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Abstract

This article analyzes whether daily realized volatility, which is the sum of squared
intraday returns over a day, is useful for option pricing. Different realized volatilities are
calculated with or without taking account of microstructure noise and with or without
using overnight and lunch-time returns. ARFIMA, ARFIMAX, HAR, HARX models
are employed to specify the dynamics of realized volatility. ARFIMA and HAR models
can capture the long-memory property and ARFIMAX and HARX models can also
capture the asymmetry in volatility depending on the sign of previous day's return.
Option prices are derived under the assumption of risk-neutrality. For comparison,
GARCH, EGARCH and FIEGARCH models are estimated using daily returns, where
option prices are derived by assuming the risk-neutrality and by using the Duan (1995)
method in which the assumption of risk-neutrality is relaxed. Main results using the
Nikkei 225 stock index and its put options prices are: (1) ARFIMAX model with daily
realized volatility performs best, (2) the Hansen and Lunde (2005a) adjustment without
using overnight and lunch-time returns can improve the performance, (3) if the Hansen
and Lunde (2005a), which also plays a role to remove the bias caused by the
microstructure noise by setting the sample mean of realized volatility equal to the
sample variance of daily returns, is used, the other methods for taking account of
microstructure noise do not necessarily improve the performance and (4) the Duan
(1995) method does not improve the performance compared with assuming the risk
neutrality.
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1 Introduction

One of the most important variables in option pricing is the volatility of the underlying asset. While
the well-known Black and Scholes (1973) model assumes that the volatility is constant, few would
dispute the fact that the volatility changes over time. Many time series models are now available
to describe the dynamics of volatility. One of the most widely used is the ARCH (autoregressive
conditional heteroskedasticity) family including ARCH model by Engle (1982), GARCH (generalized
ARCH) model by Bollerslev (1986) and their extensions.

The problem of using these models is that we must specify the model before estimating the volatil-
ity and the estimate of volatility depends on the specification of volatility dynamics. Recently, realized
volatility has attracted the attentions of financial econometricians as an accurate estimator of volatil-
ity. Realized volatility is independent of the specification of volatility dynamics because it is simply
the sum of squared intraday returns.

ARCH type models have already been applied to option pricing (Bollerslev and Mikkelsen, 1999;
Duan, 1995). As far as we know, there are few which have applied realized volatility to option pricing
compared with the applications to volatility forecasting (Koopman et al. 2005) and Value-at-Risk
(Giot and Laurent, 2004; Clements et al., 2008). One exception is Bandi et al. (2008), which apply
realized volatility to the pricing of S&P 500 index options. This article applies realized volatility to
the pricing of Nikkei 225 stock index options traded at Osaka Securities Exchange and compares its
performance with that of using the ARCH family.

There are two problems in calculating realized volatility. First, realized volatility is influenced by
market microstructure noise such as bid-ask spread and non-synchronous trading (Campbell et al.,
1997). There are some methods available for mitigating the effect of microstructure noise on realized
volatility (Ait-Sahalia et al., 2005; Bandi and Russell, 2006, 2008, 2011; Barndorff-Nielsen et al.,
2004, 2008; Hansen and Lunde, 2006; Kunitomo and Sato 2008; Oya 2011; Zhang, 2006; Zhang et
al., 2005; Zhou 1996). It is worthwhile applying these methods and comparing the results. We use
several different methods for mitigating the effect of microstructure noise on realized volatility. We
analyze whether using these methods may improve the performance of option pricing. Second, the
Tokyo stock exchange, where the 225 stocks that constitute the Nikkei 225 stock index are traded,
opens only for 9:00-11:00 and 12:30-15:00. We cannot obtain high-frequency returns during the
period when the market is closed. Adding the squares of overnight (15:00-9:00) and lunch-time
(11:00-12:30) returns may make realized volatility noisy. Following Hansen and Lunde (2005a), we
calculate realized volatility without overnight and lunch-time returns and multiply a constant such
that the sample mean of daily realized volatility is equal to the sample variance of daily returns. We
examine whether this method is effective in option pricing by comparing with simply adding the
squares of overnight and lunch-time returns.

Many authors have documented that realized volatility follows a long-memory process (Andersen
et al., 2001, 2003). We use the ARFIMA (autoregressive fractionally integrated moving average)
model and HAR (heterogeneous interval autoregressive) model by Corsi (2009) to describe the dy-



namics of realized volatility. It is also well known in stock markets that today’s volatility is negatively
correlated with yesterday’s return. We also extend ARFIMA and HAR models to take account of this
asymmetry in volatility.

For ARCH type models, we use the simple GARCH model proposed by Bollerslev (1986), the
EGARCH (exponential GARCH) model by Nelson (1991) that may capture the asymmetry in volatil-
ity and the FIEGARCH (fractionally integrated EGARCH) model by Bollerslev and Mikkelsen (1996)
that may also allow for the long-memory property of volatility.

We calculate option prices under the assumption of risk neutrality. Duan (1995) has developed a
more general method for pricing options in ARCH type models, which does not assume risk neutral-
ity. We also calculate option prices both assuming the risk neutrality and by using the Duan (1995)
method.

Main findings are: (1) ARFIMAX model with daily realized volatility performs best, (2) the
Hansen and Lunde (2005a) adjustment without using overnight and lunch-time returns can improve
the performance, (3) if the Hansen and Lunde (2005a), which also plays a role to remove the bias from
the microstructure noise by setting the sample mean of realized volatility equal to the sample variance
of daily returns, is used, the other methods for taking account of microstructure noise do not neces-
sarily improve the performance and (4) the Duan (1995) method does not improve the performance
compared with assuming the risk neutrality.

The article proceeds as follows. Section 2 explains several methods used in this article for cal-
culating realized volatilities. Section 3 explains ARFIMA(X) and HAR(X) models to describe the
dynamics of realized volatility and ARCH type models used in this article for comparison. Section 4
explains how to calculate option prices using the ARFIMA(X) and HAR(X) models with daily real-
ized volatility and ARCH type models with daily returns. Section 5 explains the data and Section 6
compares the performance of option pricing. Section 7 concludes. The appendix provides a detailed
description of realized volatilities employed in this article.

2 Realized Volatility

We start with a brief review of realized volatility using the following diffusion process.
dp(s) = p(s)ds 4 o(s)dW (s), (1)

where s is time, p(s) is the log-price, W (s) is a standard Brownian motion, and 1(s) and o(s) are the
drift and the volatility respectively, which may be time-varying but are assumed to be independent
of dW (s). In this article, we call o(s) or o%(s) volatility interchangeably although o (s) is usually
called volatility in the finance literature. Then, the volatility for day ¢ is defined as the integral of
o?(s) over the interval (¢ — 1,¢) where ¢ — 1 and ¢ represent the market closing time on day ¢ — 1 and
t respectively, i.e.,

1V, = / t o*(s)ds, 2
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which is called integrated volatility. The integrated volatility is unobservable, but if we have the
intraday return data (rHH /n Tt—142/n, - - -, Tt), W€ Can estimate it as the sum of their squares

RV, = Z 7"t2—1+i/na (3)
i=1

which is called realized volatility. If the prices do not include any noise, realized volatility RV; will
provide a consistent estimate of 7V, i.e.,

plimRV; = IV,. 4)
n—00

There are two problems in calculating realized volatility. First, although the realized volatility is
an accurate estimator of integrated volatility under the assumption of a continuous stochastic model, it
fails when there is market microstructure noise as seen in real high-frequency data. The microstructure
noise can be induced by various market frictions such as the discreteness of price changes, bid-ask
bounces, and asymmetric information across traders, inter alia.! A growing literature attempts to
study an integrated volatility estimation from microstructure noise-contaminated high-frequency data.
In this article, we employ some influential integrated volatility estimators robust to the microstructure
noise.

Second, the Tokyo Stock Exchange is open only for 9:00-11:00 (morning session) and 12:30-
15:00 (afternoon session) except for the first and last trading days in every year, when it is open
only for 9:00-11:00. It is impossible to obtain high-frequency returns for 15:00-9:00 (overnight) and
11:00-12:30 (lunch-time). Since realized volatility obtained using high-frequency returns over 4.5-
hour trading period only captures the volatility during the part of the day that the market is open, we
need to extend the realized volatility to a measure of volatility for the full day. If we simply add the
squares of overnight and lunch-time returns, realized volatility may be subject to discretization error.
Hansen and Lunde (2005a) propose to calculate realized volatility only when the market is open,
which is denoted as RV,*, and multiply a constant ¢ such that the sample mean of realized volatility
is equal to the sample variance of daily returns, i.e.,

_ (B~ Ry
ZCtTZI R‘/;‘,(O)

RV, = cRV?, ¢ (5)

where (Ry, ..., Ry) is the sample of daily returns and R is the sample mean?.
In order to test the effects of taking into consideration the microstructure noise and the non-trading

1The literature on market microstructure provides important insights from early studies including Roll (1984), who
derives a simple estimator of the bid-ask spread based on the negative autocovariance of returns. Harris (1990) examines
the rounding effects emanating from the discreteness of transaction prices. In the recent literature on microstructure noise,
Meddahi (2002) and Hansen and Lunde (2006) examine the variance of microstructure noise as well as the correlation
between the microstructure noise and frictionless equilibrium price. Ubukata and Oya (2009) examine dependence of
microstructure noise.

2See Martens (2002) and Hansen and Lunde (2005b) for the other methods.
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hours on option pricing, we use as many as 30 daily realized volatilities listed in Table 1. Without
microstructure noise, it would be desirable to use intraday returns sampled at the highest frequencies.
Since the highest frequencies available for Nikkei 225 stock index is 1-minute, we first calculate re-
alized volatility using 1-minute returns (n = 270). From the second to fifteenth methods in Table 1
are expected to correct the bias of the classical realized volatility and mitigate the variance increase
of the estimator induced by the microstructure noise. A more detailed description of the methods
is provided in the appendix. We apply the Hansen and Lunde (2005a) adjustment to the 15 kinds of
realized volatilities, which are denoted as RV (1min)“%, RV (5min)#% RV (15min)*% RV (BR)"%,
BK(BR)"L, ZMA(ZM AL, ZMA(BR)F, BO(ZM A, ZM A)"", BC(ZM A, BR)"", FBK
(BNHLS)"', FCK(BNHLS)"", FMTH(BNHLS)"", FBK(BR)"", FCK(BR)"t, FMT
H(BR)"™. For comparison, we also calculate 15 kinds of daily realized volatilities constructed by
adding the sqaures of overnight and lunch-time returns instead of the Hansen and Lunde (2005a) ad-
justment, which are denoted as RV (1min)*%, RV (5min)*% RV (15min)*%, RV (BR)*%, BK(BR

VSR, ZMA(ZMA)SE, ZMA(BR)S?, BC(ZMA, ZM A)SE, BC(ZM A, BR)S®, FBK(BNHLS
)%, FOK(BNHLS )t FMTH(BNHLS)S%, FBK(BR)S®, FCK(BR)%%, FMTH(BR)"".

3 ARFIMA(X), HAR(X) and ARCH type Model

Many researchers have documented that realized volatility may follow a long-memory process. Let
p(h) denote the h-th order autocorrelation coefficient of variable X'. Then, X follows a short-memory
process if >"° |p(h)| < oo and a long-memory process if >~° , |p(h)| = co. A stationary ARMA
model is a short-memory process. As h increases, the autocorrelation coefficient p(h) of the long-
memory process decays more slowly than that of the short-memory process. More specifically, the
former decays hyperbolically and the latter decays geometrically.

The most widely used for a long-memory process is ARFIMA(p, d, ¢) model®

o(L)(1 — L)X, = O(L)u;, u; ~ NID(0,0?), (6)

where L denotes the lag operatorand ¢(L) = 1—¢ L—- - -—¢,LPand (L) = 1—6, L—- - -—0,L? are
the p-th and ¢-th order lag polynomials assumed to have all roots outside the unit circle. The order of
integration d is allowed to take non-integer values. If d = 0, ARFIMA model collapses to stationary
ARMA model and if d = 1, it becomes non-stationary ARIMA model. If 0 < d < 0.5, X, follows
a stationary long-memory process and if 0.5 < d < 1, X, follows a non-stationary long-memory
process. (1 — L)% may be written as follows.

(1_L)d:1+Zd(d—1)--1;!(d—k+1)(_L)k‘ )

3See Beran (1994) for the details of long-memory and ARFIMA model.
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We assume that «, follows an independent normal distribution with zero mean and variance o2.
By setting p = 0 and ¢ = 1, which are selected by SIC, and X; = In(RV;) — p where p is the
unconditional mean of In(RV;), we consider the following model.

(1 — L)*[In(RV;) — pt] = uy + Ouy 1, uy ~ NID(0,0?). 8)

We estimate parameters d, p and @ jointly using the approximate maximum likelihood method (Beran,
1995), where it is assumed that In(RV;) = p (¢t = 0,—1,...). We can estimate o2 as the sample
variance of residual.

We also employ HAR model by Corsi (2009) well-known as a simple approximate long-memory
model of realized volatility. The model consists of three realized volatility components defined over
different time periods as follows

In(RV;) = Bo + B1 In(RV,1) + BoIn(RV,Y)) + B3 In(RV;™) + v, v, ~NID(0,07), (9)

where RV,", = éZle RV,_; and RV;™ = 5 Zfil RV,_; are the average of the past realized
volatilities corresponding to time horizons of 5 trading days (one week) and 22 trading days (one
month), respectively. We can estimate parameters 3y, 31, 52, #3 and o by applying simple linear
regression.

It is well-known that there is a negative correlation between today’s return and tomorrow’s volatil-
ity in stock markets. To take into account this phenomenon, we extend the above ARFIMA(0,d,1)
model (8) to the following ARFIMA(0,d,1)-X model

(1 - L)d [IH(R‘/;) — Mo — ,U/1|Rt—1| - /Lth__1|Rt_1|] = U + Hut_l, U ~ N|D(0, 0'2), (10)

where D;_, is adummy variable that takes one if the return on day ¢ —1 is negative and zero otherwise.
We estimate parameters d, jio, p1, p12, 6 and o2 using the same method as that for ARFIMA model.
If the estimate of p, has a statistically significant positive value, it is consistent with a well-known
negative correlation between today’s return and tomorrow’s volatility in stock markets. The HAR
model (9) can be naturally extended to HAR-X model taking account of the asymmetry in volatility
as follows

In(RV}) = Bo + B In(RV,_1) + Bo In(RV,2,) + B3 In(RV)™,) + Ba|Ri—1| + Bs Dy | Ri—1| + vy, (11)
vy ~ NID(0, 02).

We estimate parameters 3y, 51, 32, 33, (1, 85 and o2 using the same method as that for the HAR model.
The positive value of 35 indicates the negative correlation between today’s return and tomorrow’s
volatility.

Some researchers such as Barndorff-Nielsen et al. (2004), Barndorff-Nielsen and Shephard (2001,



2002b) and Nagakura and Watanabe (2010) have proposed a UC (unobserved components) model®.
Assuming that the asset price follows a contimuous-time model called square-root stochastic variance
model, they show that the realized volatility calculated using the discretely sampled data follows an
ARMA(1,1) model. Since it is the realized volatility rather than its log that follows an ARMA(1,1)
model and the distribution of the error term is unknown, the future volatility sampled for option
pricing may possibly be negative if we assume that the distribution of error term is normal. Thus, we
do not use this model in this article.
We also estimate ARCH type models using daily returns. We define daily return as

Rt = ln(St) - ln(St,l), (12)
where S; is the closing price on day ¢. We specify daily return as
Ry = E(Ry|I,1) + €, €, = 0y, 2 ~ NID(0,1), (13)

where E(R;|I; ) is the expectation of R, conditional on the information up to day ¢ — 1 and z,
is assumed to follow an independent standard normal distribution. Then, o7 is the variance of R;
conditional on the information up to day ¢t — 1. We will explain how to specify E(R,|I,_;) later.

For volatility specification, we use three different ARCH type models. First is the GARCH model
proposed by Bollerslev (1986). Specifically, we use the GARCH(1, 1) model

O—t2:w+5o—t271+a€?717 w>05 550520’ (14)

where w, $ and « are parameters, which are assumed to be non-negative to guarantee that volatility is
always positive. This model can capture the volatility clustering. Volatility is stationary if |3+ «| < 1,
and the speed for which the shock to volatility decays becomes slower as 5 + « approaches to one.

As has already been mentioned, another well-known phenomenon in stock markets is volatility
asymmetry, which cannot be captured by the above GARCH model. To capture this phenomenon, we
also use the EGARCH model proposed by Nelson (1991). Specifically, we use the EGARCH(1, 0)
model

In(o7) =w+ ¢ [In(o7 ) —w] 4+ 0z_1 + 7 (|21 — Elza]),  |¢] < 1. (15)

While the GARCH model specifies the process of o7, the EGARCH model specifies that of its log-
arithm. Thus, it does not require non-negativity constraints for parameters. If # < 0, it is consistent
with the volatility asymmetry in stock markets. In this model, volatility is stationary if |¢| < 1, and
the speed for which the shock to volatility decays becomes slower as ¢ approaches to one. Since z;_;
is assumed to follow the standard normal distribution, E |2,_| = /2/7.

Neither the GARCH nor EGARCH models allow volatility to have long-memory property. Hence,

4Nagakura and Watanabe (2010) consider microstructure noise while Barndorff-Nielsen et al. (2004) and Barndorff-
Nielsen and Shephard (2001, 2002b) neglect it.



we also use the FIEGARCH model proposed by Bollerslev and Mikkelsen (1996). Since this model is
an extension of the above EGARCH model to allow the long-memory of volatility, it can also capture
the volatility asymmetry. We use the following FIEGARCH(1, d, 0) model.

(1= pL)(1 — L) [In(0?) —w] = 02 1 +7 (21| — Elzeal), [o] < 1. (16)

Similarly to the EGARCH model, it is consistent with the volatility asymmetry in stock markets if
f < 0. As for d, the same argument as that for ARFIMA model holds.

FIGARCH (Baillie et al., 1996) and FIAPGARCH (Tse, 1998) models can also take into account
the possibility that the volatility follows a long-memory process. These models, however, have some
drawbacks. First, the variance of return will be infinite even though 0 < d < 0.5 (Schoffer, 2003).
Second, the parameter constraints to guarantee that the volatility is always positive are complicated
(Conrad and Haag, 2006). Thus, we do not use these models in this article. We estimate parameters
in the GARCH, EGARCH and FIEGARCH models using the maximum likelihood method®.

4 Option Pricing

We first calculate option prices under the assumption of risk neutrality. If the traders are risk neutral,
the expected return may be represented by

1
E(Rt|It—1) =r—d- 5‘%2, (17)

where r and d are continuously compounded risk-free rate and dividend rate.

The price of European option will be equal to the discounted present value of the expectation of
option prices on the expiration date. For example, the price of European put option with the exercise
price K and the maturity 7 is given by

Pr = exp(—r7)E |Max(K — Sp4r, 0) I, (18)

where Sy, is the price of the underlying asset on the expiration date 7" + 7.

We cannot evaluate this expectation analytically if the volatility of the underlying asset follows
ARFIMA(X), HAR(X) or ARCH type models. We calculate option prices by simulating Sy, from
ARFIMA(X), HAR(X) or ARCH type models. Suppose that (Sé}}ﬁ, cee Séf_’z) are simulated. Then,
(18) may be calculated as follows.

1 & ;
Pr % exp(—rr)— > " Max(K — S{_,0). (19)

=1

We set . = 10000. For variance reduction, we used the control variate and the Empirical Martingale

5See Taylor (2001) for the estimation method for the FIEGARCH model.
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Simulation proposed by Duan and Shimonato (1998) jointly.

Duan (1995) relaxed the assumption of risk neutrality to derive option prices when the price of
underlying asset follows ARCH type models. We also use this method. Following Duan (1995), we
set

E(RJI;_y) =71 —d— %af + Aoy, (20)

where Ao, captures the risk premium.

Unless the traders are risk neutral, we must convert the physical measure P into the risk neu-
tral measure () and evaluate the expectation in equation (18) under the risk neutral measure Q).
Duan (1995) makes the following assumptions on ), called local risk-neutral valuation relationship
(LRNVR).

1. Ry|I; , follows a normal distribution under the risk neutral measure Q.
2. E9exp(Ry)|1;-1] = exp(r — d).
3. Var®[R,|I,_,] = Var"[R,|I,_] as.

Under assumptions 1 and 2, daily returns under the risk neutral measure ) must be represented by
1
Rt:r—d—§a§+§t, & = oywy,  w, ~ NID(0, 1). (21)
Comparing equation (21) with equations (13) and (20) leads to

€& = & — Aoy, (22)
Zt — ’U)t — )\ (23)

Since assumption 3 means that volatilities are the same between P and ), all we have to do for
volatility is to substitute equations (22) or (23) into ¢, in the GARCH volatility equation or z, in the
EGARCH and FIEGARCH volatility equations. For example, the GARCH(1, 1) volatility equation
will be

ol =w+Bol | +al& 1 — Aoy 1), w>0, B,a>0. (24)

Equations (21) and (24) constitute GARCH(1, 1) model under @). Hence, we can evaluate the option
prices as follows.

[1 ] Estimate the parameters ), w, # and o in GARCHY(1, 1) model under P that consists of equa-
tions (13), (20) and (14).

[2 ]Simulate Sy, using GARCH(1, 1) model under Q that consists of equations (21) and (24) by
setting the parameters \, w, S and « equal to their estimates in [1].

[3 ] Substitute (S}ﬂ)ﬁ, cee Séf_’z) simulated in [2] into equation (19) to obtain the option price.



Similarly, we can calculate the option price using the EGARCH and FIEGARCH models. The
EGARCH (1, 0) and FIEGARCH(1, d, 0) volatility equations under ¢ will be

In(o}) =w+¢ [ln(af_l) - W] +0(vi1—A) + (|Ut—1 — A= \/2/7> ; (25)
(1= ¢L)(1 = L) [In(02) —w] = By — ) +7 (|vH - \/2/7) . (26)

For comparison, we also calculate option prices using the Black-Scholes formula with volatility
o as the standard deviation of daily returns over the past 20 days.

5 Data

We analyze the Nikkei 225 stock index options traded at the Osaka Securities Exchange. The un-
derlying asset is the Nikkei 225 stock index, which is the average of the prices of 225 representative
stocks traded at the Tokyo Stock Exchange. The sample period is from May 29, 1996 to September
27, 2007. Following equation (12), we calculate the daily returns for the underlying asset as the log-
difference of the closing prices of the Nikkei 225 index in consecutive days. Table 2 summarizes the
descriptive statistics of the daily returns (%) for the full sample. The mean is not significantly differ-
ent from zero. While the skewness is not significantly different from zero, the kurtosis is significantly
above 3, indicating the well-known phenomenon that the distribution of the daily return is leptokurtic.
LB(10) is the Ljung-Box statistic adjusted for heteroskedasticity following Diebold (1988) to test the
null hypothesis of no autocorrelations up to 10 lags. According to this statistic, the null hypothesis is
not rejected at the 1% significance level although it is rejected at the 5% level. We do not consider
autocorrelations in the daily return in the following analyses.

We calculate realized volatility using the Nikkei NEEDS-TICK data. This dataset includes the
Nikkei 225 stock index for every minute from 9:01 to 11:00 in the morning session and from 12:31
to 15:00 in the afternoon session. Sometimes, the time stamps for the closing prices in the morning
and afternoon sessions are slightly after 11:00 and 15:00 because the recorded time shows when the
Nikkei 225 stock index is calculated. In such cases, we use all prices up to closing prices. Using these
prices, the 30 daily different realized volatilities listed in Table 1 are calculated with or without using
the adjustment coefficient ¢ defined by equation (5).

Figure 1 plots some kinds of realized volatilities and Table 3 summarizes the descriptive statis-
tics of the 30 daily different realized volatilities. From RV (1min)?L to FMTH(BR)"L are ad-
justed such that the mean of realized volatility is equal to the sample variance of daily returns, but
their means are different because the adjustment coefficient ¢ is calculated day by day using the
past 1200 realized volatilities and daily returns. From RV (1min)*® to FMTH(BR)S% are not ad-
justed and their means are much lower than those of the others. Among the 15 realized volatilities
with the Hansen and Lunde (2005a) adjustment, RV (1min)”% has the smallest standard deviation.
RV (15min) % has the largest standard deviation of them as induced by the range from the minimum
at 0.0635 to the maximum at 35.9133. The standard deviation of ZM A(ZM A)*% is the smallest of
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all. These results are confirmed by Figure 1. Figure 1(a) shows that RV (15min)#L is more volatile
than RV (1min)#L and RV (BR)"~, and Figure 1(b) shows that RV (1min)“® is smaller on average
and less volatile than RV (1min)*%. The values of skewness and kurtosis indicate that the distribu-
tions of all realized volatilities are non-normal. LB(10) is so large that the null hypothesis of no au-
tocorrelation is rejected. Table 3 (b) shows the descriptive statistics for log-realized volatilities. They
are qualitatively the same as those of Table 3 (a) except skewness and kurtosis. While realized volatil-
ities are positively skewed, log-realized volatilities are negatively skewed at the 5% significant level
except In(RV (15min) L), In(ZM A(BR)®%) and In(RV (15min)°%). The kurtosis of log-realized
volatilities is much smaller than those of realized volatilities. The kurtosis of In(RV (1min) L),
In(RV (1min)S%) and In(ZM A(Z M A)*®) is not significantly above 3 at the 5% level. The distri-
butions of log-realized volatilities are much closer to the normal distribution than those of realized
volatilities. Thus, we use log-realized volatility as a dependent variable in the ARFIMA model (8),
HAR model (9), ARFIMAX model (10) and HARX model (11).

To measure the performance of option pricing, we also use prices of the Nikkei 225 stock index
options traded at the Osaka Securities Exchange. Nikkei 225 stock index options are European options
and their maturities are the trading days previous to the second Friday every month. Considering
theoretical option prices are with respect to a risk neutral measure, we assess the performance of
option pricing using options which are most likely to be efficiently priced. For the Nikkei 225 stock
index options, put options are traded more heavily than call options and the options with the maturity
more than one month are not traded so much. Thus we concentrate on put options whose maturity
is 30 days (29 days if the day when the maturity is 30 days is a weekend or holiday). On such days,
we consider put options with different exercise prices whose bid and ask prices are both available
at the same time between 14:00 and 15:00. For each option, we use the average of bid and ask
prices at the same time closest to 15:00 as the market price at 15:00. The reason why we use the
average of bid and ask prices instead of transaction prices is that transaction prices are subject to
market microstructure noise due to bid-ask bounce (Campbell et al., 1997). We also exclude some
kinds of put options which are not priced at the theoretical range from the lower bound at P, =
Max (0, Kexp(—r7) — Spexp(—dr)) to the upper bound at Pr = Kexp(—r7).

We estimate the ARFIMA(X) and HAR(X) models using 1200 daily realized volatilities up to
the day before the options whose maturity is one month are traded, where the adjustment coefficient
c defined by equation (5) is calculated using the same 1200 realized volatilities with 1200 daily re-
turns. We also estimate ARCH type models using the same 1200 daily returns with risk-free rate and
dividend. As mentioned, the daily returns are calculated as the log difference of closing prices. We
use CD rate as a risk-free rate and fix the annual dividend rate as 0.5% following Nishina and Nabil
(1997). The first date when options whose maturity is one month are traded is April 11, 2001. We
first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using 1200 daily
realized volatilities and returns up to April 10, 2001, where we calculate the adjustment coefficient ¢
using the same 1200 daily realized volatilities and returns. Then, given the obtained parameter esti-
mates, we calculate the put option prices on April 11, 2001 using CD rate and the Nikkei 225 index
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at 15:00 on that date. The next date when options whose maturity is one month are traded is May 9,
2001. We first estimate the parameters in the ARFIMA(X), HAR(X) and ARCH type models using
1200 daily realized volatilities and returns up to May 8, 2001, where we calculate the adjustment
coefficient ¢ using the same 1200 daily realized volatilities and returns. Then, given the obtained
parameter estimates, we calculate the put option prices on May 9, 2001 using CD rate and the Nikkei
225 index at 15:00 on that date. We repeat this procedure up to September 2007.

Figure 2 plots the estimates of all parameters in all models for each of the above 78 iterations.
Figure 2 (a) and (b) plot the estimates of parameters in the ARFIMA and ARFIMAX models using
RV (Imin)ZL. The estimates of d in the ARFIMA and ARFIMAX models move around 0.5 and
are above 0.5 in the latter half, indicating the long-memory and the possibility of non-stationarity of
log-realized volatility. The estimates of 5 in the ARFIMAX model are positive for all periods, indi-
cating the well-known phenomenon of a negative correlation between today’s return and tomorrow’s
volatility. Figure 2 (c) and (d) plot the estimates of parameters in the HAR and HARX models using
RV (Imin)#L, The positive estimates of 3;, 3, 35 in the HAR and HARX models for all periods
are consistent with the empirical results using S&P500 in Corsi (2009). The estimates of 55 in the
HARX model are positive, indicating the asymmetry in volatility. Figure 2 (e), (f) and (g) plot the
estimates of parameters in ARCH type models using daily returns. The sum of the estimates of 5 and
a in the GARCH model and the estimates of ¢ in the EGARCH model are close to 1 for all periods,
indicating the well-phenomenon of volatility clustering. These models, however, do not allow for the
long-memory of volatility. The estimates of d in the FIEGARCH model are more volatile than those
of the ARFIMA(X) model. They move around 0.5 in the first half while they move up to 0.54 and
down to 0 in the latter half. These results provide evidence that a structural change may occur during
our sample period, but we leave it for future research. The estimates of # in the EGARCH and FIE-
GARCH models are negative for all periods, indicating a negative correlation between today’s return
and tomorrow’s volatility.

6 Results

To measure the performance of option pricing, we use four loss functions, MAE (Mean Absolute
Error), RMSE (Root Mean Square Error), MAPE (Mean Absolute Percentage Error) and RMSPE
(Root Mean Square Percentage Error) defined as

1L - 1L - 2
MAE = — S|P - P|, RMSE=,|— (H—R),
> >

1 K|P-P 1 L (p-pr\
MAPE = — L_"') RMSPE = ,|= L
V& ()
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where N is the number of put options used for evaluating the performance, P; is the price of the ith
put option calculated by each model and P; is its market put price calculated as the average of bid and
ask prices at the same time closest to 15:00. From the fact that the lowest market put price amounts
to 1.5 yen which is calculated as the mid-point of the ask price at 2 yen and the bid price at 1 yen, any
price P; less than the lowest price is approximated at 1.5 yen.

Following Bakshi et al. (1997), we classify put options into five categories such as DITM (deep-in-
the-money), ITM (in-the-money), ATM (at-the-money), OTM (out-of-the-money) and DOTM (deep-
out-of-the-money) using the moneyness which is the ratio of the underlying asset price over the exer-
cise price. Table 4 shows this classification. We examine the performance in each category as well as
in total.

Table 5 shows the values of loss functions for ARCH type models with daily returns, the ARFIMA
(X) and HAR(X) models with RV (1min)“% and the BS model. In total, the ARFIMAX model per-
forms best for RMSPE and MAPE while the HARX model performs best for RMSE and MAE. The
RMSE and MAE of the ARFIMAX model are, however, not so much different from those of the
HARX model. In DOTM, ARFIMAX model performs best for RMSPE and MAPE while the FIE-
GARCH model performs best for the other loss functions. In OTM, the ARFIMAX model performs
best for RMSE, RMSPE and MAPE while the ARFIMA model performs best for MAE. In ATM
and ITM, either the ARFIMAX model or the HARX model performs best for all loss functions. In
DITM, the GARCH model performs best for all loss functions. Although there are some exceptions
depending on moneyness and loss function, we may conclude that the ARFIMAX model performs
best.

Tables 6 and 7 show the values of loss functions for the ARFIMAX model with 30 different real-
ized volatilities. Table 6 shows the result for the realized volatilities calculated simply by adding the
squares of overnight and lunch-time returns instead of using the Hansen and Lunde (2005a) adjust-
ment. In total and all moneyness, the loss functions of RV (1min)“% have larger values than those of
the other realized volatilities except ZM A(Z M A)5%. This result is intuitive because RV (1min)<%
does not take account of microstructure noise at all. Table 7 shows the result for the realized volatil-
ities calculated using the Hansen and Lunde (2005a) adjustment instead of adding the squares of
overnight and lunch-time returns. In total and all moneyness, all loss functions in Table 7 are smaller
than those in Table 6, indicating that the Hansen and Lunde (2005a) adjustment improves the perfor-
mance of option pricing. It is also noteworthy that the performance of RV (1min) % is no longer bad.
RV (1min)ZL performs best for RMSPE and MAPE in total, RMSE in OTM and RMSPE in DOTM.
For the other moneyness and loss functions, RV (15min) %, ZM A(ZM A)"E, BO(ZM A, Z M A)H -
and FMTH (BR)"*, which take account of microstructure noise, perform best. This result means
that the Hansen and Lunde (2005a) adjustment plays a role to remove not only the discretization noise
included in the squares of the lunch-time and overnight returns but also the bias caused by the mi-
crostructure noise because the adjustment coefficient ¢ is set such that the sample mean of realized
volatility is equal to the sample variance of daily returns. We may conclude that if the the Hansen and
Lunde (2005a) adjustment is used, the other methods for taking account of the microstructure noise
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do not necessarily improve the performance of option pricing. ©

So far, we assumed risk neutrality. As explained in Section 4, Duan (1995) has proposed a method
for GARCH option pricing relaxing this assumption. We also apply this method to the GARCH,
EGARCH and FIEGARCH models. Table 8 shows the result. The values of loss functions using
this method are not so much different from those assuming risk neutrality. This result means that the
Duan (1995) method does not improve the performance of option pricing compared with assuming
risk neutrality.

7 Conclusions

This article compares the performance of option pricing among the ARFIMA(X) and HAR(X) models
with daily realized volatility and the ARCH models with daily returns. The main results are: (1) the
ARFIMAX model with daily realized volatility performs best, (2) the Hansen and Lunde (2005a) ad-
justment without using overnight and lunch-time returns can improve performance, (3) if the Hansen
and Lunde (2005a) adjustment, which also plays a role to remove the bias from the microstructure
noise by setting the sample mean of realized volatility equal to the sample variance of daily returns,
is used, the other methods for taking account of microstructure noise do not necessarily improve per-
formance and (4) the Duan (1995) method does not improve performance compared with assuming
risk neutrality.

Several extensions are possible. First, we did not consider jJumps in returns. Barndorff-Nielsen and
Shephard (2002a, 2004) have proposed a method for calculating realized volatility taking account of
jumps. Andersen et al. (2007) show that the performance of forecasting future volatility is improved
by removing significant jumps from realized volatility and adding significant jumps to the HAR model
as an explanatory variable. It is interesting whether the performance of option pricing will also be
improved by doing so. Second, Hansen et al. (2010) and Takahashi et al. (2009) have proposed to
model daily returns and realized volatility jointly”. It is also interesting to apply their methods to
option pricing.

®Bandi et al. (2008) compare the option pricing performance of the realized volatilities of the S&P 500 index. Their
method is, however, different from ours as follows. (1) They compare the profits from the straddle trading strategy ob-
tained by substituting the volarility forecasts from the ARFIMA model for realized volatility into the Black-Scholes option
pricing formula. (2) They only analyze the performance of RV (5min) £ to FMT H(BR)**, which are calculated using
the Hansen and Lunde (2005a) adjustment, while we also analyze the performance of RV (1min) #L and RV (1min)S£
to FMT H(BR)%, which are calculated by adding the lunch-time and overnight returns without using the Hansen and
Lunde (2005a) adjustment. (3) They do not analyze ARCH-type models.

"Hansen et al. (2010) and Takahashi et al. (2009) extend ARCH type models and the stochastic volatility model
respectively.
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Appendix Integrated volatility estimatorswith microstructure
noise

Here, we give a detailed review of various realized volatilities using the high-frequency returns em-
ployed in our analysis. Assume the ¢-th intraday return r,_,;/, for day ¢ contaminates with mi-
crostructure noise as follows

Fe—ivim = p(E—1+i/n)—p(t—1+(—1)/n)+nt—1+i/n)—nt—-1+(i—1)/n)
= p(t—=14i/n)—p(t -1+ (G —1)/n) + €—1ti/n, (A1)

where e;_ 4/, :=n(t —1+14/n) —n(t — 14 (i — 1)/n) and , represents microstructure noise.
e Realized volatility with 1-, 5- and 15-minute returns, RV (1min), RV (5min) and RV (15min).

Without microstructure noise, it would be desirable to use intraday returns sampled at the highest
frequencies. Since the highest frequencies available for the Nikkei 225 stock index is 1-minute, we
first calculate realized volatility using 1-minute returns (n = 270), which is denoted as RV (1min).
However, it may fail to satisfy the consistency condition when there is market microstructure noise
as usually documented in real high-frequency data. Another classical approach is to use realized
volatility constructed from intraday returns sampled at moderate frequencies rather than at the highest
frequencies. This approach can partially offset the bias of the microstructure effect. In practice,
researchers are necessarily forced to select a moderate sampling frequency. For example, it may be
regarded as around those frequencies for which realized volatility signature plots under alternative
sampling frequencies are leveled off. Evidence from previous studies suggests that it is optimal to
use 5 to 30-minute return data. Hence, we employ RV (5min) and RV (15min) which are equal to the
sum of squared 5- and 15-minute returns (n = 54 and 18), respectively.

e Optimally-sampled realized volatility, RV (BR).

The selection of a moderate sampling frequency is important to get an accurate estimate of the inte-
grated volatility because the noise-induced bias at high sampling frequencies can be traded off with
the variance reduction obtained by high-frequency sampling. To take this trade off between the bias
and variance into account, Bandi and Russell (2008) provide a theoretical justification for the choice
of optimal sampling frequency in terms of the mean squared error (MSE) criterion. They derive the
following approximated optimal number of observations n* based on the minimization of MSE in a
finite sample

W=

n* ~ [ﬁ%y} , (A.2)

where 1() represents an integrated quarticity of the equilibrium price process (1QQ = ftil o*(s)ds).
It is estimated by Q) = By r;{m/n (realized quarticity) with low frequency returns such as 15-
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minute returns. Following the consistent estimator of noise moment as shown by Bandi and Russell

(2008), E(e?) can be estimated by E(e?) = 13" 2 /n at the highest frequencies. Thus, the

optimally-sampled realized volatility, RV (BR), is equal to the realized volatility with the optimal

number of observations calculated as 7* = |1Q/(E (e2))* 1/3.

e The Bartlett-type kernel estimator in Barndorff-Nielsen et al. (2004) with a finite sample opti-
mal number of autocovariances proposed by Bandi and Russell (2011), BK (BR).

RV (1min), RV (5min), RV (15min) and RV (BR) have the obvious drawback that they do not in-
corporate all data and whereby information is lost. The methods introduced here take advantage of
the rich sources in all high-frequency data. The problem of estimating the integrated volatility under
microstructure noise is similar to the autocorrelation corrections that are used in the long-run vari-
ance estimation in stationary time-series (Newey and West, 1987; Andrews, 1991). So it is natural
to consider kernel-based estimators of integrated volatility under microstructure noise. The literature
includes the earlier study by Zhou (1996) who proposes a particular kernel estimator which incorpo-
rates the first-order autocovariance. Barndorff-Nielsen et al. (2004) derive kernel-based estimators
that are far more precise than that of Zhou (1996). They examine the Bartlett-type kernel estimator
defined as

n—1H—1 LNy - S
BK:( - T) %—FQZ(T) Vhs (A.3)

h=1

where v, = Z?;lh Te—14i/nTt—1+(i+h)/n 1S the h-th autocovariance of intraday returns and -, is equal
to realized volatility using returns sampled at the highest frequencies. This estimator weights the
realized volatility and the H-th return autocovariances by Bartlett weights. The optimal number of
autocovariances is given by the minimization of MSE of the estimator in finite sample (see equation
7 to 10 in Bandi and Russell, 2011 for exact MSE minimization expressions). There is a convenient
rule-of-thumb for choosing H in practice as proposed in Bandi and Russell (2011). The expression is
obtained as

[ 3IV?\3

where IV denotes integrated volatility. 7V and 1) are estimated using realized volatility and realized
quarticity with lower frequency returns such as 15-minute returns. Hence, BK with a finite sample
optimal number of autocovariances H* leads to BK (BR).

e The two-scale estimator with an asymptotically optimal number of subsamples proposed by
Zhang et al. (2005), ZM A(ZMA).

Zhang et al. (2005) propose a two-scale or subsampling estimator in the spirit of the estimation of
the long-rum variance studied by Carlstein (1986). Denote the original grid of observation times as
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U ={t—1,t—1+1/n,t—1+2/n...,t}. Consider W is partitioned into K nonoverlapping subgrids,
v j =1,..., K, for example, the first sub-grid starts at t — 1 and takes every K —th arrival time
(@) ={t—1,t— 1+ K/n,t — 1+ 2K/n...}), and the second sub-grid starts at ¢ — 1+ 1/n and
takes every K —th arrival time (02 = {t — 1+ 1/n,t — 1+ (1 + K)/n,t = 1+ (1 +2K)/n...}).
Then, the realized volatility for the subgrid \pg) is defined as

) _ : 2
RVE = Zrt—l—i—(j—l-i—if()/n’ (A.5)
i=1

wherer, . 11ik), 1S subsampling return between transaction prices at times ¢ —1+4-(j—1 +iK)/n
andt— 1+ (j — 1+ (i — 1)K)/n. The two-scale estimator in Zhang et al. (2005) is given by

K
ZMA=(1/K)Y_RVY — (a/n)RV, (A.6)

where 7 = (n — K + 1)/K and RV is the realized volatility for the full grid ¥. The second term

corrects the bias in the first term. The asymptotic optimal number of subsamples f(*(ZMA) derived
by minimizing the estimator’s asymptotic variance is given by

1/3

. E(e2)1?

1) and E(¢?) are estimated by realized quarticity with 15-minute returnsand E(e?) = 1 37" | L Lvi/m

at the highest frequencies, respectively. Thus, ZM A(ZM A) is equal to ZM A with K*(ZM A).

e The two-scale estimator in Zhang et al. (2005) with a finite sample optimal number of subsam-
ples proposed by Bandi and Russell (2011), ZM A(BR).

Barndorff-Nielsen et al. (2004) show that Z M A in (A.6) can be written as follows

H
n—H+1 H—-~h 1
I/MA=(1— ——M— 2 M — —0 A.8
( L >%+ hz( - >% Loy, (A8)

where 6, = 0,and 0 = 01 + (r1—141/m + -+ Te14(m-1)/n)° + (F—14(—H12)m + - -+ 1¢)? fOr
H > 2. The third term guarantees consistency of Z M A and differentiates Z M A from the inconsistent
BK. This equation implies the two-scale estimator in Zhang et al. (2005) is almost identical to the
modified Bartlett kernel estimator. Bandi and Russell (2011) additionally show that the finite sample
MSEs of BK and ZM A are very similar in practice. Hence, the ZM A with K = H* in (A.4)
corresponds to ZM A(BR).

e The bias-corrected two-scale estimator in Zhang et al. (2005) with an asymptotically optimal
number of subsamples proposed by Zhang et al. (2005), BC(ZM A, ZM A).
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The two-scale estimator Z M A has a finite sample bias as shown in Zhang et al. (2005) who provide
the approximate correction for this bias. On the other hand, Bandi and Russell (2011) report the
exact bias-correction form. Following a suggestion by Bandi and Russell (2011), the bias-corrected
estimator is defined as

BC(ZMA) = ¢(K,n)ZMA, (A.9)
- ~ ~ —1
- Kn—14+2K - K?—
c¢(K,n) = ( noite n) :
Kn

Since BC(ZM A) is asymptotically equivalent to Z M A, the asymptotically optimal number of sub-
samples is given by K*(ZMA). Thus, BC(ZM A) with K*(ZM A) can be described by BC(ZM A,
ZMA).

e The bias-corrected two-scale estimator in Zhang et al. (2005) with a finite sample optimal
number of subsamples proposed by Bandi and Russell (2011), BC(ZM A, BR).

Since BC'(ZM A) is unbiased in a finite sample, the optimal number of subsamples is provided by
minimizing the finite sample variance of BC(ZM A). Bandi and Russell (2008, 2011) show that the
optimal number of subsamples is defined as

K*(BR) = arg min [Var (BC(ZMA))] = arg min {{c(f(,n)}Z Var(ZMA)} . (A.10)

0<K/n<1/2 0<K/n<1/2

where, if K /n < 1/2,

1 13 79 1 1
_ 4 2 4 2 2 2
Var(ZM A) =(—4o; — SIVUW)E + (—40—,7 — 8021V + EIQ + §IV > —+ (2IQ + 81V )E
1 K? IVZ  4IV? 4 K
QA IVH [ “IQ) =
3(6‘2+ )n2+< 3n n? +3Q)n
4 8ot + 16021V — 8I(Q — 38 1V/2
+ ——4(IQ+IV2)+( K T @3
n n
N 240,2]IV — ?IQ + 803 N —803 + 80%]1/ n
n? n K
2 —dot — 8021V +41Q — 8IV?
+ [EIQ + ( i )
—4ot — 16021V + 21 8ot — 821V 8 2
+ ( A Q) + (%) + —a;;] v (A11)
n n n K2

9 . . . . H ~2 1 n 2
where o, represents a variance of microstructure noise 1 and is estimated by o, = 5> ;" 74

at the highest frequencies. Hence, BC'(ZM A) with K*(BR) leads to BC'(ZM A, BR).
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e The flat-top Bartlett kernel estimator with an asymptotically optimal number of autocovariances
proposed by Barndorff-Nielsen et al. (2008), FBK(BNHLS).

Barndorff-Nielsen et al. (2008) examine the following unbiased flat-top kernel type estimator (called
the realized kernel)

H
RK =+ Y k(x) (ya+7-1), (A12)
h=1

where v, = > | rii4imTi—14(—n)/m With h = —H,--- | H and the non-stochastic k(z) € [0,1]
for z = % is a weight function. The flat-top Bartlett kernel estimator is equivalent to RK in
case where k(x) = 1 — z. For this class of kernels, Barndorff-Nielsen et al. (2008) show that the
asymptotic distribution of RK — IV is mixed normal with zero mean and rate of convergence n'/6
when H = cn?/? where ¢ is a constant. Then, the asymptotically optimal value of ¢ which minimizes

the asymptotic variance is given by
¢t~ 2.28(3, (A.13)
where ¢? = 02/,/1Q. Hence, RK with k(z) = 1—zand H = ¢*n*/® correspondsto F BK (BN HLS).

e The flat-top cubic kernel estimator and the flat-top modified Tukey-Hanning kernel estimator
with an asymptotically optimal number of autocovariances proposed by Barndorff-Nielsen et
al. (2008), FCK(BNHLS)and FMTH(BNHLS).

The estimators based on the cubic kernel and the modified Tukey-Hanning kernel are equivalent to
RK with k(z) = 1 — 322 + 223 and k(z) = {1 — cosm (1 — x)?} /2, respectively. When H = c(n'/?,
RK for this class of kernels is consistent at the rate of convergence n'/* as shown in Barndorff-Nielsen
et al. (2008). The asymptotically optimal value of ¢ is expressed as

. kot 3kIOk2?

where p = IV/\/TQ, k2 = [ k(x)2dx, k' = [ K'(2)%dz and k22 = [ k"(x)?dz, where the
primes represent derivatives. The values of (£, kbt k22) amount to (k°, kbt k22) = (0.371,1.20,
12.0) for the cubic kernel and (k2:°, k11, k2-?) = (0.219,1.71, 41.7) for the modified Tukey-Hanning
kernel. We define FCK(BNHLS) and FMTH(BNHLS) as RK with H = ¢*(n'/? at k(z) =
1 — 32+ 223 and k(x) = {1 — cosm(1 — x)?}/2.

e The flat-top Bartlett kernel estimator, the flat-top cubic kernel estimator and the flat-top mod-
ified Tukey-Hanning kernel estimator with a finite sample optimal number of autocovariances
proposed by Bandi and Russell (2011), FBK (BR), FCK(BR) and FMTH(BR).

18



Bandi and Russell (2011) provide an alternative way to choose the number of autocovariances in finite
samples. Denote H as dn with 0 < § < 1. The optimal value of ¢ is defined in Theorem 3 of Bandi
and Russell (2011) as follows

6* = arg min [(bias(RK))” + Var(RK)], (A.15)

0<6<1

where bias(RK) = 0 and

Var(RK) = @wTQlw + dopn(w w) + 4o, (W Qsw) + (2021V)4(w Quw), (A.16)
n

withw = (1,1,k (&), ,k (5737;1))T and Q, a = 1,--- ,4 are (6n + 1,n + 1) square matrices.

For j < dn, the matrices 2, and €2, are defined as

M[1,1] =2, 1+ 4,1+ 4] =4,
W[1,1] =1, U2,1]=-1, Q1,2]=-1, 2,2] =2,

and zeros everywhere else. For j < én — 1, the matrices €2, and €23 are defined as

Q[1,1] =3, Q[1,2] = -4, Q[2,1]= -4, [2,2]=7,

D[2+7,2+7]=6, B2+45,1+7]=-4, W1+j2+7=-4, B2+ =1,
Dlf,2+7] =1, B,1]=-1, Q[1,2]=2, NB2,1]=2, 5[2,2]=—4.5,
Wli+2,7+2]=-3G+1) -1, W2+51+4]=20G+1), WB[1+52+75]=20+1),
QB2+5,5]=-0G+1)/2, Wl2+4]=-0+1)/2, (A.18)

and zeros everywhere else. Thus, RK with H = §*n for the Bartlett kernel, cubic kernel and modified
Tukey-Hanning kernel leads to FBK (BR), FCK(BR) and FMTH (BR), respectively.
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Table 2: Descriptive statistics of daily returns

Mean —0.0095

(0.0270)
Standard Deviation 1.4261
Min —7.2340
Max 7.6605
Skewness —0.0616

(0.0464)
Kurtosis 4.9003

(0.0927)
LB(10) 18.69

The numbers in parentheses are standard errors. LB(10)
is the Ljung-Box statistic adjusted for heteroskedasticity
following Diebold (1988) to test the null hypothesis of no
autocorrelations up to 10 lags.
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Table 4. Moneyness of put options

S/K
091 < S/K
097 < S/K
1.03< S/K
1.09< S/K

< 0.91
< 0.97
< 1.03
< 1.09

deep-in-the-money (DITM)
in-the-money (ITM)
at-the-money (ATM)
out-of-the-money (OTM)
deep-out-of-the-money (DOTM)

S = price of underlying asset and K = exercise price.
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Table 5: Put option pricing performance using different models

DOTM OT™ ATM ITM DITM Total
Sample size 269 102 115 92 68 646
RMSE
GARCH 26.1499 54.4269 73.8162 68.3135 50.1119*  51.4919
EGARCH 23.7247  57.7130 77.4830  67.4678 53.2560 52.6864
FIEGARCH  22.3849*  50.2646 67.4075 62.6070 53.6379  47.7233
ARFIMA 26.0913 48.6655 65.0287  63.3309 53.8862 47.8233
ARFIMAX  25.5555 47.7278*  63.8177  61.9602*  54.0913 = 47.0252
HAR 26.7846 49.7439 64.2658  64.7635 52.0057  48.0281
HARX 25.0283 47.8229 62.6602*  62.4055 52.8805 46.5820*
BS 32.5314  68.6507  96.1012 77.3699 57.2586 63.4549
MAE
GARCH 11.1874  35.9078 59.9180  47.6937  37.6492*  31.7501
EGARCH 11.4961 43.4651 65.4029 47.3676 40.4139 34.2929
FIEGARCH 9.7700*  35.2912 55.6893  42.1285  40.5887 = 29.8266
ARFIMA 10.4200 27.1600*  48.5898  41.8259  40.6119 27.5089
ARFIMAX 10.2684 27.1664  48.0434  41.1390  40.8868 27.2806
HAR 10.7746 28.7815  48.4673  41.5826 39.1654 27.7038
HARX 10.0268 29.0455 47.8669*  39.8116*  39.9925 27.1621*
BS 13.9732 45.0204  68.1068  49.1433  42.7033 36.5451
RMSPE
GARCH 0.8413 0.6187 0.2901 0.0904 0.0176* 0.6094
EGARCH 1.6894 0.8511 0.3181 0.0878 0.0190 1.1497
FIEGARCH  1.5059 0.6431 0.2685 0.0805 0.0193 1.0116
ARFIMA 0.5101 0.3344 0.2104 0.0770 0.0196 0.3671
ARFIMAX 0.5052* 0.3302* 0.2068* 0.0754* 0.0197 0.3633*
HAR 0.5254 0.4004 0.2193 0.0795 0.0185 0.3870
HARX 0.5882 0.4214 0.2204 0.0771 0.0190 0.4262
BS 0.8050 0.5275 0.2632 0.0890 0.0265 0.5721
MAPE
GARCH 0.5723 0.4311 0.2176 0.0635 0.0134* 0.3556
EGARCH 0.9976 0.6029 0.2441 0.0620 0.0144 0.5644
FIEGARCH  0.7894 0.4626 0.2061 0.0551 0.0145 0.4478
ARFIMA 0.4141 0.2552 0.1598 0.0532 0.0147 0.2503
ARFIMAX 0.4100* 0.2547* 0.1578* 0.0521 0.0149 0.2480*
HAR 0.4350 0.2989 0.1671 0.0540 0.0140 0.2673
HARX 0.4407 0.3140 0.1670 0.0520* 0.0144 0.2717
BS 0.7293 0.4422 0.2090 0.0615 0.0169 0.4213

The values of loss functions for the ARFIMA(X) and HAR(X) models are calculated using RV (1min) F 7.

* indicates the best model which minimizes the loss function.
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Table 6: Put option pricing performance using different realized volatilities without the Hansen and
Lunde (2005a) adjustment

DOTM OT™ ATM IT™™ DITM Total
Sample size 269 102 115 92 68 646
RMSE
RV (1min)S% 33.7772 72.3935 75.0869  69.7993 58.3730 57.9549
RV (5min)SE 30.9317  61.2178*  62.7097*  63.0628 56.9214 50.9669*
RV (15min)S% 30.5734*  61.5178 63.3914 62.4719*  57.4031 51.0372
RV (BR)SE 31.6043 63.4804  65.2075 65.3068 57.4180 52.5696
BK(BR) % 31.7665 64.6433 66.3408  65.0087  57.5804 53.0504
ZMA(ZMA)SE 36.3328 86.0197  96.5077  80.4540 59.5748  68.3481
ZMA(BR)% 32.9693 69.6890 72.3350  67.8439 57.9567  56.2138

BC(ZMA,ZMA)S®  32.4387 65.5644 66.7040 65.6463 57.3477 53.5622
BC(ZM A, BR)E 31.2988 62.1974 63.9627 63.9701 96.6031*  51.6439
FBK(BNHLS) 31.4696 62.3843 64.0686 64.1482 56.9261 51.8146

FBEK(BR)S® 31.4152  62.3076  64.1742  64.1708  57.1751  51.8424
FCK(BNHLS)S®  31.3722  62.0590  63.8987  63.8778  56.8587  51.6354
FCK(BR)S® 31.3220  62.1602  63.6578  63.6128  56.6955  51.5233
FMTH(BNHLS)SE 315412  62.9802  64.5812  64.1298  57.0168  52.0665
FMTH(BR)SE 31.3468  62.5522  64.1934  63.9274  57.0100  51.8140
MAE

RV (1min)S& 16.2666  48.1494  48.7068  38.3192  45.0849  33.2498
RV (5min)S& 14.0349  34.8349*  37.9625  35.0266* 43.1779  27.6359
RV (15min)S® 13.9982*  35.8372  37.8965* 35.0757  43.5465  27.8129
RV (BR)SE 14.4418  36.4298  38.3761  35.7835  43.7674  28.3006
BK(BR)S® 14.5960  37.6658  39.1251  35.2227  43.9036  28.6278
ZMA(ZMA)SE 17.8797  62.9990  71.9368  46.1453  46.2418  41.6379
ZMA(BR)SE 15.5312  43.9368  43.6062  36.4866  44.4540  31.0430

BC(ZMA,ZMA)S®  15.1487 39.9710 40.9115 36.2101 43.8037 29.6700
BC(ZMA, BR)® 14.2087 35.3617 38.6568 36.0104 43.0188*  28.0384
FBK(BNHLS)® 14.3644 36.0563 38.7287 36.1495 43.4338 28.2892

FBK(BR)"® 14.3468 35.7935 38.7137 35.9563 43.4892 28.2160
FCK(BNHLS)® 14.2012 35.1550 38.3954 35.7400 43.3019 27.9474
FCK(BR) % 14.3420 35.7243 38.4458 35.6161 43.1863 28.0751
FMTH(BNHLS)®  14.4396 36.6320 38.8405 35.5529 43.4646 28.3496
FMTH(BR)® 14.4308 36.3346 38.6767 35.5519 43.4725 28.2705

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 6: (Continued) Put option pricing performance using different realized volatilities without the
Hansen and Lunde (2005a) adjustment

DOTM OTM ATM ITM DITM Total
Sample size 269 102 115 92 68 646
RMSPE
RV (1min)S% 0.6632 0.4449 0.1821 0.0750 0.0235 0.4703
RV (5min)~k 0.5935*  0.3372*  0.1511*  0.0678 0.0217  0.4116*
RV (15min)S % 0.5959 0.3453 0.1554 0.0674*  0.0219  0.4143
RV (BR)SE 0.6038 0.3497  0.1566 0.0702 0.0223  0.4198
BK(BR)% 0.6106 0.3594  0.1583 0.0694  0.0223  0.4253
ZMA(ZMA)SE 0.7078 0.5857  0.2532 0.0891 0.0247  0.5248
ZMA(BR)S® 0.6392 0.4117  0.1712 0.0724  0.0229  0.4505

BC(ZMA,ZMA)SE  (0.6249 0.3753 0.1586 0.0701 0.0224 0.4360
BC(ZM A, BR)E 0.5965 0.3402 0.1526 0.0684 0.0217*  0.4139
FBK(BNHLS)® 0.6016 0.3454 0.1528 0.0685 0.0220 0.4176

FBK(BR)S® 0.6013  0.3427  0.1523  0.0684  0.0220  0.4171
FCK(BNHLS)S® 05944  0.3385  0.1524  0.0682  0.0219  0.4124
FCK(BR)S® 0.5984  0.3422  0.1511  0.0679  0.0217  0.4152
FMTH(BNHLS)S® 06038  0.3510  0.1533  0.0683  0.0219  0.4197
FMTH(BR)S® 0.6032  0.3483  0.1524  0.0680  0.0220  0.4189
MAPE

RV (1min)SE 0.5909  0.4063  0.1400  0.0461  0.0172  0.3435
RV (5min)S® 0.5173*  0.2776*  0.1108*  0.0425* 0.0160  0.2867*
RV (15min)SE 0.5211  0.2908  0.1116  0.0428  0.0161  0.2906
RV (BR)SE 0.5301  0.2897  0.1119  0.0433  0.0163  0.2943
BK(BR)S® 0.5371  0.3004  0.1137  0.0425  0.0164  0.2991
ZMA(ZMA)SE 0.6342 05635  0.2123  0.0563  0.0180  0.4008
ZMA(BR)S® 0.5672  0.3632  0.1241  0.0437  0.0168  0.3236

BC(ZMA,ZMA)®  0.5509 0.3244 0.1175 0.0436 0.0164 0.3095
BC(ZM A, BR)E 0.5206 0.2803 0.1123 0.0434 0.0160*  0.2889
FBK(BNHLS) 0.5258 0.2876 0.1124 0.0435 0.0162 0.2923

FBK(BR)"® 0.5253 0.2839 0.1121 0.0432 0.0161 0.2914
FCK(BNHLS)S® 0.5196 0.2788 0.1115 0.0430 0.0161 0.2881
FCK(BR) % 0.5237 0.2838 0.1114 0.0429 0.0160 0.2905
FMTH(BNHLS)®  0.5293 0.2913 0.1123 0.0428 0.0161 0.2942
FMTH(BR)® 0.5294 0.2902 0.1118 0.0427 0.0162 0.2940

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 7: Put option pricing performance using different realized volatilities with the Hansen and
Lunde (2005a) adjustment

DOTM OT™ ATM IT™ DITM Total
Sample size 269 102 115 92 68 646
RMSE
RV (1min)#L 25.5555 47.7278*  63.8177  61.9602 54.0913  47.0252
RV (5min)#L 26.5445 50.8029 63.8614  62.7478 54.9065 48.0104
RV (15min)#E 27.7902  52.4171  59.1257*  60.3301*  55.4357  47.1124
RV (BR)"L 26.7471 51.8100 65.3036  64.0321 54.6332 48.7751
BK(BR)" 27.2496 53.4551 65.5017  64.3414  55.3272 49.3554
ZMA(ZM AL 25.9568  48.0991 62.1756  62.0206 53.5106*  46.7253"
ZMA(BR)HE 26.8309 53.3002 66.0326  64.0710 55.1837  49.2923
BC(ZMA,ZMA)HL  25.0585*  49.1121 68.9332 65.0721 53.5186  48.9159
BC(ZMA, BR)"E 25.9226 50.8500 66.7806  64.6737  54.7105 48.9157
FBK(BNHLS)"E 25.6890 50.0508 66.9318  64.2957  54.1025 48.6280
FBK(BR)"" 25.7441 50.2870 66.9377  64.2170 53.9162 48.6435
FCK(BNHLS)"L 25.9446 50.9753 67.0718  64.3001 53.9914  48.8578
FCK(BR)H"L 25.5931 49.7899 66.4022 63.8327  54.3421 48.3760
FMTH(BNHLS)":  25.5855 50.2891 67.1410  63.9189 54.3706  48.6562
FMTH(BR)HL 25.3491 49.5069 66.5417 63.6452 54.1618 48.2542
MAE
RV (1min)#L 10.2684  27.1664  48.0434  41.1390  40.8868 27.2806
RV (5min) L 10.4919 27.9590  46.9035 40.8223  41.5855 27.3243
RV(lSmin)HL 11.5637 28.2217 40.6678*  37.2229*  41.9139 26.2240*
RV (BR)HL 10.5037  28.6609  48.0673  41.8572  41.4638 27.7818
BK(BR)"t 10.7010 29.2284  46.5957  40.9401 41.8132 27.5978
ZMA(ZMA)"L 10.3023 26.9121*  45.2253  39.8382 39.9880*  26.4730
ZMA(BR)HL 10.5920 29.6355 47.8792 41.5936 41.6622 27.9223
BC(ZMA, ZM A)HL 9.9801 29.1722 53.1619  44.7374  40.6054 28.8713
BC(ZMA, BR)HE 10.2106 28.9566 ~ 49.8740  43.4654  41.5478 28.2659
FBK(BNHLS)"L 10.2475 29.0867  50.6716  43.2955  40.8254 28.3436
FBK(BR)"E 10.1695 29.0718 50.6228  43.3869  40.7404 28.3041
FCK(BNHLS)"t 10.1297  29.3596 50.6263  43.5568  40.8991 28.3745
FCK(BR)H"L 10.0080 28.7132 50.2599  43.0593  41.2015 28.1176
FMTH(BNHLS)""  10.0540  29.3243  51.0311  43.5582  41.1704  28.4383
FMTH(BR)H"L 9.9732*  29.0008 50.7100  43.4861 41.0822 28.2768

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 7: (Continued) Put option pricing performance using different realized volatilities with the
Hansen and Lunde (2005a) adjustment

DOTM OT™M ATM I™ DITM Total
Sample size 269 102 115 92 68 646
RMSPE
RV (1min)HL 0.5052*  0.3302 0.2068 0.0754  0.0197  0.3633*
RV (5min) L 0.5258  0.3434 0.2013 0.0745 0.0201 0.3766
RV (15min) L 0.5163 0.3263*  0.1731*  0.0687* 0.0204  0.3659
RV (BR)"E 0.5106  0.3542 0.2082 0.0773 0.0200 0.3701
BK(BR)HL 0.5080  0.3581 0.2059 0.0764  0.0206 0.3690
ZMA(ZMA)HL 0.5293  0.3456 0.1968 0.0727  0.0193* 0.3784
ZMA(BR)HL 0.5083  0.3667  0.2066 0.0762 0.0203 0.3705
BC(ZMA,ZMA)"L  0.5286  0.3814 0.2255 0.0799 0.0197  0.3864
BC(ZMA, BR)"E 0.5239  0.3735 0.2118 0.0772 0.0200 0.3811
FBK(BNHLS)!E 0.7739  0.3759 0.2148 0.0772 0.0197  0.5299
FBK(BR)1E 0.5774  0.3793 0.2155 0.0773 0.0197  0.4132
FCK(BNHLS)"L 0.5245 0.3714 0.2134  0.0773 0.0198 0.3812
FCK(BR)"" 0.5172 0.3772 0.2134  0.0769 0.0199 0.3779
FMTH(BNHLS)":  0.5223  0.3769 0.2153 0.0772 0.0200 0.3810
FMTH(BR)"" 0.5139  0.3750 0.2138 0.0767  0.0198 0.3758
MAPE
RV (1min)HL 0.4100  0.2547  0.1578 0.0521 0.0149 0.2480*
RV(Smin)HL 0.4173 0.2618 0.1520 0.0512 0.0151 0.2511
RV (15min) T~ 0.4312  0.2492*  0.1294*  0.0462* 0.0153  0.2501
RV (BR)"" 0.4131  0.2672  0.1562  0.0531  0.0151  0.2511
BK(BR)" 0.4156  0.2725 0.1520 0.0515 0.0153 0.2521
ZMA(ZM AL 0.4182 0.2597  0.1472 0.0497  0.0144*  0.2500
ZMA(BR)HE 0.4096  0.2798 0.1547  0.0523 0.0152 0.2513
BC(ZMA,ZMA)"L  0.4214  0.2884 0.1730 0.0567  0.0148 0.2614
BC(ZMA, BR)"E 0.4156  0.2834 0.1614  0.0544  0.0151 0.2559
FBK(BNHLS)"E 0.4474  0.2860 0.1644  0.0545 0.0148 0.2701
FBK(BR)"" 0.4284  0.2871 0.1644  0.0546 0.0148 0.2623
FCK(BNHLS)"L 0.4092 0.2847  0.1635 0.0548 0.0149 0.2538
FCK(BR)H"L 0.4101 0.2829 0.1631 0.0542 0.0150 0.2538
FMTH(BNHLS)":  0.4138  0.2885 0.1655 0.0549 0.0150 0.2567
FMTH(BR)" 0.4085*  0.2855 0.1641 0.0547  0.0149 0.2538

This is calculated using the ARFIMAX model. * indicates the best model which minimizes the loss function.
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Table 8: Put option pricing performance of ARCH type models assuming the risk-neutrality and using
the Duan (1995) method

DOTM OT™M ATM ITM  DITM Total

Sample size 269 102 115 92 68 646
RMSE
GARCH
Risk neutral  26.1499 54.4269 73.8162 68.3135 50.1119 51.4919
Duan 25.8386 53.8704 73.3938 67.9316 50.0423 51.1464
EGARCH
Risk neutral  23.7247 57.7130 77.4830 67.4678 53.2560 52.6864
Duan 23.9183 57.7392 7T77.5168 67.6288 53.3418 52.7747
FIEGARCH
Risk neutral  22.3849 50.2646 67.4075 62.6070 53.6379 47.7233
Duan 22.4163 49.7467 65.5617 61.4178 58.0791 47.5127
MAE
GARCH
Risk neutral 11.1874 35.9078 59.9180 47.6937 37.6492 31.7501
Duan 11.0551 35.6945 59.7272 47.0229 37.6450 31.5313
EGARCH
Risk neutral 11.4961 43.4651 65.4029 47.3676 40.4139 34.2929
Duan 11.6524 43.3410 65.3519 47.3802 40.4712 34.3371
FIEGARCH
Risk neutral ~ 9.7700 35.2912 55.6893 42.1285 40.5887  29.8266
Duan 9.7211 34.5632 53.4257 40.2707 45.1972  29.5088
RMSPE
GARCH
Risk neutral ~ 0.8413  0.6187  0.2901  0.0904 0.0176  0.6094
Duan 0.8694  0.6229  0.2907 0.0902 0.0176  0.6263
EGARCH
Risk neutral ~ 1.6894 0.8511  0.3181 0.0878  0.0190  1.1497
Duan 1.7832 0.8493 0.3187  0.0878  0.0191 1.2072
FIEGARCH
Risk neutral ~ 1.5059  0.6431  0.2685  0.0805 0.0193  1.0116
Duan 1.3165 0.6244  0.2580  0.0778  0.0207  0.8922
MAPE
GARCH
Risk neutral ~ 0.5723  0.4311  0.2176  0.0635 0.0134  0.3556
Duan 0.5866  0.4318  0.2179  0.0629  0.0134  0.3616
EGARCH
Risk neutral ~ 0.9976  0.6029  0.2441  0.0620  0.0144  0.5644
Duan 1.0362  0.5993  0.2440 0.0619 0.0145  0.5799
FIEGARCH
Risk neutral ~ 0.7894  0.4626  0.2061  0.0551  0.0145  0.4478
Duan 0.7594  0.4488  0.1967 0.0525 0.0161  0.4313

“Risk neutral” shows the results assuming the risk-neutrality, which are the same as those
in Table 5. “Duan” shows the ones using the Duan (1995) method without assuming the
risk-neutrality.
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Figure 1: Realized volatility

(a) Some realized volatilities with the Hansen and Lunde (2005a) adjustment
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