
− κzzt

∂ζ(t, s)

∂zt

+
σ2
y

2

∂2ζ(t, s)

∂y2t
+

σ2
z

2

∂2ζ(t, s)

∂z2t
+ ρyzσyσz

∂2ζ(t, s)

∂yt∂zt
.

(17)

Substituting equation (10) into equation (17) and collecting the terms with y2t , z
2
t ,

and ytzt yields the ordinary differential equation (11). Similarly, collecting the first-

order terms for yt and zt yields the ordinary differential equation (12). Collecting the

constant terms yields the ordinary differential equation (13). Since

ζ(s, s|Xs,α,m,w) = exp(wλs) = exp(w(zs + αλ + βλs)
2), (18)

the boundary conditions are given by the equations (14).

Proposition 2. If ρyz = 0, then the discounted default probability is given by∫ T

t

Et[e
−

∫ s
t (ru+λu)duλs]ds = −

∫ T

t

Γ(t, s|yt, αr, βr, 1)dsΓ(t, s|zt, αλ, βλ, 1), (19)

where

Γ(t, s|xt, α, β,m)

= exp{C0(t, s|α, β, κx, γx,m)− C1(t, s|α, β, κx, γx,m)xt − C2(t, s|κx, γx,m)x2
t},

(20)

with

γy =
√
κ2
y + 2mσ2

y, γz =
√
κ2
z + 2mσ2

z . (21)
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The coefficients on the right-hand side of equation (20) have closed form solutions.

C2(t, s|κ, γ,m) =
m(e2γ(s−t) − 1)

(γ + κ)e2γ(s−t) + γ − κ
, (22)

C1(t, s|α, β, κ, γ,m) =
2mα{(γ + κ)eγ(s−t) − (γ − κ)e−γ(s−t) − 2κ}

γ{(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)}

+
2mβ[(γ + κ)(1 + γt)eγ(s−t) + (γ − κ)(1− γt)e−γ(s−t) − 2γ{1 + κs}]

γ2{(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)}
,

(23)

C0(t, s|α, β, κ, γ,m) = −mα2(s− t)−mαβ(s2 − t2)− mβ2(s3 − t3)

3
+

(γ + κ)(s− t)

2

− 1

2
ln

(γ + κ)e2γ(s−t) + γ − κ

2γ
− m(γ2 − κ2)G(t, s|α, β, κ, γ)

2γ5{(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)}
.

(24)

The function G(t, s|α, β, κ, γ) in equation (24) is given by

G(t, s|α, β, κ, γ) = (γ − κ){α2γ2G1a(t, s|γ) + 2αβγG2a(t, s|γ) + β2G3a(t, s|γ)}
+ (γ + κ){α2γ2G1b(t, s|γ) + 2αβγG2b(t, s|γ) + β2G3b(t, s|γ)},

(25)

where

G1a(t, s|γ) = −eγ(s−t) + 4− e−γ(s−t)(3 + 2γ(s− t)), (26)

G1b(t, s|γ) = e−γ(s−t) − 4 + eγ(s−t)(3− 2γ(s− t)), (27)

G2a(t, s|γ) = eγ(s−t)(1−γs)−2(1−γ(t+s))+e−γ(s−t)(1−γ(2t+s)+γ2(t2−s2)), (28)

G2b(t, s|γ) = e−γ(s−t)(1+γs)−2(1+γ(t+s))+eγ(s−t)(1+γ(2t+s)+γ2(t2−s2)), (29)

G3a(t, s|γ) = −4γt(1− γs)− eγ(s−t)(1− γs)2

+ e−γ(s−t)(1 + 2γt− γ2(2t2 + s2) +
2

3
γ3(t3 − s3)),

(30)

G3b(t, s|γ) = −4γt(1 + γs) + e−γ(s−t)(1 + γs)2

+ eγ(s−t)(−1 + 2γt+ γ2(2t2 + s2) +
2

3
γ3(t3 − s3)).

(31)

Proof. If ρyz = 0, then

Et[exp

(
−
∫ s

t

rudu

)
exp

(
−
∫ s

t

λudu

)
λs]

= Et[exp

(
−
∫ s

t

rudu

)
]Et[exp

(
−
∫ s

t

λudu

)
λs]

= −Et[exp

(
−
∫ s

t

rudu

)
]
dEt[exp

(
−
∫ s

t
λudu

)
]

ds
.

(32)

Kijima, Tanaka, and Wong [2009] give the closed form solution for the discount bond

price Et[e
−

∫ s
t rudu] by calculating the integrals shown in Pelsser [1997]. The closed

form solution is given by equation (20) and equations (22)–(31). Similarly, survival

probability Et[e
−

∫ s
t λudu] is given by Γ(t, s|zt, αλ, βλ, 1), also a closed form solution.

This leads to equation (19).
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Proposition 3. The expected recovered collateral value is calculated by∫ T

t

Et[e
−

∫ s
t (ru+λu)duλsAs]ds = −At lim

w→0

∫ T

t

eµA(s−t)dζ(t, s|X̃t, α̃, 1, w)

dw
ds, (33)

where ζ(t, s|X̃t, α̃,m,w) is the measure-changed expectation of ζ(t, s|Xt,α,m,w) with

the Radon-Nikodym density process

η(t;A) = Ate
−µAt/A0. (34)

The measure-changed expectation ζ(t, s|X̃t, α̃,m,w) can be calculated as the expecta-

tion ζ(t, s|Xt,α,m,w), given that we substitute the following X̃t and α̃, respectively,

for Xt and α:

X̃t =

(
ỹt

z̃t

)
=

(
yt − ρyAσAσy/κy

zt − ρzAσAσz/κz

)
, α̃ =

(
α̃r

α̃λ

)
=

(
αr + ρyAσAσy/κy

αλ + ρzAσAσz/κz

)
. (35)

Proof. Under the measure-changed probability P̃ with the Radon-Nikodym density

process η(t;A),

W̃ y
t = W y

t − ρyAσAt, W̃
z
t = W z

t − ρzAσAt, W̃
A
t = WA

t − σAt, (36)

are Brownian motions,5 and the state variables ỹt and z̃t follow the processes

dỹt = dyt = −κyytdt+ ρyAσAσydt+ σydW̃
y
t = −κyỹtdt+ σydW̃

y
t , (37)

dz̃t = −κz z̃tdt+ σzdW̃
z
t . (38)

The integrand of the expected recovery value is given as

Et[e
−

∫ s
t (ru+λu)duλsAs] = Et[

η(s;A)

η(t;A)
Ate

µA(s−t)e−
∫ s
t (ru+λu)duλs]

= Ate
µA(s−t)Ẽt[e

−
∫ s
t (ru+λu)duλs],

(39)

where Ẽt[·] is the expectation under the changed probability P̃ . Here, Ẽt[e
−

∫ s
t (ru+λu)duλs]

is the integrand of the measure-changed discounted default probability with state vari-

ables ỹt and z̃t. Discount interest rate rt and default intensity λt are represented using

ỹt and z̃t, respectively:

rt = (yt +αr + βrt)
2 = (ỹt + α̃r + βrt)

2, λt = (zt +αλ + βλt)
2 = (z̃t + α̃λ + βλt)

2. (40)

Thus, the integrand of the measure-changed discounted default probability is given by

Ẽt[e
−

∫ s
t (ru+λu)duλs] = − lim

w→0

dζ(t, s|X̃t, α̃, 1, w)

dw
. (41)

Equation (39) and equation (41) lead to this proposition.
5See Appendix 1 for the proof. For measure-changed Brownian motion with Radon-Nikodym

density process and Girsanov theorem, see (for example) Shreve [2004].
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Proposition 4. If ρyz = 0, then the expected recovered collateral value is calculated

by∫ T

t

Et[e
−

∫ s
t (ru+λu)duλsAs]ds = −At

∫ T

t

eµA(s−t)Γ(t, s|ỹt, α̃r, βr, 1)dsΓ(t, s|z̃t, α̃λ, βλ, 1),

(42)

where Γ(t, s|ỹt, α̃r, βr, 1) and Γ(t, s|z̃t, α̃λ, βλ, 1) are given by the closed form solution

as equation (20).

Proof. The proof is similar to the proof of Proposition 2.

Proposition 3 and 4 show that the expected recovery value is given by time inte-

gration of the measure-changed discounted mean collateral return to maturity, with

measure-changed survival probability as the integration measure.6

Theorem 1. The expected loss of the collateralized loan observed at time t is given

by

E[e−
∫ τ
t ruduLτ1{t<τ≤T}|Gt] =− 1{t<τ}D lim

w→0

∫ T

t

dζ(t, s|Xt,α, 1, w)

dw
ds

+ 1{t<τ}δAt lim
w→0

∫ T

t

eµA(s−t)dζ(t, s|X̃t, α̃, 1, w)

dw
ds.

(43)

If ρyz = 0, the equation (43) is given by

E[e−
∫ τ
t ruduLτ1{t<τ≤T}|Gt] = −1{t<τ}D

∫ T

t

Γ(t, s|yt, αr, βr, 1)dsΓ(t, s|zt, αλ, βλ, 1)

+ 1{t<τ}δAt

∫ T

t

eµA(s−t)Γ(t, s|ỹt, α̃r, βr, 1)dsΓ(t, s|z̃t, α̃λ, βλ, 1),

(44)

where four elements of Γ(t, s|xt, α, β, 1) are given by the closed form solution as equation

(20).

Proof. We prove this theorem by applying Proposition 1 and Proposition 3 to equation

(7) and applying Proposition 2 and Proposition 4 to equation (7).

The higher moment of the loss distribution is also calculated by a combination

of the measure-changed integral with another Radon-Nikodym density process as the

following corollary for Theorem 1.

6If the collateral is liquid and yields no dividends, the instantaneous return of the collateral is

equivalent to the discounted interest rate in risk-neutral probability. In that case, equation (42) is

equivalent to At{1− Γ(t, T |z̃t, α̃λ, βλ, 1)}.
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Corollary 1. The m-th moment loss distribution of the collateralized loan observed

at time t is expanded as follows:

E[(e−
∫ τ
t ruduLτ1{t<τ≤T})

m|Gt] =
m∑

n=0

mCnD
m−n(−δ)nE[e−m

∫ τ
t ruduAn

τ 1{t<τ≤T}|Gt]. (45)

The expectation of the right-hand side of equation (45) is given by

E[e−m
∫ τ
t ruduAn

τ 1{t<τ≤T}|Gt]

= −1{t<τ}A
n
t lim
w→0

∫ T

t

en{µA+(n−1)σ2
A/2}(s−t)dζ(t, s|X

(n)
t ,α(n),m,w)

dw
ds,

(46)

where X
(n)
t and α(n) are defined by

X
(n)
t =

(
y
(n)
t

z
(n)
t

)
=

(
yt − nρyAσAσy/κy

zt − nρzAσAσz/κz

)
, α(n) =

(
α
(n)
r

α
(n)
λ

)
=

(
αr + nρyAσAσy/κy

αλ + nρzAσAσz/κz

)
.

(47)

If ρyz = 0, then the derivative of ζ(·) with respect to w in equation (46) is given by

lim
w→0

dζ(t, s|X(n)
t ,α(n),m,w)

dw
= Γ(t, s|y(n)t , α(n)

r , βr,m)
dΓ(t, s|z(n)t , α

(n)
λ , βλ, 1)

ds
. (48)

This gives a closed form solution for the integrand on the right-hand side of equation

(46).

Proof. Equation (45) is given by the binomial expansion for the loss. The expectation

on the left-hand side of equation (46) is transformed as follows:

E[e−m
∫ τ
t ruduAn

τ 1{t<τ≤T}|Gt] = 1{t<τ}

∫ T

t

Et[e
−

∫ s
t (mru+λu)duλsA

n
s ]ds. (49)

We recognize the integrand on the right-hand side of equation (49). From equation

(2), An
t has the diffusion process

dAn
t = µ

(n)
A An

t dt+ σAA
n
t dW

A
t , (50)

where

µ
(n)
A = nµA +

n(n− 1)σ2
A

2
. (51)

Let P (n) be a changed probability measure with Radon-Nikodym density process

dP (n)

dP

∣∣∣∣
Gt

= η(t;An) =
An

t e
−µ

(n)
A t

An
0

. (52)

The integrand of the right-hand side in equation (49) is calculated as follows:

Et[e
−

∫ s
t (mru+λu)duλsA

n
s ] = Et[

η(s;An)

η(t;An)
An

t e
µ
(n)
A (s−t)e−

∫ s
t (mru+λu)duλs]

= An
t e

µ
(n)
A (s−t)E

(n)
t [e−

∫ s
t (mru+λu)duλs],

(53)
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where E
(n)
t [·] is the expectation with probability measure P (n) given filtration Ft. Here,

W
A(n)
t = WA

t − nσAt, W
y(n)
t = W y

t − nρyAσAt, W
z(n)
t = W z

t − nρzAσAt, (54)

are standard Brownian motions. (See Appendix 1 for the proof.) Because discount

interest rate rt and default intensity λt are represented by

rt = (yt + αr + βrt)
2 = (y

(n)
t + α(n)

r + βrt)
2, (55)

λt = (zt + αλ + βλt)
2 = (z

(n)
t + α

(n)
λ + βλt)

2, (56)

the expectation on the right-hand side of equation (53) is given by

E
(n)
t [e−

∫ s
t (mru+λu)duλs] = − lim

w→0

dζ(t, s|X(n)
t ,α(n),m,w)

dw
. (57)

Substituting equation (53) with equation (57) in equation (49) leads to equation (46).

If ρyz = 0, equation (57) is transformed as follows:

E
(n)
t [e−

∫ s
t (mru+λu)duλs] = E

(n)
t [e−m

∫ s
t rudu]E

(n)
t [e−

∫ s
t λuduλs]. (58)

Substituting

E
(n)
t [e−m

∫ s
t rudu] = Γ(t, s|y(n)t , α(n)

r , βr,m), (59)

E
(n)
t [e−

∫ s
t λuduλs] =

dΓ(t, s|z(n)t , α
(n)
λ , βλ, 1)

ds
, (60)

into equation (58) yields equation (48).

IV Numerical examples

In this section, we show numerical examples of the expected loss and the standard

deviation of the loss distribution observed at time 0. In particular, we focus on the

correlation between default intensity and recovery rate. For simplicity, we assume in

this section that ρyz = 0.

Referring to Kijima, Tanaka, and Wong [2009], we assign the following values to

the parameters in equations (2)–(4):

κy = 0.09, σy = 0.03, y0 = −0.13, αr = 0.22, βr = 0. (61)

We assign the following values for the other parameters, referring to Yamashita and

Yoshiba [2010]:

D = A0 = 100, δ = 0.7, T = 1, µA = 1%, σA = 10%, σz = 10%. (62)

First, let βλ be zero. Then, αλ denotes the square root of the mean reversion level of

the default intensity, and z0 denotes the deviation from the mean reversion level. That

10



is, z0 > 0 means that the initial state is worse than the mean reversion state; z0 < 0

means that the initial state is better than the mean reversion state. We consider two

patterns, (z0, αλ) = (−0.03, 0.2) and (z0, αλ) = (0.03, 0.17), for the set of z0 and αλ.
7

From Theorem 1, the expected loss at time 0 is given as follows:

E[e−
∫ τ
0 ruduLτ1{τ≤T}] = −D

∫ T

0

Γ(0, s|y0, αr, βr, 1)dsΓ(0, s|z0, αλ, βλ, 1)

+ δA0

∫ T

0

eµAsΓ(0, s|ỹ0, α̃r, βr, 1)dsΓ(0, s|z̃0, α̃λ, βλ, 1).

(63)

Here, the two Stieltjes integrals on the right-hand side of equation (63) are rapidly

calculated by partial integration, based on the assumption that βr = 0 in equation

(61) (see Appendix 2 for details).8

Figure 1 illustrates the expected loss (63) with respect to the correlation ρzA in

four cases of κz: κz = 0.1, 1, 5, 10. Figure 1(a) is the case of z0 = −0.03 (good state);

Figure 1(b) is the case of z0 = 0.03 (bad state). In all cases, the expected loss increases

as correlation ρzA decreases. The increments of the expected loss are greater when

the mean reversion speed κz is less. That is, the loss tends to increase if the mean

reversion speed is slow. The expected loss tends to be greater with greater κz in the

case of z0 < 0, Figure 1(a). This is because the high mean reversion speed κz quickly

converges to an undesirable mean reversion level. Conversely, the expected loss tends

to be greater with lower κz in the case of z0 > 0, Figure 1(b). This is because the

low mean reversion speed κz slowly restores good mean reversion levels. Almost all

our results are similar to those in Yamashita and Yoshiba [2010], which assumed a

square-root process for the default intensity.

Next, we introduce the trend parameter βλ for default intensity. Figure 2 illustrates

the expected loss (63) for βλ = 0.01. The other parameters are the same as those in

Figure 1. We see that the shape of the expected loss does not differ significantly from

that in Figure 1 and that expected loss increases by about 0.05.

7The parameter setting for β = 0 is almost equivalent to that in Yamashita and Yoshiba [2010] as

follows. First, D, A0, δ, T , and µA are the same as those in Yamashita and Yoshiba [2010]. By Ito’s

formula, σz corresponds to σh/2 in Yamashita and Yoshiba [2010]. The diffusion term of the log value

of collateral σA corresponds to σA

√
ht in Yamashita and Yoshiba [2010]. In Yamashita and Yoshiba

[2010], the initial value of default intensity h0 and the mean-reversion level of default intensity h̄ are

selected from the values of 4% and 3%. We set σA = 10% as the level of ht = 4%. From equation (5),

z0 + αλ corresponds to the square root of the initial default intensity h0 and αλ corresponds to the

square root of the mean-reversion level of default intensity h̄. The value is selected from
√
0.04 = 0.2

and
√
0.03 ∼= 0.17. We specify the value of αλ, considering z0 = −0.03 for the good state case and

z0 = 0.03 for the bad state case.
8The integrals in the following numerical examples are calculated by adaptive quadrature (inte-

grare() function in R).
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Figure 1 Expected loss with respect to the correlation ρzA (βλ = 0)
(a) z0 = −0.03, αλ = 0.2
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(b) z0 = 0.03, αλ = 0.17
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Figure 2 Expected loss with respect to the correlation ρzA (βλ = 0.01)
(a) z0 = −0.03, αλ = 0.2
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(b) z0 = 0.03, αλ = 0.17
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The standard deviation of the loss distribution at time 0 is given by√
var[e−

∫ τ
0 ruduLτ1{τ≤T}], where

var[e−
∫ τ
0 ruduLτ1{τ≤T}] = E[e−2

∫ τ
0 ruduL2

τ1{τ≤T}]− (E[e−
∫ τ
0 ruduLτ1{τ≤T}])

2. (64)

From Corollary 1, the first term on the right-hand side of equation (64) with βr = 0 is

calculated as follows:

E[e−2
∫ τ
0 ruduL2

τ1{τ≤T}] = −D2

∫ T

0

Γ(0, s|y0, αr, 0, 2)dsΓ(0, s|z0, αλ, βλ, 1)

+ 2δA0D

∫ T

0

eµAsΓ(0, s|ỹ0, α̃r, 0, 2)dsΓ(0, s|z̃0, α̃λ, βλ, 1)

− δ2A2
0

∫ T

0

e(2µA+σ2
A)sΓ(0, s|y(2)0 , α(2)

r , 0, 2)dsΓ(0, s|z(2)0 , α
(2)
λ , βλ, 1).

(65)

Here, the three Stieltjes integrals on the right-hand side of equation (65) are rapidly

calculated by partial integration based on the assumption that βr = 0. (See Appendix

2 for details.) The second term on the right-hand side of equation (64) is obtained

from equation (63).

Figure 3 illustrates the standard deviation of the loss with respect to the correlation

ρzA. All parameters are the same as those in Figure 2. Figure 3 shows that lower

correlation increases the standard deviation of the loss. Lower κz has greater impact.

Figure 3 Standard deviation of the loss with respect to the correlation ρzA (βλ = 0.01)
(a) z0 = −0.03, αλ = 0.2
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(b) z0 = 0.03, αλ = 0.17
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Based on the numerical results in this section, we posit that risk managers must

closely examine negative correlations in terms of both expected loss and the standard

deviation of the loss when mean reversion speed κz is slow. This result is similar to

the results derived by Yamashita and Yoshiba [2010].
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V Correlation between default intensity and collateral value

The correlation ρzA here that we specify is the correlation between the driving Brown-

ian motion of the state variable zt and that of the log value of collateral lnAt. In this

section, we evaluate the correlation between default intensity and collateral value, con-

firming that the correlation has the same sign as ρzA if we set appropriate parameters.

Proposition 5. Based on equations (2)–(5), the correlation between default intensity

λT and the log value of the collateral lnAT observed at time t is calculated as follows:

corrt(λT , lnAT ) =
2ρzA(1− e−κz(T−t)){αλ + βλT + zte

−κz(T−t)}√
2κz(T − t)(1− e−2κz(T−t))|αλ + βλT + zte−κz(T−t)|

. (66)

Proof. The covariance between the state variable zT and log value of the collateral

lnAT at time T observed at time t is given by

covt(zT , lnAT ) = σyσA

∫ T

t

e−κ(T−s)ρzAds =
ρzAσyσA

κz

(1− e−κz(T−t)). (67)

The covariance between z2T and lnAT is given by

covt(z
2
T , lnAT ) = 2ρzAσzσAzte

−κz(T−t)

∫ T

t

e−κz(T−s)ds

=
2ρzAσzσAzte

−κz(T−t)(1− e−κz(T−t))

κz

.

(68)

Thus, the covariance between the default intensity λT and the log value of collateral

lnAT is given by

covt(λT , lnAT ) = covt(z
2
T + 2(αλ + βλT )zT , lnAT )

=
2ρzAσzσA(1− e−κz(T−t)){αλ + βλT + zte

−κz(T−t)}
κz

.
(69)

The variance of default intensity λT at time T observed at time t is given as

vart[λT ] = covt(z
2
T + 2(αλ + βλT )zT , z

2
T + 2(αλ + βλT )zT )

= vart[z
2
T ] + 4(αλ + βλT )

2vart[zT ] + 4(αλ + βλT )covt(zT , z
2
T ).

(70)

Here, each term on the right-hand side of equation (70) is given as follows:

vart[zT ] = σ2
z

∫ T

t

e−2κz(T−s)ds =
σ2
z(1− e−2κz(T−t))

2κz

, (71)

covt(yT , y
2
T ) = 2ztσ

2
z

∫ T

t

e−2κz(T−s)ds =
σ2
z(1− e−2κz(T−t))zte

−κz(T−t)

κz

, (72)

vart[y
2
T ] = 4{zte−κz(T−t)}2σ2

z

∫ T

t

e−2κz(T−s)ds =
2σ2

z(1− e−2κz(T−t))z2t e
−2κz(T−t)

κz

. (73)
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Substituting equations (71), (72), and (73) into equation (70) yields:

vart[λT ] =
2σ2

z(1− e−2κz(T−t)){αλ + βλT + zte
−κz(T−t)}2

κz

. (74)

The variance of the log value of collateral lnAT is given by

vart[lnAT ] = σ2
A

∫ T

t

ds = σ2
A(T − t). (75)

The correlation between default intensity λT and the log value of the collateral

lnAT observed at time t is calculated as follows:

corrt(λT , lnAT ) =
covt(λT , lnAT )√

vart[λT ]
√

vart[lnAT ]
. (76)

Substituting equations (69), (74) and (75) into equation (76) yields this proposition.

Corollary 2. Based on the assumption that κz > 0, the conditional correlation (66)

has the same sign as ρzA if

αλ + βλT + zte
−κz(T−t) > 0. (77)

At time t = 0, the condition (77) holds if we set βλ to be nonnegative and if αλ+z0

is positive. The negative correlation between default intensity and the collateral value

is represented by setting ρzA < 0, βλ ≥ 0, and αλ + z0 > 0.

The latent variable yt follows an Ornstein-Uhlenbeck process in equation (2), and

the variable may assume a negative value over time. When zt takes a value such that

zt < −(αλ + βλT )e
κz(T−t), (78)

the conditional correlation between default intensity and the log value of the collateral

takes the sign opposite the sign of ρzA. The condition (78) will rarely hold if we set

appropriate parameters (including κz and σz), since zt converges to the zero mean

reversion level.

In cases in which ρzA < 0 is a realistic setting, it is not necessarily unrealistic to

assume that default intensity and the collateral value have a locally positive correla-

tion satisfying condition (78). In fact, the default intensity becomes small just before

zte
−κz(T−t) + αλ + βλT becomes negative. A negative correlation between default in-

tensity and collateral value may not be clear if the firm is in a good state, with small

default intensity. This implies that our model considers locally positive correlations.

VI Conclusions

Our analysis evaluated the discounted loss distribution of a collateralized loan, focusing

on the correlation between default intensity and collateral value. For the default inten-

sity process and the discount interest rate, we assumed a quadratic Gaussian process
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to keep their values nonnegative. The correlations among default intensity, discount

interest rate, and collateral value are represented by the correlations among the three

state variables ρyz, ρyA, and ρzA.

The m-th moment of the discounted loss distribution is given by a time integral of

an exponential quadratic form of the state variables. The coefficients of the form are

generally given by the solutions of ordinary differential equations. The solutions can

be calculated rapidly by numerical methods, such as the Runge-Kutta method. If we

can assume ρyz = 0, the ordinary differential equations will have closed form solutions,

and no numerical methods need to be applied.

Numerical examples for the expected loss and the standard deviation of the loss

distribution show that a decrease in correlation ρzA yields increases in the expected

loss and in the standard deviation of the loss. The impact is greater when κz is lower.

Similar to Yamashita and Yoshiba [2010], we posit that risk managers must closely

examine negative correlation ρzA in terms of both expected loss and the standard

deviation of the loss when the mean reversion speed κz is low.

Our main contribution is to obtain an analytical formulation of the m-th moment of

the loss distribution of a collateralized loan under correlated stochastic default intensity,

collateral value, and discount interest rate. In certain cases, the formulation becomes a

closed form solution, and the value can be rapidly calculated. In other cases, solutions

can be obtained by numerical methods.

Appendix 1 Correlation of Brownian motions and measure

change

In this appendix, we confirm equation (36), the transformation equation of the Brow-

nian motion in the probability measure P̃ . More generally, we confirm equation (54),

the transformation equation of the Brownian motion in the probability measure P (n)

by the following lemma:

Lemma 1. In the probability measure P (n) with Radon-Nikodym density process (52),

W
A(n)
t , W

y(n)
t and W

z(n)
t defined in equation (54) are Brownian motions.

Proof. We must demonstrate the following three points to prove Wt is a Brownian

motion:

(a) (continuity) Wt is continuous, and W0 = 0.

(b) (stationary normality) For any 0 ≤ t0 < t1 < · · · < tN , each Wtj − Wtj−1
(j =

1, . . . , N) has a normal distribution N(0, tj − tj−1) independent of the history until

tj−1.
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(c) (independent increment) For any 0 ≤ t0 < t1 < · · · < tN ,Wtj−Wtj−1
(j = 1, . . . , N)

are mutually independent.

Here, equation (54) clearly indicates the (a) continuity of W
A(n)
t , W

y(n)
t and W

z(n)
t .

From equation (52) and equation (2),

η(tj;A
n)

η(tj−1;An)
=

An
tj
e−µ

(n)
A tj

An
tj−1

e−µ
(n)
A tj−1

= e
−n2σ2

A(tj−tj−1)/2+nσAWA
tj
−nσAWA

tj−1 . (A-1)

we can demonstrate (b) the stationary normality of W
A(n)
t by the equation

E
(n)
tj−1

[exp(iz(W
A(n)
tj −W

A(n)
tj−1

))] = exp(−z2(tj − tj−1)/2). (A-2)

for any z ∈ R. In fact, from equation (54) and (A-1),

E
(n)
tj−1

[exp(iz(W
A(n)
tj −W

A(n)
tj−1

))] = Etj−1
[
η(tj;A

n)

η(tj−1;An)
e
iz(WA

tj
−WA

tj−1
−nσA(tj−tj−1))]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1Etj−1

[e
nσAWA

tj e
iz(WA

tj
−WA

tj−1
−nσA(tj−tj−1))]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1

−iznσA(tj−tj−1)−izWA
tj−1Etj−1

[e
(nσA+iz)WA

tj ]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1

−iznσA(tj−tj−1)−izWA
tj−1

× e
(nσA+iz)WA

tj−1
+(nσA+iz)2(tj−tj−1)/2

= exp(−z2(tj − tj−1)/2).

(A-3)

we can demonstrate (c) the independent increment of W
A(n)
t by the equation

E(n)[exp(i
N∑
j=1

zj(W
A(n)
tj −W

A(n)
tj−1

))] =
N∏
j=1

E(n)[exp(izj(W
A(n)
tj −W

A(n)
tj−1

))]. (A-4)

From (A-2),

E(n)[exp(i
N∑
j=1

zj(W
A(n)
tj −W

A(n)
tj−1

))]

= E(n)[E
(n)
tN−1

[exp(izN(W
A(n)
tN

−W
A(n)
tN−1

))] exp(i
N−1∑
j=1

zj(W
A(n)
tj −W

A(n)
tj−1

))]

= e−z2N (tN−tN−1)
2

E(n)[exp(i
N−1∑
j=1

zj(W
A(n)
tj −W

A(n)
tj−1

))]

= · · · =
N∏
j=1

e−z2j (tj−tj−1)
2

=
N∏
j=1

E(n)[exp(izj(W
A(n)
tj −W

A(n)
tj−1

))].

(A-5)

Thus, W
A(n)
t is a standard Brownian motion.
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Similarly, for W
y(n)
t and any z ∈ R, from equation (54) and (A-1),

E
(n)
tj−1

[exp(iz(W
y(n)
tj −W

y(n)
tj−1

))] = Etj−1
[
η(tj;A

n)

η(tj−1;An)
e
iz(W y

tj
−W y

tj−1
−nρyAσA(tj−tj−1))]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1Etj−1

[e
nσAWA

tj e
iz(W y

tj
−W y

tj−1
−nρyAσA(tj−tj−1))]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1

−iznρyAσA(tj−tj−1)−izW y
tj−1Etj−1

[e
nσAWA

tj
+izW y

tj ]

= e
−n2σ2

A(tj−tj−1)/2−nσAWA
tj−1

−iznρyAσA(tj−tj−1)−izWA
tj−1

× e
(nσAWA

tj−1
+izW y

tj−1
)+{(nσA+iρyAz)2−(1−ρ2yA)z2}(tj−tj−1)/2

= exp(−z2(tj − tj−1)/2).

(A-6)

This demonstrates (b) the stationary normality of W
y(n)
t . The stationary normality

of W
z(n)
t is also demonstrated in the same way. Similar to equation (A-5), we can

demonstrate (c) the independent increment of W
y(n)
t and W

z(n)
t . Thus, W

y(n)
t and

W
z(n)
t are standard Brownian motions.

Considering Lemma 1 in the case of n = 1, we can confirm equation (36) in the

probability measure P̃ .

Appendix 2 Partial integration with the assumption βr = 0

This appendix shows that the integration of the left-hand side of equation (A-7) with

the assumption of βr = 0 is easily calculated.

By partial integration,∫ T

0

en(µA+(n−1)σ2
A/2)sΓ(0, s|y(n)t , α(n)

r , βr,m)dsΓ(0, s|z(n)t , α
(n)
λ , βλ, 1)

= en(µA+(n−1)σ2
A/2)TΓ(0, T |y(n)t , α(n)

r , βr,m)Γ(0, T |z(n)t , α
(n)
λ , βλ, 1)− 1

−
∫ T

t


en(µA+(n−1)σ2

A/2)sΓ(0, s|y(n)t , α
(n)
r , βr,m)Γ(0, s|z(n)t , α

(n)
λ , βλ, 1)

×


n(µA + (n− 1)σ2

A/2) +
dC0(0, s|α(n)

r , βr, κy, γy,m)

ds

−y
(n)
0

dC1(0, s|α(n)
r , βr, κy, γy,m)

ds
− y

(n)
0

2dC2(0, s|κy, γy,m)

ds



 ds.

(A-7)

Here, if βr = 0, then dC0(0, s)/ds and dC1(0, s)/ds are simple closed form equations as

equations (A-8) and (A-9). The numerical integration of the left-hand side of equation

(A-7) with βr = 0 is easily calculated.

dC0(t, s|α, 0, κ, γ,m)

ds
= −mα2 +

(γ + κ)

2
− γ(γ + κ)eγ(s−t)

(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)

+
mα2(γ2 − κ2)

γ2

{
(γ + κ)eγ(s−t) − (γ − κ)e−γ(s−t) − 2κ

(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)

}2

.

(A-8)
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dC1(t, s|α, 0, κ, γ,m)

ds
= 4mα

κ{(γ + κ)eγ(s−t) − (γ − κ)e−γ(s−t)}+ 2(γ + κ)(γ − κ)

{(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)}2
.

(A-9)

dC2(t, s|κ, γ,m)

ds
= m

{
2γ

(γ + κ)eγ(s−t) + (γ − κ)e−γ(s−t)

}2

. (A-10)
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