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1 Introduction

Credit derivative valuation methods have developed quickly in the last two decades along-
side rapid growth in the market for credit derivatives. Among credit derivatives, credit
default swaps are one of the more important instruments used to hedge credit risk. It
is then necessary to develop more efficient numerical methods to evaluate these contin-
gent claims. For this purpose, in this article the prices of credit default swaps and their
swaptions with counterparty credit risks are evaluated using the asymptotic expansion
method. A general model based on multiple defaultable entities is established to evaluate
credit derivatives in the model with counterparty credit risks. This model is similar to
one for basket-type credit default swaps and their swaptions. The article also discusses
the problem of pricing basket-type credit default swaps.

Two major approaches are used to evaluate credit derivatives, namely, reduced mod-
eling and structural modeling. In the structural approach, the default time is regarded
as an exogenous variable that depends on the characteristics of the specific firm. These
models were originally proposed by Merton (1974). On the other hand, the default time
in the reduced form approach, which is exploited in this paper, is an unpredictable and
endogenous stopping time governed by a default intensity process. Although the reduced
modeling approach has fewer economic implications than has structural modeling, the
prices of credit derivatives are evaluated efficiently and systematically. These approaches
have been employed to evaluate credit derivatives in Jarrow and Turnbull (1995), Duffie
and Singleton (1999) and Muroi (2002, 2005).

Several studies have investigated the pricing of credit derivatives in a market including
counterparty credit risks. Huge and Lando (1999) considered the pricing methods of credit
default swaps in credit migration models with counterparty credit risks. Jarrow and Yu
(2001) discussed the pricing of credit default swaps in a model with dependent default
intensities. In their model, the default intensity of one firm jumps at the default time
of another entity. Chen and Filipović (2003) investigated the pricing methods of credit
default swaps and their swaptions using the partial differential equation approach in the
affine structure model. The asymptotic expansion method of Kunitomo and Takahashi
(2001, 2003) is exploited in Muroi (2005) to evaluate credit derivatives such as options
on defaultable bonds. This method enables us to evaluate credit default swaptions more
easily because closed-form approximation formulas are available. The valuation of credit
default swaps of the basket type, which are briefly discussed in this article, have been
analyzed by, for example, Kijima (2000) and Kijima and Muromachi (2000).

This paper is organized as follows. Section 2 explains the basic model, and the expec-
tation form of the pricing formulas for the credit default swaps are shown. The approx-
imation formulas for the prices of the credit default swaps and their swaptions with the
asymptotic expansion approach are given in Section 3. Section 4 discusses the pricing of
basket swaps and their swaptions. The numerical results are presented in Section 5 and
some concluding remarks are given in Section 6. The validity of the asymptotic expansion
approach is discussed in the appendix.
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2 A Model with Multiple Defaultable Entities

In this section, a model with multiple defaultable firms is constructed. This model is
useful for evaluating the credit default swaps with counterparty credit risks discussed in
the second half of this section, and the credit default swaps of the basket type that are
considered in Section 4. These problems are considered in a frictionless economy with
a trading horizon, [0, U ]. Two kinds of risks are found in this model, interest rate risk
and default risk. A probability space (Ω,F , P ) is fixed and the probability measure P
is regarded as a real-world probability measure. A risk-neutral probability measure Q,
which is equivalent to the real-world probability measure P , is assumed to exist. This
probability space is formally large enough to support the positively valued stochastic
processes, r(t) and hi(t) (i = 1, . . . , I), and the stopping time, τi (i = 1, . . . , I). The
stochastic process r(t) is regarded as the spot interest rate process, and the stochastic
process hi(t) is regarded as the default intensity process for the i-th firm. Stopping time
τi (i = 1, . . . , I) represents the default time of the i-th firm. The following assumptions
for the stochastic processes r(t) and hi(t) (i = 1, . . . , I) are imposed.

Assumption 1 The spot interest rate process {r(t)} and the default intensity rate process
{hi(t)} (i = 1, . . . , I) are positive and predictable processes that satisfy the conditions

∫ t

0
r(s)ds <∞,

∫ t

0
hi(s)ds <∞ (i = 1, . . . , I)

for any t ∈ [0, T ].

The information sets at time t are given by

Gt = σ{(r(s), h1(s), . . . , hI(s)) : 0 ≤ s ≤ t}
Hi

t = σ{1{τi≤s} : 0 ≤ s ≤ t} (i = 1, . . . , I)

Ft = Gt ∨H1
t ∨ · · · ∨ HI

t .

A model with the structure of conditional independence is introduced to characterize
the multiple defaultable firms. Conditional independence is often used to evaluate credit
default swaps of the basket type as discussed by Kijima (2000) and Kijima and Muromachi
(2000). Conditional independence also plays an important role in the evaluation of the
credit default swaps with counterparty credit risks in this article.

Definition 1 The stopping times τ1, . . . , τI are conditionally independent with respect to
the filtration {Gt}t∈[0,T ] under Q, if the relation

Q[τ1 > t1, . . . , τI > tI|GT ] =
I∏

i=1

Q[τi > ti|GT ]

is satisfied for arbitrary t1, . . . , tI ∈ [0, T ].

As pointed out by Kijima (2000), conditional independence does not imply ordinal inde-
pendence and vice versa. The stronger condition, dynamically conditional independence,
is also imposed, because the joint survival probability at the future date T0 is also needed
to evaluate the value of swaption.
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Definition 2 The stopping times τ1, . . . , τI are dynamically conditionally independent
with respect to the filtration {Gt}t∈[0,T ] under the risk-neutral probability measure Q, if the
relation

Q[τ1 > t1, . . . , τI > tI|GT ∨ H1
t ∨ · · · ∨ HI

t ] =
I∏

i=1

Q[τi > ti|GT ∨H1
t ∨ · · · ∨ HI

t ]

is satisfied for arbitrary t1, . . . , tI ∈ [0, T ].

Conditional independence and dynamically conditional independence are introduced in
Section 9 of Bielecki and Rutkowski (2002) to evaluate credit default swaps of the basket
type. Exponentially distributed independent random variables E1, . . . , EI that are inde-
pendent of (r(t), h1(t), . . . , hI(t)) are introduced. The stopping times τ1, . . . , τI defined
by

τi = inf{t :
∫ t

0
hi(s)ds ≥ Ei} (i = 1, . . . , I) (1)

are conditionally independent stopping times. The default time of the i-th firm is modeled
with the stopping times in (1). These stopping times are also dynamically conditionally
independent. This model can be found in Example 9.1.5 in Bielecki and Rutkowski (2002).

Lemma 1 The stopping times τ1, . . . , τI defined by (1) satisfies the following properties.
(i)The combined survival probability at t1, . . . , tI is given by

Q[τ1 > t1, . . . , τI > tI |GT ] =
I∏

i=1

e−
∫ ti
0

hi(s)ds = e−
∑I

i=1

∫ ti
0

hi(s)ds

(ii)The stopping times τ1, . . . , τI are conditionally independent.

The proof can be found in Lemma 9.1.1 in Bielecki and Rutkowski (2002). Although
the hazard rate processes h1(t), . . . , hI(t) are correlated, the stopping times, τ1, . . . , τI ,
are conditionally independent. Because the pricing of swaptions is also considered in
this article, the dynamically conditional independence in our framework must be checked.
Fortunately, the following lemma is satisfied.

Lemma 2 The default time of the firm i (i = 1, . . . , I) is defined by (1). The following
facts must be concluded in our model.
(i)The stopping times τ1, . . . , τI are conditionally independent.
(ii)The combined survival probability of the firms i = 1, . . . , I at time t1, . . . , tI is given by

Q[τ1 > t1, . . . , τI > tI |GT ∨H1
t ∨ · · · ∨ HI

t ] = e−
∑I

i=1

∫ ti
t

hi(s)ds1{τ1>t,...,τI>t} . (2)

The proof of this lemma can be found in Lemma 9.1.3 in Bielecki and Rutkowski (2002).
The following lemma is also important for evaluating credit default swaps of the basket
type.

Lemma 3 The stopping times τ1, . . . , τI satisfy

Q[s ≤ τi < s+ds, τk > s (k �= i)|GT ∨H1
t ∨ . . .∨HI

t ] = hi(s)e
−

∑I

i=1

∫ s

t
hi(u)duds1{τ1>t,...,τI>t}

for time s(> t).
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This lemma is easy to prove. This is shown by merely taking the partial derivatives of
(2):

− ∂

∂ti
Q[τ1 > t1, . . . , τI > tI|GT ∨ H1

t ∨ · · · ∨ HI
t ]|t1=s,...,tI=s .

A model with three defaultable firms is constructed in the latter half of this section to
evaluate the contingent claims with counterparty credit risks. In general, it is necessary
to refer to counterparty credit risks to evaluate credit default swaps. The first entity in
this model is the reference entity, referred to as firm 1. The second and third entities
(firms 2 and 3) in this model are the buyer and the seller of credit default swaps. There
are two kinds of bonds in this market, default-free bonds and defaultable bonds issued
by firm 1, the former paying the notational principal fixed at 1 at the maturity date,
denoted as p(t, u) with maturity u (u ≤ T ) at time t. Even if the issuer of defaultable
bonds defaults, defaultable bonds do not necessarily become worthless. This is because
any value of the firm remaining is distributed to the bondholders. In this article, the
following rule governing the pay-off ratio for defaultable bonds is imposed for defaultable
zero coupon bonds.

Assumption 2 (pay-off ratio) 1) A defaultable zero coupon bond pays the notational
principal fixed at $1 at the maturity date, if the issuer is solvent. 2) A defaultable zero
coupon bond pays $δ at the maturity date, if default has occurred before the maturity date
(0 ≤ δ < 1).

The following artificial defaultable bonds are introduced for technical reasons.

(i)Zero recovery bonds: This bond has a cash flow at the maturity date if the reference
entity (firm 1) is not in default, and has no pay-off if default has occurred before the
maturity date. The price of zero-recovery bonds with maturity date, u, at time, t, is
denoted by w1(t, u).
(ii)Zero recovery bonds of the basket type: This bond has a cash flow at the maturity
date if none of the three firms defined above are in default before the maturity date. No
cash flow occurs if any of these firms are in default before the maturity date. The price
of these bonds with maturity date, u, at time, t, is denoted by w(t, u).

The prices of the default-free bonds and zero-recovery bonds issued by firm 1 are given
by

p(t, T ) = EQ[exp(−
∫ T

t
r(s)ds)|Gt]

w1(t, T ) = EQ[exp(−
∫ T

t
r(s)ds)1{τ1>T}|Ft]

= EQ[exp(−
∫ T

t
r(s)ds)EQ[1{τ1>T}|GT ∨ Ft]|Ft]

= EQ[exp(−
∫ T

t
r(s) + h1(s)ds)1{τ1>t}|Ft]

= EQ[exp(−
∫ T

t
r(s) + h1(s)ds)|Gt]1{τ1>t} .
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The price of zero-recovery bonds of the basket type is also given by

w(t, T ) = EQ[exp(−
∫ T

t
r(s)ds)1{τ1,τ2,τ3>T}|Ft]

= EQ[exp(−
∫ T

t
r(s) + h1(s) + h2(s) + h3(s)ds)|Gt]1{τ1,τ2,τ3>t} .

Functions w1 and w have a form that the expectation operator multiplied by the indicator
function. The symbol “tilde” means that the indicator function 1{τ1,τ2,τ3>t} is removed
from these functions, i.e., functions w̃1 and w̃ stand for

w̃1(t, T ) = EQ[exp(−
∫ T

t
r(s) + h1(s)ds)|Gt]

w̃(t, T ) = EQ[exp(−
∫ T

t
r(s) + h1(s) + h2(s) + h3(s)ds)|Gt] .

The arbitrage-free price of defaultable bonds issued by firm 1 is given by

v1(t, T ) = δp(t, T ) + (1 − δ)w1(t, T ) .

This is obtained by the arbitrage-free argument. The valuation of forward-start credit
default swaps of the Bermudan type is studied in this article. These securities are in-
troduced by Chen and Filipović (2003), and the dates of cash flows for these securities
are determined in advance. By equipping these conditions, the pricing formulas for swap-
tions on these securities become significantly simple. The swap contract is made at time
T0(> 0) and the cash flows occur at time {T1, . . . , Tn}. The assumption that these time
intervals are equal is made, i.e.,

∆ = Tm − Tm−1 (m = 1, . . . , n) .

In this article, credit default swaps are securities with the following properties.

(a) The default of firm i (i = 1, 2, 3) does not occur until time Tm, i.e., Tm < τ1, τ2, τ3, the
buyer of the credit default swap pays the fixed rate, c, to the seller of the credit default
swap at time Tm.
(b) If the default of firm 1 occurs during the time interval (Tm−1, Tm], and the default
times of firms 2 and 3 satisfy the conditions Tm < τ3 and Tm−1 < τ2, then the seller of
the credit default swap must pay the amount

1 − v1(Tm, T ) = 1 − δp(Tm, T )

to the buyer of the credit default swap.
(c) There is no payment and the contract terminates in all other cases.

The expected discounted income for the seller of the credit default swap at time t(≤ T0)
is denoted by cBt. Bt is given by

Bt = EQ[
n∑

m=1

exp(−
∫ Tm

t
r(s)ds)∆1{τ1,τ2,τ3>Tm}|Ft] = ∆

n∑
m=1

w(t, Tm)1{τ1,τ2,τ3>t} .
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The expected discounted income for the seller of the credit default swap at time t(≤ T0)
is denoted by St. It is given by

St = EQ[
n∑

m=1

e−
∫ Tm

t
r(s)ds(1 − δp(Tm, T ))1{Tm−1<τ1<Tm}1{Tm−1<τ2}1{Tm≤τ3}|Ft]

=
n∑

m=1

(S1m
t − δS2m

t − S3m
t + δS4m

t )

where S1m
t , S2m

t , S3m
t , S4m

t are given by

S1m
t = EQ[e−

∫ Tm

t
r(s)ds1{τ1,τ2>Tm−1,τ3>Tm}|Ft]

S2m
t = EQ[e−

∫ Tm

t
r(s)dsp(Tm, T )1{τ1,τ2>Tm−1,τ3>Tm}|Ft]

S3m
t = EQ[e−

∫ Tm

t
r(s)ds1{τ1>Tm,τ2>Tm−1,τ3>Tm}|Ft]

S4m
t = EQ[e−

∫ Tm

t
r(s)dsp(Tm, T )1{τ1>Tm,τ2>Tm−1,τ3>Tm}|Ft] .

Tedious calculations lead to alternative expressions of S1m
t , S2m

t , S3m
t and S4m

t . They are
given by

S1m
t = EQ[e−

∫ Tm

t
(r(s)+h3(s))ds−

∫ Tm−1
t

(h1(s)+h2(s))ds|Gt]1{τ1,τ2,τ3>t}

S2m
t = EQ[e−

∫ T

t
r(s)ds−

∫ Tm−1
t

h1(s)+h2(s)ds−
∫ Tm

t
h3(s)ds|Gt]1{τ1,τ2,τ3>t}

S3m
t = EQ[e−

∫ Tm

t
(r(s)+h1(s)+h3(s))ds−

∫ Tm−1
t

h2(s)ds|Gt]1{τ1,τ2,τ3>t}

S4m
t = EQ[e−

∫ Tm

t
(r(s)+h1(s)+h3(s))ds−

∫ Tm−1
t

h2(s)dsp(Tm, T )|Gt]1{τ1,τ2,τ3>t}

= EQ[e−
∫ T

t
r(s)ds−

∫ Tm

t
(h1(s)+h3(s))ds−

∫ Tm−1
t

h2(s)ds|Gt]1{τ1,τ2,τ3>t} .

These conditional expectations are calculated by the partial differential equation (PDE)
approach, if the four-dimensional stochastic process (r(t), h1(t), h2(t), h3(t)) has the affine
structure. This is discussed by Chen and Filipović (2003).

The premium for a forward-start credit default swap at the initial time, 0, is repre-
sented using the conditional expectations. If it is denoted by CDS, the relation

CDS × B0 = S0

must be satisfied. CDS is represented by

CDS =
S0

B0
=

∑n
m=1(S̃

1m
0 − δS̃2m

0 − S̃3m
0 + δS̃4m

0 )

∆
∑n

m=1 w̃(0, Tm)
.

3 Asymptotic Expansion Methods

In this section, the pricing of credit default swaps and swaptions on credit default swaps
are considered using the asymptotic expansion approach. This method was first intro-
duced by Watanabe (1987) and has been applied to mathematical statistics by Yoshida
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(1992). The asymptotic expansion approach is also a powerful tool for mathematical fi-
nance as shown by recent applications by Kunitomo and Takahashi (2001, 2003). The
asymptotic approximation formulas for credit derivatives have been investigated by Muroi
(2005). The validity of this method is discussed in the Appendix.

3.1 Pricing Credit Default Swaps

The risk-free rates and the default hazard rates for each firm i (i = 1, 2, 3) are denoted by
rε(t) and hε

i(t) (i = 1, 2, 3), respectively. They satisfy the following stochastic differential
equation (SDE) with a small parameter, ε ∈ (0, 1],

rε(t) = x0 +
∫ t

0
µ0(x̄0 − rε(s))ds+

J∑
j=0

ε
∫ t

0
σ0j(r

ε(s), hε
1(s), h

ε
2(s), h

ε
3(s))dW

j
s (3)

hε
i(t) = xi +

∫ t

0
µi(x̄i − hε

i(s))ds+
J∑

j=0

ε
∫ t

0
σij(r

ε(s), hε
1(s), h

ε
2(s), h

ε
3(s))dW

j
s , (4)

where (W 0
t , . . . ,W

J
t ) is a J + 1 dimensional standard Brownian motion. This model

contains many specific and popular examples, such as the Gaussian models and the (mul-
tifactor) CIR models (Cox, Ingersoll and Ross models).

The zero-th order terms of the stochastic expansions for rε(t) and hε
i(t) (i = 1, 2, 3)

are denoted by X0(t) and Xi(t) (i = 1, 2, 3), i.e.

X0(t) = rε(t)|ε=0, Xi(t) = hε
i(t)|ε=0 (i = 1, 2, 3) .

These quantities are solutions of the integral equations

Xi(t) = xi +
∫ t

0
µi(x̄i −Xi(s))ds

and they are given by
Xi(t) = x̄i + (xi − x̄i)e

−µit .

The first-order terms of stochastic expansions for rε(t) and hε
i(t) (i = 1, 2, 3) are repre-

sented by A0(t) and Ai(t) (i = 1, 2, 3). They are given by

A0(t) =
∂rε(t)

∂ε
|ε=0, Ai(t) =

∂hε
i(t)

∂ε
|ε=0 (i = 1, 2, 3) .

These are the solutions of the integral equations

Ai(t) = −
∫ t

0
µiAi(s)ds+

J∑
j=0

∫ t

0
σij(X0(s), . . . , X3(s))dW

j
s

and they are given by

Ai(t) =
J∑

j=0

∫ t

0
σA

ij(t, s)dW
j
s , σA

ij(t, s) = Yi(t)(Yi(s))
−1σij(X0(s), . . . , X3(s)) ,
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where Yi(t) is a solution of the following ordinary differential equation (ODE),

dYi(t)

dt
= −µiYi(t), Yi(0) = 1, (i = 0, . . . , 3) .

This equation is solved easily and the solution is Yi(t) = e−µit . The second-order terms
of the stochastic expansions for the stochastic processes rε(t) and hε

i(t) (i = 1, 2, 3) are
denoted by B0(t) and Bi(t) (i = 1, 2, 3). They are given by

B0(t) =
1

2

∂2rε(t)

∂ε2
|ε=0, Bi(t) =

1

2

∂2hε
i(t)

∂ε2
|ε=0 (i = 1, 2, 3) .

These are the solutions of the integral equations,

Bi(t) = −
∫ t

0
µiBi(s)ds+

J∑
j=0

3∑
l=0

∫ t

0
∂lσij(X0(s), . . . , X3(s))Al(s)dW

j
s .

The solutions are

Bi(t) =
J∑

j,k=0

3∑
l=0

∫ t

0
σB

ijl(t, s)
∫ s

0
σA

lk(s, u)dW
k
u dW

j
s

where
σB

ijk(t, s) = Yi(t)(Yi(s))
−1∂kσij(X0(s), . . . , X3(s)) .

The Taylor expansion with the small parameter ε yields the expansion formulas for rε(t)
and hε

i(t) (i = 1, 2, 3). They are given by

rε(t) = X0(t) + εA0(t) + ε2B0(t) + oQ(ε2) , hε
i(t) = Xi(t) + εAi(t) + ε2Bi(t) + oQ(ε2) .

The new random variables,

Rij
1 (t, T ) =

∫ t

0
rA
ij(T, t, s)dW

j
s , R̃ij

1 (t, T ) =
∫ T

t
rA
ij(T, s, s)dW

j
s

and

Rijk
2 (t, T ) =

3∑
l=0

∫ t

0
rB
ijl(T, t, s)

∫ s

0
σA

lk(s, u)dW
k
udW

j
s

R̃ijk
2 (t, T ) =

3∑
l=0

∫ T

t
rB
ijl(T, s, s)

∫ s

0
σA

lk(s, u)dW
k
udW

j
s ,

are introduced to calculate the integrals
∫ T
t Ai(s)ds and

∫ T
t Bi(s)ds in the next steps. The

functions rA
ij(T, t, s) and rB

ijk(T, t, s) are given by

rA
ij(T, t, s) = (

∫ T

t
Yi(u)du)(Yi(s))

−1σij(X0(s), . . . , X3(s))

rB
ijk(T, t, s) = (

∫ T

t
Yi(u)du)(Yi(s))

−1∂kσij(X0(s), . . . , X3(s)) .
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These integrals are represented by

∫ T

t
Ai(s)ds =

J∑
j=0

(Rij
1 (t, T ) + R̃ij

1 (t, T )) and
∫ T

t
Bi(s)ds =

J∑
j,k=0

(Rijk
2 (t, T ) + R̃ijk

2 (t, T )) .

These representations lead to the price of discount bond with the maturity date T at time
t ∈ [0, T ], which is given by

p(t, T ) = e
−

∫ T

t
X0(s)ds−ε

∑J

j=0
R0,j

1 (t,T )−ε2
∑J

j=0
R0,j

2 (t,T )
(1 +

ε2

2

J∑
j=0

∫ T

t
rA
0j(T, u, u)

2du) + oQ(ε2) .

If the issuer of bonds is not in default at time t ∈ [0, T ], the price of zero-recovery bonds
with maturity date T at time t is given by

w̃1(t, T ) = e
−

∫ T

t
X0(s)+X1(s)ds−ε

∑J

j=0
(R0,j

1 (t,T )+R1,j
1 (t,T ))−ε2

∑J

j=0
(R0,j

2 (t,T )+R1,j
2 (t,T ))

×(1 +
ε2

2

J∑
j=0

∫ T

t
(rA

0j(T, u, u) + rA
1j(T, u, u))

2du) + oQ(ε2) .

The price of defaultable bonds of the basket type is given by

w̃(t, T ) = e
−

∑3

i=0

∫ T

t
Xi(s)ds−ε

∑3

i=0

∑J

j=0
Ri,j

1 (t,T )−ε2
∑3

i=0

∑J

j=0
Ri,j

2 (t,T )

×(1 +
ε2

2

J∑
j=0

∫ T

t
(

3∑
i=0

rA
ij(T, u, u))

2du) + oQ(ε2) ,

if the issuer of defaultable bonds is not in default at time t. Four kinds of conditional
expectations introduced in the previous section, S̃1m

t , S̃2m
t , S̃3m

t , S̃4m
t , are also calculated

further to evaluate the price of the credit default swap. The quantity S̃1m
t is given by

S̃1m
t = αm

1 (t)e
−ε

∑J

j=0
R0j

1 (t,Tm)+R1j
1 (t,Tm−1)+R2j

1 (t,Tm−1)+R3j
1 (t,Tm) ×

×e−ε2
∑J

j,k=0
R0jk

2 (t,Tm)+R1jk
2 (t,Tm−1)+R2jk

2 (t,Tm−1)+R3jk
2 (t,Tm)

+ oQ(ε2)

where αm
1 (t) and qA

1j(Tm, t, u) are

αm
1 (t) = e−

∫ Tm

t
(X0(s)+X3(s))ds−

∫ Tm−1
t

(X1(s)+X2(s))ds

×{1 +
ε2

2

J∑
j=0

∫ Tm

t
(qA

1j(Tm, u, u))
2du}

qA
1j(Tm, t, u) = (rA

0j(Tm, t, u) + rA
3j(Tm, t, u))

+(rA
1j(Tm−1, t, u) + rA

2j(Tm−1, t, u))1{u≤Tm−1} .

S̃2m
t , S̃3m

t and S̃4m
t are given by

S̃2m
t = αm

2 (t)e−ε
∑J

j=0
R

0j
1 (t,T )+R

1j
1 (t,Tm−1)+R

2j
1 (t,Tm−1)+R

3j
1 (t,Tm) ×

×e−ε2
∑J

j,k=0
R0jk

2 (t,T )+R1jk
2 (t,Tm−1)+R2jk

2 (t,Tm−1)+R3jk
2 (t,Tm)

+ oQ(ε2)
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S̃3m
t = αm

3 (t)e
−ε

∑J

j=0
R0j

1 (t,Tm)+R1j
1 (t,Tm)+R2j

1 (t,Tm−1)+R3j
1 (t,Tm) ×

×e−ε2
∑J

j,k=0
R0jk

2 (t,Tm)+R1jk
2 (t,Tm)+R2jk

2 (t,Tm−1)+R3jk
2 (t,Tm)

+ oQ(ε2)

S̃4m
t = αm

4 (t)e−ε
∑J

j=0
R

0j
1 (t,T )+R

1j
1 (t,Tm)+R

2j
1 (t,Tm−1)+R

3j
1 (t,Tm) ×

×e−ε2
∑J

j,k=0
R0jk

2 (t,T )+R1jk
2 (t,Tm)+R2jk

2 (t,Tm−1)+R3jk
2 (t,Tm)

+ oQ(ε2) ,

where αm
i (t) and qA

ij(Tm, t, u) (i = 2, 3, 4) are given by

αm
2 (t) = e−

∫ T

t
X0(s)ds−

∫ Tm−1
t

(X1(s)+X2(s))ds−
∫ Tm

t
X3(s)ds

×{1 +
ε2

2

J∑
j=0

∫ T

t
(qA

2j(Tm, u, u))
2du}

αm
3 (t) = e−

∫ Tm

t
(X0(s)+X1(s)+X3(s))ds−

∫ Tm−1
t

X2(s)ds

×{1 +
ε2

2

J∑
j=0

∫ Tm

t
(qA

3j(Tm, u, u))
2du}

αm
4 (t) = e−

∫ T

t
X0(s)ds−

∫ Tm

t
(X1(s)+X3(s))ds−

∫ Tm−1
t

X2(s)ds

×{1 +
ε2

2

J∑
j=0

∫ T

t
(qA

4j(Tm, u, u))
2du}

qA
2j(Tm, t, u) = rA

0j(T, t, u) + (rA
1j(Tm−1, t, u) + rA

2j(Tm−1, t, u))1{u≤Tm−1}
+rA

3j(Tm, t, u)1{u≤Tm}
qA
3j(Tm, t, u) = rA

0j(Tm, t, u) + rA
1j(Tm, t, u) + rA

2j(Tm−1, t, u)1{u≤Tm−1}
+rA

3j(Tm, t, u)

qA
4j(Tm, t, u) = rA

0j(T, t, u) + (rA
1j(Tm, t, u) + rA

3j(Tm, t, u))1{u≤Tm}
+rA

2j(Tm−1, t, u)1{u≤Tm−1} .

These results lead to the premium of forward credit default swaps at time t ≤ T0.

Theorem 1 The premium of the forward credit default swap at the initial time 0 is given
by

CDS(0) =

∑n
m=1(S̃

1m
0 − δS̃2m

0 − S̃3m
0 + δS̃4m

0 )

∆
∑n

m=1 w̃(0, Tm)
1{τ1,τ2,τ3>0}

=

∑n
m=1(α

m
1 (0) − δαm

2 (0) − αm
3 (0) + δαm

4 (0)) + oQ(ε2)

∆
∑n

m=1 w̃(0, Tm) + oQ(ε2)
1{τ1,τ2,τ3>0} .

3.2 Pricing Credit Default Swaptions

This subsection presents the asymptotic approximation formula for the price of a credit
default swaption. Consider a credit default swaption on a credit default swap with a strike
price K and expiry date T0. The payoff of this contract at the maturity date T0 is given

10



by (ST0 −KBT0)
+. The swaption price at the initial time 0 is given by

E[e−
∫ T0
0

rε(s)+hε
1(s)+hε

2(s)+hε
3(s)ds ×

×{
n∑

m=1

(S̃1m
T0

− δS̃2m
T0

− S̃3m
T0

+ δS̃4m
T0

−K∆w̃(T0, Tm))}+]1{τ1,τ2,τ3>0} (5)

where the random variable C is given by C = ST0/BT0 . A random variable g is defined
by

g = e−
∫ T0
0

rε(s)+hε
1(s)+hε

2(s)+hε
3(s)ds{

n∑
m=1

(S̃1m
T0

− δS̃2m
T0

− S̃3m
T0

+ δS̃4m
T0

−K∆w̃(T0, Tm))} .

The asymptotic expansion of the random variable e−
∫ T0
0

rε(s)+hε
1(s)+hε

2(s)+hε
3(s)dsS̃im

T0
is cal-

culated and is given by

e−
∫ T0
0

rε(s)+hε
1(s)+hε

2(s)+hε
3(s)dsS̃im

T0
= g0

im + εg1
im + ε2g2

im + oQ(ε2)

where g0
im, g

1
im and g2

im (i = 1, 2, 3, 4) are given by

g0
im = e−

∫ T0
0

X0(s)+···+X3(s)dsαm
i (T0)

g1
im = −g0

im

J∑
j=0

∫ T0

0
qA
ij(Tm, u, u)dW

j
u

g2
im = −g0

im

J∑
j,k=0

3∑
l=0

∫ T0

0
qB
ijl(Tm, s, s)

∫ s

0
σA

lk(s, u)dW
k
udW

j
s

+
g0

im

2
{

J∑
j=0

∫ T0

0
qA
ij(Tm, u, u)dW

j
u}2 (i = 1, 2, 3, 4) .

A function qB
ijk(Tm, t, u) (i = 1, 2, 3, 4; j, k = 0, . . . , J) is defined by

qB
1jk(Tm, t, u) = (rB

0jk(Tm, t, u) + rB
3jk(Tm, t, u))

+(rB
1jk(Tm−1, t, u) + rB

2jk(Tm−1, t, u))1{u≤Tm−1}
qB
2jk(Tm, t, u) = rB

0jk(T, t, u) + (rB
1jk(Tm−1, t, u) + rB

2jk(Tm−1, t, u))1{u≤Tm−1}
+rB

3jk(Tm, t, u)1{u≤Tm}
qB
3jk(Tm, t, u) = rB

0jk(Tm, t, u) + rB
1jk(Tm, t, u) + rB

2jk(Tm−1, t, u)1{u≤Tm−1}
+rB

3jk(Tm, t, u)

qB
4jk(Tm, t, u) = rB

0jk(T, t, u) + (rB
1jk(Tm, t, u) + rB

3jk(Tm, t, u))1{u≤Tm}
+rB

2jk(Tm−1, t, u)1{u≤Tm−1} .

Similar calculations lead to

e−
∫ T0
0

rε(s)+hε
1(s)+hε

2(s)+hε
3(s)dsw̃(T0, Tm) = g0

5m + εg1
5m + ε2g2

5m + oQ(ε2)
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where g0
5m, g

1
5m and g2

5m (i = 1, 2, 3, 4) are given by

g0
5m = e−

∫ T0
0

X0(s)+···+X3(s)ds(1 +
ε2

2

J∑
j=0

∫ Tm

T0

(
3∑

i=0

rA
ij(Tm, u, u))

2du)

g1
5m = −g0

5m

J∑
j=0

∫ T0

0

3∑
i=0

rA
ij(Tm, u, u)dW

j
u

g2
5m = −g0

5m

J∑
j,k=0

3∑
l=0

∫ T0

0

3∑
i=0

rB
ijl(Tm, s, s)

∫ u

0
σA

lk(s, u)dW
k
udW

j
s

+
g0
5m

2
{

J∑
j=0

∫ T0

0

3∑
i=0

rA
ij(Tm, u, u)dW

j
u}2 (i = 1, 2, 3, 4) .

Random variables g0, g1 and g2 are newly defined by

gi =
n∑

m=1

(gi
1m − δgi

2m − gi
3m + δgi

4m −K∆gi
5m) (i = 0, 1, 2) .

Although the zero-th order term is order 1, i.e., g0
jm = O(1), g0 is very small if the

swaption is nearly at the money (ATM) and the condition g0 = εy = O(ε) is imposed. If
the random variable g1 is denoted by

g1 =
∫ T0

0
σj

g(t)dW
j
t ,

then σj
g(t) is represented by

σj
g(t) =

n∑
m=1

{−g0
1mq

A
1j(Tm, t, t) + δg0

2mq
A
2j(Tm, t, t)

+g0
3mq

A
3j(Tm, t, t) − δg0

4mq
A
4j(Tm, t, t) +K∆g0

5m

3∑
i=0

rA
ij(Tm, t, t)} .

The price of swaption P is given by

P = E[g1{g≥0}] .

If the density function for the random variable

Xε
T0

=
1

ε
(g − g0) = g1 + εg2 + · · ·

is identified, the price of the swaption given in (5) is derived. The characteristic function
of the random variable Xε

T0
is denoted by φX(t) and is represented by

φX(t) = E[e
itXε

T0 ] = E[eit(g1+εg2+···)] = E[eitg1

(1 + εitE[g2|g1])] + oQ(ε) .

The following condition

Σ =
∫ T0

0

J∑
j=0

σj
g(t)

2dt > 0

is imposed. This condition assures nondegeneracy of the Malliavin covariance matrix
defined in Section 6.
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Lemma 4 The density function for the random variable Xε
T0

is denoted by f ε
X(x) and is

given by

f ε
X(x) = n[x; 0,Σ] + ε[

c

Σ
x3 + (

f

Σ
− 2c)x]n[x; 0,Σ] + o(ε2) ,

where the function n[x; 0,Σ] represents the density function for the normal random vari-
able with mean 0 and variance Σ. The constants c and f are given by

E[g2|g1 = x] = cx2 + f .

This conditional expectation is calculated by using the following lemma.

Lemma 5 {wt} is an n-dimensional Wiener process and the vector x is a k-dimensional
vector. There exists a nonstochastic function q1(t) : R1 → Rk×n and a positive semi-
definite matrix Σ =

∫ T
0 q1(t)q1(t)

′dt .
(1) There exists a nonstochastic function qi(t) : R1 → Rm×n (i = 2, 3). The following
identity must be satisfied for 0 ≤ s ≤ t ≤ T :

E[
∫ t

0
[
∫ s

0
q2(u)dwu]′q3(s)dws|

∫ T

0
q1(u)dwu = x]

= tr
∫ t

0
[
∫ s

0
q2(u)q1(u)

′du]q1(s)q3(s)
′dsΣ−1[xx′ − Σ]Σ−1 .

(2)There exists a nonstochastic function, qi(t) : R1 → Rn (i = 2, 3). The following
identity must be satisfied for 0 ≤ s ≤ t ≤ T :

E[
∫ s

0
q2(u)dwu][

∫ t

0
q3(v)dwv]|

∫ T

0
q1(u)dwu = x]

=
∫ s

0
q2(u)q3(u)

′du+ [
∫ s

0
q2(u)q1(u)

′du]Σ−1[xx′ − Σ]Σ−1[
∫ t

0
q1(u)q3(u)

′du] .

The constant c is represented by using new constants

cim = −g0
im

J∑
j,k=0

3∑
l=0

∫ T0

0
qB
ijl(Tm, s, s)σ

j
g(s)

∫ s

0
σA

lk(s, u)σ
k
g(u)duds

+
g0

im

2

3∑
j=0

{
∫ T0

0
qA
ij(Tm, s, s)σ

j
g(s)ds}2 (i = 1, . . . , 4)

c5m = −g0
5m

J∑
j,k=0

3∑
l=0

∫ T0

0

3∑
i=0

rB
ijl(Tm, s, s)σ

j
g(s)

∫ s

0
σA

lk(s, u)σ
k
g(u)duds

+
g0
5m

2

3∑
j=0

{
∫ T0

0

3∑
i=0

rA
ij(Tm, s, s)σ

j
g(s)ds}2

and c =
∑n

m=1(c1m − δc2m − c3m + δc4m −K∆c5m)/Σ2 . The constant, f , is also defined
by exploiting new constants

bim =
g0

im

2

∫ T0

0

J∑
j=0

qA
ij(Tm, s, s)

2ds (i = 1, . . . , 4)
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b5m =
g0
5m

2

∫ T0

0

J∑
j=0

(
3∑

i=0

rA
ij(Tm, s, s))

2ds

b =
n∑

m=1

(b1m − δb2m − b3m + δb4m −K∆b5m)

and is given by f = b− cΣ . The constants c and f lead to the swaption price,

P = EQ[g0 + εXε
i ]

+

=
∫

g0+εx≥0
(g0 + εx)f ε

X(x)dx

=
∫

g0+εx≥0
(g0 + εx)n[x; 0,Σ]{1 + ε[

c

Σ
x3 + (

f

Σ
− 2c)x] + ε2h(x)}dx+ o(ε2) ,

where h(x) is a polynomial function. Further calculations lead to

P = g0

∫ ∞

−y
n[x; 0,Σ]dx+ ε

∫ ∞

−y
xn[x; 0,Σ]dx+ ε2

∫ ∞

−y
(cx2 + f)n[x; 0,Σ]dx+ o(ε2)

where y is given by y = g0/ε (= O(1)). The integrals are calculated by using the following
formulas

∫ ∞

−y
xn[x; 0,Σ]dx = Σn[y; 0,Σ] ,

∫ ∞

−y
x2n[x; 0,Σ]dx = ΣN(

y

Σ1/2
) − yΣn[y; 0,Σ] ,

where N(·) is the distribution function for a standard normal random variable. The
numerical results using this pricing formula are provided in Section 5.

4 Pricing Credit Default Swaps and Swaptions of the

Basket Type

The pricing of credit default swaps and credit default swaptions with counterparty credit
risks have been discussed in earlier sections. In order to evaluate credit derivatives within
these models, the default hazard rates for multiple firms are considered. The pricing
of credit default swaps of the basket type is included as another example where a model
with multiple defaultable entities should be considered. Credit default swaps of the basket
type, such as first-to-default swaps, are contingent claims that are frequently traded on
an OTC (on-the-counter) basis and have been analyzed by Kijima (2000) and Kijima and
Muromachi (2000). Credit default swaps of the basket type are default swaps where the
basket is underlain by more than one entity. There are several kinds of credit default
swaps of this type, including first-to-default swaps and nth-to-default swaps. The pricing
of first-to-default swaps and their swaptions are considered in the current article. Because
there are I-defaultable entities and interest rate risk, this model is an I + 1 factor model.
Forward credit default swaps of the basket type are securities that start the contract
at the future date T0 and the payment is made only at the predetermined time points
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{T1, . . . , Tn}. These time increments are assumed to be equal in this article, i.e., ∆ =
Tm − Tm−1 (m = 1, . . . , n). A credit default swap of the basket type in this article is
defined:

(a) If no default has occurred at time Tm then the buyer of the swap pays a premium, c,
at time Tm.
(b) If the firm i in the basket is in default in the period (Tm−1, Tm] and this is the first
default among the I firms in the basket, the seller of the swap pays the amount γi to the
buyer and the contract terminates.
(c) If the default of any firm has not occurred up to the maturity date Tn, the seller of
the swap pays γ0 at the maturity date.

The discounted expected income to the seller of the credit default swap is given by

S ′
t =

n∑
m=1

I∑
i=1

{EQ[γi exp(−
∫ Tm

t
r(s)ds)1{Tm−1<τi≤Tm}1{τi≤τ1,...,τi≤τI}|Ft]

+EQ[γ0 exp(−
∫ T

t
r(s)ds)1{T <τ1,...,T <τI}|Ft]}

=
n∑

m=1

I∑
i=1

{EQ[γi exp(−
∫ Tm

t
r(s)ds)

∫ Tm

t
hi(s) exp(−

I∑
j=1

∫ s

t
hj(u)du)ds|Gt]

−EQ[γi exp(−
∫ Tm

t
r(s)ds)

∫ Tm−1

t
hi(s) exp(−

I∑
j=1

∫ s

t
hj(u)du)ds|Gt]}1{τ1,...,τI>t}

+γ0E
Q[exp(−

∫ T

t
(r(s) +

I∑
i=1

hi(s))ds)|Gt]1{τ1,...,τI>t} .

Note that Lemma 3 is used to derive this formula. On the other hand, the discounted
expected pay off for the buyer of the swap is given by

c′B ′
t = c′∆

n∑
m=1

w(t, Tm) .

Because the discounted pay off for the buyer and seller of a basket-type credit default
swap must be the same, the premium is given by

BCDS(t) =
S ′

t

B ′
t

.

As a special case, consider the situation where γ1, . . . , γI take the same quantity, γ,
i.e., γ1, . . . , γI ≡ γ . The pricing formulas for the basket-type credit default swap premium
become simpler. The new variable,

S5m
t = E[exp(−

∫ Tm

t
r(s) −

I∑
i=1

∫ Tm−1

t
hi(s)ds)|Gt]1{τ1,...,τI>t} ,

is introduced to evaluate a credit default swap of the basket type in this case. As defined
by the symbol “tilde” in Section 2, the S̃5

t means that the indicator function is removed
from S5

t .
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The expected discounted value of the cash flow received by the seller of a credit default
swap of the basket type is given by

S ′
t = {γ0w̃(t, T ) + γ

n∑
m=1

(S̃5m
t − w̃(t, Tm))}1{τ1,...,τI>t} .

It is possible to evaluate this value by using the PDE approach, if the stochastic process
(r(t), h1(t), . . . , hI(t)) has the affine structure. This quantity can also be evaluated using
the asymptotic expansion approach. The rational value of a forward credit default swap
premium at time t (0 ≤ t ≤ T0) is given by

BCDS(t) =
S ′

t

B ′
t

=
γ0w̃(t, T ) + γ

∑n
m=1(S̃

5m
t − w̃(t, Tm))

∆
∑n

m=1 w̃(t, Tm)
1{τ1,...,τI>t} .

The valuation methods of swaption on a credit default swap of the basket type with
maturity date T0 and strike price K are also discussed in this section. The random
variable C ′ is introduced by

C ′ =
S̃ ′

T0

B̃ ′
T0

=
γ0w̃(T0, T ) + γ

∑n
m=1(S̃

5m
T0

− w̃(T0, Tm))

∆
∑n

m=1 w̃(T0, Tm)
.

The pay-off function for swaptions at the expiration date T0 is given by

(γ0w(t, T ) + γ
n∑

m=1

(S5m
t − w(t, Tm)) −K∆

n∑
m=1

w(t, Tm))1{C′>K} .

The price of swaptions is evaluated using the asymptotic expansion approach employed
in this article, and the numerical method is discussed in the next section. The method
is almost the same as the pricing of swaptions on credit default swaps with counterparty
credit risks. The numerical results are provided in the next section. It is also possible
to derive the price of a swaption on the second-to-default swaps introduced by Kijima
and Muromachi (2000). However, the pricing formulas may be more complicated and this
article does not consider this sort of problem.

5 Numerical Results

In previous sections, the pricing formulas of credit derivatives, such as credit default swaps
with counterparty credit risks, have been obtained. These prices have been evaluated with
the asymptotic expansion method proposed in this article. The numerical results in this
section are calculated using four kinds of models, the Gaussian model, the CIR model,
the CIR interest rate model and the CEV (Constant Elasticity of Variance) interest rate
model. These models are special cases of (3) and (4). The prices of the credit default
swap and swaption are obtained with the asymptotic expansion method. Monte Carlo
methods are also examined for purpose of comparison.
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(i) Gaussian Model：

The short interest rate model is represented by

drε(t) = α(r̄ − rε(t))dt + εσdW 0
t , r

ε(0) = r

where α = 0.2, r̄ = 0.05, σ = 1.5 and r = 0.05 . The small parameter ε is given by
ε = 0.01 . The default time for firm i (i = 1, 2, 3) is denoted by τi. The hazard rate
process for this stopping time is given by

dhε
i(t) = βi(h̄i − hε

i(t))dt + ε
3∑

j=0

σijdW
j
t , h

ε
i(0) = hi

where a stochastic process (W 0,W 1,W 2,W 3) is a four-dimensional standard Wiener
process and the parameters in these SDEs are given by β1 = 0.1, β2 = 0.1, β3 =
0.2, h̄1 = 0.04, h̄2 = 0.04, h̄3 = 0.03, h1 = 0.04, h2 = 0.03 and h3 = 0.04. The pa-
rameters in diffusion terms are σ10 = −0.4, σ20 = −0.6, σ30 = −0.5, σ11 = 1.0, σ21 =
0.5, σ31 = −0.4, σ32 = 0.4, σ22 = 1.5 and σ33 = 1.0. Other parameters are fixed at 0.

(ii) CIR model:

The spot interest rate and the hazard rate processes are given by the CIR model. In
this model, the spot interest rate process and the hazard rate processes are assumed
to be independent of each other. The spot interest rate is given by

drε(t) = α(r̄ − rε(t))dt+ εσ
√
rε(t)dW 0

t , r
ε(0) = r

where α = 0.2, r̄ = 0.05, σ = 7.5, r = 0.05.

The default hazard rate process for firm i (i = 1, 2, 3) is governed by the SDE

dhε
i(t) = βi(h̄i − hε

i(t))dt+ εσii

√
hε

i(t)dW
i
t , h

ε
i(0) = hi

where β1 = 0.1, β2 = 0.1, β3 = 0.2, h̄1 = 0.04, h̄2 = 0.04, h̄3 = 0.03 . The hazard rates
at the initial time are given by h1 = 0.04, h2 = 0.03 and h3 = 0.04. The parameters
in the diffusion terms are σ11 = 5.0, σ22 = 7.5 and σ33 = 5.0.

(iii) CIR interest rate model:

The spot interest rate is given by

drε(t) = α(r̄ − rε(t))dt+ εσ
√
rε(t)dW 0

t , r
ε(0) = r

where the parameters are the same as those of the CIR model. The hazard rate
process for the default time of firm i (i = 1, 2, 3) is

dhε
i(t) = βi(h̄i − hε

i(t))dt+ εσi0

√
rε(t)dW 0

t + ε
3∑

j=1

σijdW
j
t , h

ε
i(0) = hi .

The parameters for hazard rate processes are given by σ = 7.5, σ10 = −2.0, σ20 =
−3.0 and σ30 = −2.5. Other parameters are the same as the Gaussian model.
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(iv) CEV interest rate models:

The spot interest rate is given by

drε(t) = α(r̄ − rε(t))dt + εσ(rε(t))ξdW 0
t , r

ε(0) = r

and the hazard rate process for firm i (i = 1, 2, 3) is

dhε
i(t) = βi(h̄i − hε

i(t))dt + εσi0(r
ε(t))ξdW 0

t + ε
3∑

j=1

σijdW
j
t , h

ε
i(0) = hi .

The parameters in this model are the same as the CIR interest rate model, except
that ξ is assumed to be 0.7. It should be noted that a special feature of this model
is that the closed form analytic formulas for the prices of bonds and swaps are not
available, because they are not included in the affine model.

The models for the pricing of forward credit default swaps are constructed. The
recovery rate for defaultable bonds is fixed at δ = 0.5. The start time of the forward
credit default swap and the maturity date of swaption are T0 = 1 (year). The swap buyer
must pay premiums every half year, in other words ∆ = 0.5. The time to maturity of
the swaption is 3 years or 5 years at the expiry date, i.e., the maturity date of the credit
default swap is T6 = 4 (years) or T10 = 6 (years). Accordingly, the swap buyer must pay
the premium six times and ten times, respectively. The maturity date of the defaultable
bonds is fixed at T = Tm. In other words, the maturity date of defaultable bonds is either
four years or six years.

Table 1 presents the prices of credit default swaps with counterparty credit risks, and
Table 3 presents the price of credit default swaps of the basket type. The prices of credit
default swaps in the CEV interest rate models under the heading “Analytic” in Tables 1
and 3 are not calculated, because the CEV model is not included in the affine models and
the pricing formula for credit default swaps in this model is not easy to obtain. These
tables reveal that the asymptotic expansion approach enables us to evaluate credit default
swaps very accurately. The figures that appear under the heading “Analytic” in Tables
1 and 3 with the Gaussian model and the CIR interest rate model are calculated by
solving the PDE method. Because these models are affine models, pricing formulas are
obtained easily and accurately by solving the Riccati equations with the Runge–Kutta
method. Three firm models are also constructed to evaluate basket-credit default swaps.
The spot interest rate process and the hazard rate processes for the three firms are the
same as those of the models for credit default swaps with counterparty credit risks. The
recovery rates of credit default swaps of the basket type are given by γ0 = 0 and γ = 0.5,
respectively.

The prices of credit default swaptions are also calculated numerically using the asymp-
totic expansion approach. For comparative purposes, the prices of these securities are
obtained by Monte Carlo methods with the number of simulations N = 1, 000,000 and
the number of time steps M = 5, 000 for one year. In order to evaluate swaptions using
Monte Carlo methods, the pay-off function must be represented as a function of the spot
interest rate rε(t) and the hazard rate for i-th firm (i=1,2,3), hε

i(t). The pay-off function

18



Table 1. Premium for CDS
Start after 1 year, maturity 4 years Start after 1 year, maturity 6 years

Analytic Asymptotic Analytic Asymptotic
Gaussian 0.021685 0.021685 Gaussian 0.022615 0.022616
CIR model 0.021711 0.021710 CIR model 0.022680 0.022677
CIR interest 0.021675 0.021675 CIR interest 0.022593 0.022592
CEV interest 0.021711 CEV interest 0.022678
“Asymptotic” stands for the asymptotic expansion methods.
“CIR interest” stands for the CIR interest rate model.
“CEV interest” stands for the CIR interest rate model.

Table 2. Price of swaptions
Maturity 1 year, CDS maturity 4 years Maturity 1 year, CDS maturity 6 years

Asymptotic M.C. Asymptotic M.C.
Gaussian 0.003563 0.003572 Gaussian 0.006369 0.006394
CIR model 0.003339 0.003331 CIR 0.006092 0.006070
CIR interest 0.003606 0.003619 CIR interest 0.0064 0.006441
“M.C.” stands for the Monte Carlo methods.

Table 3. Premium for Basket CDS
Start after 1 year, maturity 4 years Start after 1 year, maturity 6 years

Analytic Asymptotic Analytic Asymptotic
Gaussian 0.055017 0.055018 Gaussian 0.054432 0.054438
CIR 0.055252 0.055248 CIR 0.054853 0.054843
CIR interest 0.055024 0.055025 CIR interest 0.054436 0.054443
CEV interest 0.054999 CEV interest 0.054426

Table 4. Price of swaptions on Basket CDS
Maturity 1 year, CDS maturity 4 years Maturity 1 year, CDS maturity 6 years

Asymptotic M.C. Asymptotic M.C.
Gaussian 0.009360 0.009382 Gaussian 0.011665 0.011694
CIR 0.006533 0.006508 CIR 0.008183 0.008096
CIR interest 0.009683 0.009687 CIR interest 0.012078 0.012080

Table 5. Price of swaptions with different maturity (CIR interest rate)
Maturity (years) 1 2 3 4 5
Asymptotic 0.0064 0.006897 0.006624 0.006058 0.005393
M.C. 0.006435 0.006953 0.006708 0.006168 0.005529
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Figure 1: Price of CDS as a function of hazard rates for firms 2 and 3 (CIR model).

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

212

213

214

215

216

217

218

219

hazard (h3)hazard (h2)

P
ric
e 
(b
p)

Figure 2: Price of swaptions as a function of hazard rates for firms 2 and 3 (CIR model).
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Figure 3: Price of swaptions as a function of the maturity date (CIR interest rate model).
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for swaptions is obtained by solving PDEs. These are solved easily and accurately if the
model has the affine structure. The strike price of credit default swaptions is fixed at 0.022
and the numerical results are shown in Table 2. The numerical results for credit default
swaptions of the basket type are shown in Table 4. The strike price for basket swaptions
is given by 0.055. Table 5 demonstrates the prices of swaptions with the different matu-
rities in the “(iii) CIR interest rate model” with the time to maturity as five years, i.e.,
the maturity date of swaps is given by T10 = T0 + 5. The number of time steps for one
year for Monte Carlo studies is changed to M = 2, 000 to reduce the computational time.
This table reveals that the asymptotic expansion method is very accurate, if the time to
maturity of swaption is not long. It appears that the pricing error becomes larger as the
time to the maturity date of the swaption becomes longer.

Figures 1 and 2 present the prices of the credit default swap and the credit default
swaption as a function of the hazard rates of firms 2 and 3, respectively. The model used
in these figures is the CIR model. The parameters, however, are the same as the “(ii) CIR
model” except hi and h̄i (i = 2, 3). The parameters hi and h̄i are fixed at the same level,
i.e., hi = h̄i (i = 2, 3), and the initial default hazard rates h2 and h3 are moving from 0.0
to 0.05, respectively. Figure 1 shows that the swap premium is sensitive to the hazard
rate for firm 2, but firm 3 . This is because the premiums are paid at the last second in
each time interval, [Ti, Ti+1]. Figure 3 presents the prices of the swaption as a function of
the maturity date.

The correlation effect between the price of credit default swaps of the basket type and
their swaptions is also discussed. It is known that the correlation effect for the theoretical
price of a basket swap is not strong in models based on conditional independence: see the
numerical example in Kijima and Muromachi (2000). However, it is not known whether
the correlation effect of basket swaptions is significant. In order to study the correlation
effect, two models, both Gaussian, are considered. The parameters used in each model are

21



Table 6. Correlation effect of basket derivatives
Basket Swaps Basket Swaptions

Correlated 0.055567 0.001352
Uncorrelated 0.054351 0.008137

the same as those used in the “(i) Gaussian model” except for the volatility coefficients. In
the model without the correlation effect, the volatility coefficients are given by σ00 = 0.015,
σ11 = 0.01, σ22 = 0.02, σ33 = 0.01. Other parameters are fixed at 0. In the model with
the correlation effect, the volatility coefficient for the interest rate process is given by
σ00 = 0.015. The volatility coefficients for the hazard rates for the three firms are given
by σ10 = (−2/7) ∗ 0.01, σ11 = (5/7) ∗ 0.01, σ12 = (2/7) ∗ 0.02, σ13 = (4/7) ∗ 0.01. σ20 =
(−2/7)∗0.02, σ11 = (4/7)∗0.02, σ22 = (5/7)∗0.02, σ13 = (2/7)∗0.02, σ10 = (−2/7)∗0.01,
σ11 = (2/7) ∗ 0.01, σ12 = (4/7) ∗ 0.02, σ13 = (5/7) ∗ 0.01. The size of the volatility for the
hazard rate of each firm is equal in the two models. The maturity date of the swaptions
is T0 = 1 (year) and the expiry dates of the swaps are T6 = 4 (years). The numerical
results are shown in Table 6. Table 6 reveals that the correlation effect of the price of the
swaption on the basket swap is significant, although the correlation effect of the value of
the basket swap is not very strong.

6 Concluding Remarks

This paper studies the pricing of credit derivatives with multiple default entities, such
as credit default swaps and swaptions, in a model with counterparty credit risks. The
model employed is based on the conditional independence framework. The prices of these
credit derivatives are often intractable, and this article exploits the asymptotic expansion
approach introduced by Kunitomo and Takahashi (2001). This method enables us to
evaluate credit derivatives such as these more easily and systematically. The validity of
the asymptotic expansion method is shown in the appendix. The pricing problems of
credit default swaps of the basket type and their swaptions have also been considered.

As shown in this article, the asymptotic expansion approach is applicable for evaluating
the prices of many kinds of credit derivatives. Accordingly, I believe that the asymptotic
expansion approach will become one of the primary tools for evaluating credit derivatives.
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Appendix

The asymptotic expansion methods used in this article were first applied in the financial
literature by Kunitomo and Takahashi (2001, 2003). Originally proposed by Watanabe
(1987), they have also been applied to the area of mathematical statistics by Yoshida
(1992). Asymptotic expansion methods are applicable to many kinds of models in math-
ematical finance, including the Black–Scholes option pricing models, Heath, Jarrow and
Morton’s interest rate model, the pricing of equity derivatives with stochastic interest
rates, and volatility models. The approach is rigorously justified by Malliavin calculus.
See Ikeda and Watanabe (1989), Nualart (1995), Øksendal (1997) and Shigekawa (1997)
for a standard textbook treatment of Malliavin calculus. The validity of the asymptotic
expansion approach is discussed in this section.

Consider a Brownian motion defined on the canonical space Ω = C0([0, T ];Rd) that
consists of all continuous functions with a compact support defined on [0, T ]. This space
is a Banach space with the uniform norm, ||x||∞ = sup0≤t≤T |x(t)|. The subspace H1 of
C0([0, T ];Rd) that consists of all absolute continuous functions with a squared integrable
density, i.e.,

x(t) =
∫ t

0

d

ds
x(s)ds,

d

dt
x(t) ∈ H = L2([0, T ] : Rd)

is introduced. This space is often called “Cameron-Martin space”. By equipping the inner
product,

〈x, y〉H1 = 〈 d
dt
x,
d

dt
y〉H =

d∑
i=1

∫ T

0

d

dt
x(t)

d

dt
y(t)dt ,

to the space H1, the structure of Hilbert space H is transported to the space H1. The
relation,

||x||∞ ≤
∫ T

0
| d
dt
x(t)|dt ≤ || d

dt
x(t)||H ≤ ||x||H1 ,

leads to the fact that the injection of H1 into C0([0, T ];Rd) is continuous. Let h1, . . . , hn

and w be elements of H1 and C0([0, T ];Rd), respectively. A random variable F is called
a polynomial function if there exists a polynomial function f such that

F = f(W (h1), . . . ,W (hn)) ,

where W (h) represents the stochastic integral W (h) =
∫ T
0 h(t)dwt.

The function k(t) is supposed to be an element of H1. There exists γ(t), which is
an element of H with a form k(t) =

∫ t
0 γ(s)ds. The directional derivatives for F with a

direction k ∈ H1 is defined by

〈DF, γ〉H = lim
ε→0

1

ε
[f(W (h1) + ε〈h1, γ〉H , . . . ,W (hn) + ε〈hn, γ〉H) − f(W (h1), . . .W (hn))] .

If a function ψ(t, ω) exists and the relation

〈DF, γ〉H =
∫ t

0
ψ(s, ω)γ(s)ds
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is satisfied, the random variable ψ(t, ω) is termed the differential of F and is denoted by
DtF . DtF is also represented by

DtF =
n∑

i=1

∂f

∂xi
(W (h1), . . . ,W (hn))hi .

Regard {DtF} as an element of stochastic processes, and this element is denoted by DF ,
i.e., DF is defined by {ψ(·, w)}.

Let F be an FT measurable random variable such that ||F ||2L2(Ω) = EP [F 2] < ∞ .

There exists some square-integrable deterministic symmetric function f̂n defined on [0, T ]n,
such that

F =
∞∑

n=0

In(f̂n) ,

where In(·) stands for the n-fold stochastic integral,

In(f) =
∫ T

0
· · ·

∫ tn

0

∫ t2

0
f(t1, . . . , tn)dWt1 · · · dWtn .

This is shown in Proposition 1.2.1 in Nualart (1995) and this expansion is called the
Wiener chaos expansion. The functional, Jn(·), is the orthogonal projection on the nth
Wiener chaos, which means that there is a relation Jn(F ) = In(fn) for each square
integrable random variable, F =

∑∞
n=0 In(fn). A norm ||F ||p,s is defined by

||F ||p,s = ||
∞∑

k=0

(1 + k)s/2JkF ||p .

The functional space Ds
p represents the completion of the family of polynomial random

variable P with the norm || · ||p,s. The functional space D−s
q is the dual of Ds

p, if the
relation 1/p + 1/q = 1 is satisfied. The family of smooth random variables D∞ and its
dual D̃−∞ are defined by

D∞ = ∩s>0 ∩1<p<+∞ Ds
p and D̃−∞ = ∪s>0 ∩1<p<+∞ D−s

p .

Suppose that F = (F 1, . . . , Fm) is a random variable whose component belongs to the
space D1

p . The Malliavin covariance matrix σMC(F ) for the random variable is defined by

σMC(F ) = {〈DF i, DF j〉H}i,j = {
∫ T

0
ψi(t, ·)ψj(t, ·)dt}i,j .

The Malliavin’s covariance matrix is symmetric nonnegative definite. Note that the Malli-
avin’s covariance matrix is a random variable, because ψ(t, ·) is a random variable.

Let the random variableXε(ω) stand for the Wiener functional with a small parameter,
ε. If the relation

lim sup
ε→0

||Xε||p,s

εk
< +∞

is satisfied, Xε(ω) is denoted by Xε(ω) = O(εk) in Ds
p.
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The random variable Xε(ω) has an asymptotic expansion, if for all p > 1, s > 0 and
every k = 1, 2, . . .,

Xε(ω) − (g1 + εg2 + · · · + εk−1gk) = O(εk)

is included in Ds
p as ε→ 0. Then the random variable

Xε(ω) ∼ g1 + εg2 + · · ·
is included in D∞ where g1, g2, . . . ∈ D∞. For each k = 1, 2, . . ., there exists s > 0 such
that for all p > 1, the random variable,

Xε(ω) − (g1 + εg2 + · · · + εk−1gk) = O(εk) ,

is included in D−s
p . Where g1, g2, . . . ∈ D−s

p as ε → 0, the random variable Xε(ω) ∈ D̃−∞

is said to have an asymptotic expansion in D̃−∞ and is written as

Xε(ω) ∼ g1 + εg2 + · · ·
and g1, g2, . . . ∈ D̃−∞.

A new function ψ(y), which is used in Theorem 2, is introduced. This is a smooth
function and the relation 0 ≤ ψ(y) ≤ 1 is satisfied for any real variable, y. The function
ψ(y) satisfies ψ(y) = 0 for y > 1, ψ(y) = 1 for y < 1/2. φε(y) is another smooth function
and the random variable ηε is supposed to be included in D∞. The condition that the
composite functional ψ(ηε)φε(Xε)IB(Xε) ∈ D̃−∞ has an asymptotic expansion in D̃−∞ is
given in Yoshida (1992). These are summarized in Theorem 2.

Theorem 2 Let the following six conditions be satisfied:
(i){Xε(ω); ε ∈ (0, 1]} ∈ D∞.
(ii)The random variable Xε(ω) has the asymptotic expansion Xε(ω) ∼ g1 + εg2 + · · · in
D∞ with g1, g2, . . . ∈ D∞ as ε → 0.
(iii) The random variable {ηε(ω)} is included in D∞ and it is O(1) in D∞ as ε→ 0.
(iv)For any p > 1,

sup
ε∈(0,1]

E[1{|ηε|≤1}(det[σMC(Xε)])−p] <∞ . (6)

(v)For any k ≥ 1,

lim
ε→0

ε−kP [|ηε| > 1

2
] = 0 .

(vi) The function φε(x) in (x, ε) on Rn × (0, 1] is a smooth function. The derivative of
this function is polynomial growth order in x uniformly in ε.

Under these six conditions, the random variable ψ(ηε)φε(Xε)IB(Xε) has an asymptotic
expansion ψ(ηε)φε(Xε)IB(Xε) ∼ Φ0 + εΦ1 + · · · in D̃−∞ as ε → 0. The formal Taylor
expansion leads the coefficients of an asymptotic expansion, Φ0,Φ1, . . . .

As shown in Theorem 2 in Yoshida (1992), the integration-by-parts formula is exploited
to prove the validity of the asymptotic expansion approach. The condition to use the
integration-by-parts formula is given by (6). In order to use the integration-by-parts
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formula, the inverse matrix of the Malliavin’s covariance matrix must be derived. This
is discussed in Section 5 in Ikeda and Watanabe (1989). (6) is a condition to ensure the
existence of the inverse matrix of Malliavin’s covariance matrix. Under the six conditions
introduced in Theorem 2, the asymptotic expansion,

lim sup
ε→0

| 1

εk
E[ψ(ηε)φε(Xε)IB(Xε) − (Φ0 + εΦ1 + · · · + εkΦk)]| <∞ ,

is satisfied.

Let the stochastic interest rate and the hazard rate processes be governed by a four-
dimensional SDE,

zε(t) = x0 +
∫ t

0
µ(zε(s), s)ds+

J∑
j=0

ε
∫ t

0
σ(zε(s), s)dWs (7)

where zε(t) = t(zε
0(t), · · · , zε

3(t)) = t(rε(t), hε
1(t), h

ε
2(t), h

ε
3(t)) . The drift term and the

diffusion term, µ and σ , are given by µ : R4 → R4 and σ : R4 → R4 ⊗ R4 and the
stochastic process Wt = (w0

t , w
1
t , w

2
t , w

3
t ) is a four-dimensional standard Brownian motion.

These functions satisfy the conditions of boundedness,

sup
z∈R4

| ∂kµi(z, s)

∂zk0
0 · · · ∂zk3

3

| < M1(k), sup
z∈R4

| ∂
kσij(z, s)

∂zk0
0 · · · ∂zk3

3

| < M2(k) (8)

and
sup

0≤s≤T
[|µ(0, s)| + |σ(0, s)|] < M3 (9)

where k = k0 + · · ·+ k3. Malliavin calculus is a theory of the differential of the functional
defined on the space of the paths of the Brownian motions and it is necessary to possess
a strong solution for the original SDE to apply this theory to the solution of the SDE.
Under conditions (8) and (9), SDE (7) has a strong solution and the next theorem follows.

Theorem 3 Under assumptions (8) and (9), the random variable zε(T ) ∈ D∞ has an
asymptotic expansion

zε(T ) ∼ z0(T ) + εg1(T ) + ε2g2(T ) + · · ·
as ε → 0 where g1(T ), g2(T ), . . . ∈ D∞(Rd).

This theorem is given, for example, in Theorem 3.1 in Kunitomo and Takahashi (2003).
The Malliavin’s covariance matrix has to be calculated to ensure condition (iv) in

Theorem 2. The Malliavin’s covariance matrix for SDE (7) is given by

σij
MC((zε(T ))) = {

3∑
k=0

∫ T

0
[Y ε(T )Y ε(s)−1σ(zε(s), s)]ik[Y ε(T )Y ε(s)−1σ(zε(s), s)]jkds}i,j

(10)
where the stochastic process Y ε(t) is a solution of the SDE

dY ε
il(t) =

3∑
k=0

∂kµi(z
ε(t), t)Y ε

kl(t)dt + ε
3∑

j=0

3∑
k=0

∂kσij(z
ε(t), t)Y ε

kl(t)dw
j
t .

The next condition is imposed to ensure the assumptions in Theorem 2.
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Condition 1 For any T > 0, an n× n matrix ΣT is defined by

ΣT =
3∑

k=0

∫ T

0
[Y (T )Y (s)−1σ(z0(s), s)]ik[Y (T )Y (s)−1σ(z0(s), s)]jkds .

where Y (t) = Y 0(t). This matrix is assumed to be nondegenerate.

For an arbitrary positive real number c, the random variable ηε
c is defined by

ηε
c = c

∫ T

0
|Y ε(T )(Y ε(s))−1σ(zε(s), s) − Y (T )(Y (s))−1σ(z0(s), s)|2ds .

These preparations enable us to state the next results about the validity of the asymptotic
expansion approach.

Theorem 4 Assume that Condition 1, (8) and (9) are satisfied. The conditions ηε ∈ D∞,
the smoothness of ψ(y) with 0 ≤ ψ(y) ≤ 1, ψ(y) = 0 (|y| > 1) and ψ(y) = 1 (|y| <
1/2) are satisfied. Let the function φε(y) be a smooth function for a smooth function in
(x, ε) with all derivatives of polynomial growth order in x uniformly in ε. The function
ψ(ηε

c)φ(zε(T ))IB(zε(T )) has an asymptotic expansion

ψ(ηε
c)φ(zε(T ))IB(zε(T )) ∼ Φ0 + εΦ1 + ε2Φ2 + · · ·

in D−∞ as ε → 0, where B is a Borel set. The coefficients, Φ0,Φ1,Φ2, . . . are given by a
formal Taylor expansion of Xε

T .

This theorem leads to the asymptotic expansion,

E[φ(zε(T ))1B(zε(T ))] ∼ E[ψ(ηε
c)φ(zε(T ))IB(zε(T ))]

∼ E[Φ0] + εE[Φ1] + ε2E[Φ2] + · · · .
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