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1 Introduction

A vector autoregression (VAR) is a basic econometric tool in econometric analysis with a wide

range of applications. Among them, a time-varying parameter VAR (TVP-VAR) model with

stochastic volatility, proposed by Primiceri (2005), is broadly used, especially in analyzing

macroeconomic issues. The TVP-VAR model enables us to capture a possible time-varying

nature of underlying structure in the economy in a flexible and robust manner. All parameters

in the VAR specification are assumed to follow the first-order random walk process, thus

allowing both temporary and permanent shift in the parameters.

Stochastic volatility plays an important role in the TVP-VAR model, although the idea of

stochastic volatility is originally proposed by Black (1976), followed by numerous developments

in financial econometrics (see e.g., Ghysels et al. (2002), Shephard (2005)). In recent years,

stochastic volatility is also more frequently incorporated into the empirical analysis in macroe-

conomics (e.g., Uhlig (1997), Cogley and Sargent (2005), Primiceri (2005)). In many cases, a

data generating process of economic variables seems to have drifting coefficients and shocks of

stochastic volatility. If that is the case, then application of a model with time-varying coeffi-

cients but with constant volatility raises a question that the estimated time-varying coefficients

are likely to be biased due to ignoring a possible variation of the volatility in disturbances. To

avoid that mis-specification, stochastic volatility is assumed in the TVP-VAR model. Although

stochastic volatility makes the estimation difficult because the likelihood function becomes in-

tractable, the model can be estimated using Markov chain Monte Carlo (MCMC) methods in

the context of a Bayesian inference.

To illustrate the estimation procedure of the TVP-VAR model, this paper begins by re-

viewing an estimation algorithm for a time-varying parameter (TVP) regression model with

stochastic volatility, which is a univariate case of the TVP-VAR model. Then the paper extends

the estimation algorithm to the multivariate case. The paper also provides simulation exercises

of the TVP regression model to examine its estimation performance against the possibility of

structural changes using simulated data. Such simulation exercises show the important role of

stochastic volatility in improving the estimation performance.1

Regarding the empirical application of the TVP-VAR model, this paper provides empirical

illustrations using Japanese macroeconomic data. The estimation results for standard three-

1In that regard, the estimation performance of the TVP-VAR model differ significantly, depending on
whether to incorporate the stochastic volatility or not. Thus, we use the expression “TVP-VAR model with
stochastic volatility,” if the inclusion of the stochastic volatility is needed to be emphasized. But, otherwise, we
use just “TVP-VAR model” for simplicity.
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variable models reveal the time-varying structure of the Japanese economy and Bank of Japan’s

monetary policy from 1977 to 2007. During the three decades of the sample period, the

Japanese economy shows significantly different macroeconomic performance, thus implying the

possibility of important structural changes in the economy over time. The time-varying impulse

responses show remarkable changes of the relations between the macroeconomic variables.

The paper is organized as follows. In Section 2, the estimation methodology of the TVP

regression model is developed. Section 3 illustrates the simulation study of the TVP regression

model focusing on stochastic volatility. In Section 4, the model specification, the estimation

scheme and the literature survey of the TVP-VAR model are provided. Section 5 presents

the empirical results of the TVP-VAR model for Japanese macroeconomic variables. Finally,

Section 6 concludes the paper.

2 TVP regression model with stochastic volatility

This section explains the basic estimation methodology of the TVP-VAR model by reviewing

an estimation algorithm for a univariate TVP regression model with stochastic volatility.

2.1 Model

Consider the TVP regression model:

(Regression)

yt = x′
tβ + z′tαt + εt, εt ∼ N(0, σ2

t ), t = 1, . . . , n, (1)

(Time-varying coefficients)

αt+1 = αt + ut, ut ∼ N(0, Σ), t = 0, . . . , n − 1, (2)

(Stochastic volatility) σ2
t = γ exp(ht),

ht+1 = φht + ηt, ηt ∼ N(0, σ2
η), t = 0, . . . , n − 1, (3)

where yt is a scalar of response; xt and zt are (k×1) and (p×1) vectors of covariates respectively;

β is a (k × 1) vector of constant coefficients; αt is a (p× 1) vector of time-varying coefficients;

and ht is stochastic volatility. We assume that α0 = 0, u0 ∼ N(0, Σ0), γ > 0, and h0 = 0.

Equation (1) has two parts of covariates; one corresponds to the constant coefficients (β)

and the other to the time-varying coefficients (αt). The effects of xt on yt are assumed to be
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time-invariant, while the regression relations of zt to yt are assumed to change over time.

The time-varying coefficients αt are formulated to follow the first-order random walk process

in equation (2). It allows both temporary and permanent shifts in the coefficients. The drifting

coefficient is meant to capture a possible non-linearity, such as a gradual change or a structural

break. In practice, this assumption implies a possibility that the time-varying coefficients

capture not only the true movement but also some spurious movements, because the αt can

freely move under the random-walk assumption. In other words, there is a risk for the time-

varying coefficients to overfit the data if the relations of zt and yt are obscure. To avoid such

a situation, it might be better to assume a stationarity for the time-varying coefficients. For

example, each coefficient can be modeled to follow an AR(1) process where the absolute value

of the persistence parameter is less than one. However, in this formulation, a structural change

or a permanent shift of the coefficient would be difficult to estimate even if it exists. After

all, it is important to choose the model specification of the time-varying coefficients which is

considered to be suitable to data of interest, economic theories and the purpose of analysis

(see e.g., West and Harrison (1997)).

The disturbance of the regression, denoted by εt, follows the normal distribution with the

time-varying variance σ2
t . The log-volatility, ht = log σ2

t /γ, is modeled to follow the AR(1)

process in equation (3). Similar to the discussion on the assumption of the time-varying

coefficients above, the process of log-volatility can be modeled following both stationary and

non-stationary processes. For the following analysis in this section, we assume that |φ| < 1 and

the initial condition is set based on the stationary distribution as η0 ∼ N(0, σ2
η/(1−φ2)). In the

case of φ = 1, the log-volatility follows the random walk process. The estimation algorithm for

the random-walk case requires only a slight modification for the algorithm developed below.2

We can consider reduced models in the class of the TVP regression model. If the regression

has only constant coefficients (i.e., z′tαt ≡ 0), the model reduces to a standard (constant-

parameter) linear regression model. If we assume that σ2
t = σ2, for t = 1, . . . , n, the model

forms the TVP regression model with the constant variance.

2The estimation algorithm in the case of φ = 1 is provided in the appendix of Nakajima and Teranishi (2009).
See also Sekine (2006), Sekine and Teranishi (2008) for investigation of the macroeconomic issues using the TVP
regression model with the random-walk stochastic volatility.
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2.2 Estimation methodology

2.2.1 State space model

Regarding αt and ht as state variables, TVP regression forms the state space model. The

state space model has been well studied in many fields (see e.g., Harvey (1993), Durbin and

Koopman (2002b) for econometric issues). To estimate the state space model, several methods

have been developed. For the TVP regression models, if the variance of disturbance is assumed

to be time-invariant (i.e., time-varying coefficient and constant volatility), the parameters are

easily estimated using the standard Kalman filter for a linear Gaussian state space model (e.g.,

West and Harrison (1997)). Though, if it has stochastic volatility, the maximum likelihood

estimation requires a heavy computational burden to repeat the filtering many times to evaluate

the likelihood function for each set of parameters until we reach the maximum, because the

model forms a non-linear state space model. Therefore, we alternatively take a Bayesian

approach using the MCMC method for a precise and efficient estimation of the TVP regression

model. It also has a great advantage when the model is extended to the TVP-VAR model as

shown later.

2.2.2 Bayesian inference and MCMC sampling method

The MCMC method has become popular in econometrics. In recent years, a considerable

number of works on empirical macroeconomics employed the MCMC method. The MCMC

method is considered in the context of Bayesian inference, and its goal is to assess the joint

posterior distribution of parameters of interest under a certain prior probability density which

the researchers set in advance. Given data, we repeatedly sample a Markov chain whose invari-

ant (stationary) distribution is the posterior distribution. There are many ways to construct

the Markov chain with this property (e.g., Chib and Greenberg (1996), Chib (2001)).3

In the Bayesian inference, we specify the prior density, denoted by π(θ), for a vector of the

unknown parameters θ. Let f(y|θ) denote the likelihood function for data y = {y1, . . . , yn}.
Inference is then based on the posterior distribution, denoted by π(θ|y), which is obtained by

the Bayes’ theorem,

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

.

3Koop (2003) and Lancaster (2003) would be helpful for understanding Bayesian econometrics as a primer.
Geweke (2005), and Gamerman and Lopes (2006) cover more comprehensive theories and practices of the MCMC
method.
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In principle, the prior information concerning θ is updated by observing the data y. The

quantity m(y) =
∫

f(y|θ)π(θ)dθ is called the normalizing constant or marginal distribution. In

the case where the likelihood function or the normalizing constant is intractable, the posterior

distribution does not have a closed form. To overcome this difficulty, many computational

methods are developed for sampling from the posterior distribution. Among them, the MCMC

sampling methods are popular and powerful algorithms which enable us to sample from the

posterior distribution without computing the normalizing constant. The MCMC algorithm

proceeds by sampling recursively the conditional posterior distribution where the most recent

values of the conditioning parameters are used in the simulation.

The Gibbs sampler is one of the well-known MCMC method. Consider a vector of unknown

parameters θ = (θ1, . . . , θp). The procedure is constructed as follows:

1. Choose an arbitrary starting point θ(0) = (θ(0)
1 , . . . , θ

(0)
p ), and set i = 0.

2. Given θ(i) = (θ(i)
1 , . . . , θ

(i)
p ),

(a) generate θ
(i+1)
1 from the conditional posterior distribution π(θ(i+1)

1 |θ(i)
2 , . . . , θ

(i)
p ),

(b) generate θ
(i+1)
2 from π(θ(i+1)

2 |θ(i+1)
1 , θ

(i)
3 , . . . , θ

(i)
p ),

(c) generate θ
(i+1)
3 from π(θ(i+1)

3 |θ(i+1)
1 , θ

(i+1)
2 , θ

(i)
4 , . . . , θ

(i)
p ),

(d) generate θ
(i+1)
4 , . . . , θ

(i+1)
p , in the same way.

3. Set i = i + 1, and go to Step 2.

These draws can be used as the basis for making inferences by appealing to suitable ergodic

theorems for Markov chains.

For the estimation of the TVP regression model, there are several reasons to use the

Bayesian inference and MCMC sampling method. First, the likelihood function is intractable

because the model includes the non-linear state equations of stochastic volatility, which pre-

cludes the maximum likelihood estimation method. Also, we can not assess the normaliz-

ing constant and therefore the posterior distribution analytically. Second, using the MCMC

method, not only the parameters θ ≡ (β,Σ, φ, ση, γ) but also the state variables α = {α1, . . . , αn}
and h = {h1, . . . , hn} are sampled simultaneously, we can make the inference for the state vari-

ables with the uncertainty of the parameters θ. Third, we can estimate the function of the

parameters such as an impulse response function with the uncertainty of the parameters θ

taken into consideration by using the sample drawn through the MCMC procedure.
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2.3 MCMC algorithm for the TVP regression model

For the TVP regression model, specifying the prior density as π(θ), we obtain the posterior

distribution, π(θ, α, h|y).4 There are several ways to implement the MCMC algorithm to

explore this posterior distribution, though we develop the implementation using the following

algorithm:

MCMC algorithm for the TVP regression model

1. Initialize θ, α and h.

2. Sample β | γ, α, h, y.

3. Sample α |β,Σ, γ, h, y.

4. Sample Σ |α.

5. Sample h |β, γ, φ, ση, α, y.

6. Sample φ |ση, h.

7. Sample ση |φ, h.

8. Sample γ |β, α, h, y.

9. Go to 2.

The details of the procedure are illustrated as follows.

Sample β

We specify the prior for β as β ∼ N(β0, B0). We explore the conditional posterior density of

β given by

π(β|γ, α, h, y) ∝ exp
{
−1

2
(β − β0)

′B−1
0 (β − β0)

}
×
{
−
∑n

t=1(yt − x′
tβ − z′tαt)2

2γeht

}

∝ exp
{
−1

2
(β − β̂)′B̂−1(β − β̂)

}
,

4Appendix A.1 provides the functional form of the joint posterior distribution.
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where

B̂ =

(
B−1

0 +
n∑

t=1

xtx
′
t

γeht

)−1

, β̂ = B̂

(
B−1

0 β0 +
n∑

t=1

xtŷt

γeht

)
,

and ŷt = yt − z′tαt, for t = 1, . . . , n. The conditional posterior density is proportional to the

kernel of the normal distribution whose mean and variance are β̂ and B̂, respectively. Then,

we draw a sample as β | γ, α, h, y ∼ N(β̂, B̂).

Sample α

We consider how to sample α from its conditional posterior distribution. Regarding α as the

state variable, the model given by (1) and (2) forms the linear Gaussian state space model.

Given the parameters (β,Σ, γ, h), a primitive way to sample α is to assess the conditional

posterior density of αt given (β,Σ, γ, h, y, αt), where αt is the α excluding αt, i.e., αt =

(α1, . . . , αt−1, αt+1, . . . , αn). This way of sampling is often called as a single-move sampler.

The single-move sampler is quite simple, but inefficient in the sense that the autocorrelation

of the MCMC sample often goes extremely high. For instance, after the αt is sampled given

αt (including αt+1), the αt+1 is sampled given αt+1 (including the αt, which has been just

drawn). The recursive chain depending on both sides of the sampled state variable yields

an undesirable high autocorrelation. If the MCMC sample has a high autocorrelation, the

convergence of the Markov chain is slow and an inference requires considerably many samples.

To reduce the sample autocorrelation for α, we introduce the simulation smoother developed

by de Jong and Shephard (1995), Durbin and Koopman (2002a). It enables us to sample α

simultaneously from the conditional posterior distribution π(α|β,Σ, γ, h, y), which can reduce

the autocorrelation of the MCMC sample.

Following de Jong and Shephard (1995), we show the algorithm of the simulation smoother

on the state space model

yt = Xtβ + Ztαt + Gtut, t = 1, . . . , n,

αt+1 = Ttαt + Htut, t = 0, . . . , n − 1, (4)

where α0 = 0, ut ∼ N(0, I), and GtH
′
t = O. The simulation smoother draws η = (η0, . . . , ηt) ∼

π(η|ω, y), where ηt = Htut, for t = 0, . . . , n, and ω denotes all the parameters in the model.
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We initialize a1 = 0, P1 = H0H
′
0, and recursively run the Kalman filter:

et = yt − Xtβ − Ztat, Dt = ZtPtZ
′
t + GtG

′
t, Kt = TtPtZ

′
tD

−1
t ,

Lt = Tt − KtZt, at+1 = Ttat + Ktet, Pt+1 = TtPtL
′
t + HtH

′
t,

for t = 1, . . . , n. Then, letting rn = Un = 0, and Λt = HtH
′
t, we run the simulation smoother:

Ct = Λt − ΛtUtΛt, ηt = Λtrt + εt, εt ∼ N(0, Ct), Vt = ΛtUtLt,

rt−1 = Z ′
tD

−1
t et + L′

trt − V ′
t C−1

t εt, Ut−1 = Z ′
tD

−1
t Zt + L′

tUtLt + V ′
t C−1

t Vt,

for t = n, n − 1, . . . , 1. For the initial state, we draw η0 = Λ0r0 + ε0, ε0 ∼ N(0, C0) with

C0 = Λ0 − Λ0U0Λ0. Once η is drawn, we can compute αt using the state equation (4),

replacing Htut by ηt.

In the case of the TVP regression model to sample α, the correspondence of the variables

is as follows:

Xtβ = x′
tβ, Zt = z′t, Gt = (

√
γeht/2, 0′p),

Tt = Ip, Ht = (0p, Σ1/2), H0 = (0p, Σ1/2
0 ),

where 0p is a p × 1 zero vector, and Ip is a p × p identity matrix.

Sample Σ

We derive the conditional posterior density of Σ. If we specify the prior as Σ ∼ IW (ν0, Ω−1
0 ),

where IW denotes the inverse-Wishart distribution, we obtain the conditional posterior dis-

tribution for Σ as

π(Σ|α) ∝ |Σ|− ν0+p+1
2 exp

{
−1

2
tr
(
Ω0Σ−1

)}

×
n−1∏
t=1

1
|Σ|1/2

exp
{
−1

2
(αt+1 − αt)′−1(αt+1 − αt)

}

∝ |Σ|− ν̂+p+1
2 exp

{
−1

2
tr
(
Ω̂Σ−1

)}
, (5)
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where

ν̂ = ν0 + n − 1, Ω̂ = Ω0 +
n−1∑
t=1

(αt+1 − αt)(αt+1 − αt)′.

Note that the posterior distribution for Σ depends on only α and (5) forms the kernel of the

inverse-Wishart distribution. Then, we draw sample as Σ |α ∼ IW (ν̂, Ω̂−1).

Sample h

Regarding stochastic volatility h, the equations (1) and (3) form a non-linear and non-Gaussian

state space model. We need more technical methods for sampling h. A simple way of sampling

h is to assess the conditional posterior distribution of ht given (h1, . . . , ht−1, ht+1, . . . , hn) and

other parameters. This method is called a single-move sampler, similarly to sampling α, and

yields an undesirable high autocorrelation in MCMC sample.

There are mainly two efficient methods for sampling stochastic volatility developed in the

literature. One way to sample stochastic volatility is the approach of Kim et al. (1998), called

the mixture sampler. The mixture sampler has been widely used in financial and macroe-

conomics literature (Cogley and Sargent (2005), Primiceri (2005)). The other way is the

multi-move sampler of Shephard and Pitt (1997), modified by Watanabe and Omori (2004).

The idea of the former method is to approximate the non-linear and non-Gaussian state space

model by the normal mixture distribution, converting the original model to the linear Gaus-

sian state space form. Though we draw samples from the posterior distribution based on the

approximated model, its approximation error is small enough to implement the original model,

and can be corrected by reweighting steps, as discussed by Kim et al. (1998), and Omori et al.

(2007). On the other hand, the latter algorithm approaches to the model by drawing samples

from the exact posterior distribution of the original model. Both methods are more efficient to

draw samples of stochastic volatility than a single-move sampler, while we use the latter one

in this paper. The details of the multi-move sampler are illustrated in Appendix A.2.

Sample φ

We write the prior of φ as π(φ), and assume that (φ + 1)/2 ∼ Beta(αφ0
, βφ0

). This beta

distribution is chosen to satisfy the restriction |φ| < 1. The conditional posterior distribution
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of φ is given by

π(φ|ση, h) ∝ π(φ) ×
√

1 − φ2 exp
{
−(1 − φ2)h2

1

2σ2
η

}
× exp

{
−
∑n−1

t=1 (ht+1 − φht)2

2σ2
η

}

∝ π(φ)
√

1 − φ2 × exp

⎧⎨
⎩−
∑n−1

t=2 h2
t

2σ2
η

(
φ −

∑n−1
t=1 htht+1∑n−1

t=2 h2
t

)2
⎫⎬
⎭ .

The conditional posterior density does not form any basic distribution from which we can

easily sample. If the term π(φ)
√

1 − φ2 is omitted, the rest of the term corresponds to a kernel

of the normal distribution. In this case, we use the Metropolis-Hasting (MH) algorithm (e.g.,

Chib and Greenberg (1995)).

The idea of the MH algorithm is as follows. First, we draw samples (which we call can-

didates) from a certain distribution (proposal distribution) that is close to the conditional

posterior distribution we want to sample from. We had better choose the proposal distribution

whose random sample can be easily generated. Next, we accept the candidate as a new sample

with a certain probability. When the candidate is rejected, we use the old (current) sample

we have just drawn in the previous iteration as the new sample. Under certain conditions, the

iterations of these steps produce the sample from the target conditional posterior distribution

(see e.g., Chib and Greenberg (1995)). There are many ways to choose the proposal density,

which often depends on the target conditional posterior distribution.

Specifically, let q(θ∗|θ(i)) denote the probability density function of the proposal given the

current point θ(i), and α(θ0, θ
∗) denote the acceptance rate from the current point θ0 to the

proposal θ∗. The MH algorithm is written as the following algorithm:

1. Choose an arbitrary starting point θ(0), and set i = 0.

2. Generate a candidate θ∗ from the proposal q(θ∗|θ(i)).

3. Accept θ∗ with the probability α(θ(i), θ∗), and set θ(i+1) = θ∗. Otherwise, set θ(i+1) = θ(i).

4. Set i = i + 1, and go to Step 2.

The acceptance rate is given by

α(θ0, θ∗) = min
{

1,
π(θ∗|y)q(θ0|θ∗)
π(θ0|y)q(θ∗|θ0)

}
,

where π(θ|y) denotes the target posterior distribution.
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To sample φ in our model, we first draw a candidate as φ∗ ∼ TN[−1,1](μφ, σ2
φ), where TN

refers to the truncated normal distribution on the domain −1 < φ < 1, and

μφ =
∑n−1

t=1 htht+1∑n−1
t=2 h2

t

, σ2
φ =

σ2
η∑n−1

t=2 h2
t

.

This proposal density is the one excluding the term π(φ)
√

1 − φ2 from the conditional pos-

terior distribution, considered to be close to our target conditional posterior distribution and

truncated for the same domain of the target. Next, we calculate the probability for acceptance.

Let q(φ) denote the probability density function of the proposal and φ0 denote the old sample

(current point) drawn in the previous iteration. The acceptance rate for the candidate φ∗ from

the current point φ0, denoted by α(φ0, φ∗), is given by

α(φ0, φ∗) = min
{

1,
π(φ∗|ση, h)q(φ0)
π(φ0|ση, h)q(φ∗)

}
= min

⎧⎨
⎩1,

π(φ∗)
√

1 − φ∗2

π(φ0)
√

1 − φ2
0

⎫⎬
⎭ .

The acceptance rate is the ratio of the terms omitted from the conditional posterior dis-

tribution. The acceptance step can be implemented by drawing a uniform random number

u ∼ U(0, 1) to accept the candidate φ∗ when u < α(φ0, φ∗).

Sample ση

We assume the prior of ση as σ2
η ∼ IG(v0/2, V0/2), where IG refers to the inverse Gamma

distribution. The conditional posterior distribution for ση is obtained as

π(ση|φ, h) ∝ σ
−(

v0
2

+1)
η exp

(
− V0

2ση

)

× 1
ση

exp
{
−(1 − φ2)h2

1

2σ2
η

}
×

n−1∏
t=1

1
ση

exp
{
−(ht+1 − φht)2

2σ2
η

}

∝ σ
−(

v0+n
2

+1)
η exp

{
−V0 + (1 − φ2)h2

1 +
∑n−1

t=1 (ht+1 − φht)2

2ση

}
.

The conditional posterior distribution forms the kernel of the inverse Gamma distribution.

Thus, we draw samples as σ2
η|φ, h ∼ IG(v̂/2, V̂ /2), where

v̂ = v0 + n, V̂ = V0 + (1 − φ2)h2
1 +

n−1∑
t=1

(ht+1 − φht)2.
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Sample γ

Sampling γ can be implemented in the same way as sampling ση. We set the prior as

γ ∼ IG(γ0/2,W0/2). Then, the conditional posterior distribution for γ is given by γ|h ∼
IG(γ̂/2, Ŵ /2), where

γ̂ = γ0 + n, Ŵ = W0 +
n∑

t=1

(yt − x′
tβ − z′tαt)2/eht .

3 Simulation study

This section carries out simulation exercises of the TVP regression model to examine its es-

timation performance against the possibility of structural changes using simulated data, with

emphasis on the role of stochastic volatility.

3.1 Setup

The performance of the proposed estimation method for the TVP regression model is illus-

trated using simulated data. In this simulation study, we investigate how the parameters

are estimated, and how the assumption of stochastic volatility affects the estimates of other

parameters.

Based on the TVP regression model of equations (1)–(3) with n = 100, k = 2 and p = 2,

we generate {xt}n
t=1 and {zt}n

t=1 as xit ∼ U(−0.5, 0.5), zjt ∼ U(−0.5, 0.5) for i, j = 1, 2,

where xt = (x1t, x2t)′, zt = (z1t, z2t)′, and U(a, b) denotes the uniform distribution on the

domain (a, b). Setting the true parameters as β = (4,−3)′, α1 = (1,−1)′, Σ = diag(0.1, 0.03),

φ = 0.95, ση = 0.7, and γ = 0.1, where diag(·) refers to a diagonal matrix with the diagonal

elements in the arguments, we generate α, h and y recursively on the TVP regression model.

The simulated state variables α and h are plotted in Figure 1. The volatility temporarily goes

high around t = 20.

3.2 Parameter estimates

We estimate the TVP regression model using the simulated data by drawing M = 20,000

samples, after the initial 2,000 samples are discarded by assuming the following prior distribu-
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Figure 1: The simulated state variables α and h (n = 100).

tions:5

β ∼ N(0, 10 × I), Σ ∼ IW (4, 40 × I), α1 ∼ N(0, 10 × I),

φ + 1
2

∼ Beta(20, 1.5), σ2
η ∼ IG(2, 0.02), γ ∼ IG(2, 0.02).

Figure 2 shows the sample autocorrelation function, the sample paths and the posterior den-

sities for the selected parameters. After discarding the samples in the burn-in period (initial

2,000 samples), the sample paths look stable and the sample autocorrelations drop stably,

indicating our sampling method efficiently produces the samples with low autocorrelation.

Table 1 gives the estimates for posterior means, standard deviations, the 95% credible

intervals,6 the convergence diagnostics (CD) of Geweke (1992) and inefficiency factors, which

are computed using the MCMC sample.7 In the estimated result, the null hypothesis of

5The computational results are generated using Ox version 4.02 (Doornik (2006)). All the codes for the
algorithms illustrated in this paper are available at http://sites.google.com/site/jnakajimaweb/program.

6In Bayesian inference, we use “credible intervals” to describe the uncertainty of the parameters, instead of
“confidence intervals” in the frequentist approach. In MCMC analysis, we usually report the 2.5% and 97.5%
quantiles of posterior draws, as taken here.

7To check the convergence of the Markov chain, Geweke (1992) suggests the comparison between the first
n0 draws and the last n1 draws, dropping out the middle draws. The CD statistics is computed by CD =

(x̄0 − x̄1)/
√

σ̂2
0/n0 + σ̂2

1/n1, where x̄j = 1
nj

∑mj+nj−1

i=mj
x(i), x(i) is the i-th draw, and

√
σ̂2

j/nj is the standard

error of x̄j respectively for j = 0, 1. If the sequence of the MCMC sampling is stationary, it converges in
distribution to a standard normal. We set m0 = 1, n0 = 1,000, m1 = 5,001, and n1 = 5,000. The σ̂2

j is

computed using Parzen window with bandwidth, Bm = 500. The inefficiency factor is defined as 1 + 2
∑Bm

s=1 ρs,

13
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Figure 2: Estimation results of the TVP regression model (with stochastic volatility) for the
simulated data. Sample autocorrelations (top), sample paths (middle) and posterior densities
(bottom).

the convergence to the posterior distribution is not rejected for the parameters at the 5%

significance level based on the CD statistics, and the inefficiency factors are quite low except

γ, which indicates an efficient sampling for the parameters and state variables. Even for the

γ, the inefficiency factor is about 100, which implies that we obtain about M/100 = 200

uncorrelated samples. It is considered to be enough for the posterior inference. In addition,

the estimated posterior mean is close to the true value of the parameter, and the 95% credible

intervals include it for each parameter listed in Table 1(i).

3.3 The role of stochastic volatility

To assess the function of stochastic volatility in the TVP regression model, we estimate the

TVP regression model with constant volatility for the same simulated data. Because the

where ρs is the sample autocorrelation at lag s, which is computed to measure how well the MCMC chain mixes
(see e.g., Chib (2001)). It is the ratio of the numerical variance of the posterior sample mean to the variance
of the sample mean from uncorrelated draws. The inverse of the inefficiency factor is also known as relative
numerical efficiency (Geweke (1992)). When the inefficiency factor is equal to m, we need to draw the MCMC
sample m times as many as the uncorrelated sample.
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(i) TVP regression model with stochastic volatility
Parameter True Mean Stdev. 95% interval CD Inefficiency

β1 4.0 4.0155 0.1166 [3.7837, 4.2441] 0.833 2.46
β2 -3.0 -2.8668 0.1371 [-3.1409, -2.6019] 0.909 4.37
Σ11 0.1 0.0440 0.0303 [0.0096, 0.1221] 0.144 38.02
Σ22 0.03 0.0201 0.0168 [0.0043, 0.0656] 0.217 57.05
φ 0.95 0.9735 0.0197 [0.9224, 0.9967] 0.895 52.39
ση 0.5 0.4508 0.1084 [0.2808, 0.7057] 0.506 33.55
γ 0.1 0.0445 0.0511 [0.0052, 0.1865] 0.908 116.44

(ii) TVP regression model with constant volatility
Parameter True Mean Stdev. 95% interval CD Inefficiency

β1 4.0 4.2373 0.3118 [3.6256, 4.8447] 0.472 1.03
β2 -3.0 -2.7760 0.3369 [-3.4188, -2.1054] 0.398 1.52
Σ11 0.1 0.0173 0.0206 [0.0029, 0.0689] 0.533 68.50
Σ22 0.03 0.0123 0.0133 [0.0025, 0.0444] 0.136 70.39
σ — 0.9451 0.0688 [0.8215, 1.0922] 0.456 1.87

Table 1: Estimation results of the TVP regression model for the simulated data with (i)
stochastic volatility and (ii) constant volatility. The true model is stochastic volatility.

true specification is stochastic volatility, we investigate how the estimation result changes by

the mis-specification. As mentioned in Section 2.1, constant volatility is specified by σ2
t =

σ2, for t = 1, . . . , n. If we assume the prior as σ2 ∼ IG(s0/2, S0/2), then the conditional

posterior distribution of σ is given by σ2|β, α, y ∼ IG(ŝ/2, Ŝ/2), where ŝ = s0 + n, and

Ŝ = S0 +
∑n

t=1(yt − x′
tβ − z′tαt)2. For the MCMC algorithm for the TVP regression model,

Steps 5–8 are replaced by the step of sampling σ for constant volatility.

In the simulation study, the prior σ2 ∼ IG(2, 0.02) is additionally assumed, and the esti-

mation procedure is the same as the TVP regression model with stochastic volatility discussed

above. Table 1(ii) reports the estimation results of the TVP regression model with constant

volatility for the simulated data. The standard deviations of (β1, β2) are evidently wider than

the stochastic volatility model, and the posterior means are slightly apart from the true value.

The posterior means of (Σ11, Σ22) are estimated lower than the stochastic volatility model.

We check how the time-varying coefficients are estimated. In addition to the above two

models, the constant coefficient and constant volatility model is estimated. The posterior

estimates of α are plotted in Figure 3. Figure 3(i) clearly shows that the constant coefficient

model is unable to capture the time variation of the coefficients, and the posterior mean is

estimated around the averaged level of time-varying coefficients over time. Figure 3(ii) plots

the estimates based on the same time-invariant model with structural breaks. To detect a
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Figure 3: Estimation results of α on the TVP regression model for the simulated data. True
value (solid line), posterior mean (bold) and 95% credible intervals (dashed). The true model
is the time-varying coefficient and stochastic volatility (iv).

possible break, the CUSUM of square test proposed by Brown et al. (1975) is applied to divide

the sample period into three parts (t = 1–19, 20–81, 82–100). Then, the constant coefficient

and constant volatility model is estimated for each subsample period.8 In the first and second

subsample periods, the posterior 95% credible intervals are primarily wide due to the high

volatility of the disturbance. In the third subsample period, the posterior means seem to

follow the average level of time-varying coefficient over each subsample period and the 95%

credible intervals are narrower. However, the true states are not traced well.

8Modeling structural changes is one of the central issues of recent econometrics (see e.g., Perron (2006)). As
well as the time-varying coefficients and stochastic volatility, structural changes can assess possible changes in
the underlying data generation process. Whether a true model has a structural break or time-varying parameters
such as the one in this paper, both models are intended to capture it by approximating its behavior in each way.
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Figure 3(iii) exhibits the estimation results for the TVP regression with constant volatility.

The posterior means seem to follow the true states of the time-varying coefficients to some

extent. However, for α1t, some true values do not drop in the 95% credible intervals. On the

other hand, for α2t, the intervals are too wide to capture the movement of the true value. The

constant volatility model neglects the behavior of the volatility change and lacks the accuracy

of estimates for αit. The estimates of the TVP regression with stochastic volatility, which

is the true model, are plotted in Figure 3(iv). The posterior means trace the movement of

the true values and the 95% credible intervals tend to be narrower overall than the constant

volatility model, and almost include the true values.

The simulation analysis here refers to a profound issue of identifying the source of shock.

Focusing on the third case, the estimated constant variance (σ) of the disturbance is smaller

in the first-half period and larger in the second-half than the true state of stochastic volatility

because the constant variance captures the average level of volatility. For the first-half period,

the 95% credible intervals are almost as wide as the stochastic volatility model, although the

posterior mean is less accurate with respect to the distance between the estimated posterior

means and true values, because the shock to the disturbance is estimated smaller than the true

state and the rest of the shock is drawn up to the drifting αit in a mis-specified way. On the

other hand, for the second-half period, the posterior mean of the constant volatility model is

relatively accurate compared to the first-half period, but the 95% credible intervals are wider

than the stochastic volatility model, because the constant volatility is over-estimated and the

vagueness remains in the drifting αit.

3.4 Other models

In addition, other interesting simulations in which the true model is not the TVP regression

form with time-varying coefficient and stochastic volatility are examined. First, data is simu-

lated from the TVP regression model with constant coefficient and stochastic volatility. The

true values are the same as the previous simulation study except α1t = 1 and α2t = −1, for all

t = 1, . . . , n. The TVP regression model with time-varying coefficient and stochastic volatility

is estimated to examine how the time-varying coefficient follows the time-invariant true state.

The estimation results of (α1t, α2t) are shown in Figure 4(i). Though the estimates of the

posterior means are not perfectly time-invariant, they are moving near the true states and the

95% credible intervals include the true value throughout the sample periods.

Second, data is simulated from the TVP regression model with stochastic volatility but the
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Figure 4: Estimation results of α on the TVP regression model for the simulated data. True
value (solid line), posterior mean (bold) and 95% credible intervals (dashed). The True models
are (i) constant coefficient and stochastic volatility, and (ii) Markov-switching coefficient and
stochastic volatility. The TVP regression model with time-varying coefficient and stochastic
volatility is fitted.

time-varying coefficients (α1t, α2t) modeled to have the Markov-switching structural change.

A lot of literature considers the Markov-switching type of time-varying parameters in macroe-

conomic issues. We assume that α1t and α2t have two regimes (α(0)
1t , α

(1)
1t ) = (1,−1) and

(α(0)
2t , α

(1)
2t ) = (−1, 0), respectively. The coefficients (α1t, α2t) switch independently with the

transition probabilities p(αit = α
(j)
it |αi,t−1 = α

(j)
i,t−1) = 0.98, for i = 1, 2 and j = 0, 1. The TVP

regression model with time-varying coefficient (of the original form) and stochastic volatility is

estimated to examine how the time-varying coefficient follows the Markov-switching structural

change. Figure 4(ii) plots the estimation results of the coefficients. The true states of α1t and

α2t have two and one breaks, respectively. For both coefficients, the 95% credible intervals

include the true values. Around the structural breaks, the posterior means of the coefficients

follow the true states to some extent, although their movements would not be so responsive,

especially for α2t. The degree of adjustment to the structural change depends on the size of

the volatility of disturbance in regression. The posterior estimates tend to smooth the true

states of the coefficients.

The simulations in this section are just one case of generated data for each setting. However,

the estimation results show the flexibility and the applicability of the TVP regression models,

which would help us to understand the importance of the time-varying parameters in the

regression models.
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4 Time-varying parameter VAR with stochastic volatility

This section extends the estimation algorithm for a univariate TVP estimation model to a

multivariate TVP-VAR model.

4.1 Model

To introduce the TVP-VAR model, we begin with a basic structural VAR model defined as

Ayt = F1yt−1 + · · · + Fsyt−s + ut, t = s + 1, . . . , n, (6)

where yt is an k×1 vector of observed variables, A, F1, . . . , Fs are k×k matrices of coefficients.

The disturbance ut is a k × 1 structural shock and, we assume that ut ∼ N(0, ΣΣ), where

Σ =

⎛
⎜⎜⎜⎜⎜⎝

σ1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 σk

⎞
⎟⎟⎟⎟⎟⎠ .

We specify the simultaneous relations of the structural shock by recursive identification, as-

suming that A is lower-triangular,

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0

a21
. . . . . .

...
...

. . . . . . 0

ak1 · · · ak,k−1 1

⎞
⎟⎟⎟⎟⎟⎠ .

We rewrite model (6) as the following reduced form VAR model:

yt = B1yt−1 + · · · + Bsyt−s + A−1Σεt, εt ∼ N(0, Ik),

where Bi = A−1Fi, for i = 1, . . . , s. Stacking the elements in the rows of the Bi’s to form

β (k2s × 1 vector), and defining Xt = Is ⊗ (y′
t−1, . . . ,y

′
t−s), where ⊗ denotes the Kronecker

product, the model can be written as

yt = Xtβ + A−1Σ εt. (7)
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Now, all parameters in equation (7) are time-invariant. We extend it to the TVP-VAR model

by allowing the parameters to change over time.

Consider the TVP-VAR model stochastic volatility specified by

yt = Xtβt + A−1
t Σt εt, t = s + 1, . . . , n, (8)

where the coefficients βt, and the parameters At, and Σt are all time varying.9 There would

be many ways to model the process for these time-varying parameters.10 Following Primiceri

(2005), let at = (a21, a31, a32, a41, . . . , ak,k−1)′ be a stacked vector of the lower-triangular

elements in At and ht = (h1t, . . . , hkt)′ with hjt = log σ2
jt, for j = 1, . . . , k, t = s+1, . . . , n. We

assume that the parameters in (8) follow a random walk process as follows:

βt+1 = βt + uβt,

at+1 = at + uat,

ht+1 = ht + uht,

⎛
⎜⎜⎜⎜⎜⎝

εt

uβt

uat

uht

⎞
⎟⎟⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎜⎜⎝

I O O O

O Σβ O O

O O Σa O

O O O Σh

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ ,

for t = s + 1, . . . , n, where βs+1 ∼ N(μβ0
, Σβ0

), as+1 ∼ N(μa0
, Σa0) and hs+1 ∼ N(μh0

, Σh0).

Several remarks are required for the specification of the TVP-VAR model. First, the

assumption of a lower-triangular matrix for At is recursive identification for the VAR system.

This specification is simple and widely used, although an estimation of structural models may

require a more complicated identification to extract implications for the economic structure,

as pointed out by Christiano et al. (1999) and other studies. In this paper, the estimation

algorithm is explained in the model with recursive identification for simplicity, although the

estimation procedure is applicable for the model with non-recursive identification by a slight

modification of the variable in the MCMC algorithm.

Second, the parameters are not assumed to follow a stationary process such as AR(1), but

the random walk process. As mentioned before, because the TVP-VAR model has a number

of parameters to estimate, we had better decrease the number of parameters by assuming the

random walk process for the innovation of parameters. Most of studies that use the TVP-

VAR model assume the random walk process for parameters. Note that the extension of the

estimation algorithm to the case of stationary process is straightforward.

9Time-varying intercepts are incorporated in some literature on the TVP-VAR models. This case requires
only the modifiction of defining Xt := Is ⊗ (1,y′

t−1, . . . ,y
′
t−s).

10Hereafter, we use the “TVP-VAR model” to indicate that model with stochastic volatility for simplicity.
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Third, the variance and covariance structure for the innovations of the time-varying pa-

rameters are governed by the parameters, Σβ , Σa and Σh. Most of the articles assume that

Σa is a diagonal matrix. In this paper, we further assume that Σh is also a diagonal matrix

for simplicity. The experience of several estimations indicate that this diagonal assumption for

Σh is not sensitive for the results, compared to the non-diagonal assumption.

Fourth, when the TVP-VAR model is implemented in the Bayesian inference, the priors

should be carefully chosen because the TVP-VAR model has many state variables and their

process is modeled as a non-stationary random walk process. The TVP-VAR model is so

flexible that the state variables can capture both gradual and sudden changes of the underlying

economic structure. On the other hand, allowing time variation in every parameter in the

VAR model may cause an over-identification problem. As mentioned by Primiceri (2005), the

tight prior for the covariance matrix of the disturbance in the random walk process would

avoid the implausible behaviors of the time-varying parameters. The time-varying coefficient

(β = (βs+1, . . . ,βn)) would require a tighter prior than the simultaneous relations (a =

(as+1, . . . ,an)) and the volatility (h = (hs+1, . . . ,hn)) of the structural shock for the variance

of the disturbance in their time-varying process. The structural shock we consider in the model

unexpectedly hits the economic system and its size would more widely fluctuate over time than

the possible change of the autoregressive system of the economic variables specified by VAR

coefficients. In most of the related literature, a tighter prior is set for Σβ and a rather diffuse

prior for Σa and Σh. A prior sensitivity analysis would be necessary to check the robustness

of the empirical result with respect to the prior tightness.

Finally, the prior of the initial state of the time-varying parameters is specified. When the

time series model is a stationary process, we often assume the initial state following a stationary

distribution of the process (for instance, h1 ∼ N(0, σ2
η/(1−φ2)) in the TVP regression model).

However, our time-varying parameters are random walks; thus, we specify a certain prior for

βs+1, as+1, and hs+1. We would have two ways to set the prior. First, following Primiceri

(2005), we set a prior of normal distribution whose mean and variance chosen based on the

estimates of a constant parameter VAR model computed using the pre-sample period. It is

reasonable to use the economic structure estimated from the pre-sample period up to the initial

period of the main sample data. Second, we can set a reasonably flat prior for the initial state

from the standpoint that we have no information about the initial state a priori.11

11Koop and Korobilis (2010) provide a comprehensive discussion on the methodology for the TVP-VAR model
including the issues about the prior specifications.
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4.2 Estimation methodology

The estimation procedure for the TVP-VAR model is illustrated by extending several parts

of the algorithm for the TVP regression model. Let y = {yt}n
t=1, and ω = (Σβ , Σa, Σh). We

set the prior probability density as π(ω) for ω. Given the data y, we draw samples from the

posterior distribution, π(β, a,h, ω|y), by the following MCMC algorithm:

1. Initialize β, a, h and ω.

2. Sample β |a,h,Σβ ,y.

3. Sample Σβ |β.

4. Sample a |β,h,Σa,y.

5. Sample Σa |a.

6. Sample h |β,a,Σh,y.

7. Sample Σh |h.

8. Go to 2.

The details of the procedure are illustrated as follows.

Sample β

To sample β from the conditional posterior distribution, the state space model with respect

to βt as the state variable is written as

yt = Xtβt + A−1
t Σtεt, t = s + 1, . . . , n,

βt+1 = βt + uβt, t = s, . . . , n − 1,

where βs = μβ0
, and uβs ∼ N(0,Σβ0

). We run the simulation smoother with the correspon-

dence of the variables to equation (4) is as follows:

Xtβ = 0k, Zt = Xt, Gt = (A−1
t Σt, Okβ

),

Tt = Ikβ
, Ht = (Ok, Σ1/2

β ), H0 = (Ok, Σ1/2
β0

),

where kβ is the number of rows of βt.
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Sample a

To sample a from the conditional posterior distribution, the expression of the state space form

with respect to at is a key to implement the simulation smoother. Specifically,

ŷt = X̂tat + Σtεt, t = s + 1, . . . , n,

at+1 = at + uat, t = s, . . . , n − 1,

where as = μa0
, uas ∼ N(0, Σa0), ŷt = yt − Xtβt, and

X̂t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0

−ŷ1t 0 0 · · · ...

0 −ŷ1t −ŷ2t 0 · · ·
0 0 0 −ŷ1t · · ·
...

. . . 0 · · · 0

0 · · · 0 −ŷ1t · · · −ŷk−1,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for t = s+1, . . . , n. We run the simulation smoother for sampling a with the correspondences:

Xtβ = 0k, Zt = X̂t, Gt = (Σt, Oka),

Tt = Ika , Ht = (Ok, Σ1/2
a ), H0 = (Ok, Σ1/2

a0
),

where ka is the number of rows of at.

Sample h

As for stochastic volatility h, we make the inference for {hjt}n
t=s+1 separately for j (= 1, . . . , k),

because we assume Σh and Σh0 are diagonal matrices. Let y∗it denote the i-th element of Atŷt.

Then, we can write:

y∗it = exp(hit/2)εit, t = s + 1, . . . , n,

hi,t+1 = hit + ηit, t = s, . . . , n − 1,(
εit

ηit

)
∼ N

(
0,

(
1 0

0 v2
i

))
,

23



where ηis ∼ N(0, v2
i0

), and v2
i and v2

i0
are the i-th diagonal elements of Σh and Σh0 , respectively,

and ηit is the i-th element of uht. We sample (hi,s+1, . . . , hin) using the multi-move sampler

developed in Appendix A.2.

Sample ω

Sampling Σβ from its conditional posterior distribution is the same way to sampling Σ in the

TVP regression model. Sampling the diagonal elements of Σa and Σh is also the same way to

sample ση of the TVP regression model. When the prior is the inverse Gamma distribution,

so is the conditional posterior distribution.

4.3 Literature

The econometric analysis using the VAR model was originally developed by Sims (1980). Nu-

merous numbers of studies have been investigated in this context, and it has become a standard

econometric tool of macroeconomics literature (see e.g., Leeper et al. (1996), Christiano et al.

(1999) for more broad literature survey).

Since the late of the 1990s, the time-varying components have been incorporated into

the VAR analysis. A salient analysis using the VAR model with time-varying coefficients was

developed by Cogley and Sargent (2001). They estimate a three-variable VAR model (inflation,

unemployment and nominal short-term interest rates), focusing on the persistence of inflation

and the forecasts of inflation and unemployment for post-war U.S. data. The dynamics of policy

activism is also discussed based on their time-varying VAR model. Among the discussions on

their results, Sims (2001) and Stock (2001) questioned the assumption of the constant variance

(a and h in our notation) for VAR’s structural shock, and were concerned that the results for

the drifting coefficients of Cogley and Sargent (2001) might be exaggerated due to neglecting a

possible variation of the variance.12 Replying to them, Cogley and Sargent (2005) incorporated

stochastic volatility into the VAR model with time-varying coefficients.13

Primiceri (2005) proposes the TVP-VAR model which allows all parameters (β, a, h)

varying over time, and estimate a three-variable VAR model (the same variables as Cogley

12Cogley and Sargent (2005) state “if the world were characterized by constant θ [coefficients of the VAR]
and drifting R [variance of the VAR], and we fit an approximating model with constant R and drifting θ, then
it seems likely that our estimates of θ would drift to compensate for misspecification of R, thus exaggerating
the time variation in θ.”

13Uhlig (1997) originally developed the VAR model with stochastic volatility
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and Sargent (2001)) for the U.S. data.14 The empirical results reveal that the responses of the

policy interest rates to inflation and unemployment exhibit a trend toward more aggressive

behavior in recent decades, and it has a negligible effect on the rest of the economy.

After Primiceri (2005)’s introduction of the TVP-VAR model, several papers have analyzed

time-varying structure of the macroeconomy in specific ways. Benati and Mumtaz (2005)

estimate the TVP-VAR model for the U.K. data by imposing sign restrictions on the impulse

responses to assess the source of “Great Stability” in the U.K. as well as uncertainty for

inflation forecasting (see also Benati (2008)). Baumeister et al. (2008) estimate the TVP-VAR

model for the Euro area data to assess the effects of excess liquidity shocks on macroeconomic

variables. D’Agostino et al. (2008) examine the forecasting performance of the TVP-VAR

model over other standard VAR models. Nakajima et al. (2009, 2010) estimate the TVP-VAR

model for the Japanese macroeconomic data. An increasing number of studies have examined

the TVP-VAR models to provide empirical evidence of the dynamic structure of the economy

(see e.g., Benati and Surico (2008), Mumtaz and Surico (2009), Baumeister and Benati (2010),

Clark and Terry (2010)). Given such previous literature, we will show an empirical application

of the TVP-VAR model to Japanese data, with emphasis on the role of stochastic volatility in

the estimation.

5 Empirical results for the Japanese economy

As mentioned above, this section applies the TVP-VAR model, developed so far, to Japanese

macroeconomic variables, with emphasis on the role of stochastic volatility in the estimation.15

5.1 Data and settings

A three-variable TVP-VAR model is estimated for quarterly data from the period 1977/1Q

to 2007/4Q, thereby examining the time-varying nature of macroeconomic dynamics over the

three decades of the sample period. To that end, two sets of variables are examined: (i) (p, x,

b) and (ii) (p, x, i), where p is the inflation rate; x is the output; b is the medium-term interest

rates; and i is the short-term interest rates.16

14In Cogley and Sargent (2005), the simultaneous relations, a, of the structural shock remains assumed time-
invariant.

15Similar studies for Japanese macroeconomic data are analyzed by Nakajima et al. (2009, 2010). See the
previous section for literature on the empirical studies of the TVP-VAR models using other countries’ data.

16The inflation rate is taken from the CPI (consumer price index, general excluding fresh food, log-difference,
the effects of the increase in the consumption tax removed, and seasonally adjusted). The output gap is a
series of deviations of GDP from its potential level, calculated by the Bank of Japan. The medium-term bond
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The number of the VAR lag is four,17 and we assume that Σβ is a diagonal matrix in this

study for simplicity. Some experiences indicate that this assumption is not sensitive for the

results, compared to the non-diagonal assumption. The following priors are assumed for the

i-th diagonals of the covariance matrices:

(Σβ)−2
i ∼ Gamma(40, 0.02), (Σa)−2

i ∼ Gamma(4, 0.02), (Σh)−2
i ∼ Gamma(4, 0.02).

For the initial state of the time-varying parameter, rather flat priors are set; μβ0
= μa0

=

μh0
= 0, and Σβ0

= Σa0 = Σh0 = 10 × I. To compute the posterior estimates, we draw

M = 10,000 samples after the initial 1,000 samples are discarded. Table 2 and Figure 5 report

the estimation results for selected parameters of the TVP-VAR model for the variable set (p,

x, b). The results show that the MCMC algorithm produces posterior draws efficiently.

Parameter Mean Stdev. 95% interval CD Inefficiency
(Σβ)1 0.0531 0.0123 [0.0341, 0.0824] 0.165 3.97
(Σβ)2 0.0567 0.0129 [0.0361, 0.0866] 0.253 10.25
(Σa)1 0.5575 0.4392 [0.1487, 1.7505] 0.511 45.58
(Σa)2 0.6148 0.5439 [0.1633, 1.9004] 0.383 60.34
(Σh)1 0.4453 0.2452 [0.1302, 1.0847] 0.382 33.64
(Σh)2 0.1300 0.0808 [0.0304, 0.3377] 0.526 43.37

Table 2: Estimation results of selected parameters in the TVP-VAR model for the variable set
(p, x, b). The estimates of Σβ and Σa are multiplied by 100.

5.2 Empirical results

5.2.1 Estimation results for the first set of variables: (p, x, b)

First, the variable set of (p, x, b) is estimated. Figure 6 plots the posterior estimates of

stochastic volatility and the simultaneous relation. The time-series plots consist of the posterior

draws on each date. As for the simultaneous relation, which is specified by the lower triangular

matrix At, the posterior estimates of the free elements in A−1
t , denoted ãit, are plotted. It

interest rates are a yield of 5-year Japanese government bonds. Up to 1988/1Q, the 5-year interest-bearing
bank debenture, and from 1988/2Q, a series of the generic index of Bloomberg is used. The short-term interest
rates are the overnight call rate. Except the output gap, the monthly data is arranged to a quarterly base by
monthly average. For both the interest rates, the (log-scale) difference of the original series from the trend of
HP filter, that is, an interest rate gap from the trend, is computed for the variable of the estimation.

17The marginal likelihood is estimated for different lag length (up to six) and the number of lags are determined
based on the highest marginal likelihood (see Nakajima et al. (2009) for the computation of the marginal
likelihood).
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Figure 5: Estimation results of selected parameters in the TVP-VAR model for the variable
set of (p, x, b). Sample autocorrelations (top), sample paths (middle) and posterior densities
(bottom). The estimates of Σβ and Σa are multiplied by 100.

implies the size of the simultaneous effect of other variables to one unit of structural shock

based on the recursive identification.

Stochastic volatility of inflation (p) exhibits a spike around 1980 due to the second oil shock,

and shows a general downward trend thereafter, with some cyclical ups and downs around this

downward trend. In particular, it remains low and stable during the first half of the 2000s,

when the Japanese economy experiences deflation. Stochastic volatility of output (x) remains

slightly high in the early 1980s and the late 1990s. Nakajima et al. (2009) report that the

estimated stochastic volatility of structural shock for industrial production becomes higher in

the second half of the 1990s and the beginning of the 2000s, compared to the 1980s. However,

stochastic volatility of the output gap in our analysis based on the GDP shows relatively

moderate movements in the 1990s to 2000s. Stochastic volatility of the medium-term interest

rates (b) declines significantly in the mid-1990s, when the Bank of Japan reduces the overnight

interest rates close to zero. It declines further in the late 1990s, and remains very low and

stable in the late 1990s to mid-2000s, when the Bank of Japan carries out the zero interest

rates policy from 1999 to 2000 and the quantitative easing policy from 2001 to 2006.
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(i) Stochastic volatility (ii) Simultaneous relation
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Figure 6: Posterior estimates for (i) stochastic volatility of structural shock, σit = exp(hit/2),
and (ii) simultaneous relation, ãit, for the variable set of (p, x, b). Posterior mean (solid line)
and 95% credible intervals (dotted line).

The time-varying simultaneous relation is one of the characteristics in the TVP-VAR model.

The simultaneous relation of the output to inflation shock (p → x) stays positive, and remains

almost constant over the sample period. By contrast, the simultaneous relations of the interest

rates to inflation shock (p → b) and output shock (x → b) vary over time.

The impulse response is a basic tool to see the macroeconomic dynamics captured by the

estimated VAR system. For a standard VAR model whose parameters are all time-invariant,

the impulse responses are drawn for each set of two variables. By contrast, for the TVP-VAR

model, the impulse responses can be drawn in an additional dimension, i.e., the responses are

computed at all points in time using the estimated time-varying parameters. In that case,

we have several ways to simulate the impulse response based on the parameter estimates of

the TVP-VAR model. Considering the comparability over time, we propose to compute the

impulse responses by fixing an initial shock size equal to the time-series average of stochastic

volatility over the sample period, and using the simultaneous relations at each point in time.

To compute the recursive innovation of the variable, the estimated time-varying coefficients
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are used from the current date to future periods. Around the end of the sample period, the

coefficients are set constant in future periods for convenience. A three-dimensional plot can be

drawn for the time-varying impulse responses, although a time series of impulse responses for

selected horizons or impulse responses for selected periods are often exhibited in the literature.

Figure 7 shows the impulse responses of the constant VAR model and the time-varying

responses for the TVP-VAR model. The latter responses are drawn in a time-series manner

by showing the size of the impulses for one-quarter and one- to three-year horizons over time.

The time-varying nature of the macroeconomic dynamics between the variables is shown in

the impulse responses, and the shape of the impulse response in the constant VAR model is

associated with the average level of the response in the TVP-VAR model to some extent.

The impulse responses of output to a positive inflation shock (εp → x) are estimated as

being insignificantly different from zero using the constant-parameter VAR model, although it

is remarkable that the impulse responses vary significantly over time once using the TVP-VAR

model: the impulse responses stay negative from the 1980s to the early 1990s, and they turn

positive in the mid-1990s. Basic economic theory tells that an inflation shock affects output

negatively in the medium to long term, which is consistent with the negative impulse responses

observed in the first half of the sample period. The positive impulse responses observed in

the second half of the sample period imply the possibility of deflationary spiral, i.e., mutual

reinforcement between deflation and recession. The impulse responses of inflation to a positive

output shock (εx → p) decline rapidly in the early 1980s, and continue to stay around zero

thereafter. That observation can be regarded as empirical evidence of the flattened Phillips

curve. The impulse responses of output to a positive interest rate shock (εb → x) stay negative

in the 1980s, but they become very close to zero in the mid-1990s when nominal short-term

interest rates are close to zero, and have remained around zero since then.

5.2.2 Estimation results for the second set of variables: (p, x, i)

Next, the variable set of (p, x, i) is estimated. Figure 8 plots the results of stochastic volatility

and simultaneous relations. The stochastic volatilities of inflation and output seem to be

similar to the previous analysis and stochastic volatility of short-term interest rates (i) implies

the changing variance of monetary policy shock. Two major hikes in the interest rates volatility

are observed around 1981 and 1986, and the volatility stays quite low from 1995 under virtually

zero-interest-rate circumstances.

Regarding the simultaneous relations, the effects of inflation to output (p → x) and to
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(ii) TVP-VAR model (time-varying impulse responses)
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Figure 7: Impulse responses of (i) constant VAR (top) and (ii) TVP-VAR (bottom) models
for the variable set of (p, x, b). Posterior mean (solid line) and 95% intervals (dotted) for
the constant VAR model. Time-varying responses for one-quarter (dotted), one-year (dashed),
two-year (solid) and three-year (bold) horizons for the TVP-VAR model.
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(i) Stochastic volatility (ii) Simultaneous relation
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Figure 8: Posterior estimates for (i) stochastic volatility of structural shock, σit = exp(hit/2),
and (ii) simultaneous relation, ãit, for the variable set of (p, x, i). Posterior mean (solid line)
and 95% credible intervals (dotted line).

interest rates (p → i) seem clearer than the previous specification. The simultaneous effects

of inflation to the short-term interest rate shock diminish from the mid-1980s. At the same

time, the simultaneous effects of interest rates to output (x → i) become significantly positive

temporarily in the mid-1990s, but decline to zero thereafter. These observations suggest the

possibility that monetary policy responses are constrained by the zero lower bound of nominal

interest rates from the mid-1990s.

Figure 9 shows the impulse responses of estimation results for the variables set of (p,

x, i). The impulse responses between inflation (p) and output (x) are similar to the previous

specification. Regarding the response related to short-term interest rates, the impulse responses

of inflation to a positive short-term interest rate shock (εi → p) differ significantly from the

previous specifications. The price puzzle in the 1980s becomes less evident, but time-series

movements of the impulse responses become more volatile, especially from the mid-1980s.
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(i) Constant VAR model
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(ii) TVP-VAR model (time-varying impulse responses)
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Figure 9: Impulse responses of (i) constant VAR (top) and (ii) TVP-VAR (bottom) models
for the variable set of (p, x, i). Posterior mean (solid line) and 95% intervals (dotted) for
the constant VAR model. Time-varying responses for one-quarter (dotted), one-year (dashed),
two-year (solid) and three-year (bold) horizons for the TVP-VAR model.
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6 Concluding remarks

This paper provided an overview of the empirical methodology of the TVP-VAR model with

stochastic volatility as well as its application to the Japanese data. The simulation exercises of

the TVP regression model revealed the importance of incorporating stochastic volatility into

the TVP regression models. The empirical applications using the Japanese data showed the

time-varying nature of the dynamic relationships between macroeconomic variables.

Some words of caution are in order regarding the empirical application of the TVP-VAR

model to data including extremely low level of interest rates due to the zero lower bound (ZLB)

of nominal interest rates. Nominal interest rates are unable to become negative in the real

world, although the ZLB of nominal interest rates is not assumed explicitly in the standard

specification of the TVP-VAR model, as developed in this paper. Under the ZLB of nominal

interest rates, structural shocks should not be observed on the VAR system. It would be natural

that stochastic volatility of the short-term interest rates is estimated very low in the related

periods and the time-varying impulse response of interest rates to some shocks of economic

variables is equal to zero. However, other impulse responses related to the interest rates in

Figure 9 are not zero but fluctuating for the involved periods in which the short-term interest

rates should never change. To solve this problem, Nakajima (2011) proposes the TVP-VAR

model with the ZLB of nominal interest rates and presents empirical findings using Japanese

economic data.

The technique of the TVP-VAR model has been recently extended to the factor-augmented

VAR (FAVAR, originally proposed by Bernanke et al. (2005)) models. The MCMC algorithm

illustrated in this paper can be straightforwardly applied to the estimation of the TVP-FAVAR

model. Several studies show the empirical evidence of the TVP-FAVAR models (e.g., Korobilis

(2009), Baumeister et al. (2010)). The TVP-VAR model has a great potential as a considerably

flexible toolkit to analyze the evolving structure of the modern economy.
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Appendix

A.1 Joint posterior distribution for TVP regression model

Given data y, we obtain the joint posterior distribution of (θ, α, h) as

π(θ, α, h|y) ∝ π(θ) ×
n∏

t=1

1√
2πγeht/2

exp
{
−(yt − x′

tβ − z′tαt)2

2γeht

}

×
n−1∏
t=1

1
(2π)p/2|Σ|1/2

exp
{
−1

2
(αt+1 − αt)′−1(αt+1 − αt)

}

× 1
(2π)k/2|Σ0|1/2

exp
{
−1

2
(α′

1Σ
−1
0 α1)

}

×
n−1∏
t=1

1√
2πση

exp
{
−(ht+1 − φht)2

2σ2
η

}
×
√

1 − φ2

√
2πση

exp
{
−(1 − φ2)h2

1

2σ2
η

}
.

A.2 Multi-move sampler for TVP regression model

In this paper, the multi-move sampler is applied to draw samples from the conditional posterior

density of stochastic volatility in the TVP regression model. This appendix shows the algorithm

of the multi-move sampler following Shephard and Pitt (1997), Watanabe and Omori (2004).

We rewrite the model as

y∗t = exp(ht/2)et, t = 1, . . . , n,

ht+1 = φht + ηt, t = 0, . . . , n − 1,(
et

ηt

)
∼ N

(
0,

(
1 0

0 σ2
η

))
, t = 1, . . . , n,

where y∗t = (yt − x′
tβ − z′tαt)/

√
γ, h0 = 0, and η0 ∼ N(0, σ2

η/(1− φ2)). For sampling a typical

block (hr, . . . , hr+d) from its joint posterior density, (note that r ≥ 1, d ≥ 1, r + d ≤ n), we

consider the draw of

(ηr−1, . . . , ηr+d−1) ∼ π(ηr−1, . . . , ηr+d−1|ω)

∝
r+d∏
t=r

1
eht/2

exp
(
− y∗2t

2eht

)
×

r+d−1∏
t=r−1

f(ηt) × f(hr+d), (9)
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where

f(ηt) =

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−(1 − φ2)η2

0

2σ2
η

}
(if t = 0)

exp
(
− η2

t

2σ2
η

)
(if t ≥ 1),

f(hr+d) =

⎧⎪⎨
⎪⎩

exp
{
−(hr+d+1 − φhr+d)2

2σ2
η

}
(if r + d < n)

1 (if r + d = n),

and ω = (hr−1, hr+d+1, β, γ, φ, ση, α, y). The posterior draw of (hr, . . . , hr+d) can be obtained

by running the state equation with the draw of (ηr−1, . . . , ηr+d−1) given hr−1.

We sample (ηr−1, . . . , ηr+d−1) from the density (9) using the Acceptance-Rejection MH

(AR-MH) algorithm (see e.g., Tierney (1994), Chib and Greenberg (1995)) with the following

proposal distribution. Our construction of the proposal density begins with the second-order

Taylor expansion of

g(ht) ≡ −ht

2
− y∗2t

2eht
,

around a certain point ĥt, which is discussed later, namely,

g(ht) ≈ g(ĥt) + g′(ĥt)(ht − ĥt) +
1
2
g′′(ĥt)(ht − ĥt)2

∝ 1
2
g′′(ĥt)

{
ht −

(
ĥt − g′(ĥt)

g′′(ĥt)

)}2

.

We have

g′(ĥt) = −1
2

+
y∗2t

2eht
, g′′(ĥt) = − y∗2t

2eht
.

We use the proposal density formed as

q(ηr−1, . . . , ηr+d−1|ω) ∝
r+d∏
t=r

exp
{
−(h∗

t − ht)2

2σ∗2
t

}
×

r+d−1∏
t=r−1

f(ηt),

where

σ∗2
t = − 1

g′′(ĥt)
, h∗

t = ĥt + σ∗2
t g′(ĥt), (10)
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for t = r, . . . , r + d − 1, and t = r + d (when r + d = n). For t = r + d (when r + d < n),

σ∗2
r+d =

1

−g′′(ĥr+d) + φ2/σ2
η

, (11)

h∗
r+d = σ∗2

r+d

{
g′(ĥr+d) − g′′(ĥr+d)ĥr+d + φhr+d+1/σ2

η

}
. (12)

The choice of this proposal density is derived from its correspondence to the state space model

h∗
t = ht + ζt, t = r, . . . , r + d,

ht+1 = φht + ηt, t = r − 1, . . . , r + d − 1, (13)(
ζt

ηt

)
∼ N

(
0,

(
σ∗2

t 0

0 σ2
η

))
, t = r, . . . , r + d,

with ηr−1 ∼ N(0, σ2
η), when r ≥ 2, and η0 ∼ N(0, σ2

η/(1−φ2)). Given ω, we draw a candidate

point of (ηr−1, . . . , ηr+d−1) for the AR-MH algorithm by running the simulation smoother over

the state-space representation (13).

Now we come to find (ĥr, . . . , ĥr+d) which is desirable to be near the mode of the posterior

density for an efficient sampling. We loop the following steps several times enough to reach

near the mode:

1. Initialize (ĥr, . . . , ĥr+d).

2. Compute (h∗
r , . . . , h

∗
r+d), (σ2∗

r , . . . , σ2∗
r+d) by (10) and (12).

3. Run the moment smoother using the current (h∗
r , . . . , h

∗
r+d), (σ2∗

r , . . . , σ2∗
r+d) on (13) and

obtain ĥ∗
t ≡ E(ht|ω) for t = r, . . . , r + d.

4. Replace (ĥr, . . . , ĥr+d) by (ĥ∗
r , . . . , ĥ

∗
r+d).

5. Go to 2.

Note that the E(ht|ω) is the product in the simulation smoother as Λtrt with εt = 0. We

divide (h1, . . . , hn) into K + 1 blocks, say, (hki−1+1, . . . , hki) for i = 1, . . . , K + 1 with k0 = 0

and kK+1 = n, and sample each block recursively. One remark should be made about the

determination of (k1, . . . , kK). The method called stochastic knots (Shephard and Pitt (1997))

proposes ki = int[n(i + Ui)/(K + 2)], for i = 1, . . . , K, where Ui is a random sample from the

uniform distribution U [0, 1]. We randomly choose (k1, . . . , kK) for every iteration of MCMC

sampling for a flexible draw of (h1, . . . , hn).
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