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1 Introduction

In this paper, we propose a test for coefficient stability of an AR(1) model against
the alternative known as a random coefficient autoregressive model with order 1
or RCA(1) model. Specifically, we consider the following model as the alternative
model:

yt = (φ+ bt)yt−1 + ²t, for t = 1, 2, ....,
E(bt) = E(²t) = 0, E(b

2
t ) = ω2, E(²2t ) = σ2, cov(bt, ²t) = ψω,

(1)

where (bt, ²t)
0 is an iid random vector and |ψ| ≤ σ. We set y0 = Op(1) as the initial

condition so that y0 is allowed to be a constant or a certain specified distribution.
The model reduces to the ordinary AR(1) model under the null hypothesis H0 :
ω2 = 0.
Note that the process defined in (1) is a one-sided process. It is known that

the two-sided version of (1), i.e., y∗t = (φ + bt)y
∗
t−1 + ²t, for t = 0± 1,±2, ...., has a

strictly stationary solution (almost surely) if η ≡ E(log |φ+bt|) < 0 and only if η ≤ 0
(Quinn, 1982). It follows further that y∗t has the strictly stationary solution with a
finite second-order stationary moment in the sense of mean-square convergence as
well as almost sure convergence if and only if φ2+ω2 < 1 (Nicholls and Quinn, 1982).
Note that the latter condition is more restrictive than the former (see Hwang and
Basawa, 2006, p.810); if the former condition is satisfied but the latter is not, then
y∗t is strictly stationary with an infinite variance. These results on the two-sided
RCA(1) model carry over to the one-sided RCA(1) model in (1) if yt starts with
y0 having the stationary solution of the two-sided RCA(1) model. One important
feature of the RCA(1) model is that it exhibits conditional heteroskedasticity, which
is often observed in financial time series. It is easy to show that var(yt|yt−1) =
y2
t−1ω

2 + 2yt−1ψω + σ2. Note that if ψ = 0, then the conditional variance structure
is the same as that of the well-known autoregressive conditional heterosckedastic
(ARCH) model. See Hwang and Basawa (1998); Aue et al. (2006); Hwang and
Basawa (2006); Hwang et al. (2006) and references therein for more details on the
properties and estimation of RCA models.
Testing the null hypothesis of constant coefficient, i.e., ω2 = 0, in the RCA(1)

model has been considered by Nicholls and Quinn (1982), Akharif and Hallin (2003),
Ramanathan and Rajarshi (1994), Leybourne et al. (1996),1 McCabe and Tremayne
(1995), and Lee (1998). In these papers, except for McCabe and Tremayne (1995)
and Leybourne et al. (1996), a stationary process is assumed under the null hypoth-
esis. The first three papers derive test statistics under the assumption that bt and
²t are independent. In particular, the test by Nicholls and Quinn (1982) is not nec-
essarily consistent without this assumption (see Lee, 1998, p.94). The latter three
papers do not assume the independence of bt and ²t.
The last two papers are particularly relevant to our paper. The test statis-

tics in McCabe and Tremayne (1995) and Lee (1998) are both derived as locally

1Actually, Nicholls and Quinn (1982), Akharif and Hallin (2003), and Leybourne et al. (1996)
consider testing coefficient stability of AR(p) models against RCA(p) models.
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best invariant (LBI) tests.2 However, the null and alternative hypotheses of Lee
(1998)’s LBI test are different from those of McCabe and Tremayne (1995)’s LBI
test. Lee (1998) assumes that φ2 + ω2 < 1, and hence, the null hypothesis is a
stationary AR(1) model while the alternative hypothesis is a stationary RCA(1)
model. McCabe and Tremayne (1995) assume that φ = 1 under both the null and
the alternative hypotheses. When φ = 1, the RCA(1) model is called a stochastic
unit root process (Granger and Swanson, 1997; Leybourne et al., 1996), which has
recently been applied in several empirical finance literatures (Bleaney et al., 1999;
Sollis et al., 2000; Bleaney and Leybourne, 2003). Thus, the null hypothesis for
McCabe and Tremayne (1995)’s LBI test is a unit root process and the alternative
hypothesis is a stochastic unit root process. The limit distributions of these two LBI
tests are different and we have to refer to two different distribution table depending
on the maintained assumption on the value of φ under the null hypothesis, which
limits the usefulness of these two tests because, in practice, we rarely know whether
the true process is stationary or non-stationary in advance.
The test statistic proposed in this paper assumes neither φ = 1 nor |φ| < 1

under the null hypothesis of ω2 = 0. More specifically, it follows the standard
normal distribution asymptotically under the null regardless of |φ| < 1 or φ = 1
so that we can use the same distribution table. In other words, we can purely test
coefficient stability without the maintained assumptions on φ. If the test rejects
the null hypothesis, then we can go to the estimation of RCA(1) model and if the
test accepts the null hypothesis, then we can utilize the usual unit root tests for
examining non-stationarity of the series.
We obtain the test statistic as a modification of Lee (1998)’s LBI test. Lee

(1998) prove that his LBI test follows the standard normal distribution under the
null when |φ| < 1. We show that Lee’s LBI test follows the standard normal
distribution even when φ = 1 if the correlation between ²t and ²

2
t is zero. Note

that if ²t has a symmetric distribution, then E(²
3
t ) = 0 and so the correlation,

ρ ≡ E(²3t )/[
p
var(²2t )

p
var(²t)] is zero. It is shown that if the correlation is not

zero, the limit distribution of Lee’s LBI test is represented by a weighted sum of
the standard normal and a non-standard distribution with weights depending on
the value of the correlation. Based on the result, we construct our test statistic by
subtracting the latter part and re-weighting the remaining part with an estimate of
the correlation so that the asymptotic null distribution is the standard normal re-
gardless of the value of the correlation when φ = 1. We also show that the proposed
test statistic follows the standard normal distribution even when |φ| < 1 under the
null. Furthermore, it is proved that the test is consistent against stationary RCA(1)
models with a finite fourth moment. Interestingly, our Monte Carlo experiments
show that Lee’s LBI and the proposed tests are more powerful than McCabe and
Tremayne (1995)’s LBI test even when φ = 1.
The rest of the paper is organized as follows. In Section 2, we derive the limit

2Leybourne et al. (1996) derive their test statistic as a score test, which takes the same form as
the LBI test by McCabe and Tremayne (1995) in the case of RCA(1) model.
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distribution of Lee’s LBI test under the null hypothesis of ω2 = 0 even when φ = 1.
A new test is proposed in this section. In Section 3, we conduct several Monte Carlo
experiments to check the finite sample performances of the proposed test comparing
with Lee (1998) and McCabe and Tremayne (1995)’s LBI tests. The Appendix
provides proofs for the theorems in the text.

2 Test Statistics

2.1 LBI Tests of Lee (1998) and McCabe and Tremayne
(1995)

Lee (1998) derive a locally best invariant (LBI) test (see Ferguson, 1967, p.235) for
the null hypothesis H0 : ω

2 = 0 against the alternative hypothesis H1 : ω
2 > 0

under the assumption that (bt, ²t) are jointly normal. It is assumed that |ψ| < σ in
deriving the test statistic but not assumed in deriving the limit distribution. We do
not assume this condition in this paper. Hence, the model defined in (1) covers the
Markovian bilinear model as a special case. See Lee (1998, p.98).
We consider the test statistic defined in Theorem 3.2 in Lee (1998, p.96). Below

in (2), we give a slightly simplified form of the original test statistic ignoring terms
that do not affect the asymptotic distribution.

(Lee test) eZT ≡ [bτTκT (bφ)]−1T−1/2ZT (
bφ), (2)

where

ZT (φ) ≡
TX
t=1

[²2t (φ)− σ2
T (φ)]y

2
t−1 σT (φ) ≡

"
T−1

TX
t=1

²2t (φ)

#1/2

,

²t(φ) ≡ yt − φyt−1, κT (φ) ≡
"
T−1

TX
t=1

²4t (φ)− σ4
T (φ)

#1/2

,

bτT ≡
T−1

TX
t=1

y4
t−1 −

Ã
T−1

TX
t=1

y2
t−1

!2
1/2

,

and bφ is a √T consistent estimator for φ (e.g., OLS).

(3)

Hereafter, we call this test statistic the Lee test. We abbreviate κT (
bφ), σT (bφ), and

²t(
bφ), to bκT , bσT , and b²t, respectively, for notational convenience. We can see that

this test statistic is essentially an estimate for the correlation between ²2t and y
2
t−1

(notice that bτ 2
T is an estimate for var(y

2
t ) if the process is stationary and ergodic with

a finite fourth moment). It is easy to check that the correlation between ²2t and y
2
t−1

is zero under the null hypothesis and the Lee test examines whether the correlation is
significantly different from zero. From the conditional variance structure of RCA(1)
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models, we can also see that the Lee test examines a certain type of conditional
heteroskedasticity. We expect that the test would have a non-trivial power against
a similar type of conditional heteroskedasticity such as that of bilinear models (we
examine this point by Monte Carlo experiment in Section 3).
Lee (1998) proves, without the normality assumption of (bt, ²t), but assuming the

existence of finite fourth moments for ²t and bt and φ2+ω2 < 1, that if T 1/2(bφ−φ) =

Op(1) under both H0 and H1, then eZT asymptotically follows the standard normal
distribution under the null hypothesis and is a consistent test against stationary
RCA(1) models with a finite forth moment. Notice that the assumption φ2+ω2 < 1
excludes the case where φ = 1. Thus, Lee (1998)’s result cannot be directly applied
when the null model is unit root non-stationary, i.e., φ = 1.
McCabe and Tremayne (1995) derive a LBI test (Hereafter the MT test) for the

null hypothesis H0 : ω
2 = 0 assuming that (bt, ²t) are jointly normal and φ = 1. We

consider the test statistic proposed in Corollary 3 in McCabe and Tremayne (1995).
The test statistic takes the following form:

(MT test)
Z∗T ≡ [κT (1)σ2

T (1)]
−1T−3/2ZT (1). (4)

Note that, here φ is not estimated since it is assumed to be one. The asymptotic
distribution of Z∗T is non-standard and its critical values are tabulated in Table 1 in
McCabe and Tremayne (1995). Similarly to the Lee test, McCabe and Tremayne
(1995) remove the normality assumption in deriving the asymptotic distribution of
Z∗T under the null hypothesis. One important drawback of the MT test is that it
converges in probability to zero if the true process is stationary and ergodic with a
finite fourth moment, hence has no power against stationary RCA(1) models with
a finite fourth moment.
In this paper, bφ is supposed to satisfy the following property under the null

hypothesis: T (bφ− 1) = Op(1) when φ = 1, and T 1/2(bφ− φ) = Op(1) when |φ| < 1.
For example, the OLS estimator, bφols ≡ (

PT
t=1 ytyt−1)/(

PT
t=1 y

2
t−1), satisfies the

property.
The following theorem derives the asymptotic distribution of the Lee test when

the true process is a unit root process. The notation “⇒00 denotes weak convergence
in the space D[0, 1] under the Skorohod metric,

Theorem 1 Assume that yt is generated by yt = yt−1 + ²t for t = 1, ...., T with
y0 = Op(1), where {²t} is a sequence of i.i.d. random variables with E(²t) = 0,
E(²2t ) = σ2, V ar(²2t ) = κ2, and V ar(²3t ) <∞.

(i) If T (bφ− 1) = Op(1), then ,as T →∞, we have bκ2
T

p−→ κ2,

T−2bτ 2
T ⇒ σ4

Z 1

0

θ(r)2dr, (5)

T−3/2ZT (
bφ)⇒ σ2κ

Z 1

0

θ(r)dW ∗(r), (6)
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and

eZT ⇒
Z 1

0

θ(r)dW ∗(r)µZ 1

0

θ(r)2dr

¶1/2
, (7)

where θ(r) ≡W1(r)
2− R 1

0
W1(s)

2ds, W ∗(r) ≡ ρW1(r)+(1−ρ2)1/2W2(r), W1(r) and
W2(r) are mutually independent standard Wiener processes, and ρ ≡ corr(²i, ²2i−σ2).

(ii) The distribution of the random variable in (7) reduces to the standard normal
distribution when ρ = 0.

Proof : See the Appendix.

The correlation between ²2t−σ2 and ²t, which is equivalent to the correlation between
²2t and ²t (since E(²t) = 0), is zero if and only if E(²

3
t ) = 0. Note that symmetricity

of the distribution of ²t is a sufficient, but not a necessary, condition for E(²
3
t ) to

be zero.3 The assumption that var(²3t ) <∞ is needed only for proving that bκ2
T is a

consistent estimator for κ2.
Theorem 1 shows that the limit distribution of the Lee test is in fact the standard

normal distribution under the null hypothesis even when φ = 1 if E(²3t ) = 0. How-
ever, this assumption is restrictive for some applications. We propose a modified
version of the Lee test in the next section to deal with this problem.

2.2 Modified Lee Test

In this section, we propose a modified version of the Lee test (hereafter modified
Lee test). It is shown that the modified Lee test asymptotically follows the standard
normal distribution regardless of the value of the correlation ρ between ²t and ²

2
t ,

and when ρ = 0, it is asymptotically equivalent to the Lee test.
Basic idea of the modified Lee test is as follows. First, notice that the numerator

of the right-hand side in (7) is alternatively represented asZ 1

0

θ(r)dW ∗(r) = (1− ρ2)1/2
Z 1

0

θ(r)dW2(r) + ρ

Z 1

0

θ(r)dW1(r). (8)

The result (ii) in Theorem 1 implies that if we subtract its second term from (8)

and divide the remaining part, i.e., the first term, by (1 − ρ2)1/2 × [R 1

0
θ(r)2dr]1/2,

we recover the standard normal distribution. We obtain the modified Lee test by
making essentially this correction to the Lee test. To make this correction, we need a
sequence that converges to the second term in (8). For constructing such a sequence,
we define

GT (
bφ) ≡ 1

3
y3
T −

TX
t=1

yt−1b²2t − T−1yT

TX
t=1

y2
t−1. (9)

3I thank Don Percival for pointing this point.
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In the Appendix, we show that T−3/2GT (
bφ) ⇒ σ3

R 1

0
θ(r)dW1(r). Thus, utilizing

T−3/2GT (
bφ) with consistent estimators for ρ and σ, we can obtain such a correction

term.
It is shown in the Appendix that the following estimator is consistent for ρ under

the assumptions in Theorem 1:

bρT ≡ (bσTbκT )−1T−1

TX
t=1

b²3t . (10)

This estimator is also consistent even when the underlying process is a stationary
AR(1) process. To obtain Theorem 3 below, which shows the asymptotic normality
of our test statistic defined in (13) when |φ| < 1; however, we need an estimator
that is consistent for ρ when the underlying process is the unit root process but
converges in probability to zero when the underlying process is a stationary AR(1)
process.
One way to obtain such an estimator is to multiply bρT by a sequence sT that

satisfies the following condition:

sT
p−→ 1 if φ = 1 and sT

p−→ 0 if |φ| < 1. (11)

In this paper, we use

sT ≡ 1− exp
−ÃT−3/2bσ−2

T

TX
t=1

y2
t−1

!δ , (12)

where δ > 0 is a constant that satisfies the condition in Theorem 3. It is easy to see
that sT satisfies the condition in (11) since T

−2bσ−2
T

PT
t=1 y

2
t−1 = Op(1) when φ = 1

and T−1bσ−2
T

PT
t=1 y

2
t−1 = Op(1) when |φ| < 1. The value of δ controls the speed of

convergence of st. If δ is large, then the convergence of sT to 0 or 1 is very fast; in
that case, virtually sT takes only 0 or 1 even when T is not very large.
It should be noted that this is not the only possible choice for sT ; another possible

choice is, for example, sT = 1 if |bφ − 1| ≤ T−1/2 and sT = 0 if |bφ − 1| > T−1/2.
This choice of sT is motivated by recent papers by Perron and Yabu (2006a,b), who
consider testing for trend coefficient with an integrated or a stationary component.
Based on their results, it is easy to show that sT satisfies the condition in (11). How
we should select sT would be one of the topics of subsequent research.
We are now ready to give our test statistic. Given yt, t = 0, ..., T , the modified

Lee test is defined as follows:

(Modified Lee test)

eGT,δ ≡ (1− ρ∗2T )
−1/2bτ−1

T T
−1/2

hbκ−1
T ZT (

bφ)− ρ∗Tbσ−1
T GT (

bφ)i , (13)

where ρ∗T ≡ bρT sT . Note that when ρ∗T = 0, eGT,δ reduces to eZT .
6



Theorem 2 shows that the asymptotic distribution of eGT,δ is the standard normal
distribution when the true data generating process is the unit root process described
in Theorem 1, regardless of the value of the correlation.

Theorem 2 Assume the same data generating process and conditions as in Theorem
1 for a series {yt}Tt=0. If T (bφ − 1) = Op(1) and δ > 0, then as T → ∞, we have

ρ∗T
p−→ ρ,

T−3/2GT (
bφ)⇒ σ3

Z 1

0

θ(r)dW1(r), (14)

and eGT,δ d−→ N(0, 1), (15)

where ρ, θ(r), and W1(r) are defined as in Theorem 1.

Proof. See the Appendix.

If we assume that E(|φ + bt|4) < 1 and the existence of finite fourth moments
for ²t and bt for a two sided RCA(1) model y

∗
t , then we have E(|y∗t |4) <∞ (Lemma

3 in Aue et al., 2006). Theorem 3 shows the asymptotic normality of eGT,δ under the
null and |φ| < 1. Theorem 3 also shows that the test is a consistent test against the
alternative of RCA(1) model with E(|φ+ bt|4) < 1.
Theorem 3 Assume that a series {yt}Tt=0 follows the RCA(1) model defined in (1)

and E(b4
t ) < ∞, E(²4t ) < ∞, E(|φ + bt|4) < 1. If T 1/2(bφ − φ) = Op(1) under both

H0 : ω
2 = 0 and H1 : ω

2 > 0, then as T →∞, we have

(a) for δ > 0 eGT,δ d−→ N(0, 1) under H0.

(b) for δ ≥ 1 eGT,δ p−→∞ under H1.

Proof. See the Appendix.

In Theorem 3, we do not need to assume that var(²3t ) < ∞. The condition that
T 1/2(bφ− φ) = Op(1) under both H0 and H1 in Theorem 4 is satisfied, for example,

by the OLS estimator bφols (see Hwang and Basawa, 1998, 2006).
We expect that the proposed test is also consistent against RCA(1) models with

E(|φ + bt|4) ≥ 1; however, we have not succeeded in proving it mathematically.
Instead, we examine this issue by Monte Carlo experiments in the next section.

3 Monte Carlo experiment

In this section we conduct Monte Carlo (MC) experiments to compare empirical
sizes and powers of the Lee test defined in (2), the MT test defined in (4), and the
modified Lee test defined in (13). We examine two values for δ to see how the value
of δ affects the finite sample propertiles of the modified Lee test. Throughout the
experiments in this section, we calculate the test statistics with the OLS estimator,bφols, the initial value is fixed at y0 = 0, the number of MC replications is 10, 000,
and the sample size is T = 50, 100, 200, or 1000.
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3.1 Size property

We generate the null model of AR(1) with various values of φ. Specifically, we
examine nine values: φ = −0.9, −0.6, −0.3, 0.0, 0.3, 0.6, 0.9, 0.95, 0.98, and 1.0. As
to the distribution of ²t, we examine three distributions: (1) ²t ∼ N(0, 1) (ρ = 0.0),
(2) ²t ∼ (1/

√
2)(χ2(1)−1) (ρ = 2/√7 ≈ 0.7559), and (3) ²t ∼ (1/

√
20)(χ2(10)−10)

(ρ = 0.5), where χ2(k) denotes the chi-square distribution with k degrees of freedom
and inside the parentheses is the correlation between ²t and ²

2
t . In all cases, the

mean and variance of ²t are zero and one, respectively. Cases (2) and (3) are for
addressing how the value of ρ affects the size. Figure (1) draws the pdfs of these
three distributions. We see that the distribution of ²t is symmetric in Case (1),
heavily skewed to the right in Case (2), moderately skewed to the right in Case (3).
Case (3) is an intermediate case between Case (2) and (3).
We conduct tests of 5% nominal level. The critical value of the Lee and modified

Lee tests are set to 1.6449, i.e., the 95% point of the standard normal distribution.
We reject the null when the test statistic is above the critical value. Note that the
rejection region is in the upper tail area since the statistic diverges to ∞ under the
alternative of RCA(1) models. For the MT test, we use the critical values tabulated
in Table 1 in McCabe and Tremayne (1995, p.1022); it is 0.77 for T = 50, 0.79 for
T = 100, 0.80 for T = 200, and 0.81 for T = 1000.
Table 1 reports the results of Monte Carlo experiment for Case (1), where the

correlation ρ is zero. In this case, according to Theorem 1, the statistic eZT asymp-
totically follows the standard normal distribution regardless of φ = 1 or |φ| < 1.
The asymptotic normal approximation works reasonably well for any value of φ as
T increases although the empirical size of Lee test tends to be smaller than the 5 %
nominal level when T is small. The empirical size of MT test is almost zero when
|φ| < 1 i.e., the underlying process is a stationary AR(1). This is expected since the
statistic converges in probability to zero when the process is stationary and ergodic
with a finite fourth moment. The empirical sizes of the modified Lee tests are very
similar to that of the Lee test although there is a tendency of over-rejection. The
value of δ does not seem to give much differences.
Table 2(a) reports the results for Cases (2). Similarly to Case (1), the empirical

size of MT test is almost zero when |φ| < 1 in Case (2). We see that when φ = 1
the empirical sizes of Lee and MT tests are severely distorted upward, that is, these
tests reject the true null hypothesis too often (when T = 1000, the actual sizes of
the Lee and MT tests are 0.153 and 0.104 for φ = 1, respectively). The modified
Lee test performs much better than the Lee and MT test for φ = 1 (and φ close
to one); when T = 1000, the empirical sizes of the modified Lee tests with δ = 10
and with δ = 1 are 0.048 and 0.052, respectively. This shows that our modification
works quite well for reducing the size distortion. Figure 2 draws the histograms of
100, 000 samples of eZT and bGT,1 in Case (2) when T = 1000 for φ = 1. We can

see that the distribution of eZT is almost bimodal. This is because, as Theorem 1

shows, when ρ 6= 0, the distribution of eZT is a mixture of the standard normal and
a non-standard distribution with weights depending on the value of ρ. The value of
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δ seems to affect the actual rejection percentages for φ close to 1. It is seen that the
modified Lee test with δ = 10 tends to reject the null hypothesis more often than
that with δ = 1 does although the difference disappears quickly as T increases. The
results for Case (3), which is shown in Table 2(b), parallel those for Case (2) except
that the size distortions of Lee and MT tests are smaller.

3.2 Power

We examine two data generating processes as the alternative. The first one is the
RCA(1) model with bt ∼ N(0,ω2) and various values of φ and ω2. Specifically, we
set φ = 0.6, 0.9, or 1.0, ω2 = 0.01, 0.05, 0.1, or 0.5. The error term ²t is set as
Case (a): ²t ∼ N(0, 1) or Case (b): ²t ∼ (1/

√
2)[χ2(1) − 1]. The RCA(1) model

is stationary and ergodic with a finite fourth moment if E(|φ + bt|4) < 1. This
condition reduces to φ4 + 6φ2ω2 + 3ω4 < 1 when bt ∼ N(0,ω2). This condition is
not satisfied, for example, when φ = 0.9 and ω2 = 0.1. We indicate those cases that
satisfy this condition by asterisks in Table 3.
The second alternative data generating process is a bilinear process, which is

obtained by replacing bt with b²t−1. As noted in Section 2.1, the Lee test in effect
examines a certain type of conditional heteroskedasticity. Although the bilinear
process is not included explicitly as the alternative hypothesis, we expect that our
tests would have non-trivial power against the bilinear process because the bilinear
process also exhibits a conditional heteroskedasticity similar to that of the RCA(1)
model; for the bilinear model, we have var(yt|yt−1) = (y

2
t−1b

2 + 1)σ2. We examine

four cases: b = 0.05, 0.10,
√
0.05 ≈ 0.224, and √0.10 ≈ 0.316. The values of φ and

ω2 are the same as the cases of RCA(1) models.
When φ = 1, the bilinear process is called a unit root biliner (URB) process

and has been recently applied for analyzing stock market indices in Charemza et al.
(2005). They have proposed several tests for b = 0 in the URB process. Results of
the Monte Carlo experiments here may be compared with those in Charemza et al.
(2005) since some of the values of b examined here are the same as those examined
in Charemza et al. (2005).4

Table 3 reports the results for the alternative of RCA(1) model. First, we will see
the results for Case (a), where ²t ∼ N(0, 1) and ρ = corr(²t, ²

2
t ) = 0. As is expected,

the MT test has no power against stationary RCA(1) models with a finite fourth
moment. This means that the MT test cannot distinguish a unit root process and
a stationary RCA(1) model with a finite fourth moment. Notice that, even when
φ = 1, the power of MT test is much lower than those of the Lee and modified Lee
tests. Furthermore, when φ = 1, the power of the MT test does not monotonically
increase as ω2 increases, which is also seen in Table 2 in McCabe and Tremayne
(1995, p.1022) (they examined three values: ω2 = 0.001, 0.01, and 0.1 with other
settings equal to ours). For example, when T = 1000, the power against ω2 = 0.1

4Although Charemza et al. (2005) do not state which distribution they generated ²t from, we
have confirmed with the authors that they generated ²t from the standard normal distribution.
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is 0.555, whereas the power against ω2 = 0.5 is 0.148. It is also seen that the power
against ω2 = 0.5 does not increase as T increases. This suggests the possibility that
the MT test is not a consistent test against large values of ω2.
The power properties of the Lee and modified Lee tests are virtually the same,

and the same comments apply to both tests. First, we observe that the value of φ
greatly affects the power. In general, the larger the value of φ is, the higher the
power is. For example, when T = 1, 000, the power of the Lee test against ω2 = 0.01
is 0.117 for φ = 0.6, whereas it is 0.456 for φ = 0.9 and 1.000 for φ = 1.0. Second,
in contrast to the MT test, the power of the Lee and modified Lee tests increases
monotonically as ω2 and T increase. This supports our conjecture that these tests
are consistent against RCA(1) models for any value of ω2.
Next, we check the results for Case (b), where ²t ∼ (1/

√
2)[χ2(1) − 1] and

corr(²t, ²
2
t ) ≈ 0.7559. The powers of the three tests are lowered compared with

Case (a). Again the power of the modified Lee test is almost the same as that of
the Lee test, and their powers are much higher than that of the MT test. In an
unreported experiment, we also examined the case where ²t ∼ −(1/

√
2)[χ(1) − 1]

and corr(²t, ²
2
t ) ≈ −0.7559. The results are qualitatively similar to those in Case

(b). It seems that the powers of these three tests reduce as the value of ρ is away
from zero.
Table 4 reports the results for the alternative of biliner models. The results

parallel those for the alternative of RCA(1) models, and thus our comments are
brief. The performances of the Lee and modified Lee tests are virtually the same.
The power of the MT test is much lower than those of the Lee and modified Lee
tests. The power of the MT test does not increase monotonically as b increases.

4 Concluding Remarks

In this paper we propose a new test statistic for coefficient stability of AR(1) model.
It is obtained as a modification of Lee (1998)’s LBI test. The proposed test statistic
assumes neither a stationary AR(1) model nor a unit root process under the null
hypothesis of constant coefficient and have the same limit distribution in both cases.
We prove that the test is consistent against the alternative of RCA(1) models that
is stationary and ergodic with a finite fourth moment. Although we have not suc-
ceeded in proving that the proposed test is also consistent against the alternative
of RCA(1) models that do not belong to this class, our Monte Carlo experiments
show that the proposed test has high power even against those RCA(1) models. It
is our conjecture that the test is consistent against any RCA(1) models. Our Monte
Carlo experiments also show that the proposed test has high power against bilin-
ear processes. Lastly, neither this article nor McCabe and Tremayne (1995) proves
consistency of the LBI test proposed by McCabe and Tremayne (1995). Our Monte
Carlo experiments suggest the possibility that the test is inconsistent against certain
RCA(1) models.
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Appendix

For simplifying the proofs, we assume that y0 = 0 throughout the appendix, then
y1 = ²1. Extensions of the proofs to the case y0 = Op(1) are straightforward. The fol-
lowing lemmas are repeatedly used in the appendix. Lemma 1 is a simple extension
of Lemma A1 in McCabe and Tremayne (1995).

Lemma 1 (Joint convergence) Suppose that {²t}Tt=1 is a sequence of i.i.d. random
variables with E(²pt ) = µp, var(²pt ) = σ2

p, and 0 < σ2
p < ∞ for a positive integer p.

Define the partial sum process of {²pt − µp} as W
(p)
T (r) ≡ (σp

√
T )−1

P[rT ]
t=1 (²

p
t − µp)

for 1/T ≤ r ≤ 1 and WT (r) ≡ 0 for 0 ≤ r < 1/T , where [rT ] denotes the integer

part of rT . Let ρ ≡ corr(²pt , ²
q
t ) for q ≤ p. Then, the stochastic functions W

(p)
T (r)

and W
(q)
T (r) jointly converge so that

[W
(p)
T (r),W

(q)
T (r)]

0 ⇒ [W1(r),W
∗(r)]0,

where ⇒ denotes weak convergence in the space D[0, 1] under the Skorohod metric,
W ∗(r) = ρW1(r) + (1 − ρ2)1/2W2(r), W1(r) and W2(r) are mutually independent
standard Wiener processes on [0, 1].

Proof. When q = p, obviously ρ = 1 and the result follows immediately. Suppose
that q < p. Then |ρ| < 1 and from Theorem 7.27 in White (2001, p.188), we have·

1 ρ
ρ 1

¸−1/2

[W
(p)
T (r),W

(q)
T (r)]0 ⇒ [W1(r),W2(r)]

0,

By applying the continuous mapping theorem (see van der Vaart, 1998, p.7), we
have

[W
(p)
T (r),W

(q)
T (r)]0 ⇒

·
1 ρ
ρ 1

¸1/2

[W
(p)
T (r),W

(q)
T (r)]

0

= [W1(r), ρW1(r) + (1− ρ2)1/2W2(r)]
0

= [W1(r),W
∗(r)]0,

which completes the proof. ¤

Lemma 2 Suppose that yt = yt−1 + ²t for t = 1, ....T with y0 = 0, where {²t} is
a sequence of i.i.d. random variables with E(²t) = 0, var(²2t ) = σ2, 0 < σ2 < ∞,
E(²pt ) = µp and var(²pt ) = σ2

p < ∞, 0 < σ2
p < ∞ for a positive integer p such that
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2 ≤ p. Then, we have

(a) T−(k+2)/2

TX
t=1

ykt−1 ⇒ σk
Z 1

0

W1(r)
kdr,

(b) T−(k+1)/2

TX
t=1

ykt−1(²
p
t − µp)⇒ σkσp

Z 1

0

W1(r)
kdW ∗(r),

in particular, T−(k+1)/2

TX
t=1

ykt−1²t ⇒ σk+1

Z 1

0

W1(r)
kdW1(r),

(c) T−(k+2)/2

TX
t=1

ykt−1²
p
t ⇒ σkµp

Z 1

0

W1(r)
kdW ∗(r),

(16)

where ⇒ denotes weak convergence in the space D[0, 1] under the Skorohod metric,
W ∗(r) = ρW1(r)+ (1− ρ2)1/2W2(r), ρ ≡ corr(²t, ²pt ), W1(r) and W2(r) are mutually
independent standard Wiener processes on [0, 1].

Proof. We use the same notation as in Lemma 1 for the partial sum process of
{²pt − µp} except that W (1)

T (r) is abbreviated to WT (r).

(a) This is an immediate result from the functional central limit theorem and the
continuous mapping theorem. ¤
(b) Set UT,t = WT (t/T )

k and YT,t = W
(p)
T (t/T ) in Theorem 2.1 in Hansen (1992).

From Lemma 1 and the continuous mapping theorem, it follows that [UT (r), YT (r)] ≡
[UT,[Tr], YT,[Tr]]⇒ [W1(r)

k,W ∗(r)]. Following the notation of Hansen (1992), define
²T,t ≡ W (p)

T (t/T ) −W (p)
T ((t − 1)/T ) = (σp

√
T )−1(²t − µp). Under the assumptions,

it is easily verified that supT
PT

t=1E(²
2
T,t) = 1 < ∞. Thus, conditions in Theorem

2.1 in Hansen (1992) are all satisfied and we have (b). ¤
(c) Write

T−(k+2)/2

TX
t=1

ykt−1²
p
t = T

−1/2T−(k+1)/2

TX
t=1

ykt−1(²
p
t − µp) + µpT−(k+2)/2

TX
t=1

ykt−1. (17)

Then, it follows immediately from Lemma 2(a) and (b). ¤

Hereafter, for example, W1(r)’s that appear in the representations of limit dis-
tributions indicate the same Wiener process.

Proof of Theorem 1. Write eZT = Z1 × Z2, where Z1 = T (bτTbκT )−1 and Z2 =

T−3/2ZT (
bφ). First, we derive the limit distribution of Z1.

12



From Lemma 2(a), we have

T−2bτ 2
T ⇒

Z 1

0

σ4W1(r)
4dr −

µZ 1

0

σ2W1(r)
2dr

¶2

= σ4

µZ 1

0

θ(r)2dr

¶
.

(18)

Also, we have

bσ2
T = T−1

TX
t=1

b²2t
= T−1

TX
t=1

²2t − 2[T (bφ− 1)]T−2

TX
t=1

²tyt−1 + [T (bφ− 1)]2T−3

TX
t=1

y2
t−1,

p−→ σ2

(19)

and

bκ2
T = T−1

TX
t=1

b²4t − bσ4
T

= T−1

TX
t=1

²4t − 4[T (bφ− 1)]T−2

TX
t=1

²3t yt−1 + 6[T (bφ− 1)]2T−3

TX
t=1

²2ty
2
t−1

−4[T (bφ− 1)]3T−4

TX
t=1

²ty
3
t−1 + [T (

bφ− 1)]4T−5

TX
t=1

y4
t−1 − bσ4

T

p−→ E(²4t )− σ4 = κ2,

(20)

by noting that T (bφ− 1) = Op(1) and applying Lemma 2. Note that here, we used
the assumption that V ar(²3t ) < ∞ to ensure that T−3/2

PT
t=1 ²

3
tyt−1 = Op(1) by

Lemma 2(c). Thus, eventually we have

Z1 ⇒ σ−2κ−1

µZ 1

0

θ(r)2dr

¶−1/2

. (21)

Next, we derive the limit distribution of Z2. Similarly to (19), we have

Z2 = T−3/2

Ã
TX
t=1

b²2ty2
t−1 − bσ2

T

TX
t=1

y2
t−1

!

= T−3/2

Ã
TX
t=1

²2ty
2
t−1 − 2(bφ− 1) TX

t=1

²ty
3
t−1 + (

bφ− 1)2 TX
t=1

y4
t−1

−eσ2
T

TX
t=1

y2
t−1 + eσ2

T

TX
t=1

y2
t−1 − bσ2

T

TX
t=1

y2
t−1

!

= T−3/2

TX
t=1

(²2t − eσ2
T )y

2
t−1 − 2T (bφ− 1)T−5/2

TX
t=1

²ty
3
t−1

+[T (bφ− 1)]2T−7/2

TX
t=1

y4
t−1 + T

1/2(eσ2
T − bσ2

T )T
−2

TX
t=1

y2
t−1,

(22)
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where eσ2
T ≡ T−1

PT
t=1 ²

2
t . Noting that T (

bφ−1) = Op(1) and applying Lemma 2, the
second and third terms of the right-hand side in the last equality in (22) converge in
probability to zero. Similarly, the fourth term converges in probability to zero since
T−2

PT
t=1 y

2
t−1 = Op(1) and

T 1/2(eσ2
T − bσ2

T ) = T
1/2

2(bφ− 1)XT

t=1
²tyt−1

T
−
(bφT − 1)2XT

t=1
y2
t−1

T


= T−1/2

2T (bφ− 1)
XT

t=1
²tyt−1

T
− [T (bφ− 1)]2

XT

t=1
y2
i−1

T 2


= o(1)[Op(1)Op(1)−Op(1)Op(1)] p−→ 0.

(23)

Thus, the limit distribution of Z2 is equivalent to that of the first term. From the
proof of Theorem 2 in McCabe and Tremayne (1995), it follows that the first term
converges weakly so that

T−3/2

TX
t=1

(²2t − eσ2
T )y

2
t−1 ⇒ σ2κ

Z 1

0

θ(r)dW ∗(r), (24)

where W ∗(r) ≡ ρW1(r) + (1− ρ2)1/2W2(r), W1(r) and W2(r) are mutually indepen-
dent standard Wiener processes, σ2 = E(²2t ), κ

2 = V ar(²2t ), and ρ = corr(²t, ²
2
t ).

5

Thus, we have

Z2 ⇒ σ2κ

Z 1

0

θ(r)dW ∗(r). (25)

From (21) and (25), we eventually have

eZT ⇒
Z 1

0

θ(r)dW ∗(r)µZ 1

0

θ(r)2dr

¶1/2
. (26)

Lastly, we prove that the limit distribution shown in (26) is reduced to the standard
normal distribution when ρ = 0. Let F1 be the σ-algebra generated by the Wiener
process {W1(r); 0 ≤ r ≤ 1}. Since W2(r) and W1(r) are mutually independent, so
are F1 and {W2(r); 0 ≤ r ≤ 1}. Conditioned on the σ-algebra F1, the function

θ(r) is a deterministic function and
R 1

0
θ(r)dW2(r) ∼ N(0,

R 1

0
θ(r)2dr). Therefore,

we have that eZT |F1 ∼ N(0, 1). Since the conditional distribution does not depend
any other random variables, the unconditional distribution of eZT is also N(0, 1). ¤

5Actualy, McCabe and Tremayne (1995) proved (24) assuming a more general process for ²t.
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Proof of Theorem 2 First, we prove that ρ∗T
p−→ ρ. Since sT

p−→ 1, we just have to

prove bρT p−→ ρ. Similarly to (19) and (20), we have

T−1

TX
t=1

b²3t = T−1

TX
t=1

²3t − 3T (bφ− 1)T−2

TX
t=1

²2tyt−1

+ 3[T (bφ− 1)]2T−3

TX
t=1

²ty
2
t−1 − [T (bφ− 1)]3T−4

TX
t=1

y3
t−1

p−→ E(²3t ).

Thus, bρT p−→ ρ. Write (13) as eGT,δ = G1 × [G2 −G3], (27)

where G1 ≡ T (1− bρ∗2T )−1/2bτ−1
T , G2 ≡ bκ−1

T T
−3/2ZT (

bφ), and G3 ≡ bρ∗Tbσ−1
T T

−3/2GT (
bφ).

Since bρ∗T p−→ ρ, and bκ2
T

p−→ κ2, it follows from (18) and (25) that

G1 ⇒ (1− ρ2)−1/2σ−2

µZ 1

0

θ(r)2dr

¶−1/2

, (28)

and

G2 ⇒ σ2(1− ρ2)1/2
Z 1

0

θ(r)dW2(r) + σ2ρ

Z 1

0

θ(r)dW1(r), (29)

as T → ∞. Lastly, we prove that G3 ⇒ ρσ2
R 1

0
θ(r)dW1(r). Noting that y

3
t =

y3
t−1 + 3y

2
t−1²t + 3yt−1²

2
t + ²

3
t , we have

1

3
y3
T =

1

3

TX
t=1

∆(y3
t ) =

TX
t=1

y2
t−1²t +

TX
t=1

yt−1²
2
t +

1

3

TX
t=1

²3t ,

where ∆(y3
t ) ≡ y3

t − y3
t−1. Thus, we can write T

−3/2GT (
bφ) as

T−3/2GT (
bφ) = g1 + g2 − g3, (30)

where

g1 ≡ T−3/2

TX
t=1

y2
t−1²t,

g2 ≡ T−3/2

TX
t=1

yt−1²
2
t +

1

3
T−3/2

TX
t=1

²3t − T−3/2

TX
t=1

yt−1b²2t , and
g3 ≡

¡
T−1/2yT

¢Ã
T−2

TX
t=1

y2
t−1

!
.

Applying Lemma 2(a), we have g1 ⇒ σ3
R 1

0
W1(r)

2dW1(r) and g3 ⇒ σ3W1(1)
R 1

0
W1(r)

2dr.

By a similar argument to that used in (23), we can easily show that g2
p−→ 0. Thus,

we have T−3/2GT (
bφ)⇒ σ3

R 1

0
θ(r)dW1(r) and

G3 = bρ∗Tbσ−1
T T

−3/2GT (bφ)⇒ ρσ2

Z 1

0

θ(r)dW1(r). (31)
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From (27), (28), (29), and (31), we obtain

eGT,δ ⇒
Z 1

0

θ(r)dW2(r)µZ 1

0

θ(r)2dr

¶1/2

d
= N(0, 1), (32)

where the notation
d
= denotes equivalence in distribution. This completes the proof

of Theorem 2.

Proof of Theorem 3 Write eGT,δ = (1− ρ∗2T )
−1/2 eZT + IT , where

IT ≡ (1− ρ∗2T )
−1/2ρ∗Tbτ−1

T bσ−1
T T

−1/2GT (
bφ).

We will show that IT is Op(T
−δ/2) under H0 and is Op(T

−(δ−1)/2) under H1. Then,
Theorem 3 follows immediately from Theorem 3.2 in Lee (1998, p.100).

Proof of Part(a). First note that yt is stationary and ergodic with a finite fourth

moment. Since b²t = yt − bφyt−1, we have

bσ2
T = T−1

TX
t=1

b²2t
= T−1

TX
t=1

y2
t − 2bφT−1

TX
t=1

ytyt−1 + bφ2T−1

TX
t=1

y2
t−1

p−→ (1 + φ2)E(y2
t )− 2φE(ytyt−1),

(33)

and hence bσ2
T = Op(1). By similar arguments, it is easy to show that T

−1
PT

t=1 b²3t =
Op(1) and T

−1
PT

t=1 b²4t = Op(1), which ensures that bρT = Op(1) and bτT = Op(1).

Let vT ≡ T−1bσ−2
PT

t−1 y
2
t−1. Since vT = Op(1), we have

sT = 1− £1− (T−1/2vT )
δ + 1

2
(T−1/2vT )

2δ − · · · ¤
= T−δ/2vδT + op(T

−δ/2)
= Op(T

−δ/2).
(34)

Therefore, we have ρ∗T = Op(T
−δ/2). Next, note that

T−1/2GT (
bφ) = T−1/21

3
y3
T − T−1/2

TX
t=1

yt−1b²2t − T−1/2yTT
−1

TX
t=1

y2
t−1. (35)

It is easy to see that the first and third terms converge in probability to zero. We
will show that the second term is Op(1) under H0. Let θt = yt − φyt−1. Because

θ2
t − b²2t = 2(bφ− φ)ytyt−1 + φ2y2

t−1 − bφ2y2
t−1

= 2(bφ− φ)(θt + φyt−1)yt−1 + φ2y2
t−1 − bφ2y2

t−1

= 2(bφ− φ)θtyt−1 − (bφ− φ)2y2
t−1,

(36)
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we can write

T−1/2

TX
t=1

(θ2
t − b²2t )yt−1 = 2T 1/2(bφ− φ)T−1

TX
t=1

y2
t−1θt

+T−1/2[T 1/2(bφ− φ)]2T−1

TX
t=1

y3
t−1.

(37)

By the ergodicity of yt, we have T
−1
PT

t=1 y
3
t−1

p−→ E(y3
t−1), hence the second term in

(37) converges in probability to zero. Similarly, noting that when the true process
is a stationary AR(1), θt = ²t, the first term converges in probability to zero since

yt−1 is independent from (bt, ²t) and T
−1
PT

t=1 y
2
t−1²t

p−→ E(y2
t−1)E(²t) = 0 under H0.

This yields

T−1/2

TX
t=1

yt−1b²2t = T−1/2

TX
t=1

yt−1θ
2
t + op(1). (38)

Let Ft be the σ-field generated by {yt, ²t, yt−1, ²t−1, ...., y0}. Write yt−1²
2
t = xt +

yt−1σ
2, where xt ≡ yt−1(²

2
t − σ2). Then, {xt,Ft} is a martingale difference sequence

with variance V ar(xt) = σ2κ2/(1−φ2) for all t. It follows from the stationarity that
the Lindeberg condition is satisfied (see White, 2001, p.118, and p.135). By the

ergodicity we have T−1
PT

t=1 x
2
t

p−→ σ2κ2/(1− φ2). Thus, we can apply a martingale

central limit theorem (White, 2001, Theorem 5.24, p.133) to obtain T−1/2
PT

t=1 xt
d−→

N(0, σ2κ2/(1− φ2)). It can be shown that T−1/2
PT

t=1 yt
d−→ N(0,σ2/(1− φ)2) by a

central limit theorem for a stationary sequence (Hamilton, 1994, Proposition 7.11,
p.195). Hence, the first term in (38) is Op(1), which implies that the second term in
(35) is Op(1) under H0. From these arguments, we have IT = Op(T

−δ/2) under H0,
which completes the proof of part (a).

Proof of Part(b) The same arguments as in the proof of Part (a) can be ap-
plied to show that bσ2

T = Op(1), bρ∗T = Op(T
−δ/2), and the first and third terms in

(35) converge in probability to zero, since these arguments use only that yt is sta-
tionary and ergodic with a finite fourth moments. We will show that the second
term in (35) is Op(T

1/2) under H1. Note that θt = btyt−1 + ²t under H1. The first

and second terms in (37) converges in probability to zero, since T−1
PT

t=1 y
2
t−1θt =

T−1
PT

t=1 y
3
t−1bt + T

−1
PT

t=1 y
2
t−1²t

p−→ E(y3
t−1)E(bt) + E(y

2
t−1)E(²t) = 0. Thus, the

equation in (38) holds under H1 too. Furthermore, we have

T−1

TX
t−1

yt−1θ
2
t

p−→ ω2E(y3
t ) + 2E(bt²t)E(y

2
t−1) + σ2E(yt−1)

= ω2E(y3
t ) + 2ψωE(y

2
t−1),

(39)

which implies that the second term in (35) is Op(T
1/2), and thus we have IT =

Op(T
−(δ−1)/2) under H1. This completes the proof of part (b). ¤
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Table 1: Empirical size at 5 % nominal level

Case (1) The true model: yt = φyt−1 + ²t, ²t ∼ i.i.d.N(0, 1).
φ

T −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9 0.95 0.98 1.0

50 eZT 0.035 0.027 0.027 0.031 0.027 0.027 0.032 0.035 0.037 0.039
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.023 0.043eGT,1 0.042 0.031 0.033 0.033 0.031 0.032 0.050 0.059 0.062 0.071eGT,10 0.036 0.029 0.028 0.027 0.028 0.025 0.038 0.053 0065 0.067

100 eZT 0.037 0.032 0.034 0.037 0.038 0.034 0.039 0.037 0.042 0.039
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.043eGT,1 0.038 0.033 0.036 0.038 0.037 0.034 0.042 0.049 0.062 0.064eGT,10 0.042 0.035 0.035 0.034 0.034 0.030 0.036 0.049 0065 0.065

200 eZT 0.038 0.036 0.040 0.043 0.041 0.040 0.040 0.041 0.045 0.043
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.049eGT,1 0.037 0.037 0.040 0.040 0.040 0.039 0.044 0.051 0.058 0.061eGT,10 0.036 0.036 0.037 0.041 0.039 0.037 0.038 0.043 0059 0.066

1000 eZT 0.044 0.044 0.046 0.046 0.049 0.047 0.044 0.045 0.048 0.048
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052eGT,1 0.040 0.044 0.048 0.051 0.051 0.046 0.044 0.044 0.053 0.055eGT,10 0.042 0.043 0.046 0.047 0.046 0.043 0.045 0.043 0050 0.052

Note: The second column indicates the test statistics, where eZT is the Lee test defined in (2), Z∗T
is the MT test defined in (4), and eGT,δ is the modified Lee test defined in (13). The critical values
of the MT test are taken from the Table 1 in McCabe and Tremayne (1995).
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Figure 1: Pdfs of the three distributions

Note: these pdfs are of the following three distributions: (1) ²t ∼ N(0, 1) (ρ = 0);
(2) ²t ∼ (1/

√
2)(χ2(1) − 1) (ρ = 2/

√
7 ≈ 0.7559); (3) ²t ∼ (1/

√
20)(χ2(10) − 10)

(ρ = 0.5), where ρ = corr(²t, ²
2
t ).
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Figure 2: Histograms of eZT and eGT,1

Note: histograms of 100,000 samples of (a) eZT and (b) eGT,1 with T = 1000 and

φ = 1 in Case (2), where eZT is the Lee test defined in (2), and eGT,1 is the proposed
test defined in (13).
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Table 2: Empirical size at 5 % nominal level
Case (2) The true model: yt = φyt−1 + ²t, ²t ∼ (1/

√
2)[χ2(1)− 1], corr(²2t , ²t) ≈ 0.7559.

φ

T -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 0.95 0.98 1.0

50 eZT 0.041 0.035 0.037 0.028 0.018 0.013 0.080 0.122 0.161 0.196
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.014 0.069 0.140eGT,1 0.057 0.040 0.042 0.036 0.020 0.010 0.027 0.038 0.053 0.059eGT,10 0.039 0.033 0.035 0.028 0.015 0.013 0.073 0.088 0083 0.077

100 eZT 0.044 0.042 0.043 0.036 0.024 0.014 0.045 0.079 0.125 0.187
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.018 0.129eGT,1 0.057 0.048 0.046 0.038 0.028 0.016 0.021 0.031 0.045 0.058eGT,10 0.040 0.039 0.040 0.032 0.021 0.010 0.048 0.081 0077 0.061

200 eZT 0.040 0.042 0.041 0.037 0.029 0.018 0.024 0.046 0.086 0.173
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.123eGT,1 0.051 0.045 0.047 0.041 0.033 0.024 0.017 0.026 0.037 0.051eGT,10 0.041 0.047 0.045 0.038 0.027 0.016 0.021 0.062 0078 0.057

1000 eZT 0.045 0.053 0.054 0.050 0.046 0.039 0.024 0.024 0.033 0.153
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.104eGT,1 0.050 0.052 0.053 0.050 0.046 0.037 0.025 0.028 0.039 0.048eGT,10 0.046 0.049 0.050 0.048 0.042 0.032 0.022 0.024 0.064 0.052

Case(3) The true model: yt = φyt−1 + ²t, ²t ∼ (1/
√
20)[χ2(10)− 10], corr(²2t , ²t) = 0.5.

φ

T -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 0.95 0.98 1.0

50 eZT 0.039 0.030 0.032 0.027 0.024 0.025 0.048 0.064 0.072 0.086
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.032 0.065eGT,1 0.043 0.035 0.036 0.033 0.024 0.025 0.042 0.053 0.064 0.067eGT,10 0.037 0.031 0.033 0.028 0.024 0.027 0.053 0.069 0073 0.074

100 eZT 0.038 0.038 0.038 0.034 0.028 0.026 0.042 0.055 0.066 0.088
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.073eGT,1 0.045 0.038 0.041 0.037 0.029 0.025 0.039 0.050 0.058 0.069eGT,10 0.037 0.039 0.043 0.037 0.026 0.025 0.043 0.065 0067 0.070

200 eZT 0.038 0.043 0.045 0.044 0.037 0.030 0.037 0.046 0.059 0.097
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.075eGT,1 0.047 0.047 0.048 0.046 0.036 0.030 0.035 0.043 0.054 0.064eGT,10 0.042 0.040 0.045 0.039 0.035 0.028 0.037 0.055 0071 0.067

1000 eZT 0.046 0.048 0.051 0.052 0.047 0.042 0.039 0.040 0.045 0.093
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069eGT,1 0.046 0.048 0.051 0.051 0.048 0.043 0.043 0.045 0.049 0.055eGT,10 0.045 0.049 0.054 0.054 0.046 0.042 0.038 0.040 0056 0.056

Note: The notation χ2(k) denotes the random variable distributed chi-square with k degrees of
freedom. In both Cases (a) and (b), the mean and variance of ²t are 0 and 1, respectively. The

second column indicates the test statistics, where eZT is the Lee test defined in (2), Z∗T is the MT
test defined in (4), eGT,δ is the modified Lee test defined in (13).
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Table 3: Power at 5 % nominal level against RCA(1) models

Case (a) The true model: yt = (φ+ bt)yt−1 + ²t, bt ∼ i.i.d.N(0,ω2), ²t ∼ i.i.d.N(0, 1).
ω2(φ = 0.6) ω2(φ = 0.9) ω2(φ = 1.0)

T 0.010∗ 0.050∗ 0.100∗ 0.500∗ 0.010∗ 0.050∗ 0.100 0.500 0.010 0.050 0.100 0.500

50 eZT 0.037 0.079 0.150 0.644 0.069 0.263 0.463 0.849 0.209 0.564 0.715 0.906
Z∗T 0.000 0.000 0.000 0.011 0.005 0.046 0.087 0.092 0.194 0.347 0.353 0.153eGT,1 0.040 0.085 0.162 0.654 0.088 0.290 0.480 0.850 0.254 0.585 0.724 0.898eGT,10 0.036 0.078 0.150 0.640 0.081 0.270 0.460 0.836 0.257 0.581 0.712 0.887

100 eZT 0.051 0.141 0.283 0.911 0.101 0.477 0.747 0.989 0.491 0.870 0.947 0.996
Z∗T 0.000 0.000 0.000 0.008 0.001 0.031 0.079 0.090 0.343 0.479 0.445 0.154eGT,1 0.054 0.148 0.293 0.916 0.117 0.498 0.759 0.988 0.532 0.876 0.946 0.991eGT,10 0.051 0.141 0.283 0.911 0.104 0.477 0.745 0.987 0.536 0.869 0.942 0.991

200 eZT 0.059 0.221 0.497 0.996 0.149 0.738 0.952 1.000 0.811 0.988 0.998 1.000
Z∗T 0.000 0.000 0.000 0.005 0.000 0.017 0.063 0.089 0.517 0.587 0.502 0.150eGT,1 0.061 0.226 0.503 0.997 0.160 0.750 0.954 0.999 0.824 0.989 0.998 0.998eGT,10 0.059 0.222 0.498 0.996 0.149 0.738 0.952 0.999 0.826 0.988 0.998 0.999

1000 eZT 0.117 0.700 0.984 1.000 0.456 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Z∗T 0.000 0.000 0.000 0.002 0.000 0.003 0.029 0.082 0.850 0.738 0.555 0.148eGT,1 0.118 0.701 0.984 1.000 0.461 1.000 1.000 1.000 1.000 1.000 1.000 1.000eGT,10 0.117 0.700 0.984 1.000 0.456 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case (b) The true model: yt = (φ+ bt)yt−1 + ²t, bt ∼ i.i.d.N(0,ω2), ²t ∼ (1/
√
2)[χ2(1)− 1].

ω2(φ = 0.6) ω2(φ = 0.9) ω2(φ = 1.0)

T 0.010∗ 0.050∗ 0.100∗ 0.500∗ 0.010∗ 0.050∗ 0.100 0.500 0.010 0.050 0.100 0.500

50 eZT 0.020 0.051 0.110 0.605 0.088 0.223 0.400 0.840 0.282 0.532 0.682 0.904
Z∗T 0.000 0.000 0.001 0.013 0.003 0.042 0.088 0.099 0.210 0.333 0.357 0.159eGT,1 0.018 0.052 0.117 0.614 0.051 0.213 0.399 0.835 0.216 0.528 0.677 0.895eGT,10 0.019 0.050 0.108 0.598 0.085 0.225 0.399 0.825 0.245 0.549 0.680 0.886

100 eZT 0.019 0.069 0.173 0.862 0.069 0.317 0.617 0.980 0.426 0.798 0.912 0.992
Z∗T 0.000 0.000 0.000 0.010 0.001 0.028 0.073 0.093 0.291 0.443 0.430 0.150eGT,1 0.024 0.077 0.187 0.868 0.052 0.318 0.621 0.979 0.419 0.798 0.905 0.988eGT,10 0.019 0.069 0.172 0.860 0.071 0.315 0.616 0.978 0.450 0.802 0.907 0.988

200 eZT 0.028 0.117 0.312 0.982 0.067 0.485 0.845 1.000 0.672 0.962 0.993 1.000
Z∗T 0.000 0.000 0.000 0.005 0.000 0.016 0.058 0.085 0.423 0.550 0.486 0.145eGT,1 0.032 0.126 0.328 0.983 0.065 0.487 0.846 0.999 0.689 0.962 0.992 0.999eGT,10 0.027 0.116 0.312 0.982 0.067 0.484 0.844 0.999 0.716 0.962 0.992 0.999

1000 eZT 0.067 0.441 0.863 1.000 0.153 0.972 1.000 1.000 0.998 1.000 1.000 1.000
Z∗T 0.000 0.000 0.000 0.003 0.000 0.003 0.031 0.080 0.777 0.736 0.555 0.148eGT,1 0.070 0.455 0.868 1.000 0.167 0.972 1.000 1.000 0.999 1.000 1.000 1.000eGT,10 0.067 0.442 0.863 1.000 0.153 0.972 1.000 1.000 0.998 1.000 1.000 1.000

Note: The second column indicates the test statistics, where eZT is the Lee test defined in (2), Z∗T
is the MT test defined in (4), and eGT,δ is the proposed test or Modified Lee test defined in (13).
Asterisks indicate the cases of stationary RCA(1) models with a finite fourth moment.
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Table 4: Power at 5 % nominal level against bilinear models

The true model: yt = (φ+ b²t−1)yt−1 + ²t, ²t ∼ i.i.d.N(0, 1)
(φ = 0.6) (φ = 0.9) (φ = 1.0)

b b b

T 0.050 0.100
√
0.05

√
0.1 0.050 0.100

√
0.05

√
0.1 0.050 0.100

√
0.05

√
0.1

50 eZT 0.028 0.034 0.124 0.299 0.039 0.072 0.388 0.639 0.081 0.237 0.619 0.792
Z∗T 0.000 0.000 0.002 0.013 0.003 0.023 0.205 0.320 0.101 0.237 0.500 0.570eGT,1 0.032 0.039 0.141 0.328 0.051 0.091 0.410 0.656 0.124 0.276 0.625 0.787eGT,10 0.028 0.033 0.122 0.294 0.047 0.084 0.401 0.639 0.126 0.278 0.619 0.782

100 eZT 0.038 0.062 0.267 0.571 0.048 0.128 0.690 0.913 0.204 0.508 0.899 0.976
Z∗T 0.000 0.000 0.000 0.005 0.001 0.017 0.245 0.362 0.205 0.407 0.707 0.697eGT,1 0.042 0.068 0.296 0.608 0.058 0.148 0.710 0.920 0.244 0.538 0.902 0.975eGT,10 0.038 0.062 0.267 0.569 0.051 0.139 0.692 0.911 0.248 0.538 0.898 0.974

200 eZT 0.053 0.114 0.537 0.870 0.058 0.226 0.920 0.995 0.435 0.787 0.994 1.000
Z∗T 0.000 0.000 0.000 0.001 0.000 0.006 0.235 0.332 0.339 0.614 0.848 0.735eGT,1 0.055 0.120 0.569 0.891 0.066 0.248 0.929 0.996 0.468 0.799 0.994 0.999eGT,10 0.053 0.114 0.537 0.870 0.059 0.230 0.920 0.995 0.471 0.797 0.993 0.999

1000 eZT 0.116 0.435 0.995 1.000 0.159 0.721 1.000 1.000 0.959 1.000 1.000 1.000
Z∗T 0.000 0.000 0.000 0.000 0.000 0.000 0.093 0.172 0.773 0.964 0.915 0.663eGT,1 0.118 0.446 0.996 1.000 0.167 0.740 1.000 1.000 0.964 1.000 1.000 1.000eGT,10 0.116 0.435 0.995 1.000 0.159 0.721 1.000 1.000 0.964 1.000 1.000 1.000

Note: The second column indicates the test statistics, where eZT is the Lee test defined in (2), Z∗T
is MT test defined in (4), and eGT,δ is the proposed test or Modified Lee test defined in (13).
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