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1 Introduction

Extreme value theory has been applied in various fields, from environmental sciences to

financial econometrics. The salient feature of the extreme value analysis is to assess the ex-

tremal behaviour of random variables. Previous studies often focused on independently and

identically distributed random variables to consider the statistical property of their max-

ima or minima using parametric models (see, e.g., Leadbetter et al. (2004), Coles (2001)).

Under such an independence assumption, it is straightforward to compute the likelihood

function and to obtain the maximum likelihood estimator of unknown model parameters.

In recent decades, dynamic extreme value models have attracted considerable attention

in the literature to investigate time-dependence or structural change of extremes. The ex-

tension to time series of extreme values can be accomplished by assuming time-dependence

for the underlying stochastic state of the extreme value process. The conventional ap-

proach to capture time-dependence is to consider an autoregressive process for the model

parameters of the extreme value distribution using a state space representation. An earlier

example is Smith and Miller (1986), and several extensions have been explored (Gaetan and

Grigoletto (2004), Huerta and Sansó (2007)).

Another approach is to consider the class of max-stable processes (see e.g., Smith

(2003)). The moving maxima process, for instance, is defined as the maximum of the past

latent Fréchet innovations multiplied by weights summing to one. It is a stationary stochas-

tic process with marginal distribution equal to the Fréchet distribution. These processes

have been extended to the maxima of moving maxima process (Deheuvels (1983)) and the

multivariate maxima of moving maxima process (e.g., Smith and Weissman (1996), Zhang

and Smith (2004) and Chamú Morales (2005)). Smith (2003) provides some applications of

these classes for the extremes of financial data.

In this paper, we address a novel estimation methodology for an extreme value model

with time-dependence which is induced by a time-varying latent state variable in a non-

Gaussian state space model. We begin with the generalized extreme value (GEV) distribu-
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tion given by

Pr(Yt ≤ yt) = exp

{
−

(
1 + ξ

yt − µ

ψ

)− 1
ξ

}
, (1)

where ψ > 0 and 1+ ξ(yt−µ)/ψ > 0 which is commonly used for the analysis of maxima or

minima of some larger set of random variables. The subset of the GEV family with ξ = 0,

which is interpreted as the limit of (1) as ξ → 0, is known as the Gumbel or the Type I

extreme value distribution. In the case of µ = 0 and ψ = 1, the distribution of a Gumbel

random variable, αt, is given by

G(x) ≡ Pr(αt ≤ x) = exp(− exp(−x)). (2)

The mean and variance of αt is E(αt) = c0 and Var(αt) = c1 = π2/6, respectively, where

c0 is the Euler constant. If Yt follows the GEV distribution defined by (1) and we further

define

αt ≡ log

{(
1 + ξ

Yt − µ

ψ

) 1
ξ

}
, (3)

then αt follows the Gumbel distribution G defined by (2). This leads to the following

relation between Yt and αt,

Yt = µ + ψ
exp(ξαt)− 1

ξ
, (4)

where αt ∼ G. In this paper, we consider a state space model for extreme values in which

the measurement equation is formed as (4) with an additional idiosyncratic shock as in

Chamú Morales (2005). Regarding αt as a state variable, we model the state equation

either in form of an autoregressive (AR) process or a moving average (MA) process with

the disturbances following the Gumbel distribution.

To the best of our knowledge, this is the first attempt to discuss such a time-dependence

in literature. A conventional approach for the time-varying GEV model is to let the param-

eters in the GEV distribution, which are regarded as state variables, follow a random walk
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process with normal errors (e.g., Gaetan and Grigoletto (2004), Huerta and Sansó (2007)).

However, as shown above, there exists a natural way to incorporate time-dependence into

the underlying state variable with the observation equation satisfying the GEV distribution.

The key feature of the model proposed in this paper is to introduce a latent stochastic pro-

cess where the innovations follow a Gumbel error distribution. A similar model is proposed

by Hughes et al. (2007), however, they develop a linear time series model using an ARMA

representation with innovations following the extreme value distribution.

In principle, a theoretical limit model of an extreme value process is applicable only to

some restricted cases under the presence of temporal dependence. But, as suggested by Coles

(2001), in applications “it is usual to adopt a pragmatic approach of using the standard

extreme models as basic templates that can be enhanced by statistical modeling.” One

justification to motivate the new model proposed in this paper is that its time-dependence

is an approximation to explain the time-varying structure of extreme values underlying the

time series of interest. If a time-dependence is estimated to exist, then the time-dependence

in our model would provide a better approximation to the underlying process than the

basic extreme value model assuming time-independence and would be useful to describe the

dynamics of the time series and its prediction. Our way of modeling time-dependence in

the extreme value model is not ad hoc, but is based on theoretical derivations to the extent

that equation (4) holds. From another point of view, the second term in (4) is a Box-Cox

transformation of exp(αt) which is often considered for non-Gaussian modelling.

Since the time-dependent GEV model takes the form of a nonlinear, non-Gaussian state

space model, it is difficult to implement maximum likelihood estimation of the unknown

parameters. It would be possible, but computationally intensive, to apply particle filtering

to find the ML estimator. Thus, we pursue a Bayesian approach using Markov chain

Monte Carlo (MCMC) method (see, e.g., Chib (2001), Koop (2003), Geweke (2005), and

Gamerman and Lopes (2006)) for efficient estimation of the time-dependent GEV model.

To facilitate MCMC estimation, we exploit the very accurate approximation of the

Gumbel density by a ten-component mixture of normal densities proposed in Frühwirth-

Schnatter and Frühwirth (2007). Introducing for each time t the mixture indicator as

auxiliary variable reduces the non-Gaussian non-linear state space model to a conditionally
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Gaussian non-linear state space model which allows efficient sampling of the states as in

Omori and Watanabe (2008). This approach, called a mixture sampler, is inspired by the

related literature of Kim et al. (1998) and Omori et al. (2007), in which they approximate a

log χ2
1 density by mixture of normal densities in the context of stochastic volatility models.

The rest of paper is organized as follows. Section 2 defines a GEV model where the

state variables follow an AR(1) process and develops an MCMC algorithm for estimation.

In addition, an efficient particle filter is proposed to compute the likelihood function. Fur-

thermore, the model is extended to a threshold model where observations are observed only

when they exceed a certain fixed value. Sections 3 introduces the GEV model where the

state variables follow an MA(1) process and discusses an appropriate MCMC algorithm.

Section 4 illustrates our estimation procedure using simulated data. In Section 5, we ap-

ply our method to extreme returns of daily stock data and provide a posterior predictive

analysis, model comparisons and forecasting performance comparisons. Section 6 concludes.

2 The GEV-AR model

2.1 Model specification

Let y = {y1, . . . , yn} be a sequence of extreme values and G denote the Gumbel distribution

given in (2). We define the GEV model with a first order AR process for the state variable

which we label GEV-AR model as

yt = µ + ψ
exp(ξαt)− 1

ξ
+ εt, εt ∼ N(0, σ2), t = 1, . . . , n, (5)

αt+1 = φαt + ηt, ηt ∼ G, t = 1, . . . , n− 1, (6)

where |φ| < 1. The state variable αt is assumed to follow a stationary AR(1) process driven

by innovations following the Gumbel distribution defined in (6). Furthermore, we introduce

in (5) a measurement error εt which is assumed to follow a normal distribution.

Allowing φ to be different from 0 introduces dependence over time. The distribution of

the time series yt is driven by the time-varying state variable αt which is the weighted sum

of the current innovation ηt−1 and past innovations ηt−j−1, j = 1, . . . , t − 2, weighted by
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φj like for a standard AR model, however, the innovations arise from the Gumbel rather

than the normal distribution. We note that if φ and σ2 both were zero, then {yt}n
t=1

would be a sequence of independently and identically distributed observations from the

GEV distribution defined in (4).

For estimation purposes, we need to specify the distribution of the initial state α1.

Ideally, the distribution of α1 would be the stationary distribution of the process (6). Evi-

dently, the mean and the variance of this distribution are given by c0/(1−φ) and c1/(1−φ2),

respectively, where c0 and c1 are the mean and the variance of the Gumbel distribution.

However, since it is not possible to work out the whole distribution, we approximate the dis-

tribution of α1 by a normal distribution with the same mean and variance as the stationary

distribution, i.e.,

α1 ∼ N(c0/(1− φ), c1/(1− φ2)). (7)

2.2 Bayesian Estimation

The unknown model parameters of the GEV-AR model are equal to ω ≡ (λ, σ2, φ), where

λ = (µ, ψ, ξ)′. For estimation we pursue a Bayesian approach based on assuming prior

independence between λ, σ2 and φ, i.e, π(λ, σ2, φ) = π(λ)π(σ2)π(φ). Concerning σ2, we use

the conditionally conjugate prior σ2 ∼ IG(n0/2, S0/2), where IG denotes the inverse gamma

distribution. No such conditionally conjugate priors exist for λ and φ. Our subsequent

analysis allows complete flexibility concerning the choice of π(λ) and π(φ). In our case

studies we will assume prior independence among all components of ω, with µ and ξ following

a normal, ψ following a Gamma and (φ + 1)/2 following a beta prior distribution.

For practical Bayesian estimation, we use MCMC methods to sample from the posterior

distribution, see, e.g., Chib (2001), Koop (2003), Geweke (2005), and Gamerman and Lopes

(2006) for a recent review of this technique. As common for state space models, we employ

data augmentation by introducing the latent state process α = {αt}n
t=1 as missing data.

Sampling of the latent state process presents a challenge, since the state equation is non-

Gaussian, while the observation equation is non-linear. In the present paper, we use the

idea of auxiliary mixture sampling and approximate the non-linear, non-Gaussian state
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i pi mi v2
i

1 0.00397 5.09 4.5
2 0.0396 3.29 2.02
3 0.168 1.82 1.1
4 0.147 1.24 0.422
5 0.125 0.764 0.198
6 0.101 0.391 0.107
7 0.104 0.0431 0.0778
8 0.116 −0.306 0.0766
9 0.107 −0.673 0.0947
10 0.088 −1.06 0.146

Table 1: Selection of (pi,mi, v
2
i ) by Frühwirth-Schnatter and Frühwirth (2007).

space model (5) and (6) by a very accurate finite mixture of non-linear Gaussian state

space models. This allows to sample the state variables from their posterior distribution

efficiently through the MCMC algorithm.

2.2.1 Auxiliary mixture sampler

The idea of auxiliary mixture sampling has been well developed in the context of stochastic

volatility model by approximating the log χ2
1 density by a finite normal mixture (Kim et al.,

1998; Omori et al., 2007). The mixture normal densities whose parameters do not depend

on other parameters make the MCMC estimation highly efficient for non-Gaussian state

space models. Recently, this idea has been extended to efficient estimation of non-Gaussian

latent variables models like random-effects and state space models for binary, categorical,

multinomial, and count data by approximating the density of the Type I extreme value

(or Gumbel) distribution by a finite normal mixture (Frühwirth-Schnatter and Frühwirth,

2007; Frühwirth-Schnatter and Wagner, 2006; Frühwirth-Schnatter et al., 2009).

Following this work, we approximate the exact probability density function g(ηt) of the

Gumbel distribution underlying the innovations ηt in state equation (6) by a normal mixture

of K components:

g(ηt) = exp(−ηt − e−ηt) ≈ ĝ(ηt) =
K∑

i=1

pifN (ηt|mi, v
2
i ), (8)
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where fN (ηt|mi, v
2
i ) denotes the probability density function of a normal distribution with

mean mi and variance v2
i . Frühwirth-Schnatter and Frühwirth (2007) propose an accurate

mixture approximation based on K = 10 components where the selection of (pi,mi, v
2
i ) for

i = 1, . . . , 10 is reproduced in Table 1.

As a second step of data augmentation we introduce a mixture indicator variable, st ∈
{1, . . . ,K} for t = 1, . . . , n − 1. Conditional on s ≡ {s1, . . . , sn−1}, equations (5) and (6)

form a non-linear Gaussian state space model, where:

αt+1 = mst + φαt + vstut, ut ∼ N(0, 1), t = 1, . . . , n− 1, (9)

yt = µ + ψ
exp(ξαt)− 1

ξ
+ et, εt ∼ N(0, σ2), t = 1, . . . , n, (10)

and α1 follows the normal distribution defined in (7). We implement the following algorithm

to sample from the joint posterior density π(ω, s, α|y).

Algorithm 1: MCMC algorithm for the GEV-AR model

1. Generate (µ, ψ, ξ) |σ2, α, y.

2. Generate σ2 |µ, ψ, ξ, α, y.

3. Generate φ |α.

4. Generate s |φ, α.

5. Generate α |ω, s, y.

Note that in this scheme all model parameters ω are sampled without conditioning on

s. In particular, the conditional posterior distribution of φ is marginalized over s which is

expected to make sampling more efficient. Sampling from the inverted Gamma posterior

σ2 |µ, ψ, ξ, α, y is straightforward, while sampling from (µ, ψ, ξ) |σ2, α, y and φ |α requires

the implementation of a Metropolis-Hastings step. To obtain high acceptance rates, we use

proposal densities based on the mode and the Hessian of the conditional posterior densities.

Details are provided in Appendix A.1.
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Sampling the latent mixture indicator variables s is a standard step in finite mixture

modeling, see e.g. Frühwirth-Schnatter (2006). To sample the latent state process α, we

apply the block sampler developed by Omori and Watanabe (2008) for non-linear Gaussian

state space models. Such blocking is known to produce more efficient draws than a single-

move sampler which samples one state αt at a time given the others states αs (s 6= t)

(Shephard and Pitt, 1997). Within each block a Metropolis-Hastings step is employed

based on normal proposal densities obtained from a Taylor expansion of the non-linear mean

appearing in the observation equation (5). Again, details are provided in Appendix A.1.

2.2.2 Reweighting to correct for the mixture approximation error

The MCMC draws of ω and α obtained by Algorithm 1 are not draws from the exact

posterior distribution π(ω, α|y), but draws from an approximate distribution π̂(ω, α|y) which

is the marginal posterior of the approximate model (9) where the exact transition density

f(αt+1|αt, φ) = g(αt+1 − φαt) is substituted by the approximate density f̂(αt+1|αt, φ) =

ĝ(αt+1 − φαt) given by (8).

Though the normal mixture distribution (8) provides a good approximation to the Gum-

bel distribution, this subsection describes how to correct for the minor approximation error.

Let ωj and αj denote the j-th sample from the approximated model, for j = 1, . . . ,M ,

where M is the number of iteration. To obtain a sample from the exact posterior distribu-

tion π(ω, α|y) we resample the draws from the approximate posterior density with weights

proportional to

wj =
w∗j∑M
i=1 w∗i

, w∗j =
π(ωj , αj |y)
π̂(ωj , αj |y)

=
f(αj |φj)

f̂(αj |φj)
, j = 1, . . . ,M, (11)

where f(α|φ) = f(α1|φ)
∏n−1

t=1 f(αt+1|αt, φ) is given by the product of the exact transition

densities, while f̂(α|φ) = f(α1|φ)
∏n−1

t=1 f̂(αt+1|αt, φ) is given by the product of the ap-

proximate transition densities, i.e., f̂(αt+1|αt, φ) =
∑K

st=1 pstfN (αt+1|φαt + mst , v
2
st

). The

posterior moments are obtained by computing the weighted average of the MCMC draws

(Kim et al., 1998).
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2.3 A new efficient particle filter

In addition to MCMC estimation, we propose a new efficient particle filter method to

compute the likelihood function f(y|ω) for a fixed model parameter ω. This allows to

perform model comparison and to compute goodness-of-fit statistics for model diagnostics,

see Section 5.

The basic idea is to sample from a target posterior distribution recursively with the

help of an importance function that approximates the target density well. For the GEV-

AR model, using the measurement density f(yt|αt, ω) from (5) and the evolution density

f(αt+1|αt, ω) from (6), the associated particle filter is based on

f(αt+1, αt|Yt+1, ω) ∝ f(yt+1|αt+1, ω)f(αt+1|αt, ω)f(αt|Yt, ω),

where Yt = {yj}t
j=1, and particles are drawn from f(αt|Yt, ω) to yield a discrete uniform

approximation f̂(αt|Yt, ω) to f(αt|Yt, ω). The simple particle filter (PF) uses f(αt+1|αt, ω)

as an importance function, but it is known to produce inefficient estimates of the likelihood.

Alternatively, the auxiliary particle filter (APF, Pitt and Shephard (1999)) is often used

as an efficient filter in various fields. However, in the analysis of extreme values, it is pointed

out (e.g., Chamú Morales (2005)) that such a filter often generates particles with almost

zero importance weights for the extreme observations. This is because the APF constructs

an importance function by exploiting the mean or the mode of the prior distribution of the

state αt+1 given αt. Many particles with zero weights result in a poor approximation of the

filtering density and in inaccurate estimates of the likelihood as we shall see in our empirical

studies in Section 5.5. To overcome this difficulty, we propose a simple but efficient particle

filter where we base the importance function directly on the observation yt+1 to approximate

the target density well even when there are extreme values.

First, we take the expectation of the error term in the observation equation and consider

the approximation yt+1 ≈ µ + ψ{exp(ξαt+1)− 1}/ξ. Then define mt+1 to replace αt+1 as

mt+1 ≡ 1
ξ

log
(

1 + ξ
yt+1 − µ

ψ

)

+

≈ αt+1, t = 1, . . . , n− 1, (12)
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where y+ = max(y, 0). Since mt+1 can be considered as the most likely value of the state

αt+1 given yt+1, we use the importance function

g(αt+1, α
i
t|Yt+1, ω) = g(αt+1|yt+1, ω)f̂(αi

t|Yt, ω),

g(αt+1|yt+1, ω) = exp{−(αt+1 −mt+1)} exp{−e−(αt+1−mt+1)}.

Note that this importance density generates αt+1 from a Gumbel distribution with mode

mt+1. Thus we propose the following particle filter:

1. Initialize t = 1, generate αi
1 ∼ N(c0/(1− φ), c1/(1− φ2)), for i = 1, . . . , I.

(a) Compute wi
1 = f(y1|αi

1) and W i
1 = F (y1|αi

1), where F denotes the distribution

function of yt given αt, and save w̄1 = 1
I

∑I
i=1 wi

1, W̄1 = 1
I

∑I
i=1 W i

1.

(b) Set f̂(αi
1|y1, ω) = wi

1/
∑I

j=1 wj
1, i = 1, . . . , I.

2. Generate (αi
t+1, αi

t), i = 1, . . . , I, from the importance function g(αt+1, αt|Yt+1, ω).

(a) Compute

wi
t =

f(yt+1|αi
t+1, ω)f(αi

t+1|αi
t, ω)f̂(αi

t|Yt, ω)
g(αi

t+1, α
i
t|Yt+1, ω)

=
f(yt+1|αi

t+1, ω)f̂(αi
t+1|αi

t, ω)
g(αi

t+1|yt+1, ω)
,

W i
t =

F (yt+1|αi
t+1, ω)f(αi

t+1|αi
t, ω)

g(αi
t+1|yt+1, ω)

, i = 1, . . . , I,

and save w̄t = 1
I

∑I
i=1 wi

t, W̄t = 1
I

∑I
i=1 W i

t .

(b) Set f̂(αi
t+1|Yt+1, ω) = wi

t/
∑I

j=1 wj
t , i = 1, . . . , I.

3. Increase t by 1 and go to 2

It can be shown that as I → ∞, w̄t+1
p→ f(yt+1|Yt, ω) and W̄t+1

p→ F (yt+1|Yt, ω), then it

follows that
∑n

t=1 log w̄t
p→ ∑n

t=1 log f(yt|Yt−1, ω).

In Section 5.5, we show that our proposed filter outperforms other filters, where we

also consider the modified APF (MPF) similar to the filter proposed by Chamú Morales

(2005) in the context of moving maxima processes. It implements an APF for the usual

observation yt+1 less than a threshold, say, 95th percentile of yt’s. But, for the extreme
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observation yt+1 which exceeds the threshold, it uses the importance function based on a

mixture distribution, q(αt+1|yt+1, αt, ω) = 0.95g(αt+1|αt+1 > ut+1, ω)+ 0.05f(αt+1|αt, ω),

where g(αt+1|αt+1 > ut+1, ω) is the truncated Gumbel density with location φαt. The

truncation point ut+1 is chosen so that mt+1 is equal to a median of the truncated Gumbel

distribution.

2.4 Extension to a threshold model

Since the GEV model is intended to describe the distribution of extreme observations, it

is sometimes applied only to those extremes which exceed a high threshold (see e.g., Coles

(2001)). As an extension of the time-dependent GEV model, we consider the threshold

model only for the extremes that exceed a certain fixed value. Let δ denote the threshold

and ỹt be a censored state variable. We assume that an extreme value, yt, is observed only

when ỹt ≥ δ holds. In the GEV-AR model, we modify the observation equation in the

following way:

yt =





ỹt, if ỹt ≥ δ,

N.A., if ỹt < δ,

ỹt = µ + ψ
exp(ξαt)− 1

ξ
+ εt, εt ∼ N(0, σ2), t = 1, . . . , n.

The extension of the MCMC algorithm discussed in Section 2.2 to the threshold model is

straightforward. We only need to sample the auxiliary variable ỹt for all time points t where

yt < δ. The conditional posterior distribution of ỹt reads:

ỹt |ω, α ∼ TN(−∞, δ)

(
µ + ψ

exp(ξαt)− 1
ξ

, σ2

)
,

where TN(−∞, δ) denotes a truncated normal distribution defined over the domain (−∞, δ).

This additional step is also applicable to other time-dependent GEV models which we shall

consider in the following section.

Several works deal with the uncertainty of choosing the threshold δ within a Bayesian

inference (e.g., Tancredi et al. (2006)). However, since our main focus is capturing the
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time-dependence in an extreme value process, we put this issue aside and assume that δ

has been set to a suitable value in a particular application.

3 The GEV-MA model

3.1 Model specification

In this section, we consider a GEV model with a different kind of dynamic. Instead of the

AR(1) process considered in the previous section, time-dependence is incorporated through

a state variable following a first order MA process. The resulting model, GEV-MA, for

short, combines the measurement equation (5) with the state equation

αt+1 = ηt + θηt−1, ηt ∼ G, t = 1, . . . , n− 1, (13)

where |θ| < 1. The state variables {αt}n
t=1 are assumed to follow an invertible MA(1) process

with Gumbel-distributed innovations. The parameter θ measures the degree of dependence

in the GEV-MA model. As before, the model reduces to iid observations from the GEV

distribution, if both θ and σ2 are zero.

The initial state α1 is assumed to be

α1 = θc0 + η0 + θ
√

c1η
∗
0, η∗0 ∼ N(0, 1), (14)

where we replaced for simplicity the Gumbel random variable η−1 in the representation

α1 = η0 + θη−1 by a normal random variable with the same mean and variance.

3.2 Bayesian Estimation

The unknown model parameters of the GEV-MA model are equal to ω ≡ (λ, σ2, θ). We

pursue a Bayesian approach based on assuming prior independence between λ, σ2 and θ,

and use the same priors for λ and σ2 as in Subsection 2.2. Finally, we assume that (θ+1)/2

follows a Beta prior distribution.

As in Section 2.2, we use the normal mixture distribution defined in (8) to approxi-
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mate the exact probability density function g(ηt) of the Gumbel distribution underlying

the innovations ηt in state equation (13) . Conditional on the mixture indicator variables

s = {st}n−1
t=0 , the initial distribution (14) and the state equation (13) read for t = 1, . . . , n−1:

αt+1 = (mst + vstut) + θ(mst−1 + vst−1ut−1), ut ∼ N(0, 1), (15)

α1 = θc0 + (ms0 + vs0u0) + θ
√

c1η
∗
0, (16)

where u0 ∼ N(0, 1). Evidently, conditional on s, equations (5), (15) and (16) form a

non-linear Gaussian state space model.

To perform MCMC estimation, we introduce the mixture indicator variables s = {st}n−1
t=0

and the disturbances u = {ut}n−1
t=0 as missing data. To draw a sample from the full poste-

rior distribution in the GEV-MA model, π(ω, u, s|y), we implement the following MCMC

algorithm.

Algorithm 2: MCMC algorithm for the GEV-MA model

1. Generate (µ, ψ, ξ) |σ2, θ, u, y.

2. Generate σ2 |µ, ψ, ξ, θ, u, y.

3. Generate θ |µ, ψ, ξ, σ2, s, u, y.

4. Generate s |ω, u, y.

5. Generate u |ω, s, y.

Steps 1 to 3 are implemented as in Subsection 2.2. Note, however, that we do not marginalize

over s, when sampling the parameter θ. Also sampling the latent mixture indicator variables

s in Step 4 is different, because they are no longer independent given ω, u, and y. This

dependence enters through the distribution of αt in the conditionally Gaussian state model

(15), which depends on st−1 and st−2. Hence, st affects not only the distribution of yt+1 as

in Subsection 2.2, but also the distribution of yt+2, and the conditional posterior probability

mass function of st depends on the neighboring values st−1 and st+1. To make the generation
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of st more efficient, the posterior probability mass function of st is marginalized over st+1,

i.e., we sample from π(st|ω, ut−1, ut, ut+1, ut+2, st−1, st+2, yt+1, yt+2).

Finally, we sample in Step 5 the disturbance u to obtain α through the state equations

(15) and (16). Once more, we apply the block sampler developed by Omori and Watanabe

(2008) for non-linear Gaussian state space models to sample u. Details for all sampling step

are provided in Appendix A.2.

4 Illustrative simulation study

In this section we illustrate the proposed algorithm using simulated data. We generate

2,000 observations from the GEV-AR and the GEV-MA model, respectively, with µ = 0.2,

ψ = 0.02, ξ = 0.3, σ = 0.05, φ = 0.6, and θ = 0.3. The following prior distributions are

assumed: µ ∼ N(0, 10), ψ ∼ Gamma(2, 2), ξ ∼ N(0, 4), σ2 ∼ IG(2.5, 0.025), (φ + 1)/2 ∼
Beta(4, 4), (θ + 1)/2 ∼ Beta(4, 4). We draw M = 20,000 samples after the initial 10,000

samples are discarded as the burn-in period. The computational results are generated using

Ox version 4.02 (Doornik (2006)).

(i) GEV-AR model
Parameter True Mean Stdev. 95% interval Inefficiency

µ 0.2 0.1994 0.0025 [0.1942, 0.2041] 33.5
ψ 0.02 0.0184 0.0030 [0.0132, 0.0244] 253.8
ξ 0.3 0.3247 0.0425 [0.2433, 0.4150] 120.3
σ 0.05 0.0506 0.0015 [0.0476, 0.0534] 99.3
φ 0.6 0.5908 0.0336 [0.5283, 0.6543] 270.6

α100 0.15 0.8909 1.0344 [-1.0807, 2.9204] 20.2

(ii) GEV-MA model
Parameter True Mean Stdev. 95% interval Inefficiency

µ 0.2 0.1986 0.0021 [0.1944, 0.2028] 16.7
ψ 0.02 0.0175 0.0034 [0.0111, 0.0246] 34.8
ξ 0.3 0.3186 0.0685 [0.1948, 0.4671] 39.6
σ 0.05 0.0514 0.0018 [0.0477, 0.0547] 33.3
θ 0.3 0.3672 0.0611 [0.2523, 0.4895] 16.0

α100 1.29 0.7029 1.0276 [-1.1152, 2.8223] 1.1

Table 2: Estimation result of the GEV models for simulated data.

Table 2 gives the estimated posterior means, standard deviations, 95% credible intervals
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and inefficiency factors. The inefficiency factor is defined as 1 + 2
∑∞

s=1 ρs where ρs is the

sample autocorrelation at lag s. It measures how well the MCMC chain mixes (see e.g.,

Chib (2001)). It is the ratio of the numerical variance of the posterior sample mean to the

variance of the sample mean from uncorrelated draws. The inverse of inefficiency factor is

also known as relative numerical efficiency (Geweke (1992)). When the inefficiency factor

is equal to m, we need to draw MCMC sample m times as many as uncorrelated sample.

In the following analyses, we compute the inefficiency factor using a bandwidth bw = 1,000.
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Figure 1: GEV-AR model for simulated data. Sample autocorrelations (top), sample paths
(middle) and posterior densities (bottom).
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Figure 2: GEV-MA model for simulated data. Sample autocorrelations (top), sample paths
(middle) and posterior densities (bottom).
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The estimation result shows that all estimated posterior means are close to the true

values and the true values are contained in the 95% credible intervals. Interestingly, the

inefficiency factors of the GEV-MA model are considerably lower than for the GEV-AR

model. We also report the result of sampling the state variable, α100. The inefficiency

factor for α100 is relatively low for both models, which indicates that efficient sampling for

the state variables is enhanced by the multi-move block sampler.

Figures 1 and 2 show the sample autocorrelation functions, the sample paths and the

posterior densities for the GEV-AR and the GEV-MA model, respectively. The sample

paths look stable and the sample autocorrelations drop smoothly.
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Figure 3: Histogram of the log(wj × M) for M = 20,000 iterations for simulated data.
GEV-AR (top) and GEV-MA (bottom) models.

When ξ is close to zero, there could be some confounding between ξ and σ in sampling

procedure, since exp(ξαt) ≈ 1 + ξαt + ξ2/2α2
t and yt ≈ µ + ψαt + ψξ/2α2

t + εt. We checked
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this point using simulated data with ξ = 10−2 and 10−3, but the scatter plot of ξ and σ

exhibited no problematic strong correlations.

As described in Subsection 2.2.2, the difference between draws from the exact and the

approximate posterior density can be evaluated through the weight wj defined in (11). If the

approximation is good, we expect the log weights {log(wj×M)}M
j=1 to follow a distribution

with mean 0 and small variance.

Figure 3 plots the histogram of the log(wj × M) of the GEV-AR and the GEV-MA

models with normal density functions setting the mean and variance equal to the individual

sample mean and sample variance. The log-weights are concentrated around zero with small

variance, which indicates a good approximation of the mixture of normals given in (8).
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Figure 4: Minimum return data for the TOPIX (multiplied by −1, 1990/Jan – 2007/Dec).

5 Application to stock returns data

5.1 Data

In this section, we apply our models to minimum daily stock returns occurring during a

month using the Tokyo Stock Price Index (TOPIX). While there would be many frequencies

to analyze financial market variables, the daily stock return is one of the most popular figures

that market participants much care about. Moreover their extreme values, especially in the
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left tail of the distribution, on monthly basis are of interest for a wide range of applications

in financial econometrics.

The original sample period is from January 4, 1990 to December 28, 2007. We take

log-differences (multiplied by 100) to compute the daily return and pick up the monthly

minima, which leads to a series of 216 observations. For estimation, we use the minima

multiplied by −1. Table 3 summarizes the descriptive statistics and Figure 4 shows the

corresponding time series. The skewness is positive and the kurtosis is larger than that of

a normal distribution, which implies a longer right tail and fatter tails.

Mean Stdev. Skewness Kurtosis Max. Min.
2.289 1.201 1.266 4.703 7.100 0.554

Table 3: Summary statistics for the TOPIX minima data (multiplied by −1, n = 216).

5.2 Estimation results

We estimate three models for the TOPIX minima data; the GEV-AR model, the GEV-MA

model and the simple GEV model where φ = θ = 0, labeled GEV, for short. The prior

specifications and the iteration sizes are the same as in the simulation study in Section 4.

Table 4 reports the estimation result of the various GEV models. Regarding the posterior

means for the parameters in the GEV distribution, µ and ψ become smaller while ξ turns

to be larger in the order of the GEV, GEV-AR and GEV-MA models. Also, the posterior

mean of σ becomes higher in this order, which implies that the idiosyncratic error tends to

be larger. Concerning the parameters capturing time-dependence, the posterior mean of φ

is about 0.2 for the GEV-AR model and the posterior mean of θ is about 0.3 for the GEV-

MA model. For both models, the 95% credible interval of the corresponding parameter does

not contain zero. From these results we find evidence of time-dependence in the minimum

returns and find both autoregressive and moving average effects in the GEV-AR and the

GEV-MA model, respectively.

Regarding the estimates of the parameter ξ, the posterior means are estimated to be

positive and the 95% credible intervals do not contain zero for all models. When we consider

random variables following a certain distribution function F and the limit distribution of
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Parameter GEV GEV-AR GEV-MA
1.6987 (0.0680) 1.5817 (0.0763) 1.5495 (0.0789)

µ [1.5709, 1.8371] [1.4312, 1.7329] [1.3949, 1.7018]
216.8 190.0 141.6

0.8042 (0.0546) 0.7308 (0.0728) 0.6912 (0.0746)
ψ [0.7005, 0.9149] [0.5668, 0.8609] [0.5197, 0.8249]

226.1 186.7 181.6
0.1519 (0.0714) 0.2115 (0.0647) 0.2212 (0.0629)

ξ [0.0328, 0.3237] [0.0938, 0.3470] [0.1100, 0.3557]
422.8 185.3 171.2

0.1052 (0.0324) 0.1443 (0.0648) 0.1714 (0.0754)
σ [0.0605, 0.1849] [0.0657, 0.3334] [0.0678, 0.3436]

66.7 197.3 185.0
0.2263 (0.0629)

φ [0.1152, 0.3652]
87.3

0.3080 (0.0548)
θ [0.2168, 0.4327]

144.5
1.8575 (0.1944) 2.0018 (0.2186) 2.0851 (0.2433)

α100 [1.4929, 2.2971] [1.1659, 2.4905] [1.6242, 2.5965]
338.3 161.3 116.3

The first row: posterior mean and standard deviation in parentheses.

The second row: 95% credible interval in square brackets.

The third row: inefficiency factor.

Table 4: Estimation result of the GEV models for the TOPIX minima data.

the rescaled maximum is Hξ, then we say that the distribution F lies in the maximum

domain of attraction of Hξ. For ξ > 0, the GEV distribution forms the Fréchet distribution

and its domain of attraction includes distributions such as the Student-t, the Pareto and the

inverse gamma distributions. These distributions have heavier tails, so-called power tails.

The estimates of the parameter ξ obtained above imply that the underlying daily return

data would follow such a heavy-tailed distributions, as often pointed out in the financial

literature.

Figures 5 and 6 show the sample autocorrelations, sample paths and posterior densities

of the GEV-AR and the GEV-MA model respectively for the TOPIX minima data. The

MCMC results show that the Markov chains mix well.
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Figure 5: Estimation result of the GEV-AR model for the TOPIX minima data.
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Figure 6: Estimation result of the GEV-MA model for the TOPIX minima data.
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Figure 7: Histogram of the log(wj×M) for M = 20,000 iterations for TOPIX minima data.
GEV-AR (top) and GEV-MA (bottom) models.

Figure 7 plots the histogram of the log(wj ×M) of the GEV-AR and GEV-MA models

for the TOPIX minima data. The log-weights are concentrated around zero with very

small variance, indicating that our approximation based on the mixture of normals is very

accurate.

5.3 Posterior predictive analysis

To check the plausibility of our proposed model, we conducted a posterior predictive analysis

(see, e.g., (Gelman et al., 2003, Chapter 6)). We generated a set of n = 216 new observations

for each MCMC draw and calculated for each data set twelve summary statistics, namely

the sample mean and the sample standard deviation, the median, the lower and the upper

quartile, the minimum and the maximum, the sample autocorrelation function (ACF) for

the lags 1–3, and the sample partial autocorrelation function (PACF) for the lags 2–3.
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Figure 8: Posterior predictive check. The vertical lines denote the values of test quantities
based on the observed data, and the posterior predictive p-value are in parentheses. (*)
indicates a statistical significance at 10% significant level.

Using the posterior predictive distributions of these statistics, we are able to check

whether the statistics calculated for the originally observed data were likely to occur under

the proposed models. The failure to replicate the observed statistics suggests the implausi-

bility of the model.

Figure 8 shows the density plots of these summary statistics for three competing models

where the vertical lines correspond to the actual quantities calculated from the originally

observed data. The p in parenthesis denotes the posterior predictive p-value which is the

area to the right of the actual statistics. All p-values except the first order ACF (ACF-1) for

the GEV and the GEV-MA models assure the plausibility of the model. The small p-values

(less than 0.05) for the ACF-1’s for these two models imply that they are not entirely

replicating the time-dependence present in our data which exhibit substantial first-order

autocorrelation.
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5.4 Model comparison using marginal likelihoods

This section conducts a model comparison based on the marginal likelihood m(y) which is

defined as the integral of the likelihood function with respect to the prior density of the

parameters. When the prior probabilities of the competing models are assumed to be equal,

we choose the model which yields the largest marginal likelihood.

Thus, using marginal likelihoods, we compare the three models of the time-dependent

GEV class and the threshold models introduced in Section 2.4. For the threshold models

we set the threshold δ equal to 1.48 (the 90th percentile of all daily returns multiplied by

−1) and use only the minima (multiplied by −1) that exceed the threshold. The original

observations under the threshold are treated as censored variables in that model.

(i) Standard models (ii) Threshold models
Model GEV GEV-AR GEV-MA GEV GEV-AR GEV-MA
Likelihood ordinate -312.23 -304.39 -306.21 -317.64 -305.95 -308.59
(S.E.) (0.26) (0.32) (0.28) (0.11) (0.57) (0.79)

Prior ordinate -1.86 -3.00 -4.06 -2.15 -2.52 -2.50

Posterior ordinate 9.64 10.70 8.39 9.25 10.00 10.48
(S.E.) (0.29) (0.47) (0.50) (0.63) (0.75) (0.30)

Marginal likelihood -323.75 -318.11 -318.68 -329.05 -318.47 -321.58
(S.E.) (0.39) (0.57) (0.58) (0.64) (0.94) (0.85)

*All values are in natural log scale. Standard errors are in parentheses.

Table 5: Estimated marginal likelihood for the TOPIX minima data.

Following Chib (1995), we estimate the log of marginal likelihood using the identity

log m(y) = log f(y|Θ) + log π(Θ)− log π(Θ|y),

where Θ is a parameter set in the model, f(y|Θ) is the likelihood function, π(Θ) is the prior

probability density and π(Θ|y) is the posterior density. This equality holds for any Θ, but

we usually use the posterior mean of Θ to obtain a stable estimate of m(y). To evaluate

the posterior ordinate π(Θ|y), we use the method of Chib (1995) and Chib and Jeliazkov

(2001) using 10,000 draws obtained through reduced MCMC runs. The likelihood function

is computed by the particle filters developed in Section 5.5 using I = 10, 000 particles. Ten
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replications of the filter are implemented to obtain the standard error of the likelihood.

Table 5 reports the results of marginal likelihood estimation. We refer to the GEV

models without the threshold as the standard models. The likelihood ordinates of the GEV-

AR and GEV-MA models are larger than that of the GEV model. Although the marginal

likelihoods of these models are penalised by the prior or the posterior ordinates due to

additional parameters, they imply that the time-dependent GEV models still outperform

the GEV model.

The marginal likelihoods for the threshold models are smaller than those for the standard

models overall, but, among them, the time-dependent models still outperform the GEV

model. Taking account of the standard errors of the marginal likelihoods, the GEV-AR

model is found to be the best model among the threshold models for the TOPIX returns

minima data.

5.5 Comparison of particle filters

In addition, we compare the particle filters discussed in Section 2.3 using the number of

particles I = 10000, 50000, 100000 and the number of replications M = 10, 100.

In Table 6, for GEV-AR and GEV-MA models, it is clear that our new filter (New)

produces more stable and accurate estimates than the auxiliary particle filter (APF) and

the modified APF (MPF). The APF leads to quite unstable estimates and does not work in

the existence of extreme observations. The simple particle filter (PF) also produces stable

estimates, but their standard errors are much larger than those of our filter.

For the GEV model, estimates are stable for all filters , but the standard errors of our

filter are found to be much smaller than those of MPF and PF. Overall the estimation

results support that our method outperforms the PF, MPF and APF.

5.6 Forecasting performance

In this section, we investigate the forecasting performance of the three competing models.

Consider the one-step ahead predictive density given data y, π(yn+1|y),

π(yn+1|y) =
∫∫∫

f(yn+1|y, ω, s, α)π(ω, s, α|y)dω ds dα.
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GEV-AR GEV-MA
New PF MPF APF New PF MPF APF

R = 10, 000 -304.39 -304.41 -310.66 -341.49 -306.21 -306.63 -321.81 -367.26
M = 10 (0.32) (0.40) (2.67) (3.72) (0.28) (0.32) (2.80) (5.70)
R = 50, 000 -304.28 -304.36 -306.85 -330.23 -306.30 -306.33 -316.61 -351.83
M = 10 (0.09) (0.16) (1.66) (4.99) (0.11) (0.24) (2.83) (4.80)
R = 100, 000 -304.33 -304.50 -305.67 -327.34 -306.27 -306.41 -312.55 -348.08
M = 10 (0.08) (0.27) (1.92) (3.90) (0.05) (0.20) (2.26) (3.26)
R = 100, 000 -304.35 -304.37 -306.41 -327.39 -306.29 -306.32 -313.07 -346.20
M = 100 (0.09) (0.18) (1.76) (4.37) (0.08) (0.18) (2.53) (4.63)

GEV
New PF MPF

R = 10, 000 -312.23 -312.20 -312.47
M = 10 (0.26) (0.83) (0.51)
R = 50, 000 -312.01 -312.14 -312.29
M = 10 (0.12) (0.18) (0.23)
R = 100, 000 -312.10 -312.12 -312.17
M = 10 (0.07) (0.19) (0.11)
R = 100, 000 -312.14 -312.12 -312.14
M = 100 (0.11) (0.20) (0.15)

*All values are in natural log scale. Standard errors are in parentheses. R and M denote the number of

particles and iterations respectively.

Table 6: Estimated log-likelihoods for the TOPIX minima data using four particle filter
methods; New (proposed filter), PF (simple particle filter), APF (Auxiliary particle filter)
and MPF (the modified APF).

A random sample from this predictive distribution is obtained in the MCMC algorithm by

adding one more step to generate yi
n+1 ∼ f(yn+1|y, ωi, si, αi) for the i-th iteration given the

current sample of parameters and latent variables (ωi, si, αi).

To compare the time-dependent extreme value models, we compute the mean and me-

dian of the one-step ahead predictive distribution for fifty observations given a fixed number

of past observations, namely 165, in our stock returns data set. Specifically, we first use the

sample period from January 1990 to September 2003 giving a total of 165 observations to

estimate parameters using MCMC and generate samples from the one-step ahead predictive

distribution for the minimum daily stock return in October 2003. Next we use the sample

period from February 1990 to October 2003 to predict a dependent variable in November

2003. We repeat this rolling estimation until we obtain fifty one-step ahead predicted means

and medians. The number of the MCMC iterations and the prior settings are the same as

those in the preceding estimations.
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Table 7 reports the mean absolute percentage errors (MAPE) and root mean squared

percentage errors (RMSPE), namely,

MAPE =
1
50

50∑

i=1

∣∣∣∣
ŷN+i − yN+i

yN+i

∣∣∣∣ , RMSPE =

{
1
50

50∑

i=1

(
ŷN+i − yN+i

yN+i

)2
}1/2

,

where N = 165, which is the sample size of each subsample, and yN+i, ŷN+i denote the

actual value and the posterior predictive value (mean or median) at period N + i using the

subsample data from period i to N + i− 1.

(i) Predictive mean (ii) Predictive median
Model GEV GEV-AR GEV-MA GEV GEV-AR GEV-MA
MAPE 0.537 0.505 0.495 0.436 0.397 0.406
RMSPE 0.726 0.674 0.676 0.580 0.522 0.539

Table 7: Mean absolute percentage errors (MAPE) and root mean squared percentage errors
(RMSPE) for the posterior estimates of predictive distribution.

The posterior predictive medians provide better forecasts overall, and the time-dependent

GEV models obviously perform better than the simple GEV model. While the GEV model

forecasts at an average level of the extreme values based on the historical data, the time-

dependent models put an emphasis on the recent activity of the extreme values, which

would yield better forecasts in the experiments. Among the competing GEV models, the

posterior predictive median of the GEV-AR model performs better than others based on

these measures.

We also computed the root mean squared errors (RMSE) for both the posterior pre-

dictive mean and median of predictive distribution and found that the posterior predictive

median yield better forecasts, and the GEV-AR model outperforms the other models. How-

ever, since the RMSE’s are heavily influenced by two huge values in {yt}215
t=166 which are

forecasted, we focused on the MAPE and RMSPE to evaluate the forecasting performance.
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6 Conclusion

In the context of extreme value modeling, this paper develops a new approach to model

time-dependence in the GEV distribution using a state space representation where the

state variables either follows an AR or an MA processes with innovations from the Gumbel

distribution. Approximating the Gumbel density by a ten-component mixture of normal

distributions, a mixture sampler is proposed to implement Markov chain Monte Carlo meth-

ods. A simulation study shows that the proposed estimation schemes produce draws from

the posterior distribution of the time-dependent GEV models quite efficiently.

In our application, several competing models in the time-dependent GEV class including

threshold models are fitted to the monthly series of minimum daily returns for the TOPIX

data. The parameter estimates show that the TOPIX minima data exhibit time-dependence.

Model comparison based on marginal likelihoods indicates that the time-dependent GEV

models outperform the simple GEV model and, moreover, that the GEV-AR model pro-

vides the best fit to the TOPIX minima data. In addition, from a forecasting perspective,

predictive distributions are estimated for fifty sub-sample periods. The results of the fore-

casting performance confirm that time-dependent GEV models, especially, the GEV-AR

model, outperform the simple GEV model.

In the present paper we assumed for all time-dependent GEV models for simplicity

that the idiosyncratic error εt appearing in the observation equation (5) follows a normal

distribution. Since we are modeling extreme values, one might expect that the distribution

of the idiosyncratic error is non-normal, skewed or fat-tailed. Our algorithm can be extended

easily to deal with non-normal error disturbance in the observation equation. For instance,

the extension to a skew-t error distribution is straightforward by adding a couple of steps

to our sampling algorithm.

However, the posterior predictive analysis performed in Subsection 5.3 for the TOPIX

minima data indicated that a model based on a normal error distribution seems to be

plausible in the sense that it replicates the characteristics of the observations. Thus we

leave such distributional extensions for future work.

27



A Details on MCMC Estimation

A.1 GEV-AR Model

A.1.1 Generation of the model parameters (µ, ψ, ξ), σ2 and φ

In Step 1 of Algorithm 1, the conditional posterior probability density of λ = (µ, ψ, ξ)′ is

given by π(λ|σ2, α, y) ∝ π(λ)f(y|λ, σ2, α), where f is the conditional likelihood of the obser-

vation equation (5). To sample from the conditional posterior distribution, we implement

a Metropolis-Hastings (MH) algorithm with following normal proposal density. First we

find λ̂ = (µ̂, ψ̂, ξ̂)′ which maximizes (or approximately maximizes) the conditional posterior

density. Next we generate a candidate λ∗ from a normal distribution truncated over the

region R = {ψ : ψ ≤ 0}, λ∗ ∼ TNR(λ∗, Σ∗), where

λ∗ = λ̂ + Σ∗
∂ log π(λ|σ2, α, y)

∂λ

∣∣∣∣
λ=λ̂

, Σ−1
∗ = − ∂ log π(λ|σ2, α, y)

∂λ∂λ′

∣∣∣∣
λ=λ̂

,

and accept it with probability

α(λ, λ∗) = min
{

π(λ∗|σ2, α, y)fN (λ|λ∗, Σ∗)
π(λ|σ2, α, y)fN (λ∗|λ∗, Σ∗) , 1

}
,

where λ denotes the current value and fN (·|µ,Σ) denotes the probability density function

of the normal distribution with mean µ and covariance matrix Σ. If the candidate λ∗ is

rejected, we take λ as a new sample.

In Step 2, we sample from σ2|λ, α, y ∼ IG(n̂/2, Ŝ/2), where n̂ = n0 + n, Ŝ = S0 +
∑n

t=1[yt − µ− ψ{exp(ξαt)− 1}/ξ}]2.
In Step 3, the conditional posterior density of φ is given by

π(φ|α) ∝ π(φ)× π(α1|φ)×
n−1∏

t=1

K∑

j=1

π(αt+1, st = j|φ, αt).

We generate a sample φ using the MH algorithm as in Step 1, where the proposal distribution

is a truncated normal distribution over the region |φ| < 1.
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A.1.2 Generation of s

In Step 4, we simply draw a sample st from its discrete conditional posterior distribution

with a probability mass function,

π(st = j|φ, α) ∝ pj × 1
vj

exp

{
−(αt+1 −mj − φαt)2

2v2
j

}
,

for j = 1, . . . , K, and t = 1, . . . , n− 1.

A.1.3 Sampling α

In Step 5, we implement a block sampler which divides the state variables α into several

blocks and samples each block given other blocks (Shephard and Pitt (1997), Watanabe

and Omori (2004)). To divide (α1, . . . , αn) into K + 1 blocks, say, (αki−1 , . . . , αki−1) for

i = 1, . . . ,K + 1 with k0 = 0 and kK+1 = n, we use the stochastic knots given by ki =

int [n(i + Ui)/(K + 2)], for i = 1, . . . , K, where Ui is a random sample from a uniform

distribution U [0, 1] (Shephard and Pitt (1997)). Selecting (k1, . . . , kK) at random for every

MCMC iteration would make sampling α more efficient.

To implement the multi-move sampler, we consider the non-linear state space model

yt = µ + ψ
exp(ξαt)− 1

ξ
+ σet, t = 1, . . . , n,

αt+1 = wt + φαt + Htut, t = 0, . . . , n− 1,

(et, ut)′ ∼ N(0, I2), t = 1, . . . , n,

wt =





c0

1− φ
, if t = 0,

mst , if t ≥ 1,
Ht =





√
c1

1− φ2
, if t = 0,

vst , if t ≥ 1,

where α0 = 0. Let ϑ =
(
ω, αr−1, αr+d+1, {st}r+d

t=r−1, {yt}r+d
t=r

)
. To sample a block (αr, . . . , αr+d)

from its joint conditional posterior distribution, (note that r ≥ 1, d ≥ 2, r + d ≤ n), we
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draw (ur−1, . . . , ur+d−1) whose conditional posterior probability density is

π(ur−1, . . . , ur+d−1|ϑ) ∝
r+d∏
t=r

exp

[
− 1

2σ2

{
yt − µ− ψ

exp(ξαt)− 1
ξ

}2
]

×
r+d−1∏

t=r−1

exp
(
−u2

t

2

)
× f(αr+d), (17)

where

f(αr+d) =





exp

[
−(αr+d+1 −msr+d

− φαr+d)2

2v2
sr+d

]
, if r + d < n,

1, if r + d = n,

using an MH algorithm. The posterior sample of (αr, . . . , αr+d) can be obtained by run-

ning the state equation using a sample of (ur−1, . . . , ur+d−1) given αr−1. To conduct MH

algorithm, we construct the proposal distribution as follows. For t = r, . . . , r + d − 1 and

r + d = n, we consider a Taylor expansion of the logarithm of the likelihood (excluding the

constant term)

h(αt) ≡ − 1
2σ2

{
yt − µ− ψ

exp(ξαt)− 1
ξ

}2

, (18)

around the conditional mode α̂t. Let h′(α̂t) and h′′(α̂t) denote the first and the second

derivative of h(αt) evaluated at αt = α̂t, respectively. Then,

h(αt) ≈ h(α̂t) + h′(α̂t)(αt − α̂t) +
1
2
h′′(α̂t)(αt − α̂t)2

=
1
2
h′′(α̂t)

{
αt −

(
α̂t − h′(α̂t)

h′′(α̂t)

)}2

+ const.

= −(y∗t − αt)2

2σ∗2t

+ const., (19)

where σ∗2t = −{h′′(α̂t)}−1 and y∗t = α̂t +σ∗2t h′(α̂t) for t = r, . . . , r + d− 1 and t = r + d = n
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and

σ∗2r+d =
1

−h′′(α̂r+d) + φ2/v2
sr+d

,

y∗r+d = σ∗2r+d

{
h′(α̂r+d)− h′′(α̂r+d)α̂r+d + φ(αr+d+1 −msr+d

)/v2
sr+d

}
,

for t = r + d < n. As proposal probability density we use

q(ur−1, . . . , ur+d−1|ϑ) ∝
r+d∏
t=r

exp
{
−(y∗t − αt)2

2σ∗2t

}
×

r+d−1∏

t=r−1

exp
(
−u2

t

2

)
,

which is the posterior density of (ur−1, . . . , ur+d−1) obtained from the state space model

y∗t = αt + σ∗t ζt, t = r, . . . , r + d,

αt+1 = mst + φαt + vstut, t = r − 1, . . . , r + d− 1, (20)

(ζt, ut)′ ∼ N(0, I2), t = r, . . . , r + d.

To generate the candidate (ur−1, . . . , ur+d−1) using q(ur−1, . . . , ur+d−1|ϑ), we run Kalman

filter and the simulation smoother with the current (y∗r , . . . , y∗r+d), (σ2∗
r , . . . , σ2∗

r+d) in (20)

(e.g. de Jong and Shephard (1995), Durbin and Koopman (2002)).

The conditional modes (α̂r, . . . , α̂r+d) can be found by repeating the following steps for

several times until the smoothed state variables converge:

1. Initialize (α̂r, . . . , α̂r+d).

2. Compute (y∗r , . . . , y∗r+d), (σ2∗
r , . . . , σ2∗

r+d).

3. Run Kalman filter and the disturbance smoother (e.g. Koopman (1993)) using the

current points (y∗r , . . . , y∗r+d), (σ2∗
r , . . . , σ2∗

r+d) in (20) and obtain α̂∗t ≡ E(αt|ϑ) for

t = r, . . . , r + d.

4. Replace (α̂r, . . . , α̂r+d) by (α̂∗r , . . . , α̂∗r+d).

5. Go to 2.
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A.2 GEV-MA Model

A.2.1 Generation of s

In Step 4, the conditional posterior probability mass function of st is given by

π(st|ω, ut−1, ut, ut+1, ut+2, st−1, st+2, yt+1, yt+2)

∝
K∑

j=1

π(st, st+1 = j|ω, ut−1, ut, ut+1, ut+2, st−1, st+2, yt+1, yt+2)

∝
K∑

j=1

pst × pj ×
3∏

k=1

exp

[
− 1

2σ2

{
yt+k − µ− ψ

exp(ξαt+k)− 1
ξ

}2
]

,

for t = 1, . . . , n− 3, where

αt+1 = (mst + vstut) + θ(mst−1 + vst−1ut−1),

αt+2 = (mj + vjut+1) + θ(mst + vstut),

αt+3 = (mst+2 + vst+2ut+2) + θ(mj + vjut+1).

Sampling s0, sn−2 and sn−1 from their conditional posterior distribution can be implemented

similarly.

A.2.2 Sampling u

In Step 5, we implement a multi-move sampler by dividing the disturbance vector u into

several blocks. Since the state αt depends on only ut−1 and ut−2 (given s and ω), we

sample (ut−1, . . . , ut+d−1) given ut−2 and ut+d rather than αt−1 and αt+d+1. The state

space representation of the GEV-MA model is given by

yt = µ + ψ
exp(ξzγt)− 1

ξ
+ σet, z = (1, 0), t = 1, . . . , n,

γt+1 = wt + Tγt + Htut, t = 1, . . . , n− 1,

γ1 = w0 + H0


 η∗0

u0


 , γt =


 αt

βt


 ,
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where

wt =


 1

θ


mst , T =


 0 1

0 0


 , Ht =


 vst

θvst


 , t = 1, . . . , n− 1,

w0 =


 θ0c0 + ms0

θms0


 , H0 =


 θ

√
c1 vs0

0 θvs0


 ,

(et, ut)′ ∼ N(0, I2), t = 1, . . . , n, (η∗0, u0)′ ∼ N(0, I2).

The joint conditional posterior density function of (ur−1, . . . , ur+d−1) is

π(ur−1, . . . , ur+d−1|ϑ) ∝
r+d∏
t=r

exp

[
− 1

2σ2

{
yt − µ− ψ

exp(ξzγt)− 1
ξ

}2
]

×
r+d−1∏

t=r−1

exp
(
−u2

t

2

)
× f(yr+d+1|ω, αr+d+1), (21)

where

f(yr+d+1|ω, αr+d+1)

=





exp

[
− 1

2σ2

{
yr+d+1 − µ− ψ

exp(ξαr+d+1)− 1
ξ

}2
]

, if r + d < n,

1, if r + d = n,

(22)

and ϑ =
(
ω, ur−2, ur+d, {st}r+d

t=r−1, {yt}r+d+1
t=r

)
. The αr+d+1 in (22) is obtained from the state

equations. To sample (ur−1, . . . , ur+d−1) from its joint conditional posterior distribution

using the MH algorithm, we construct the proposal distribution based on the approximate

linear Gaussian state space model as in Appendix A.1.3.
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