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1 Introduction

In an important Monte Carlo simulation study, Granger and Newbold (1974)

showed the strong tendency of finding a significant slope coefficient and a relatively

high degree of fit in terms of the R2 when independent random walks are regressed

on one another. Such a form of spurious regressions, or nonsense regressions, was

theoretically examined by Phillips (1986) who provided a full account for the limiting

behavior of the statistics using the Functional Central Limit Theorem (FCLT). The

pair of simulation and theoretical studies made scholars widely aware of the practi-

cal importance of nonstationary time-series econometric analysis and resulted in a

considerable number of works that followed.

Technical trading rules usually refer to a set of trading strategies that involve

the prediction of future asset price movements using the history of its own past

movements. In this paper, we show the possibility of finding a spurious correlation

between signals from technical trading rules and future asset returns when in fact

the asset price follows a random walk process. In such a case, past information

should not have any predictive power but the difference between the short-period

and long-period moving averages of past asset prices can be falsely detected as a

statistically ‘significant’ predictor for a relatively long horizon forecast. Following

the Granger-Newbold-Phillips tradition, we examine this technical analysis version

of spurious regressions first by presenting simulation evidence and then by accounting

for the phenomenon theoretically using the FCLT.We focus on randomwalks as in the

classic spurious regression example á la Granger and Newbold (1974) because an asset

price movement implied by the efficient market hypothesis is typically characterized

by a random walk process. However, our analysis differs from prototypical spurious

regressions in the following two aspects. First, the source of nonstandard limiting

distributions of statistics is not the fact that variables used in the regression are

integrated of order one, denoted by I(1). Instead, it is the fact that the long-horizon

return and the long moving average asymptotically behave as I(1) variables when both

the forecast horizon and the window length of the moving average are approximated

by a nontrivial fraction of the sample size. A similar asymptotic approximation has
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been employed in the literature on the long-run predictability of equity returns (e.g.,

Richardson and Stock, 1989, and Valkanov, 2003). Second, since buy or sell signal

in technical analysis is often constructed from the sign of the deviation of the short

moving average from the long moving average, the theory of nonlinear transformation

of I(1) processes plays an important role in our analysis. We show that using a discrete

signal as a predictor, in place of the continuous regressor, does not only make the

t-statistic divergent but also results in the divergence of the slope estimator.

As Brock, Lakonishok and LeBaron (1992) pointed out, wide-spread use of tech-

nical analysis among dealers in the stock market is evident from technical reports

by major brokerage firms and newsletters by various experts. Regarding the foreign

exchange market, a more direct evidence is available in Taylor and Allen (1992) who

reported that about two thirds of the respondents of a survey among major UK deal-

ers were using some form of moving average rules in their decision making (see also

Cheung and Chinn (2001) for the similar results among dealers located in the US).

According to Brock, Lakonishok and LeBaron (1992), one of the simplest moving

average rules is to initiate buy (sell) signals when the short-period moving average

of the past asset prices crosses the long-period moving average from below (above).

The same buy signal is generated as long as the short moving average is above the

long moving average.1 In this paper, we interpret a trading strategy adopting this

rule as a ‘momentum’ strategy because the traders are expecting buy (sell) signals

to capture the upward (downward) shift in the trend after smoothing out the noise

component from the original series. Similarly, for a ‘contrarian’ trader who exploits

profit opportunities from the return reversals, the buy signal can be generated when

the short moving average is below the long moving average. For both ‘momentum’

and ‘contrarian’ traders, using this simple moving average rule divides all the trading

days into the ones with either buy or sell signals. In practice, the choice between ‘mo-

mentum’ and ‘contrarian’ trading strategies may depend on the investment horizon,

type of assets and market conditions.2

1Brock, Lakonishok and LeBaron (1992), in their analysis, refered to this rule as the variable-
length moving average rule without a band. They also considered the fixed-length moving average
rule which generates signals only at the time of the crossing of the moving averages.

2In the literature on predictability of excess returns, it is not uncommon to find dependence of

2



Regardless of the direction of the signals, practitioners’ strong belief of the prof-

itability, or predictability, based solely on past information is clearly against the

notion of market efficiency. This fact has lead an increasing number of academic

researchers to turn to statistical analysis on technical trading rules. For example,

Brock, Lakonishok and LeBaron (1992) utilized the bootstrap method and provided

statistical support on the validity of using moving average rules. Other studies on

the predictive performance of technical trading rules include: Gençay (1998) who

provided evidence on linear and nonlinear predictability in equity returns; Sullivan,

Timmermann and White (1999) who employed a reality check procedure to reduce

the data snooping bias; and LeBaron (1999) who found evidence of predictability

in foreign exchange rates during the period of central bank intervention. It should

be noted that all of these empirical studies considered the case of a relatively short

investment horizon, typically one to ten days.

For a typical trader, the relative importance of the fundamental analysis in com-

parison to the technical analysis is known to increase as the investment horizon be-

comes longer.3 However, according to Taylor and Allen (1992, Table 3(A)), even at

relatively long horizons of three and six months, 37 and 25 percents of traders, respec-

tively, still consider technical analysis more important than, or at least as important

as, fundamental analysis. In this paper, we focus more on a relatively longer horizon

and point out the pitfalls of using technical trading rules in prediction.

At this point, the following simple example is helpful in understanding the prob-

lem. Consider a hypothetical daily asset price series (in logs) generated from a pure

random walk process and construct a (buy signal) dummy variable which is given

a value of one if the spot price is larger than the long moving average of past 50

days, and zero otherwise.4 Let us here present a simple simulation result using the

the sign of serial correlation on the choice of horizons or lag lengths. For example, see Jegadeesh
(1990) and Cutler, Poterba and Summers (1991).

3Menknoff and Taylor (2007) summarize the world-wide evidence on the dependence of relative
importance between technical and fundamental analyses on the horizon. Commonly used predictors
in the fundamental analysis include price-earning ratios for equity returns, and monetary aggregates
for the foreign exchange rate returns.

4The spot rate corresponds to the short moving average with a window length of one day. Also,
note that the same combination of short and long moving averages appears in Brock, Lakonishok
and LeBaron (1992).
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forecasting regression of future returns at a short horizon of 1 day, as well as at a

long horizon of 50 days, on the dummy variable using 250 observations which roughly

corresponds to the number of trading days in a year. For the forecasting regression

with a short horizon, the t-value turns out to be greater than 1.64 in absolute value

for 11 percent of 10,000 replications, which is very close to the nominal size of 10

percent. In contrast, in the case of a long horizon, on 77 percent of all occasions, the

dummy variable is found to be a significant predictor using the same critical value.

Furthermore, with the one-sided test using a nominal size of 5 percent, the frequency

of finding a significantly positive coefficient, namely a ‘momentum’ result, is 15 per-

cent while that of finding a significantly negative coefficient, namely a ‘contrarian’

result, is as large as 62 percent. Similar but somewhat different results can be ob-

tained with other choices of the forecast horizon and the window length of moving

average, which will be presented in the simulation section.

The remainder of the paper is organized as follows. In the simulation part of this

paper, section 2, we systematically investigate the spurious effects in three selected

types of simple technical trading rules using various combinations of the forecast

horizon and the window length of moving average. In Section 3, we present theoretical

results to account for the simulation evidence provided in Section 2. The results

include the limiting distributions of the slope estimator, its t-statistic and the R2 for

the dummy variable regression. Several possibilities of avoiding spurious regressions

are also discussed. Section 4 provides the empirical applications to stock returns and

foreign exchange rate returns. Some concluding remarks are made in Section 5.

2 Model and Simulation

2.1 Three Variants of Technical Trading Rules

Let zt be the (log of) representative asset price series. In typical technical trading

rules, the buy or sell signal often depends on

TTR
(S,L)
t =MAt(S)−MAt(L)
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where MAt(S) = (1/S)
PS−1

j=0 zt−j and MAt(L) = (1/L)
PL−1

j=0 zt−j are the short-

period and long-period moving averages, respectively, with a restriction 1 ≤ S <<
L. In what follows, we examine three variants of simple moving average rules based

on TTR(S,L)t designed to predict H period ahead (log) returns, yt,H = zt+H − zt.
The first procedure is to regress yt,H on a constant and TTR

(S,L)
t using a sample

of size T , which gives the least squares regression,

yt,H = bαC + bβCTTR(S,L)t + but, t = L, ..., T + L− 1. (1)

Here the regression sample starts at t = L since the first observation of the regressor,

TTR
(S,L)
t , consists of prices over the t = 1, ..., L period. Note that the predictor used

in this technical trading regression is a continuous random variable instead of a dis-

crete indicator. A non-zero slope coefficient estimate bβC implies that the demeaned
future returns are proportional to the demeaned current TTR(S,L)t and we interpret a

positive (negative) coefficient as suggesting the profitability from ‘momentum’ (‘con-

trarian’) strategy. Similar continuous technical trading rules have been considered

in Gençay’s (1998) study on the comparison of linear to nonlinear forecasts. Here,

we evaluate the forecasting performance of the linear regression model by testing

the significance of the predictor using a t-statistic, t(bβC), and also by reporting the
coefficient of determination, denoted by R2C.

The second approach relies on a more commonly used indicator. The regressor

TTR
(S,L)
t in (1) is replaced by its discrete transformation, 1{TTR(S,L)t > 0}, which

is given a value of one if TTR(S,L)t is positive, and zero otherwise. Similar to its

continuous counterpart, we examine the t-statistic, t(bβD), and the coefficient of de-
termination, R2D, from the discrete version of the technical trading regression,

yt,H = bαD + bβD1{TTR(S,L)t > 0}+ bvt, t = L, ..., T + L− 1. (2)

A typical interpretation for the discrete indicator is a buy signal (based on the ‘mo-

mentum’ strategy) if bβD > 0 and a sell signal (based on the ‘contrarian’ strategy) ifbβD < 0 , because bβD represents the average difference in future returns between the
cases of positive and negative TTR(S,L)t .

The third procedure we consider is to test the sign predictability based on the

proportion of correctly predicted signs of future returns using the sign of TTR(S,L)t as
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a predictor. Let n =
PT+L−1

t=L 1{TTR(S,L)t > 0} be the total number of observations
with a positive sign of TTR(S,L)t . Also let n+ =

PT+L−1
t=L 1{yt,H > 0,TTR(S,L)t > 0}

be the number of observations with both signs of yt,H and TTR
(S,L)
t being positive.

Then, the classic proportion t-statistic designed to detect a significant deviation of

the binomial success probability from 0.5 is given by,

t+ =
bp+ − 0.5p
0.52/n

(3)

where bp+ = n+/n is the proportion of successes in predicting correct sign of returns
among the observations with positive TTR(S,L)t . When bp+ is significantly greater (less)
than 50 percent, the ‘momentum’ (‘contrarian’) strategy may be justified. Note that

the proportion bp+ has a useful interpretation as the slope coefficient estimator in the
regression of 1{yt,H > 0} on 1{TTR(S,L)t > 0} with no intercept term. Thus, some
similarity between the characteristics of bp+ and those of bβC and bβD may be expected.
We can also consider an alternative proportion test based only on the observations

with negative TTR(S,L)t ,

t− =
bp− − 0.5p
0.52/m

(4)

where bp− = m−/m,m =PT+L−1
t=L 1{TTR(S,L)t < 0} = T−n andm− =

PT+L−1
t=L 1{yt,H <

0,TTR
(S,L)
t < 0}. Again, if bp− is significantly greater (less) than 50 percent, it can

be interpreted as a ‘momentum’ (‘contrarian’) result.

In what follows, we conduct a Monte Carlo simulation to address potential prob-

lems of applying the above three procedures in finite sample.5

2.2 A Monte Carlo Simulation

We adapt the prototype spurious regression setup á la Granger and Newbold

(1974) in the sense that zt is generated by a random walk process without a drift,

zt = zt−1 + εt, t = 1, 2, ... (5)

5While more complicated variants of moving average rules are likely to be used by professionals
in practice, we believe three procedures represent the core idea behind moving average rules and
thus serve for our purpose of pointing out the possibilities of spurious regressions.
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Here, εt is drawn from an independent N(0,1) population and the initial condition

is given by z0 = 0. The finite sample properties of the statistics from three variants

of technical trading rules are examined using the artificial price series repeatedly

generated from (5) in 10, 000 replications. We evaluate the effect of increasing the

sample size (T ) by reporting the results for T = 100, 500 and 1000. The length of the

short period (S) is simply set to one, thus MAt(S) = zt. We also evaluate the effect

of changing the ratio among the forecast horizon (H), the length of the long period

(L) and the sample size (T ). For this purpose, it is convenient to introduce the fixed

ratio among H : L : T expressed by an additional set of notations h : ` : 1 − h − `
where h > 0, ` > 0 and h+` < 1. In simulation, we consider all possible combinations

of h ∈ {0.1, 0.2, 0.3} and ` ∈ {0.1, 0.2, 0.3}. Using this ratio, both H and L are given

by H = [ h
1−h−`T ] and L = [

`
1−h−`T ], respectively, where [x] is the integer part of x.

6

Table 1 reports the result from the continuous technical trading regression (1).

The first three blocks of columns show the means of bβC and t(bβC), in absolute values,
and R2C , respectively. The fourth and fifth blocks show the frequencies of rejecting

the null hypotheses of non-positive and non-negative slope coefficient, respectively,

using one-sided tests with a 5 percent level of significance. There are a number of

notable features observed in this table.

First, for any combination of h and `, bβC in absolute value shows no tendency of
convergence to zero when the sample size increases. Instead, it seems to have a stable

non-zero mean value which is increasing in both h and `.

Second, in contrast to bβC , for any choice of h and `, t(bβC) in absolute value is
evidently increasing with the sample size. Furthermore, even for the case of T = 100,

h = 0.1 and ` = 0.1, a combination which provides the smallest average t-value

of 2.46, it still implies a very high chance of finding a significant slope coefficient.

Indeed the results from the same combination reported in the fourth and fifth blocks

indicate that, at the 10 percent significance level, the two-sided test rejects the null

hypothesis of a zero slope coefficient for 59 (= 10+ 49) percent of all occasions. The

largest average t-value is obtained in the case of T = 1000, h = 0.3 and ` = 0.3, as a

6Alternatively, both H and L can be considered as fractions of the total number of observation,
T ∗ = T +H + L− 1, in the limit. Namely, H/T ∗ → h and L/T ∗ → ` as T →∞.
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result of t-values not only increasing in T but also in h and `. Its average t-value of

30.4 is twelve times larger than in the case of T = 100, h = 0.1 and ` = 0.1. From

the last two blocks, the frequency of finding a significant slope coefficient for this

combination becomes as large as 97 (= 10 + 87) percent!

Third, for any given values of h and `, the average of R2C seems quite stable

irrespective of the sample size. It also shows that R2C is monotonically increasing in

h and `, from the smallest value of 8 percent with h = 0.1 and ` = 0.1 to the largest

value of around 40 percent with h = 0.3 and ` = 0.3. The average value of 40 percent

implies that a relatively long horizon and a relatively long period in moving average

can produce a very reasonable fit in the technical trading regression.

Fourth, from the comparison of the fourth and fifth blocks of columns, frequen-

cies of (wrongly) finding a significantly negative slope coefficient are much higher

than (wrongly) finding a significantly positive slope coefficient. This implies that, if

regression-based technical trading rules are used, one would find empirical support

for the ‘contrarian’ strategy more often than the ‘momentum’ strategy. In most cases,

the rejection of the non-positive hypothesis is at least five times more frequent than

the rejection of the non-negative one. Indeed, when T = 100, the probability of

finding a significantly positive coefficient in the longest forecasting horizon case of

h = 0.3 is almost identical to the nominal size of 5 percent, and thus the spurious

effect is almost negligible. Another interesting fact is that, while the frequency of

finding a positive coefficient decreases as h increases, the frequency of finding a nega-

tive coefficient is increasing in h. In addition, for smaller values of h, the frequency of

finding a positive coefficient is increasing in ` but the frequency of finding a negative

coefficient is decreasing in `. However, for all cases, when both h and ` are fixed, the

probability of finding the spurious effect increases monotonically as the sample size

increases.

Table 2 reports the result from the discrete technical trading regression (2) using

the same format as the continuous version. Overall, the results are more or less

similar to the continuous case in terms of the dependence on T , h and `, except for

the behavior of the slope estimator bβD. When T is fixed, bβD in absolute value is
increasing in both h and ` as bβC in Table 1. However, unlike bβC from the continuous
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technical trading regression, bβD in absolute value clearly increases as the sample size
T increases. In this sense, there is a stronger spurious effect on the slope coefficient

in the discrete case than in the continuous case. While the average absolute value of

t(bβD) is slightly lower than that of t(bβC) for the same combination of T , h and `, the
ratio of the two does not depend on T , which suggests a common divergence rate of

t-statistics. The coefficient of determination R2D is also slightly smaller than R
2
C but

shows no sign of convergence to zero. The frequency of finding a significantly positive

slope is slightly higher in the discrete case than in the continuous case. Therefore,

the smaller absolute value of t(bβD) is mainly due to the lower frequency of finding a
significantly negative coefficient.

Lastly, Table 3 reports the result of the proportion tests (3) and (4). The upper

panel of the table shows the average absolute value of t+ and frequencies of finding the

‘momentum’ and ‘contrarian’ results based on t+. Here, a ‘momentum’ (‘contrarian’)

result corresponds to a rejection of the hypothesis that the probability of success in

forecasting positive returns is less (greater) than or equal to 50 percent based on

the one-sided t test at the 5 percent significance level. The lower panel of the table

shows the corresponding numbers based on t−. Note that the results using t+ and

t− turn out to be almost indistinguishable. Similar to the regression t-statistics, the

proportion t-statistics in absolute value increase as the sample size T increases. In

addition, they are again monotonically increasing in both h and `. The degree of

dependence of rejection frequency on the change in T , h and `, is also similar to

the regression case. However, compared to the regression results in Tables 1 and 2

(corresponding numbers for the same combination of T , h and `), the frequency of

the ‘momentum’ results is much higher and the frequency of the ‘contrarian’ results

is much lower. For the proportion tests, the probability of ‘momentum’ results is

indeed more than two-thirds of the probability of ‘contrarian’ results for all cases.

This contrasts with previous two regression cases in which ‘contrarian’ results are

dominant.

In summary, our simulation results suggest the presence of spurious effects in fore-

casting future returns with all of the three technical trading rules for many different

combinations of sample size, horizon length and the window length of moving average.
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3 Theory

3.1 Main Result

This section provides the theoretical foundation for the results observed in the

simulation. All the proofs of theorems in this section are given in the Appendix.

We first introduce the assumption of the innovation in the random walk process

(5). Let {Ft}∞1 be a filtration adapted to the sequence {εt}∞1 .

Assumption 1

(a) The adapted stochastic sequence {εt, Ft} is a martingale difference sequence
such that σ2t ≡ E(ε2t ) < ∆ <∞;
(b) E|εt|2+δ < ∆0 <∞ for some δ > 0 and for all t;

(c) σ2 ≡ limT→∞ T−1
PT

t=1 σ
2
t exists and finite and σ2 > δ0 > 0.

This assumption not only includes the independent and identically distributed

errors considered in our simulation as a special case, but also allows for more general

white noise processes.7 Under this assumption, the FCLT holds, and as T → ∞,
T−1/2

P[rT ]
t=1 εt ⇒ σW (r) where ⇒ denotes weak convergence, and W (r) is standard

Browninan motion on C[0, 1]. By generalizing this result, the asymptotic approxi-

mation for the distribution of the statistics associated with the continuous technical

trading regression (1) can be obtained, which is provided in the following theorem.

Theorem 1. Suppose the innovation sequence {εt}∞1 in (5) satisfies Assumption
1. Let H = [ h

1−h−`T ] and L = [
`

1−h−`T ], where h, ` > 0 and h+ ` < 1, and S/L→ 0

as T →∞. Then, as T →∞,
(a) bβC ⇒ R 1−h

` W`,h(r)V`,h(r)drR 1−h
` W 2

`,h(r)dr
= ζC;

(b) T−1/2bαC ⇒ a−3/2σ
³R 1−h

`
Vh(r)dr − ζC

R 1−h
`

W`(r)dr
´
;

7Note that our assumption of the martingale property of the asset price is one of the main
implications of the efficient market hypothesis. In practice, however, the hypothesis has been of-
ten examined under stronger assumptions on the successive price changes. See Campbell, Lo and
MacKinlay (1997) for the classification of random walk models depending on the strength of restric-
tions on the error term.
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(c) T−1/2t(bβC)⇒ ζC

µ R 1−h
` W 2

`,h(r)drR 1−h
` V 2`,h(r)dr−ζ

2
C

R 1−h
` W2

`,h(r)dr

¶1/2
;

(d) T−1/2t(bαC)⇒ a−1/2(
R 1−h
` Vh(r)dr−ζC

R 1−h
` W`(r)dr)(

R 1−h
` W 2

`,h(r)dr)
1/2

(
R 1−h
` V 2`,h(r)dr−ζ

2
C

R 1−h
` V 2`,h(r)dr)

1/2
(
R 1−h
` W 2

` (r)dr)
1/2 ;

(e) R2C ⇒
ζ2C
R 1−h
` W2

`,h(r)drR 1−h
` V 2`,h(r)dr

;

where

W`(r) ≡W (r)− 1
`

R r
r−`W (s)ds, W`,h(r) ≡W`(r)− 1

a

R 1−h
`

W`(s)ds,

Vh(r) ≡W (r + h)−W (r), V`,h(r) ≡ Vh(r)− 1
a

R 1−h
`

Vh(s)ds,
and a ≡ 1− `− h.

To derive an asymptotic approximation for the result in the simulation, we main-

tain the assumption of fixing the ratio of H and L to T represented by h and

`.8 According to Brock, Lakonishok and LeBaron (1992), combinations such as

(S,L) = (1, 50), (1, 150), (5, 150), (1, 200) and (2, 200) have been popularly employed

in practice. In order to approximate the relationship, S << L, we impose an addi-

tional assumption S/L → 0 which implies that the length of short-period, S, either

is a fixed constant or grows at a slower rate than T (and thus at a slower rate than

L). For the purpose of comparing our results with those from the original spurious

regression, Theorem 1 includes the analysis of the regression intercept bαC , and its
t-statistic, t(bαC).
In many respects, our results of the continuous technical trading regression are

analogues to Theorem 1 of Phillips (1986) which states the limiting distribution of

estimators in the regression of two I(1) variables. Parts (a) and (b) of Theorem 1

show that neither bβC nor bαC converges to zero in probability. Instead, bβC has a non-
degenerate limiting distribution, accounting for the observation of its stable mean

value in the simulation irrespective of the sample size. Furthermore, the dependence

of the limiting distribution on both h and ` also explains the fact that the mean

8If we fix the values of H and L instead of fixing the values of h and `, it leads to different
limiting distributions. However, since any asymptotic analysis is only a theoretical device to provide
a robust approximation to the finite sample distribution, usefulness of each theory depends on the
quality of approximation. In the current case, we find that the theory using fixed h and ` provides a
much better approximation for our simulation findings than the alternative theory. See Richardson
and Stock (1989) for a similar argument.
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value differs among the choices of the forecasting horizon and the window length of

moving average. As in the case of the original spurious regression, the distribution

of bαC diverges at the rate
√
T . Parts (c) and (d) of Theorem 1 show that the

distributions of conventional t-statistics, t(bβC) and t(bαC), also diverge at the rate√
T . The divergence of t(bβC) explains the fact that the rejection frequency of the

test in simulation increases with the sample size, using a fixed critical value of 1.64

from N(0,1). Finally, part (e) of Theorem 1 shows the non-degenerate distribution of

the coefficient of determination R2C , which is consistent with our simulation evidence.

We now turn to the results of the discrete technical trading regression (2).

Theorem 2. Suppose all of the assumptions in Theorem 1 are satisfied. Then,

as T →∞,
(a) T−1/2bβD ⇒ a−1/2σ

µR 1−h
` V`,h(r)U`,h(r)drR 1−h

` U2`,h(r)dr

¶
= a−1/2σζD;

(b) T−1/2bαD ⇒ a−3/2σ
³R 1−h

`
Vh(r)dr − ζD

R 1−h
`

1 (W`(r)) dr
´
;

(c) T−1/2t(bβD)⇒ ζD

µ R 1−h
` U2`,h(r)drR 1−h

` V 2`,h(r)dr−ζ
2
D

R 1−h
` U2`,h(r)dr

¶1/2
;

(d) T−1/2t(bαD)⇒ a−1/2(
R 1−h
` V`,h(r)dr−ζD

R 1−h
` 1(W`(r))dr)(

R 1−h
` U2`,h(r)dr)

1/2

(
R 1−h
` V 2`,h(r)dr−ζ

2
D

R 1−h
` U2`,h(r)dr)

1/2
(
R 1−h
` 1(W`(r))dr)

1/2 ;

(e) R2D ⇒
ζ2D

R 1−h
` U2`,h(r)drR 1−h

` V 2`,h(r)dr
;

where 1(x) = 1{x > 0} and U`,h(r) ≡ 1 (W`(r))− 1
a

R 1−h
`

1 (W`(s)) ds.

Derivation of the results in Theorem 2 relies on the theory of nonlinear transfor-

mation of integrated time series available in Park and Phillips (1999) because of the

presence of a discrete regressor. Recall that the most distinct feature in the simula-

tion results of the discrete technical trading regression compared to the continuous

version was the growing slope coefficients. Part (a) of Theorem 2 implies the diver-

gence of the distribution of bβD and thus explains our observation in the simulation.
In fact, the comparison of parts (a) and (b) shows that both bβD and bαD diverge at
the rate of

√
T . The source of this similarity between the asymptotic properties of

the regression intercept and the slope is that, for both cases, the partial sums of 1’s

(or squares of 1’s) in the denominator of the least squares estimator do not diverge
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as fast as the partial sums of I(1) variables (see Appendix for the detail). In spite

of the divergence of bβD, the asymptotic behavior of associated t-statistics, t(bβD), is
very similar to that of t(bβC). Parts (c) and (d) of Theorem 2 show that an increase

in sample size leads higher t-statistics, and thus more frequent significant coefficients

based on conventional critical values. Part (e) shows that a moderate value of R2D
on average is expected. In summary, the major conclusion on spurious effects holds

irrespective of the nonlinear transformation of the regressor TTR(S,L)t in technical

trading regressions.

Following theorem states the asymptotic approximation of the statistical behavior

of proportion tests (3) and (4).

Theorem 3. Suppose all of the assumptions in Theorem 1 are satisfied. Then,

as T →∞,
(a) (bp+, bp−)⇒ ³R 1−h

` 1(Vh(r))1(W`(r))drR 1−h
` 1(W`(r))dr

,
R 1−h
` [1−1(Vh(r))][1−1(W`(r))]drR 1−h

` [1−1(W`(r))]dr

´
= (κ+,κ−);

(b)
¡
T−1/2t+, T

−1/2t−
¢

⇒
µ

κ+−0.5
0.5a1/2

hR 1−h
`

1 (W`(r)) dr
i1/2

, κ−−0.5
0.5a1/2

hR 1−h
`

[1− 1 (W`(r))]dr
i1/2¶

= (ν+, ν−);

(c) κ+
d
= κ− and ν+

d
= ν− where the symbol

d
= denotes that the two random

variables have the same marginal distribution.

Part (a) of Theorem 3 shows the non-degenerate distributions of the observed

proportions of successes, bp+ and bp−, instead of their convergence to a fixed value of
0.5. Part (b) shows that, once again, divergence of the distribution of the conven-

tional proportion t-statistics, t+ and t−, which accounts for the observed increasing

frequency of finding a significant deviation from 0.5 for the tests with a larger sample

size. It should be noted that the asymptotic results for the pair of the statistics

(part (b)), as well as for the pair of proportions (part (a)), imply weak convergence

jointly to a pair of random variables. However, part (c) shows that two limit random

variables have the same marginal distribution. This explains why almost identical

results between t+ and t− were obtained in our simulation.
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3.2 Discussion

In Theorems 1 to 3, we have theoretically shown that all three technical trading

rules we consider can potentially produce statistically significant evidence of fore-

castability even if the past information actually has no predictive power. Let us now

discuss whether we can reduce the risk of obtaining such a false conclusion in practice,

by taking our theoretical results into consideration. In what follows, we point out

two feasible procedures which may be useful in avoiding the spurious regressions.

The first procedure utilizes the fact that all three t-statistics, namely, t(bβC), t(bβD),
and t+ (or t−), converge to well-defined distributions once they are normalized by

√
T .

Each graph in the first column of Figure 1 displays the densities of t(bβC), t(bβD), and
t+, respectively, from the simulation result in the previous section assuming h = 0.1

and ` = 0.3. In all three cases, the observed densities are much more dispersed for

T = 500 than for T = 100. The second column of Figure 1 displays densities of the

same statistics rescaled by
√
T as suggested by Theorems 1 to 3. The shapes of the

densities of rescaled t-statistics for T = 100 are very similar to those for T = 500.

This fact suggests that our asymptotic approximation works very well in finite sample

even when the sample size is as small as T = 100. Therefore, we may use the limiting

distribution of the rescaled t-statistics to conduct a test on the slope coefficient and

the proportion of successes in sign prediction.

A similar rescaling argument can be found in Phillips (1986) in his original study

of spurious regressions. The rescaled t-statistic has also been used by Valkanov (2003)

in the context of long-horizon regressions. In our case, while the limiting distributions

differ depending on h and `, they are known in each application. The limiting distrib-

utions of our rescaled t-statistics are, therefore, free of nuisance parameters. For each

of three statistics, the critical values for all possible combinations of h ∈ {0.1, 0.2, 0.3}
and ` ∈ {0.1, 0.2, 0.3} are tabulated in Tables 4 to 6.9 Among the three limiting dis-
tributions, the one for the proportion test t+ has its median closer to zero than the

other two, which implies that probabilities of obtaining ‘momentum’ and ‘contrarian’

results in the limit are closest with this test.
9They are obtained from 10,000 iterations of generating Brownian motion approximated by par-

tial sums of standard normal random variables with 10,000 steps.
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The second procedure we consider is to normalize t-statistics using the heteroskedas-

ticity and autocorrelation consistent (HAC) standard errors, which are often used

to construct a test robust to the presence of serially correlated errors in a regres-

sion model. For example, the HAC t-statistic for bβC is defined as tHAC(bβC) ≡bβC/sHAC(bβC), where
sHAC(bβC) ≡ T 1/2bω

ÃPL+T−1
t=L

½
]TTR

(S,L)

t

¾2!−1
, bω2 ≡ T−1P

j=−T+1
k
¡
j
M

¢ bγ(j),
bγ(j) ≡

⎧⎪⎪⎨⎪⎪⎩
1
T

T+L−1−jP
t=L

]TTR
(S,L)

t+j but+jbut]TTR(S,L)t for j ≥ 0

1
T

T+L−1P
t=−j+L

]TTR
(S,L)

t+j but+jbut]TTR(S,L)t for j < 0,

]TTR
(S,L)

t ≡ TTR(S,L)t −T−1
PL+1−T

i=L TTR
(S,L)
i , k(x) is a kernel function andM is the

bandwidth parameter. In a classical regression model, the HAC t-statistic converges

to a standard normal distribution whenM grows at a rate slower than T , but as shown

by Kiefer and Vogelsang (2002), it converges to a nonstandard distribution when

M grows at the same rate as T . Later, Sun (2004) pointed out that when Kiefer

and Vogelsang’s (2002) asymptotic approximation is used in the original spurious

regression with I(1) variables, the non-rescaled t-statistic becomes convergent instead

of diverging at the rate
√
T . We close this section by showing that tHAC(bβC) in the

technical trading regression also becomes convergent if the bandwidth grows at the

rate proportional to sample size.

Theorem 4. Suppose all of the assumptions in Theorem 1 hold, M = bT ,

b ∈ (0, 1] and the kernel function belongs to the following class: K = {k(·) : R →
[−1, 1]|k(0) = 1, k(x) = k(−x), ∀x ∈R,

R∞
−∞ k

2(x)dx <∞, and k(·) is continuous at
0 as well as all but a finite number of other points}. Then, as T →∞,

tHAC(bβC)⇒ R 1−h
` W`,h(r)V`.h(r)dr

(
R 1−h
`

R 1−h
` W`,h(r)Q`,h(r)k( r−sb )W`,h(s)Q`,h(s)drds)

1/2 ,

where Q`,h(r) ≡ Vh(r)− ζCW`(r)− 1
a

³R 1−h
`

Vh(r)dr − ζC
R 1−h
`

W`(r)dr
´
.

The class of the kernel allowed in Theorem 4 is fairly general and includes most of

the kernel functions commonly used in practice. As in the result of Theorem 1, the
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limiting distribution of HAC t-statistic depends both on h and `. Here, in addition,

it depends on b and the choice of the kernel function k(x). Since HAC standard

errors are primarily used in the regression framework, a similar HAC t-statistic can

be constructed for bβD, but not for the proportion test.10
4 Empirical Applications

In this section, we apply our proposed procedures to the stock price index and

foreign exchange rate data to reconsider the predictive power of technical trading

rules. In particular, we examine the daily closing spot rates (at 5:00PM) of the

Tokyo stock price index (TOPIX) and the yen/dollar exchange rate in the Tokyo

market for all trading days over the 2004-2006 period.11 To construct TTR(S,L)t , we

employ five combinations of lengths of the short and long period considered by Brock,

Lakonishok and LeBaron (1992), namely, (S,L) = (1, 50), (1, 150), (5, 150), (1, 200)

and (2, 200). The upper graphs in Figures 2 and 3 present the TOPIX and yen/dollar

rate exchange rate series from 2005-2006, respectively, along with the long moving

average with its length L = 50. The lower graph in each figure shows constructed

TTR
(1,50)
t series. Note that all of the price series are expressed in logs in computing the

moving averages.12 In this empirical exercise, since the critical values of the rescaled

t-statistics for the three procedures in Tables 4 to 6 are only available for selected pairs

of h and `, we choose the sample size T and the forecasting horizon H as follows. For

all five pairs of (S, L), we first set h = 0.1. We then set ` = 0.1 for (S, L) = (1, 50),

` = 0.2 for the pairs with L = 150, and ` = 0.3 for the pairs with L = 200. This leads

to combinations of (H,T ) = (50, 400), (75, 525) and (66, 400), respectively in each of

the three cases of long periods. Initial observations in the forecasting regression and in

10While not reported in the paper, we tabulated the critical values of tHAC(bβC) and tHAC(bβD)
using the Bartlett kernel with b = 1. The critical values for all possible combinations of h and ` are
available upon request from the authors.
11Using only two to three years of the sample is considered less subject to the problem of structural

changes in the estimation than in the case of using a longer sample period. This also justfies the
validity of our asymptotic approximation under the assumption of large H and L relative to the
sample size T .
12Therefore, our moving average can be considered as the geometric average of the price level

rather than the arithmetic avereage of the price level.
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the computation of the proportion of successes are selected so that the final prediction

period becomes 2006/12/29. For the HAC t-statistics, the Bartlett kernel is employed

along with a large bandwidth assumption b = 1. Since the HAC t-statistics are shown

to be convergent in our theoretical analysis, the critical values are simply taken from

Kiefer and Vogelsang (2002), instead of from our new computations.

Table 7 presents the results from the TOPIX series. For the continuous technical

trading regression, the slope coefficient for (S, L) = (1, 50) is positive and is signifi-

cantly different from zero at the 5 percent level based on a conventional t-statistic.

For (S,L) = (1, 200) and (2, 200), in contrast, the slope becomes negative and is

significant at the same level. This interesting observation of switching from a ‘mo-

mentum’ result to a ‘contrarian’ result seems to be consistent with our simulation

evidence where increasing the window length of moving average reduces the proba-

bility of the ‘momentum’ result and raises the probability of the ‘contrarian’ result.

When the rescaled t-statistics and the large bandwidth HAC t-statistics are used,

two-sided tests cannot reject the hypothesis of a zero slope coefficient. For the dis-

crete technical trading regression, the slope coefficients are positive in all five cases,

but none of the two-sided tests using the t-statistics, the rescaled t-statistics and the

HAC t-statistics provides significant ‘momentum’ results. For both continuous and

discrete regressions, R2’s are very small. With the conventional proportion t-statistics

based on the positive sign of TTR(S,L)t , significant ‘momentum’ results are obtained

for all five cases. All of the significant results, however, disappear if the conventional

test is replaced by the new test based on the rescaled proportion t-statistic.

Table 8 presents the corresponding results from the yen/dollar exchange rate. For

both continuous and discrete technical trading regressions, all of the regression slope

estimates are negative and are significantly different from zero based on conventional

t-statistics. The coefficient of determination is often greater than 10 percent in our

sample. Thus, one may easily interpret this evidence as empirical support of the

‘contrarian’ strategy. When the rescaled t-statistics are used, all of the ‘contrarian’

results become insignificant. When the HAC t-statistics are used, instead, only four

out of ten cases remain significant.13 The proportions of successes in detecting signs

13Our new critical values of the HAC t-statistics are larger in absolute value than those of Kiefer
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are also greater than 0.5, and the conventional proportion tests suggest that these

deviations are significant in the cases of (S,L) = (1, 50), (1, 200) and (2, 200). When

the rescaled proportion t-statistics are used, again all of the ‘momentum’ results

become insignificant.

Note that the forecasting horizon considered in this empirical example is approx-

imately two to three months. The survey results show that a significant number of

practitioners still rely on technical trading rules in their decision making even when

the trading horizons are within this range. Our analysis suggests that there is a need

for careful investigation before reaching to a conclusion on the predictability of the

technical trading rules at a relatively long horizon.

5 Conclusion

The popularity of technical trading rules among dealers in both equity and foreign

exchange markets has long been considered a puzzle because of its violation of the

efficient market hypothesis. In this paper, we pointed out that the technical trading

regression used for asset return forecasts at a relatively long horizon and the classical

spurious regression problem considered by Granger and Newbold (1974) and Phillips

(1986) have many features in common.

Our simulation showed that, even if the price follows a random walk, and thus the

past information has no predictive power as the market efficiency suggests, buy or

sell signals constructed from the difference between the short-period and long-period

moving averages of past values are wrongly statistically significant in most of the

occasions. Furthermore, R2 could not be trusted as a measure of regression fit in the

usual sense.

In the theoretical analysis, our asymptotic approximation turned out to be useful

in explaining the simulation findings. It revealed that both ‘momentum’ and ‘con-

trarian’ results could be falsely found in practice, while the probability of obtaining

each result depends on (i) the forecast horizon, (ii) the window length of the long-

period moving average, and (iii) the type of the test statistics employed. We also

and Vogelsang (2002). If we use the new critical values instead, all ten cases become insignificant.
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introduced two procedures which potentially reduce the risk of spurious effects in

technical trading regressions, namely, the rescaled t-statistic and the HAC t-statistic.

When these methods were applied to the stock market index and foreign exchange

rate, the predictive power of technical trading rules was insignificant in many cases.
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A Appendix

Denote TTR(S,L)
t and yt,H by xt and yt, respectively, for notational simplicity. In the proofs, the

summation and the integral are taken from t = L to T + L− 1 and from ` to 1− h, respectively,
unless otherwise stated, and we suppress the argument of continuous time, r, where there is no
ambiguity for notational convenience. For example, W`(r) and

∫
W`(r)dr are written, respectively,

as W` and
∫
W`.

Lemma 1

Suppose that εt satisfies Assumption 1 and S/L→ 0 as T →∞, then

(a) T−
3
2

T+L−1∑
t=L

xt ⇒ a−
3
2σ

∫ 1−h

`

W`(r)dr, T−
3
2

T+L−1∑
t=L

yt ⇒ a−
3
2σ

∫ 1−h

`

Vh(r)dr,

(b) T−2

T+L−1∑
t=L

x2
t ⇒ a−2σ2

∫ 1−h

`

W 2
` (r)dr, T−2

T+L−1∑
t=L

y2
t ⇒ a−2σ2

∫ 1−h

`

V 2
h (r)dr,

(c) T−2

T+L−1∑
t=L

(xt − x̄)2 ⇒ a−2σ2

∫ 1−h

`

W 2
`,h(s)ds, T−2

T+L−1∑
t=L

(yt − ȳ)2 ⇒ a−2σ2

∫ 1−h

`

V 2
`,h(s)ds,

(d) T−2

T+L−1∑
t=L

(xt − x̄)(yt − ȳ)⇒ a−2σ2

∫ 1−h

`

W`,h(r)V`,h(r)dr,

where

W`(r) ≡W (r)− 1
`

∫ r

r−`
W (s)ds, W`,h(r) ≡W`(r)−

1
a

∫ 1−h

`

W`(s)ds,

Vh(r) ≡W (r + h)−W (r), V`,h(r) ≡ Vh(r)− 1
a

∫ 1−h

`

Vh(s)ds,

W (r) is a standard Brownian motion on [0, 1], x̄ ≡ T−1
T+L−1∑
t=L

xt,

ȳ ≡ T−1
T+L−1∑
t=L

yt and a ≡ 1− h− `.

Proof of Lemma 1

Let T ∗ ≡ L+T +H − 1, i.e., the entire number of observations. In the proof, we use T ∗ instead of
T for the normalization. It is easy to obtain the results with T as in the Lemma 1 by multiplying
(T/T ∗)k, which converges to ak, where k = −3/2 or −2. For example, T−3/2

∑
xt is written as

(T/T ∗)−3/2T ∗−3/2
∑
xt.

First, we provide the two results given in equations (A.1) and (A.2), which are repeatedly used
in the rest of the proofs. Notice that xt can be written as xt = wt,L − wt,S , where

wt,L ≡ zt −
1
L

(zt + zt−1 + · · ·+ zt−L+1) and wt,S ≡ zt −
1
S

(zt + zt−1 + · · ·+ zt−S+1).

Write
wt,L = 1

L (zt − zt−1) + 1
L (zt − zt−2) + · · ·+ 1

L (zt − zt−L+1)

= 1
Lεt + 1

L (εt + εt−1) + · · ·+ 1
L (εt + εt−1 + · · ·+ εt−L+2)

= 1
L

t−1∑
j=t−L+1

(
t∑
i=1

εi −
j∑
i=1

εi

)
.

By the FCLT for a Martingale difference sequence (MDS) and the continuous mapping theorem
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(CMT), we have

T ∗−
1
2wt,L = T∗

L T
∗−1

t−1∑
j=t−L+1

T ∗−
1
2

(
t∑
i=1

εi −
j∑
i=1

εi

)
⇒ σ

`

∫ r
r−`[W (r)−W (s)]ds

= σW`(r),

where r is determined so that t = [rT ∗]. Next, we show that wt,S
p−→ 0. Write

wt,S = 1
S (zt − zt−1) + 1

S (zt − zt−2) + · · ·+ 1
S (zt − zt−S+1)

= 1
S

S−1∑
j=1

j∑
i=1

εt−i+1

= 1
S

S−1∑
i=1

iεt−S+1+i.

Since E(εt) = 0 ∀t, we have E(T ∗−1/2wt,S) = 0. Since {εt} is a MDS with variances bounded by
∆, we have, if S/L→ 0 as T →∞,

var(T ∗−
1
2wt,S) ≤ 1

T ∗
∆
S2

S−1∑
i=1

i2 =
1
T ∗

∆
S2

S(S − 1)(2S − 1)
6

≈ S

T ∗
=
S

L

L

T ∗
→ 0,

where ≈ denotes that the both sides have asymptotically the same order as T ∗ → ∞. Hence, we
have

T ∗−
1
2xt = T ∗−

1
2wt,L − T ∗−

1
2wt,S

⇒ σW`(r).
(A.1)

By the FCLT, we have
T ∗−

1
2 yt = T ∗−

1
2 (zt+h − zt)

= T ∗−
1
2

t+h∑
i=1

εi − T ∗−
1
2

t∑
i=1

εi

⇒ σW (r + h)− σW (r)

= σVh(r).

(A.2)

For part (a), using the result in (A.1) and applying the CMT, we obtain

T ∗−
3
2
∑
xt = T ∗−1

∑
T ∗−

1
2xt

⇒ σ
∫
W`.

Multiplying both sides by (T/T ∗)−3/2 gives the first result of part (a). Arguments entirely analo-
gous to those of the proof of the first result of part (a) yield the second result of part (a) and part
(b).

For part(c), from (A.1) and the CMT, we have

T ∗−
1
2 (xt − x̄) = T ∗−

1
2xt − T∗

T T
∗−1

∑
T ∗−

1
2xt

⇒ σW`(r)− a−1σ
∫
W`(r)dr

= σW`,h(r),

(A.3)

and so
T ∗−2

∑
(xt − x̄)2 = T ∗−1

∑[
T ∗−

1
2 (xt − x̄)

]2
⇒ σ2

∫
W 2
`,h.

(A.4)

Similarly, we have
T ∗−

1
2 (yt − ȳ)⇒ σV`,h(r) (A.5)
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and
T ∗−2

∑
(yt − ȳ)2 ⇒ σ2

∫
V 2
`,h. (A.6)

Multiplying both sides in (A.4) and (A.6) by (T/T ∗)−2 gives part (c).
Part (d) follows from (A.3), (A.5) and the CMT.

Proof of Theorem 1

Using Lemma 1(a), (c) and (d), we obtain

β̂C =
T−2

∑
(yt − ȳ)(xt − x̄)

T−2
∑

(xt − x̄)2
⇒
∫
W`,hV`,h∫
W 2
`,h

and
T−1/2α̂C = T−1/2(ȳ − β̂C x̄)

= T−3/2
∑
yt − β̂CT−3/2

∑
xt

⇒ a−3/2σ
(∫
Vh − ζC

∫
W`

)
,

which complete the proof of parts (a) and (b). Next, define σ̂2
C ≡ T−1

∑
(yt − α̂C − β̂Cxt)2. Since

α̂C = ȳ − β̂C x̄, using Lemma 1(c) and part (a), we have

T−1σ̂2
C = T−2

∑[
(yt − ȳ)− β̂C(xt − x̄)

]2
= T−2

∑
(yt − ȳ)2 − β̂2

CT
−2
∑

(xt − x̄)2

⇒ a−2σ2
[∫

V 2
`,h − ζ2

C

∫
W 2
`,h

]
.

Thus, we have

T−1/2t(β̂C) = β̂C

T 1/2σ̂C
[∑

(xt − x̄)2
]−1/2

=
β̂C
[
T−2

∑
(x− x̄)2

]1/2
T−1/2σ̂C

⇒
ζCa

−1σ
[∫

W 2
`,h

]1/2
a−1σ

[∫
V 2
`,h − ζ2

C

∫
W 2
`,h

]1/2
and

T−1/2t(α̂C) =
α̂C
[
T
∑

(xt − x̄)2
]1/2

(T 1/2σ̂C)
(∑

x2
t

)1/2
=

(T−1/2α̂C)
[
T−2

∑
(xt − x̄)2

]1/2
(T−1/2σ̂C)

(
T−2

∑
x2
t

)1/2
⇒

a−3/2σ
(∫
Vh − ζC

∫
W`

)
a−1σ

(∫
W 2
`,h

)1/2

a−1σ
(∫

V 2
`,h − ζ2

C

∫
W 2
`,h

)1/2

a−1σ
(∫
W 2
`

)1/2 ,
as required for parts (c) and (d).

Finally, we prove part (e). Let ŷC,t ≡ α̂C + β̂Cxt. Then, from part (a) and Lemma 1(c), we
have

R2
C =

∑
(ŷt − ȳ)2∑
(yt − ȳ)2

= β̂2
CT
−2
∑

(xt − x̄)2

T−2
∑

(yt − ȳ)2
⇒

ζ2
C

∫
W 2
`,h∫

V 2
`,h

.
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Lemma 2

Suppose that εt satisfies Assumption 1 and S/L→ 0 as T →∞, then

(a) T−1

T+L−1∑
t=L

1
(
T−

1
2xt

)
⇒ a−1

∫ 1−h

`

1 (W`(r)) dr ,

(b) T−1

T+L−1∑
t=L

1
(
T−

1
2xt

)
1
(
T−

1
2 yt

)
⇒ a−1

∫ 1−h

`

1 (W`(r)) 1 (Vh(r)) dr ,

(c) T−1

T+L−1∑
t=L

1
(
T−

1
2xt

)
T−

1
2 yt ⇒ a−

3
2σ

∫ 1−h

`

1 (W`(r))Vh(r)dr ,

(d) T−1

T+L−1∑
t=L

[
1
(
T−

1
2xt

)
− T−1

T+L−1∑
t=L

1
(
T−

1
2xt

)]2

⇒ a−1

∫ 1−h

`

U2
`,l(r)dr ,

(e) T−
3
2

T+L−1∑
t=L

(yt − ȳ)

[
1
(
T−

1
2xt

)
− T−1

T+L−1∑
t=L

1
(
T−

1
2xt

)]
⇒ a−

3
2σ

∫ 1−h

`

V`,h(r)U`,h(r)dr ,

where 1(x) = 1{x > 0} is an indicator function that takes 1 if x > 0 and 0 otherwise, and

U`,h(r) ≡ 1 (W`(r))− a−1

∫ 1−h

`

1 (W`(s)) ds.

Hereafter, we denote 1(T−1/2xt) and 1(T−1/2yt) by 1x and 1y, respectively, for notational sim-
plicity. That is, T ∗−1

∑
1(T−1/2xt) is denoted by T ∗−1

∑
1x, etc.

Proof of Lemma 2

The proof of part (a) is entirely analogue to the proof of Theorem 3.2 in Park and Phillips (1999).
Recall that, ` and h are defined so that ` : h : 1 − ` − h = L : H : T , and so the ratio of the
window length of the long moving average to the entire number of observations, i.e., L/T ∗ is given
by [`(T ∗ + 1)]/T ∗. Similarly, H/T ∗ is given by [h(T ∗ + 1)]/T ∗. We denote the former by `∗ and
the latter by h∗. Since `∗ → ` and h∗ → h as T ∗ (or T )→∞, they can be asymptotically replaced
by ` and h, respectively. We do so without mentioning each time.

To prove part (a), we define a stochastic process W 0
`,T (r) ≡ a1/2x[rT∗]/(σ

√
T ) on [`∗, 1 − h∗].

From (A.1), we have

W 0
`,T = a

1
2

√
T ∗√
T

x[rT∗]

σ
√
T ∗
⇒W`.

It then follows from the so-called Skorohod representation theorem (see Theorem 25.6, Billingsley,
1995, p. 333) that there exists W`,T such that W`,T

d= W 0
`,T in D[`∗, 1 − h∗] and W`,T

a.s.→ W`

uniformly on [`∗, 1− h∗]. Using the Skorohod representation and noting that 1(x) = 1(cx) for any
positive constant c, we can write

T ∗−1
∑

1x = T ∗−1
∑

1
(
W 0
`,T (t/T ∗)

) d=
∫ 1−h∗

`∗
1 (W`,T ) .

Define 1ε(x) ≡ 1(x− ε) and 1ε(x) ≡ 1(x+ ε) for ε > 0. On every compact set C, there exists, for
each ε > 0, δε > 0 such that 1ε(x) ≤ 1(y) ≤ 1ε(x) for all x, y ∈ C such that |x− y| < δε. Clearly,
we have ∫

C

(1ε − 1ε)(x)dx→ 0, (A.7)

as ε→ 0, where (1ε−1ε)(x) ≡ 1ε(x)−1ε(x). Let CW = [sw,min − 1, sw,max + 1], where sw,min and
sw,max are defined as sw,max ≡ sup`≤r≤1−hW`(r) and sw,min ≡ inf`≤r≤1−hW`(r), respectively. We
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may take T ∗ ( or T ) sufficiently large so that sup`≤r≤1−h |W`,T (r) −W`(r)| < δε for any δε > 0
almost surely, and so that both W`,T and W` are in CW , and

1ε(W`) ≤ 1(W`,T ) ≤ 1ε(W`), a.s. (A.8)

Note that W`(r) is defined only on [`, 1− h]. Since W` is a continuous semimartingale process, it
satisfies the so-called occupation times formula (see Corollary 1.6, Revuz and Yor, 1999, p. 224),∫ t

`

Φ(W`(r))dr =
∫ ∞
−∞

Φ(s)L(t− `, s)ds,

for every t ∈ [`, 1−h] and every positive Borel function Φ, where L(t− `, s) is the local time spent
by W` at the spatial point s over the interval [`, t]. Thus, we have∫ 1−h

`
(1ε − 1ε)(W`(r))dr =

∫∞
−∞(1ε − 1ε)(s)L(1− h− `, s)ds

≤ sups L(1− h− `, s)
∫
CW

(1ε − 1ε)(x)dx
a.s.→ 0,

(A.9)

as ε→ 0 due to (A.7). Part (a) follows from (A.8), (A.9) and multiplying both sides by (T ∗/T )−1.
For part (b), note that, on every compact set C2 ≡ C × C, there exists, for each ε > 0,

δε such that 1ε(x1)1ε(x2) ≤ 1(y1)1(y2) ≤ 1ε(x1)1ε(x2) for all (x1, x2), (y1, y2) ∈ C2 such that
|x1 − y1| < δε, and |x2 − y2| < δε because 1(·) ≥ 0. Define V 0

h,T (r) ≡ a1/2y[rT∗]/(σ
√
T ) on

[`∗, 1− h∗]. From (A.2), we have V 0
h,T ⇒ Vh. Using the Skorohod representation, write

T ∗−1
∑

1x1y = T ∗−1
∑

1
(
W 0
`,T (t/T ∗)

)
1
(
V 0
h,T (t/T ∗)

)
d=

∫ 1−h∗

`∗
1 (W`,T ) 1 (Vh,T )

where Vh,T satisfies Vh,T
d= V 0

h,T , and Vh,T
a.s.→ Vh. Let CV = [sv,min−1, sv,max+1], where sv,max and

sv,min are defined as sv,max ≡ sup`≤r≤1−h Vh(r) and sv,min ≡ inf`≤r≤1−h Vh(r), respectively. We
may take T ∗ sufficiently large so that sup`≤r≤1−h |W`,T (r)−W`(r)| < δε and sup`≤r≤1−h |Vh,T (r)−
Vh(r)| < δε for any δε and so that both (W`,T , Vh,T ) and (W`, Vh) are in CWV ≡ CW×CV . Therefore

1ε(W`)1ε(Vh) ≤ 1(W`,T )1(Vh,T ) ≤ 1ε(W`)1ε(Vh), (A.10)

for sufficiently large T ∗. Write∫
1ε(W`)1ε(Vh)−

∫
1ε(W`)1ε(Vh) =

∫
(1ε − 1ε)(W`)1ε(Vh) +

∫
(1ε − 1ε)(Vh)1ε(W`). (A.11)

Applying Schwarz’s inequality to the first term of the right-hand side in (A.11), we have

∫ (
1ε − 1ε

)
(W`)1ε(Vh) ≤

{∫ [
(1ε − 1ε)(W`)

]2} 1
2 {∫

[1ε(Vh)]2
} 1

2

=
{∫

(1ε − 1ε)(W`)
} 1

2
{∫

1ε(Vh)
} 1

2

a.s.→ 0,

as ε→ 0 due to (A.9). For the second term, similar arguments lead to∫
(1ε − 1ε)(Vh)1ε(W`)

a.s.→ 0,

and hence we have ∫
1ε(W`)1ε(Vh)−

∫
1ε(W`)1ε(Vh) a.s.→ 0, (A.12)

as ε→ 0. Part (b) follows from (A.10) and (A.12).
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For part (c), using the Skorohod representation, write

T ∗−1
∑

1xT−
1
2 yt = 2T ∗−1

∑
1x1y|T−

1
2 yt| − T ∗−1

∑
1x|T−

1
2 yt|

= a−
1
2σ
[
2T ∗−1

∑
1(W 0

`,T (t/T ∗))1(V 0
h,T (t/T ∗))|V 0

h,T (t/T ∗)|

−T ∗−1
∑

1(W 0
`,T (t/T ∗))|V 0

h,T (t/T ∗)|
]
.

d= a−
1
2σ
[
2
∫ h∗
`∗

1(W`,T )1(Vh,T )|Vh,T | −
∫ h∗
`∗

1(W`,T )|Vh,T |
]

Define Aε(x) ≡ |x|+ ε and Aε(x) ≡ max{0, |x| − ε} for ε > 0. Noting that | · | ≥ 0, Aε(·) ≥ 0, and
Aε(·) ≥ 0, we can, by the same arguments as used in (A.10), show that

1ε(W`)1ε(Vh)Aε(Vh) ≤ 1(W`,T )1(Vh,T )|Vh,T | ≤ 1ε(W`)1ε(Vh)Aε(Vh), (A.13)

and
1ε(W`)Aε(Vh) ≤ 1(W`,T )|Vh,T | ≤ 1ε(W`)Aε(Vh), (A.14)

for sufficiently large T ∗. Again, we can use the same arguments as used in (A.12) to show∫
1ε(W`)1ε(Vh)Aε(Vh)−

∫
1ε(W`)1ε(Vh)Aε(Vh) a.s.→ 0, (A.15)

and ∫
1ε(W`)Aε(Vh)−

∫
1ε(W`)Aε(Vh) a.s.→ 0. (A.16)

From (A.13), (A.14), (A.15) and (A.16), we have

T ∗−1
∑

1xT−
1
2 yt ⇒ a−

1
2σ
[
2
∫

1(W`)1(Vh)|Vh| −
∫

1(W`)|Vh|
]

= a−
1
2σ
∫

1(W`)Vh.

Multiplying both sides by (T ∗/T ) (→ a−1) gives part (c).
For part (d), we have

T−1
∑[

1x − T−1
∑

1x
]2 = T−1

∑
1x −

(
T−1

∑
1x
)2

⇒ a−1
∫

1(W`)− a−2
[∫

1(W`)
]2
,

from part (a). Also, we have∫
U2
`,h =

∫ {
1 (W`)

2 − 2a−11 (W`)
∫

1 (W`) + a−2
[∫

1 (W`)
]2}

=
∫

1 (W`)− a−1
[∫

1 (W`) ds
]2
,

which completes the proof of part (d).
For part (e), we have

T−
3
2
∑

(yt − ȳ)
(
1x − T−1

∑
1x
)

= T−
3
2
∑
yt1x − ȳT−

3
2
∑

1x

⇒ a−3/2σ
∫

1(W`)Vh −
[
a−

3
2σ
∫
Vh

] [
a−1

∫
1(W`)

]
,

from Lemma 1(a), parts (a) and (c). Also, we have∫
V`,hU`,h =

∫ (
Vh − a−1

∫
Vh
) (

1(W`)− a−1
∫

1(W`)
)

=
∫

1(W`)Vh − a−1
[∫
Vh
] [∫

1(W`)
]
,

which completes the proof of part (d).
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Proof of Theorem 2

From Lemma 2(d) and (e), we have

T−1/2β̂D =
T−3/2

∑
(yt − ȳ)(1x − T−1

∑
1x)

T−1
∑

(1x − T−1
∑

1x)2

⇒ a−3/2σ
∫
V`,hU`,h

a−1
∫
U2
`,h

,

as required for part (a). From Lemma 1(a), Lemma 2(a) and Theorem 2(a), we have

T−1/2α̂D = T−3/2
∑
yt − (T−1/2β̂D)(T−1

∑
1x)

⇒ a−3/2σ
∫
Vh − a−1/2σζDa

−1
∫

1 (W`) ,

as required for part (b). Next, define σ̂2
D ≡ T−1

∑
(yt−α̂D−β̂D1x)2. Since α̂D = ȳ−β̂DT−1

∑
1x,

using Lemma 1(c), Lemma 2(d) and Theorem 2(a) and (b), we have

T−1σ̂2
D = T−2

∑[
(yt − ȳ)− β̂D(1x − T−1

∑
1x)
]2

= T−2
∑

(yt − ȳ)2 − (T−1/2β̂D)2T−1
∑

(1x − T−1
∑

1x)2

⇒ a−2σ2
∫
V 2
`,h − a−1σ2ζ2

Da
−1
∫
U2
`,h.

Thus, we have

T−1/2t(β̂D) = β̂D
T 1/2s(β̂D)

= β̂D

T 1/2σ̂D
[∑

(1x − T−1
∑

1x)2
]−1/2

=
T−1/2β̂D

[
T−1

∑
(1x − T−1

∑
1x)2

]1/2
T−1/2σ̂D

⇒
a−1/2σζD

[
a−1

∫
U2
`,h

]1/2
a−1σ

[∫
V 2
`,h − ζ2

D

∫
U2
`,h

]1/2 ,
as required for part (c) . Noting that 12

x = 1x, we have

T−1/2t(α̂D) = α̂D
T 1/2s(α̂D)

=
α̂D
[
T
∑

(1x − T−1
∑

1x)2
]1/2

(T 1/2σ̂D)
(∑

12
x

)1/2
=
T−1/2α̂D

[
T−1

∑
(1x − T−1

∑
1x)2

]1/2
(T−1/2σ̂D)

[
T−1

∑
1x
]1/2

⇒
a−3/2σ

[∫
Vh − ζD

∫
1(W`)

]
a−1/2

(∫
U2
`,h

)1/2

a−1σ
(∫

V 2
`,h − ζ2

D

∫
U2
`,h

)1/2

a−1/2
[∫

1 (W`)
]1/2

,

as required for part (d). Lastly, we prove part (e). Define ŷD,t ≡ α̂D + β̂Dxt, then we have

R2
D =

∑
(ŷD,t − ȳ)2∑
(yt − ȳ)2

= (T−1/2β̂D)2T−1
∑

(1x − T−1
∑

1x)2

T−2
∑

(yt − ȳ)2

⇒
a−1σ2ζ2

Da
−1
∫
U2
`,h

a−2σ2
∫
V 2
`,h

,

which completes the proof of part (e).
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Proof of Theorem 3

From Lemma 2(a) and (b), we immediately have

(p̂+, p̂−) =
(
T−1

∑
1y1x

T−1
∑

1x
,
T−1

∑
(1− 1y)(1− 1x)

T−1
∑

(1− 1x)

)
⇒

(∫
1(Vh)1(W`)∫

1(W`)
,

∫
[1− 1(Vh)][1− 1(W`)]∫

[1− 1(W`)]

)
,

and

(T−1/2t+, T
−1/2t−) =

(
(p̂+ − 0.5)

[
T−1

∑
1x
]1/2

0.5
,

(p̂− − 0.5)
[
T−1

∑
(1− 1x)

]1/2
0.5

)
⇒

(
κ+−0.5

0.5a1/2

[∫
1 (W`)

] 1
2 , κ−−0.5

0.5a1/2

[∫
[1− 1 (W`)]

] 1
2
)
,

which complete the proofs of parts (a) and (b). Since −W is also a standard Brownian motion, the
two stochastic processes W` and −W`, which are constructed from W and −W in the same manner,
respectively, are equivalent, or have the same finite dimensional distributions. Similarly, the two
processes, Vh and −Vh, are equivalent. Clearly, these hold jointly, i.e., (W`, Vh) and (−W`,−Vh)
are equivalent. Thus, noting that 1{x > 0} = 1− 1{−x > 0}, we have(∫

1(W`),
∫

1(Vh)1(W`)
)

=
(∫

[1− 1(−W`)],
∫

[1− 1(−Vh)][1− 1(−W`)]
)

d=
(∫

[1− 1(W`)],
∫

[1− 1(Vh)][1− 1(W`)]
)
,

thereby establishing part (c).

Proof of Theorem 4

From (A.1), (A.2), Theorem 1(a) and (b), we have

T ∗−1/2û[Tr] = T ∗−1/2yt − T ∗−1/2T 1/2T−1/2α̂C − β̂CT ∗−1/2xt
⇒ σVh(r)− a1/2a−3/2σ

(∫
Vh − ζC

∫
W`

)
− σζW`(r)

≡ σQ`,h(r).
(A.17)

From (A.3), (A.4), (A.17), and applying the CMT, we have

s2HAC(β̂C) =
(∑

(xt − x̄)2
)−2 T+L−1∑

t=L

T+L−1∑
τ=L

(xt − x̄)ûtk
(
t−τ
bT

)
ûτ (xτ − x̄)

=
(

1
T∗2

∑
(xt − x̄)2

)−2 1
T∗2

T+L−1∑
t=L

T+L−1∑
τ=L

xt − x̄
T ∗1/2

ût
T ∗1/2

k
(
t−τ
bT

) ûτ
T ∗1/2

xτ − x̄
T ∗1/2

⇒
(
σ2
∫
W 2
`,h

)−2

σ4
∫ ∫

W`,h(r)Q`,h(r)k
(
r−s
b

)
W`,h(s)Q`,h(s)drds.

In view of Theorem 1(a), we have Theorem 4.
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Table 1: Finite Sample Properties of the Continuous Technical Trading Regressionb|βC | |t(bβC)| R2C Freq(t(bβC) > 1.64) Freq(t(bβC) < −1.64)
h ` T = 100 500 1000 T = 100 500 1000 T = 100 500 1000 T = 100 500 1000 T = 100 500 1000
0.1 0.1 0.40 0.38 0.37 2.46 5.45 7.73 0.08 0.08 0.08 0.10 0.18 0.21 0.49 0.62 0.66

0.2 0.41 0.41 0.41 3.34 7.67 10.80 0.12 0.13 0.13 0.09 0.14 0.16 0.60 0.72 0.74
0.3 0.48 0.47 0.47 4.48 9.81 14.01 0.19 0.18 0.18 0.07 0.11 0.12 0.72 0.79 0.82

0.2 0.1 0.59 0.58 0.57 3.14 7.07 10.09 0.11 0.11 0.11 0.07 0.12 0.14 0.61 0.74 0.76
0.2 0.65 0.65 0.64 4.95 11.05 16.06 0.21 0.21 0.21 0.08 0.12 0.12 0.74 0.80 0.83
0.3 0.75 0.76 0.76 7.05 15.78 22.05 0.31 0.31 0.31 0.07 0.10 0.10 0.81 0.84 0.86

0.3 0.1 0.78 0.75 0.75 3.98 8.93 12.59 0.16 0.16 0.15 0.06 0.09 0.11 0.73 0.82 0.83
0.2 0.86 0.84 0.85 6.64 15.03 21.09 0.29 0.30 0.29 0.07 0.10 0.10 0.79 0.84 0.85
0.3 0.94 0.93 0.93 9.62 21.86 30.40 0.40 0.41 0.40 0.07 0.10 0.10 0.82 0.86 0.87

Note: For the first three blocks of columns, the means of b|βC|, |t(bβC)|, and R2C respectively, are reported. For the fourth and fifth blocks,
frequencies of rejection for the one-sided tests based on 5 percent significance level are reported. All the numbers are based on 10,000
replications.



Table 2: Finite Sample Properties of the Discrete Technical Trading Regression
|bβD| |t(bβD)| R2D Freq(t(bβD) > 1.64) Freq(t(bβD) < −1.64)

h ` T = 100 500 1000 T = 100 500 1000 T = 100 500 1000 T = 100 500 1000 T = 100 500 1000
0.1 0.1 1.27 2.82 4.01 1.99 4.54 6.48 0.05 0.05 0.06 0.10 0.20 0.22 0.41 0.58 0.61

0.2 1.79 4.06 5.86 2.64 5.94 8.52 0.09 0.09 0.09 0.11 0.19 0.21 0.51 0.64 0.68
0.3 2.49 5.61 7.78 3.18 7.17 9.97 0.11 0.11 0.11 0.10 0.15 0.16 0.60 0.72 0.74

0.2 0.1 2.01 4.61 6.59 2.48 5.75 8.24 0.08 0.08 0.08 0.08 0.14 0.15 0.53 0.69 0.73
0.2 3.20 7.17 10.22 3.69 8.27 11.71 0.14 0.14 0.14 0.09 0.14 0.14 0.67 0.75 0.78
0.3 4.42 9.90 13.93 4.63 10.42 14.58 0.19 0.19 0.19 0.09 0.12 0.14 0.72 0.79 0.80

0.3 0.1 2.76 6.27 8.89 3.00 6.90 9.75 0.10 0.11 0.11 0.06 0.10 0.12 0.64 0.77 0.80
0.2 4.47 10.15 14.38 4.62 10.46 14.64 0.19 0.19 0.19 0.07 0.11 0.12 0.74 0.81 0.82
0.3 5.77 13.12 18.65 5.72 12.76 18.05 0.25 0.25 0.25 0.07 0.10 0.11 0.76 0.82 0.83

Note: For the first three blocks of columns, the means of b|βD|, |t(bβD)|, and R2D respectively, are reported. For the fourth and fifth
blocks, frequencies of rejection for the one-sided tests based on 5 percent significance level are reported. All the numbers are based on
10,000 replications.



Table 3: Finite Sample Properties of the Proportion tests
t+

|t+| Freq(t+ > 1.64) Freq(t+ < −1.64)
h ` T = 100 500 1000 T = 100 500 1000 T = 100 500 1000
0.1 0.1 2.06 4.63 6.50 0.23 0.34 0.37 0.30 0.45 0.48

0.2 2.31 5.17 7.43 0.23 0.33 0.36 0.36 0.49 0.51
0.3 2.54 5.65 8.02 0.24 0.33 0.35 0.41 0.52 0.55

0.2 0.1 2.86 6.39 9.01 0.29 0.37 0.40 0.39 0.49 0.50
0.2 3.21 7.20 10.18 0.28 0.34 0.35 0.45 0.54 0.56
0.3 3.56 7.98 11.44 0.27 0.32 0.33 0.50 0.58 0.61

0.3 0.1 3.58 8.10 11.39 0.31 0.37 0.38 0.44 0.52 0.54
0.2 4.08 9.12 12.86 0.30 0.35 0.36 0.51 0.56 0.59
0.3 4.50 9.94 14.07 0.31 0.34 0.34 0.54 0.59 0.61

t−
|t−| Freq(t− > 1.64) Freq(t− < −1.64)

h ` T = 100 500 1000 T = 100 500 1000 T = 100 500 1000
0.1 0.1 2.08 4.56 6.45 0.23 0.34 0.37 0.31 0.44 0.48

0.2 2.31 5.28 7.33 0.24 0.34 0.36 0.37 0.49 0.51
0.3 2.58 5.68 8.04 0.24 0.33 0.35 0.42 0.52 0.54

0.2 0.1 2.85 6.39 9.05 0.29 0.36 0.38 0.39 0.49 0.52
0.2 3.20 7.16 10.14 0.28 0.34 0.36 0.45 0.53 0.55
0.3 3.57 8.11 11.40 0.26 0.33 0.34 0.51 0.58 0.59

0.3 0.1 3.58 8.03 11.45 0.31 0.37 0.39 0.44 0.52 0.54
0.2 4.09 9.26 12.91 0.30 0.36 0.37 0.51 0.56 0.58
0.3 4.50 10.05 14.04 0.30 0.34 0.36 0.55 0.60 0.60

Note: For the first block of columns, the means of |t+|(|t−|) is reported. For
the second and third blocks, frequencies of rejection for the one-sided tests based
on 5 percent significance level are reported. All the numbers are based on 10,000
replications.



Table 4: Asymptotic Distribution of T−1/2t(bβC)
Percentiles

h ` 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
0.1 0.1 -0.836 -0.714 -0.611 -0.505 -0.150 0.171 0.263 0.339 0.436

0.2 -1.106 -0.968 -0.843 -0.707 -0.236 0.142 0.248 0.347 0.477
0.3 -1.401 -1.212 -1.071 -0.907 -0.382 0.083 0.219 0.349 0.494

0.2 0.1 -1.008 -0.878 -0.76 -0.635 -0.251 0.109 0.209 0.305 0.401
0.2 -1.638 -1.363 -1.158 -0.976 -0.426 0.082 0.244 0.398 0.584
0.3 -2.215 -1.852 -1.609 -1.359 -0.626 0.068 0.262 0.428 0.591

0.3 0.1 -1.198 -1.042 -0.907 -0.765 -0.355 0.058 0.180 0.297 0.429
0.2 -2.166 -1.817 -1.564 -1.298 -0.596 0.082 0.264 0.418 0.579
0.3 -3.400 -2.867 -2.428 -1.985 -0.803 0.038 0.242 0.411 0.624

Table 5: Asymptotic Distribution of T−1/2t(bβD)
Percentiles

h ` 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
0.1 0.1 -0.635 -0.561 -0.485 -0.404 -0.113 0.166 0.257 0.334 0.426

0.2 -0.826 -0.715 -0.634 -0.534 -0191 0.189 0.304 0.432 0.580
0.3 -0.914 -0.820 -0.728 -0.625 -0.245 0.160 0.302 0.431 0.562

0.2 0.1 -0.776 -0.682 -0.602 -0.512 -0.206 0.120 0.218 0.312 0.413
0.2 -1.103 -0.956 -0.859 -0.721 -0.283 0.134 0.273 0.415 0.555
0.3 -1.353 -1.175 -1.042 -0.888 -0.375 0.120 0.278 0.422 0.590

0.3 0.1 -0.887 -0.779 -0.683 -0.592 -0.269 0.082 0.193 0.301 0.408
0.2 -1.334 -1.175 -1.035 -0.891 -0.417 0.093 0.235 0.359 0.526
0.3 -1.869 -1.583 -1.373 -1.140 -0.458 0.080 0.240 0.364 0.547

Table 6: Asymptotic Distribution of T−1/2t+ (T−1/2t−)
Percentiles

h ` 1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
0.1 0.1 -0.500 -0.460 -0.412 -0.350 -0.047 0.309 0.406 0.491 0.582

0.2 -0.519 -0.482 -0.445 -0.390 -0.063 0.341 0.449 0.551 0.673
0.3 -0.542 -0.501 -0.461 -0.411 -0.091 0.366 0.495 0.603 0.711

0.2 0.1 -0.604 -0.566 -0.527 -0.471 -0.052 0.445 0.593 0.700 0.802
0.2 -0.622 -0.583 -0.543 -0.493 -0.116 0.500 0.663 0.780 0.882
0.3 -0.652 -0.610 -0.575 -0.529 -0.185 0.574 0.743 0.843 0.916

0.3 0.1 -0.663 -0.631 -0.600 -0.553 -0.109 0.586 0.739 0.820 0.875
0.2 -0.683 -0.651 -0.620 -0.576 -0.180 0.687 0.815 0.897 0.950
0.3 -0.759 -0.727 -0.691 -0.632 -0.214 0.741 0.872 0.940 0.979



Table 7: Stock Price Index (TOPIX)
(1) (2) (3) (4) (5)

(S,L) (1, 50) (1, 150) (5, 150) (1, 200) (2, 200)
T 400 525 525 400 400
h 0.1 0.1 0.1 0.1 0.1
` 0.1 0.2 0.2 0.3 0.3

(i) Continuous Technical Trading RegressionbβC 0.24 -0.02 -0.03 -0.17 -0.17
t(bβC) 2.64** -0.39 -0.50 -3.25** -3.32**
R2C 0.02 0.00 0.00 0.03 0.03

t(bβC)/√T 0.13 -0.02 -0.02 -0.16 -0.17
tHAC(bβC) 1.20 -0.22 -0.28 -2.12 -2.16

(ii) Discrete Technical Trading RegressionbβD 0.38 0.36 0.35 0.16 0.12
t(bβD) 0.98 0.95 0.93 0.30 0.22
R2D 0.00 0.00 0.00 0.00 0.00

t(bβD)/√T 0.05 0.04 0.04 0.01 0.01
tHAC(bβD) 0.47 0.47 0.48 0.18 0.14

(iii) Proportion Test (+)bp+ 0.68 0.57 0.59 0.63 0.63
t+ 6.07** 2.68** 3.30** 4.67** 4.62**

t+/
√
T 0.30 0.12 0.14 0.23 0.23

Note: Sample periods are from 2005/3/8 to 2006/10/19 for (1), from 2004/7/27
to 2006/9/12 for (2) and (3), and from 2005/2/10 to 2006/9/25 for (4) and (5). **
signifies statistically significant at the 5% level, and * at the 10% level.



Table 8: Yen/Dollar Exchange Rate
(1) (2) (3) (4) (5)

(S,L) (1, 50) (1, 150) (5, 150) (1, 200) (2, 200)
T 400 525 525 400 400
h 0.1 0.1 0.1 0.1 0.1
` 0.1 0.2 0.2 0.3 0.3

(i) Continuous Technical Trading RegressionbβC -0.59 -0.23 -0.23 -0.38 -0.38
t(bβC) -7.95** -4.42** -4.31** -8.17** -8.05**
R2C 0.13 0.03 0.03 0.14 0.14

t(bβC)/√T -0.39 -0.19 -0.18 -0.41 -0.40
tHAC(bβC) -7.27*** -2.16 -2.15 -5.28** -5.15**

(ii) Discrete Technical Trading RegressionbβD -0.96 -1.07 -1.17 -0.87 -0.86
t(bβD) -6.99** -7.22** -7.93** -5.82** -5.78**
R2D 0.10 0.09 0.11 0.08 0.08

t(bβD)/√T -0.34 -0.32 -0.34 -0.29 -0.29
tHAC(bβD) -6.81** -3.47 -3.67 -2.91 -2.86

(iii) Proportion Test (+)bp+ 0.59 0.53 0.52 0.65 0.64
t+ 3.29** 1.39 0.96 4.98** 4.85**

t+/
√
T 0.16 0.06 0.04 0.25 0.24

Note: Sample periods are from 2005/3/8 to 2006/10/19 for (1), from 2004/7/27
to 2006/9/12 for (2) and (3), and from 2005/2/10 to 2006/9/25 for (4) and (5). **
signifies statistically significant at the 5% level, and * at the 10% level.





Figure 2: Stock Price Index (TOPIX) 
TOPIX and its moving average of past 50 days 
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Figure 3: Yen/Dollar Exchange Rate 

Yen/Dollar rate and its moving average of past 50 days 
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