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1 Introduction

This paper analyzes the macroeconomic implications of learning about the transitory

and persistent components of technology growth. We develop a real business cycle

model in which two types of shocks affect technology growth. One, a shock that

induces infrequent shifts in the drift of technology growth, has a persistent impact

on technology growth. The other is a shock that occurs frequently and has only a

transitory impact on technology growth. We consider an environment of imperfect

information in which agents do not observe the two shocks separately and solve a signal

extraction problem, and analyze the economic dynamics when agents make decisions

based on their inference. To grasp the effects of learning on macroeconomic activity,

we also consider a model in which agents have full information and observe both shocks

to technology growth.

We find that a model with both transitory and persistent shocks to technology

growth explains several features of the U.S. data which a model with random-walk

technology does not satisfactorily explain, including the persistence in the growth rates

of hours, output, and investment, and the properties of the forecastable movements in

macroeconomic variables. The process of learning under imperfect information is an

essential element to replicate the persistence in the growth rates in macroeconomic vari-

ables. The model with full information, however, performs nearly as well as the model

with imperfect information in replicating the properties of the forecastable movements.

A number of empirical studies report the presence of persistent movements in tech-

nology growth. French (2001), Roberts (2001), and Kahn and Rich (2003) report that

U.S. long-term productivity growth slowed in the 1970s and then accelerated in the

1990s. Cagetti, Hansen, Sargent, and Williams (2002) and an empirical analysis in this

paper find persistent movements in technology growth at the business cycle frequency:

average technology growth is higher during expansion than during contraction over

U.S. business cycles. Both findings indicate that technology growth has a persistent

component.

In practice, it is difficult to distinguish between the persistent movements in tech-

nology growth and the transitory movements in real time. To illustrate this diffi-

culty, Edge, Laubach, and Williams (2004) document that U.S. long-term productivity

growth increased around the mid-1990s, but the corresponding estimates made by

economists and professional forecasters changed little until 1999. Because of this, we
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consider a case in which agents do not know whether an observed movement in tech-

nology growth is transitory or persistent and solve a signal extraction problem.

Our specification of the technology shock process is a special case of the stochastic

process considered in Hamilton (1989). In particular, we assume that the drift of tech-

nology growth follows a two-state Markov regime-switching process and the transitory

component of technology growth follows an i.i.d. process with normal distribution. We

construct a quarterly U.S. technology series and estimate the parameters for the tech-

nology shock process. When we calibrate the model based on these estimates, historical

evolution of the real-time inference about the drift of technology growth is similar to

the movements in the Index of Consumer Sentiment over U.S. business cycles. For this

reason, our model may be interpreted as one that incorporates endogenous fluctuations

in consumer sentiment into an otherwise standard real business cycle model.

Changes in the inference about the drift of technology growth affect the nature

of economic dynamics. This can be seen, for example, if we compare the effects of

a positive transitory shock to technology growth under two information structures.

Under full information, agents immediately understand that the increase in technology

growth is transitory. In this case, the peak impacts on investment and hours worked

occur immediately after the shock, as in a standard real business cycle model. In

contrast, under imperfect information, agents do not observe the realizations of the two

shocks to technology growth. Observing an increase in technology growth, the rational

inference is that it is partly due to a transitory shock and partly due to a persistent

shift in the drift. To the extent that agents believe the increase in technology growth is

persistent, they have an incentive to reduce hours worked and investment upon impact

with a plan to increase them in the future when the technology is more efficient. In

this case, the peak impacts on hours, output, and investment occur several quarters

after the shock.

We find that the model which includes both transitory and persistent shocks to

technology growth explains two properties of the data that a standard model with

random-walk technology does not satisfactorily explain. The first property of the

data we consider in this paper is the positive autocorrelations in the growth rates

of hours, output, and investment. A model with random-walk technology does not

replicate this property of the data (Cogley and Nason, 1995). We find that the model

with both transitory and persistent shocks to technology growth generates positive

autocorrelations in the growth rates of hours, output, and investment, consistent with
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the data. A key finding is that the process of learning about the drift of technology

growth provides an internal propagation mechanism. The mechanism explains why the

autocorrelation of output growth is greater than that of technology growth, a feature of

the U.S. data. Contrarily, the model with full information predicts that output growth

is no more persistent than technology growth.1

The second property of the data we consider in this paper is related to the fore-

castable movements in consumption, hours, output, and investment. In the U.S. data,

about 50% of output movements are forecastable. In addition, consumption, hours,

output, and investment are all expected to move in the same direction. In contrast,

a standard real business cycle model produces few forecastable movements in output.

Moreover, the standard model predicts that the forecastable movements in consump-

tion, hours, and output are not all in the same direction (Rotemberg and Woodford,

1996). We find that the model with both transitory and persistent shocks to technol-

ogy growth explains the properties of the forecastable movements as found in the data

better than a model with random-walk technology. The model with full information

performs nearly as well as the model with imperfect information on this dimension.

Several studies have considered the effects of a persistent shock to technology growth

on aggregate activity within the framework of a real business cycle model (Campbell,

1994; Danthine, Donaldson, and Johnsen, 1998; Aguiar and Gopinath, 2004; Lindé,

2004; and Ireland and Schuh, 2006). These studies focus on the case of full information

in which agents distinguish between transitory and persistent shocks to technology

growth. In this paper, we show that the model with imperfect information replicates

the autocorrelation property of the data better than the model with full information.

With motivations similar to those in our study, Pakko (2002), Tambalotti (2003),

and Edge, Laubach, andWilliams (2004) incorporate a signal extraction problem about

the transitory and persistent components of technology growth into a dynamic general

equilibrium model. In these studies, the persistent component of technology growth

follows a linear autoregressive process.2 We, on the other hand, assume that the per-

1Several modifications to a standard real business cycle model are considered to enrich the internal
propagation mechanism of the model. These include adjustment costs and gestation lags (Cogley and
Nason, 1995), search frictions in the labor market (Andolfatto, 1996), agency costs in the financial
market (Carlstrom and Fuerst, 1997), putty-clay technology (Gilchrist and Williams, 2000), indeter-
minacy (Schmitt-Grohé, 2000; Benhabib and Wen, 2004), and rational inattention (Luo and Young,
2005).

2Kydland and Prescott (1982) also consider a real business cycle model in which both transitory and
persistent shocks affect technology, but neither of these shocks has a persistent impact on technology
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sistent component of technology growth follows a two-state Markov regime-switching

process. We will demonstrate that a model with a nonlinear shock structure like ours

has the potential to explain nonlinearity and asymmetry in business cycle fluctuations

as found in the data, including short and sharp contractions and long and gradual

expansions. Cagetti, Hansen, Sargent, and Williams (2002) and David (1997) use a

nonlinear technology shock process similar to ours when they study the asset pricing

implications of a stochastic growth model. None of these studies, however, analyze the

model’s implications for the autocorrelations in the macroeconomic variables and the

properties of the forecastable component of macroeconomic variables as we do in this

paper.3

The rest of the paper is structured as follows. Section 2 presents the model and

describes the calibration of the parameters. Section 3 presents the model dynamics un-

der both full and imperfect information. Section 4 presents the model’s predictions for

both the autocorrelation in the growth rates of macroeconomic variables and the prop-

erties of the forecastable movements in consumption, hours, output, and investment.

Section 5 concludes.

2 Model

This section presents the model, the optimality conditions, and the calibration of pa-

rameters.

2.1 Structure of the Economy

The model is a real business cycle model (King, Plosser, and Rebelo, 1988). The model

abstracts from any nominal or real frictions to isolate the effect of our modification to

both the technology shock process and the information structure.

We denote per capita variables with a lowercase letter and aggregate variables with

growth in their model. As we shall see, the presence of a persistent shock to technology growth is
key to improving the model’s predictions for both the persistence and the forecastable movements in
macroeconomic variables.

3A similar nonlinear shock structure is applied to money growth (Andolfatto and Gomme, 2003),
dividend growth (Moore and Schaller, 1996; Veronesi, 1999; Lettau, Ludvigson, and Wachter, 2005),
the target inflation rate (Schorfheide, 2005), and the debt-output ratio (Davig, 2004) within the
framework of a dynamic general equilibrium model.
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a capital letter. The preferences of an agent are given by

U(ct, nt) = ln ct − nt,

where ct is the per capita consumption in period t, and nt is the labor input per

population in period t. Given the additive separability, the logarithmic specification

for the utility from consumption is required to ensure the existence of balanced growth

(King, Plosser, and Rebelo, 2002). The linearity of the disutility from hours worked

can be motivated along the line of the indivisible labor model.

A representative household with Ht members in period t maximizes

E0

∞X
t=0

βtHtU(ct, nt).

By normalizing the number of households at one, we interpretHt as the total population

in period t. Assuming that the population grows at a constant rate gp, we have Ht =

Ht−1 exp(g
p) = H0 (exp(g

p))t. Normalizing H0 = 1, the objective function of the

household can be written as E0
P∞

t=0(β exp(g
p))tU(ct, nt).

The production function is given by

Yt = (AtNt)
αK1−α

t ,

where Yt = ytHt is the aggregate output, At is technology, Nt = ntHt is the aggregate

labor input, Kt = ktHt is the aggregate capital stock, and α is a parameter that governs

the share of labor in total income.

The aggregate capital stock evolves according to a capital accumulation equation:

Kt+1 = (1− δ)Kt + It,

where δ is the constant depreciation rate of capital, and It = itHt is the aggregate

investment.4

In each period, the sum of the aggregate consumption and the aggregate investment

4We also considered a model with capital adjustment costs. Since the results in this paper are
not sensitive to the size of capital adjustment costs, we report the results for the case of no capital
adjustment costs.
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cannot exceed the aggregate output:

Ct + It ≤ Yt.

2.2 Technology Shock Process

The technology process is a special case of the stochastic process considered in Hamilton

(1989).

Let eAt ≡ (lnAt − lnAt−1) denote the growth rate of technology. We assume that

technology growth has both transitory and persistent components:

eAt = gt + εt.

The persistent component, {gt}t=0,1,2,..., follows a two-state, first-order, Markov
regime-switching process defined by

prob
£
gt+1 = gH |gt = gH

¤
= p

prob
£
gt+1 = gL|gt = gH

¤
= 1− p

prob
£
gt+1 = gL|gt = gL

¤
= q

prob
£
gt+1 = gH |gt = gL

¤
= 1− q, (1)

where gH and gL are the two values that the persistent component can take, and p and

q are the transition probabilities that govern the average durations of the two regimes.

When the parameters p and q are between 0.5 and 1, a change in gt has a persistent

impact on technology growth. This component introduces a positive autocorrelation

in technology growth.

The transitory component, {εt}t=0,1,2,..., follows an i.i.d. process with the distri-

bution given by N(0, σ2ε) and is independent of gs for all s. A change in εt has a

transitory impact on technology growth (or, equivalently, a permanent impact on the

level of technology).5

5We assume that the standard deviation of the transitory component is constant. Allowing for
infrequent shifts in the volatility of shocks is an important avenue for future research. Lettau, Ludvig-
son, and Wachter (2005) and Sill (2005) find that a decline in the volatility of shocks which occurred in
the United States in the mid-1980s explains a decline in the equity premium during the same period.
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2.3 Information Structure

We consider two information structures. Under full information, agents observe both

gt and εt in each period. Under imperfect information, agents observe the growth rate

of technology, eAt, or the sum of the transitory and persistent components, (gt + εt),

but not the two components separately.6

2.4 Filtering under Imperfect Information

Let p[gt = gH |Ωt] denote the probability that agents assign to the possibility of cur-

rently being in regime gH conditional on the observations of current and past technology

growth rates, Ωt ≡ ( eAt, eAt−1, eAt−2, ...). Thus, p[gt = gH |Ωt] represents agents’ belief

about the current state of the drift of technology growth.7

In each period, agents update their beliefs based on current and past observations

of technology growth as well as their knowledge of both the shock structure and the

parameter values (gH , gL, p, q, σ2ε).
8 Agents enter period t with a belief formed in the

previous period, p[gt−1 = gH |Ωt−1]. Upon observing current technology growth, eAt,

they update their beliefs using Bayes’ rule. The belief follows a recursion:

p[gt = gH |Ωt]

=

f( eAt|gt = gH ,Ωt−1)×
P

i=gH ,gL
{p[gt = gH |gt−1 = i]× p[gt−1 = i|Ωt−1]}

P
j=gH ,gL

"
f( eAt|gt = j,Ωt−1)×

P
i=gH ,gL

{p[gt = j|gt−1 = i]× p[gt−1 = i|Ωt−1]}
# , (2)

where the transition probabilities p[gt = j|gt−1 = i] for j, i = gH , gL are defined by (1).

Given that εt ∼ i.i.d.N(0, σ2ε) independent of gs for all s, the conditional probability

density functions are given by

f( eAt|gt = j,Ωt−1) =
1√
2πσε

exp

∙
− 1

2σ2ε
( eAt − j)2

¸
6Equivalently, agents observe both eAt and gt under full information and only eAt under imperfect

information.
7The case of full information can be considered a special case in which the belief takes only one of

the two values, 0 or 1.
8We maintain the assumption of rational expectations. Bullard and Duffy (2004) consider a sto-

chastic growth model in which agents learn about a structural break in productivity growth using a
recursive adaptive learning algorithm.
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for j = gH , gL.9

Given the belief, the inference about the persistent component of technology growth

is

E[gt|Ωt] ≡ gH × p[gt = gH |Ωt] + gL × {1− p[gt = gH |Ωt]},

which is a linear transformation of the belief. Also, the inference about the transitory

component of technology growth is

E[εt|Ωt] = eAt − E[gt|Ωt].

The state of the economy is characterized by (Kt, gt, eAt) under full information and

(Kt, p[gt = gH |Ωt], eAt) under imperfect information.10

2.5 Normalizations

Along a balanced growth path with growth rate of technology g, the per capita con-

sumption, output, investment, and capital stock all grow at rate g. We normalize

all the per capita variables (except hours worked per capita, which is stationary) by

the level of technology so that the normalized variables are stationary. We write the

normalized variables as

ect ≡ ct
At

,eit ≡ it
At

,ekt ≡ kt
At

, eyt ≡ yt
At

.

In terms of the normalized variables, the objective function,11 the production func-

9The numerator on the right-hand side (RHS) of equation (2) is the likelihood that the observed
technology growth in the current period, eAt, is generated under regime gH . The denominator of
the RHS is the sum of the likelihood that eAt is generated under regime gH and the likelihood thateAt is generated under regime gL. The numerator can be decomposed into two components: (i) the
likelihood that eAt is generated under gt = gH and gt−1 = gH ; and (ii) the likelihood that eAt is
generated under gt = gH and gt−1 = gL. Similarly, the denominator can be decomposed into four
components.
10Alternative representations of the state are possible. For instance, one could replace one of the

states, p[gt = gH |Ωt], with E[gt|Ωt] under imperfect information.
11The objective function can be written as E0

P∞
t=0(β exp(g

p))tU(ectAt, nt) =
E0
P∞

t=0(β exp(g
p))t (lnect − nt) + E0

P∞
t=0(β exp(g

p))t lnAt = E0
P∞

t=0(β exp(g
p))tU(ect, nt) +

E0
P∞

t=0(β exp(g
p))t lnAt. Since the last term does not affect the preference ordering, we ignore this

term in the optimization problem.
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tion, the capital accumulation equation, and the resource constraint are given by

E0

∞X
t=0

(β exp(gp))tU(ect, nt), (3)

eyt = nαt
ek1−αt , (4)ekt+1 = 1

exp(gt+1 + εt+1) exp(gp)

n
(1− δ)ekt +eito , (5)

ect +eit ≤ eyt. (6)

The state of the transformed economy is characterized by (ekt, gt) under full infor-
mation and (ekt, p[gt = gH |Ωt]) under imperfect information. There is a nonstochastic

steady state in which the normalized per capita variables are constant.

2.6 Optimality Conditions

Under both full and imperfect information, the optimality conditions include

α
eyt
nt

1ect = 1 (7)

and
1ect = βEt

"
1

exp(gt+1 + εt+1)

1ect+1
(
1− δ + (1− α)

Ã
nt+1ekt+1

!α)#
. (8)

Equation (7) is the intratemporal optimality condition. This implies that a high

level of consumption to output ratio is accompanied by a low level of hours worked.

Equation (8) is the Euler equation. Equations (4), (5), (6), (7), and (8) jointly char-

acterize the sequence of optimal allocations
nect, nt,eit, eyt,ekt+1o

t=0,1,2,...
given an initial

condition for ek0 and the sequence of shocks {gt, εt}t=0,1,2,....
Note that the expectation over gt+1 on the RHS of the Euler equation (8) is taken

conditional on different information across full and imperfect information: under full

information it is conditional on the realization of gt, while under imperfect information

it is conditional on the belief p
£
gt = gH |Ωt

¤
. We now use this fact to rewrite the Euler

equation under both full and imperfect information.
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2.6.1 Full Information Case

When the current regime of the drift of technology growth is gH , agents expect that

gt+1 is gH with probability p and gL with the remaining probability (1 − p). In this

case, the Euler equation is

1ecHt = βE

"
1

exp(gH + εt+1)

1ecH,H
t+1

(
1− δ + (1− α)

Ã
nH,H
t+1ekH,H
t+1

!α)#
× p

+ βE

"
1

exp(gL + εt+1)

1ecL,Ht+1

(
1− δ + (1− α)

Ã
nL,Ht+1ekL,Ht+1

!α)#
× (1− p), (9)

where the unconditional expectation operator E is taken over εt+1.12 Equation (9)

holds for any current state ekt.
Instead, when the current regime of the drift is gL, we can write the Euler equation

as

1ecLt = βE

"
1

exp(gL + εt+1)

1ecL,Lt+1

(
1− δ + (1− α)

Ã
nL,Lt+1ekL,Lt+1

!α)#
× q

+ βE

"
1

exp(gH + εt+1)

1ecH,L
t+1

(
1− δ + (1− α)

Ã
nH,L
t+1ekH,L
t+1

!α)#
× (1− q). (10)

The Appendix provides the definitions of the variables in equations (9) and (10). We

use equations (9) and (10) jointly to solve for a decision rule under full information.

2.6.2 Imperfect Information Case

The belief about the drift of technology growth is a state variable under imperfect

information. When the current belief is p[gt = gH |Ωt], agents expect that gt+1 is gH

with probability p × p[gt = gH |Ωt] + (1 − q) × (1 − p[gt = gH |Ωt]) and gL with the

remaining probability (1− p)× p[gt = gH |Ωt] + q × (1− p[gt = gH |Ωt]). Thus, for any

12The conditional expectation operator in the original Euler equation (8) is replaced by an un-
conditional expectation operator because εt+1 is i.i.d. and no information in period t helps predict
it.
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current state
³ekt, p[gt = gH |Ωt]

´
, we can write the Euler equation as

1ect = βE

"
1

exp(gH + εt+1)

1ecHt+1
(
1− δ + (1− α)

Ã
nHt+1ekHt+1

!α)#
×
©
p× p[gt = gH |Ωt] + (1− q)× (1− p[gt = gH |Ωt])

ª
+ βE

"
1

exp(gL + εt+1)

1ecLt+1
(
1− δ + (1− α)

Ã
nLt+1ekLt+1

!α)#
×
©
(1− p)× p[gt = gH |Ωt] + q × (1− p[gt = gH |Ωt])

ª
, (11)

where the unconditional expectation operator E is taken over εt+1 and the belief follows

the recursion (2). The Appendix provides the definitions of the variables in equation

(11).

Under both full and imperfect information, we solve for a decision rule using the

projection method (Judd, 1992).

2.7 Calibration

A period in the model is a quarter. We set the labor income share, the discount factor,

and the depreciation rate at the standard values in the literature: α = 2/3, β = 0.984,

and δ = 0.02. We set the quarterly population growth rate at gp = 0.0037, which is

the average population growth rate in the United States between 1959:I and 2002:I.

We estimate the technology shock parameters (p, q, gH , gL, σε) using a quarterly

U.S. technology series.13 Table 1 reports the estimated shock parameters. These

estimates imply that the two regimes of the drift of technology growth correspond

in their average durations to the expansion and contraction in the business cycle.14

Cagetti, Hansen, Sargent, and Williams (2002) interpret similarly the regime-switching

drift of technology growth in their model.15

13We construct a quarterly technology series using the data on hours, output, and capital, as
described in the Appendix. Our construction of the technology series is similar to that in Beaudry
and Portier (2006). We use the original code for Hamilton (1989) to estimate the technology shock
parameters.
14The average duration of regime gH is 1/(1 − p) = 20.43 quarters, while the average duration of

regime gL is 1/(1 − q) = 3.27 quarters. According to the National Bureau of Economic Research
(NBER), the average durations of expansion and contraction during 1945:I—2001:IV are 19 quarters
and 3.3 quarters, respectively.
15In theory, changes in the drift of technology growth could represent shifts in the long-term tech-
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2.8 Historical Evolution of Belief and Consumer Sentiment

The upper panel of Figure 1 shows how agents update their beliefs about the drift of

technology growth as they observe the U.S. technology in real time. We assume that

agents know the shock parameters listed in Table 1 as of the starting date for our

historical simulation, 1959:I. Agents use equation (2) when they update their beliefs.

We set the initial belief in 1959:I at the unconditional belief given by p[gt = gH ] =

(1− q)/(2− p− q).

As shown in Figure 1, most of the time agents strongly believe that the regime of

the drift of technology growth is gH . At certain times, which correspond roughly to the

contraction periods in the U.S. business cycle, agents substantially revise their beliefs

downward. The belief also displays small downward movements even at periods during

which we know retrospectively that the U.S. economy was not in contraction. The last

observation implies that agents find it difficult to distinguish between transitory and

persistent changes in technology growth in real time.

The lower panel of Figure 1 plots the Index of Consumer Sentiment in the United

States, constructed by the University of Michigan, Surveys of Consumers.16 Comparing

the upper and lower panels of Figure 1, we see that the belief of agents about the drift

of technology growth implied by the model exhibits movement similar to the Index of

Consumer Sentiment, especially at the business cycle frequency.17 Thus, the model

offers a simple explanation for changes in consumer sentiment.

3 Model Dynamics

In this section, we present the response of the model economy to transitory and persis-

tent shocks to technology growth. In each case, we present the model dynamics under

both full and imperfect information to illustrate the effects of gradual learning about

the drift of technology growth. At the end of this section, we consider two experiments

nology growth such as a slowdown in U.S. technology growth in the 1970s followed by a resurgence
starting in the 1990s. Edge, Laubach, and Williams (2004) calibrate their model based on this inter-
pretation.
16The index is constructed based on five survey questions. Three of them are concerned with

the current economic conditions. The remaining two concern the perceptions of future economic
conditions. Ludvigson (2004) describes the index and analyzes the relationship between the index and
consumer spending.
17The inference about the transitory component of technology growth has little persistence, and

thus is not very similar to the Index of Consumer Sentiment.
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which show that the impulse response of the economy features nonlinearity and asym-

metry when the shock process is nonlinear and agents have imperfect information, as

in our model.

3.1 Transitory Shock to Technology Growth

Figure 2 presents the responses of the belief and macroeconomic variables to a 1%

transitory shock to technology growth, holding the drift of technology growth at gL.18

Under full information, agents immediately understand that the increase in technology

growth is transitory. In this case, the response of the economy is the same as in a

standard real business cycle model with random-walk technology. In particular, growth

rates of consumption, hours, output, and investment all increase upon impact and then

decrease, tracking the movement of technology growth.

Under imperfect information, agents observe an increase in technology growth, but

do not observe the two underlying shocks. They solve a signal extraction problem to

infer the relative contribution of the transitory and persistent shocks. Initially, they

attribute some fraction of the increase in technology growth to a persistent shock and

the remainder to a transitory shock: the belief about the drift of technology growth is

revised upward. Because of the belief revision, the wealth effect of the shock is larger

under imperfect information than under full information. As a result, the increase in

consumption is greater under imperfect information. Both the large wealth effect and

the incentive for intertemporal substitution induce agents to reduce hours worked and

investment upon impact. When agents expect that the production technology will be

more efficient in the future, they reduce hours and investment upon impact and plan

to increase them in the future.19

From Figure 2, we see that output growth is more persistent under imperfect infor-

mation than under full information. Under imperfect information, a transitory shock

to technology growth generates a persistent movement in output growth. This is be-

cause agents increase hours worked and investment after technology growth returns

to its initial rate. Under full information, output growth is no more persistent than
18In section 3.3, we show that the response of the economy would differ if we fix the drift of

technology growth at gH .
19Note that there is another kind of intertemporal substitution effect due to the fact that technology

at the impact period is more efficient than in the pre-shock period. This effect alone works to increase
hours and investment upon impact. The response shown in the figure represents the net of all the
effects including those described in the text.
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technology growth. These contrasting results between full information and imperfect

information suggest that the process of learning provides a model with an internal

propagation mechanism. We will return to this issue in the next section.

A number of empirical studies based on a structural vector autoregression (VAR)

report that hours worked decline in response to a permanent increase in the level of

technology.20 Sticky price models provide one explanation for the negative conditional

correlation between technology and hours (Galí, 1999). The impulse response under

imperfect information shown in Figure 2 suggests that a real business cycle model

which incorporates gradual learning about the drift of technology growth provides an

alternative explanation.

3.2 Permanent Shock to Technology Growth

Next, we consider the effects of a permanent increase in technology growth. Figure 3

presents the responses of the belief and macroeconomic variables to a permanent shift

in the drift of technology growth from gL to gH , holding the level of transitory shock

at zero.21 We assume that the regime of the drift has been gL for many consecutive

periods before a switch in regimes occurs in period 3.

Under full information, agents immediately understand that the increase in tech-

nology growth is permanent. They perceive a large wealth effect and greatly increase

consumption. Since they expect a further improvement in technology in the future,

they decrease hours worked and investment upon impact and plan to increase them in

the future.22

Cochrane (1994) reports a related finding. He finds that a mere anticipation of

future improvement in technology–good news about future technology without any

change in current technology–leads to immediate increases in both consumption and

leisure in a standard real business cycle model. Cochrane calls the increases in con-

sumption and leisure a binge and vacation (Cochrane, 1994, p. 351). This description

20Galí and Rabanal (2004) review this literature.
21When the parameters p and q are below one as in our estimates of these parameters, a switch

in regimes is persistent, but not permanent. Here, we consider a permanent switch in regimes by
setting p = q = 1 for simplicity. We consider the effects of a persistent switch in regimes in the next
subsection.
22As noted earlier, another kind of intertemporal substitution effect arises from the fact that tech-

nology at the impact period of the regime switch is more efficient than in the pre-shock period. This
effect alone works to increase hours and investment upon impact.
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is consistent with the short-run effects of a persistent increase in technology growth on

consumption and leisure in our model.23

Under imperfect information, agents initially attribute some part of the observed

increase in technology growth to a transitory shock. The initial response of the econ-

omy in this case contains some features of the efficient response of the economy to a

transitory shock to technology growth under full information. In particular, the ini-

tial decreases in hours and investment and the initial increase in consumption under

imperfect information are not as large as under full information.

3.3 Nonlinear Impulse Response

We conduct two experiments to illustrate that the model with imperfect information

generates a nonlinear and asymmetric impulse response of the economy.24 The first

experiment shows that the response of the economy to a given shock differs depending

on the initial belief of agents, which in turn depends on the history of shocks. The

second experiment shows that a downward shift in the drift of technology growth

produces a short and sharp decrease in output growth, while an upward shift in the

drift of technology growth produces a long and gradual increase in output growth,

similar to the cyclical pattern of output over U.S. business cycles.25

The decision rule of the economy is approximately linear in the belief, one of the

state variables under imperfect information. Therefore, most of the nonlinearity and

asymmetry in the impulse response of the economy we report here can be attributed

to the nature of belief adjustment.

23Barro and King (1984) and Cochrane (1994) note that it is difficult for a standard real business
cycle model to generate a positive comovement in consumption, hours, and investment in response
to a “news shock”–a shock that conveys news about the future technology but leaves the current
technology unchanged. Our model is similar to the news shock models because both a persistent
shock to technology growth under full information and a transitory shock to technology growth under
imperfect information affect the economy similarly as a news shock. A difference is that, in our
model, good news about the future is revealed to agents through an observation of current technology
improvement. Several modifications to a real business cycle model have been considered to generate
a positive comovement among macroeconomic variables following a news shock. Beaudry and Portier
(2004) consider a multi-sector model, Den Haan and Kaltenbrunner (2004) introduce labor market
matching, and Jaimovich and Rebelo (2006) introduce investment adjustment costs and modify the
utility function.
24See Beaudry and Koop (1993) and Potter (1995) for empirical evidence for nonlinearity in the

impulse response.
25The model produces another kind of nonlinearity in the impulse response: the size of shocks has

nontrivial implications for the response of the economic activity.
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3.3.1 Dependence on the Initial Belief

Consider two economies, one in which the technology growth rate has been gH and

the other in which the technology growth rate has been gL, both for many consecutive

periods.26 Given the history of technology growth, the belief of agents is initially high

in the former economy and low in the latter, as shown in Figure 4.

Given these different initial conditions for the belief, suppose that both economies

experience a 1% positive transitory shock to technology growth in period 3. Assume

that agents have imperfect information. Upon impact, agents with a low initial belief

drastically revise their beliefs upward, perceive a large wealth effect from the observed

increase in technology growth, and greatly increase consumption. Since they believe

that technology will become more efficient in the future, they decrease hours worked

and investment upon impact and plan to increase them in the future.

On the other hand, when the belief is initially high, the same shock has a relatively

small impact on the belief. In this case, the response of the economy resembles the

efficient response to a transitory shock to technology growth under full information:

the growth rates of hours, output, and investment increase upon impact but then

immediately return to their initial rates. The growth rates of consumption, hours,

output, and investment all exhibit movements similar to technology growth.

3.3.2 Asymmetry over the Direction of the Regime Switch

Next, we show that the economy’s response to a switch in regimes of the drift of

technology growth in one direction differs from the response to a switch in regimes in

the opposite direction.

The drift of technology growth switches between two regimes in a stochastic manner,

with the average durations of the two regimes governed by the transition probabilities

p and q. In particular, since p is larger than q, the average duration of regime gH is

longer than that of regime gL.

Figure 5 presents the average response of the economy to a switch in regimes. The

impulse response shown in this figure is the mean from 1, 000 replications of a particular

regime-switch experiment. For simplicity, we fix the level of transitory shock at zero

26Specifically, we assume that the drift of technology growth has been gH and the transitory shock
has been zero in the former, and that the drift of technology growth has been gL and the transitory
shock has been zero in the latter.
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throughout.

The top left panel of Figure 5 shows that, after an initial switch in regimes from gL

to gH , technology growth tends to remain high because p is close to one. In contrast, the

top right panel of Figure 5 shows that, after an initial switch in regimes in the opposite

direction, technology growth rebounds relatively quickly because q is relatively low. In

both cases, technology growth is expected to converge to the unconditional mean given

by gH × (1− q)/(2− p− q) + gL × (1− p)/(2− p− q) = 0.0043.

The second row of Figure 5 presents the response of the belief under imperfect

information. The impact response of the belief is larger in the case of a switch in

regimes from gL to gH compared to the other case, although the magnitude of the

initial change in technology growth is the same across the two cases. The reason is

that, when the level of belief is initially high (as in the experiment of a switch in

regimes from gH to gL), the large value of the transition probability p implies that

agents expect the regime gH is likely to continue with a high probability. In this case,

when agents observe a decrease in technology growth, they attribute a large fraction of

the decrease to a transitory shock, and thus do not adjust their beliefs about the drift

of technology growth as much.

On the other hand, when the belief is initially low (as in the experiment of a switch

in regimes from gL to gH), the small value of the transition probability q implies

that agents expect the next regime switch will occur soon in the future. In this case,

when agents observe an increase in technology growth, they greatly revise their beliefs

upward. In both cases, the belief is expected to converge to a value around 0.95.

The third and fourth rows of Figure 5 present the response of economic activity

under imperfect information. In the long run, consumption, output, and investment all

grow at rate gH×(1−q)/(2−p−q)+gL×(1−p)/(2−p−q) and the growth rate of hours
returns to zero in both experiments. The short-run effects differ greatly depending on

the direction of the regime switch. The asymmetry in the belief adjustments across the

two experiments is key to understanding this difference. Following a switch in regimes

from gL to gH , agents greatly revise their beliefs upward and believe strongly that

the technology growth will be persistently high in the future. Hours and investment

decline and consumption increases greatly upon impact. The effect of improvement in

technology on output is partially offset by a decline in hours. Thus, output growth

responds only modestly upon impact. Hours and investment start increasing several

periods after the shock. The peak impact on output growth occurs several periods
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after the shock.

In contrast, in the case of a switch in regimes from gH to gL, the peak effect on

economic activity occurs at the impact period. The reason is that the belief adjustment

is small in this case, and therefore agents make economic decisions as if the observed

decrease in technology growth is purely transitory. Hours, output, and investment

immediately fall, and the movements in the growth rates of these variables closely

track the movement of technology growth.

3.3.3 Sharp Contractions and Gradual Expansions

In the U.S. business cycle, contractions are short and sharp and expansions are long

and gradual (Beaudry and Koop, 1993; Potter, 1995). To the extent that expansions

and contractions in the aggregate activity are related to shifts in the drift of technology

growth, our model with imperfect information replicates this cyclical pattern (see the

response of output growth in Figure 5). A key finding here is that the asymmetry

in the belief adjustments helps a model with imperfect information to produce sharp

contractions and gradual expansions. A full information model with asymmetric tran-

sition probabilities in the drift of technology growth produces short contractions and

long expansions, but not sharp contractions and gradual expansions.27

4 Quantitative Implications

In this section, we compare the quantitative predictions of the model to the data. In

particular, we consider the model’s predictions for both the unconditional moments

and the forecastable movements in macroeconomic variables.

Throughout this section, we compare the imperfect information model with both

transitory and persistent shocks to technology growth to two other models. One is

the full information model with both transitory and persistent shocks to technology

growth. The other is a model in which the log of technology is a random walk with

constant drift: eAt = µ+ bεt,
27Nieuwerburgh and Veldkamp (2006) present a model that produces sharp contractions and gradual

expansions. In their model, the speed of learning about the current state of technology varies over
the phase of business cycles. Specifically, agents recognize a technological regress in periods of high
economic activity faster than a technological progress in periods of low economic activity.
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where eAt ≡ (lnAt − lnAt−1) and bεt ∼ i.i.d.N(0, σ2bε). We consider this single-shock
model because it is typically used as a benchmark in the literature when the quantita-

tive properties of real business cycle models are analyzed.28

We calibrate the technology shock parameters in the single-shock model based on

the U.S. technology series, the same series as that used to estimate technology shock

parameters in the model with both transitory and persistent shocks to technology

growth. µ = 0.00427 is the average quarterly growth rate of technology between 1959:I

and 2002:I and σbε = 0.0134 is the standard deviation of technology growth during the
same period. The remaining parameters (α, β, δ, gp) are set equal to those in the model

with both transitory and persistent shocks to technology growth.

4.1 Unconditional Moments

Table 2 reports the unconditional moments of the growth rates of macroeconomic

variables both in the U.S. quarterly data and in the artificial data generated by three

models. The moments for the models are the mean from 1, 000 replications of stochastic

simulation, with each simulation having 173 periods.29

In terms of standard deviations and contemporaneous correlations, the predictions

of the three models are similar to each other, except that hours and investment are

less volatile and consumption is more volatile in the model with two shocks and imper-

fect information than in the two other models. This is because a transitory shock to

technology growth, which occurs more often than persistent shocks, has a large wealth

effect under imperfect information because agents tend to confuse it with a persistent

shock.30

28See, for instance, Cogley and Nason (1995) and Rotemberg and Woodford (1996). One may
also wish to consider a model in which technology growth is subject to a persistent shock only:eAt = µ + ρ eAt−1 + εt where εt ∼ i.i.d.N(0, σ2ε). This model generates a negative contemporaneous
correlation between consumption and investment, as we can see from the experiment of a permanent
shock to technology growth under full information. Since this negative correlation is not consistent
with the data, we do not consider this model in this paper.
29To be precise, we run a simulation of 373 periods and discard the first 200 periods to reduce the

effects of initial condition.
30Danthine, Donaldson, and Johnsen (1998) report a related finding. They consider a full infor-

mation model in which both transitory and persistent shocks affect technology growth. They find
that, when the transitory and persistent shocks have a positive contemporaneous correlation, the full
information model generates a large volatility in consumption and small volatilities in hours and in-
vestment. The mechanism behind their result is similar to ours in the case of imperfect information:
in our model, whenever agents with imperfect information observe a movement in technology growth,
they initially believe that both transitory and persistent shocks are partially responsible.
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4.2 Persistence and Propagation

We find that the model with two shocks and imperfect information generates positive

autocorrelations in the growth rates of hours, output, and investment, a feature of

the U.S. data. We show that this is not only because technology growth is positively

autocorrelated in that model, but also because the process of learning about the drift

of technology growth provides a model with an internal propagation mechanism.

Figure 6 presents the autocorrelation function for the growth rate of per capita out-

put both for the data and for three models. The model with two shocks and imperfect

information generates a positive autocorrelation in output growth for the first several

lags, the same as we find in the data. The model with two shocks and full information

also generates positive autocorrelation in output growth, but we will see shortly that

this is simply because technology growth in that model has a positive autocorrelation.

The autocorrelation in output growth is higher in the model with imperfect informa-

tion than in the model with full information, although these two models share the

same shock process. The single-shock model with random-walk technology generates a

flat autocorrelation function for output growth, implying that output growth is close to

white noise. This is because technology growth is not autocorrelated in that model and

the model has a weak internal propagation mechanism (Cogley and Nason, 1995).31

A further inspection of the data reveals that the autocorrelation in output growth

is not only positive but also higher than the autocorrelation in technology growth for

the first several lags in the data, as shown in the top left panel of Figure 7. Figure 7

also shows that only the model with two shocks and imperfect information replicates

this feature of the data. Thus, the process of learning about the transitory and persis-

tent components of technology growth provides a model with an internal propagation

mechanism.

To understand how this propagation mechanism works, recall the impulse response

to a transitory shock to technology growth (Figure 2). Under imperfect information,

agents attribute part of the increase in technology growth to a persistent shock, which

calls for a decrease in hours. This decrease in hours partially offsets the direct effect

31Cogley and Nason (1995) report that incorporating capital adjustment costs into a model has
little effect on the autocorrelation in output growth. The reason is that capital adjustment costs
affect the flow of investment, but the size of investment is relatively small compared to the size of
capital stock. It is the changes in the capital stock that directly influence output dynamics. Cogley
and Nason (1995) also report that employment decision lags and labor adjustment costs help a model
to generate positive autocorrelations in output growth.
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of the improvement in technology on output, weakening the initial response of output.

Agents start increasing hours and investment after technology growth returns to its

initial rate. The peak impact on output occurs several quarters after the shock. This

is why output growth is more persistent than technology growth in the model with

imperfect information.

Figure 8 confirms this logic by showing that growth in hours and in investment also

has a positive autocorrelation in the imperfect information model.

The upper panel of Figure 8 presents the autocorrelation function for the growth

rate of hours per capita implied by the data and three models. Only the imperfect

information model with two shocks generates a positive autocorrelation in growth in

hours, consistent with the data. The full information model with two shocks gener-

ates a slightly negative autocorrelation in growth in hours for the first several lags.

This is not surprising if we recall the impulse response analysis: hours initially fall

and subsequently rise following a persistent shock to technology growth, generating a

negative autocorrelation in growth in hours. The model with random-walk technology

generates a flat autocorrelation function for growth in hours since technology growth

has no autocorrelation and the model has a weak internal propagation mechanism.

The lower panel of Figure 8 shows that the model with imperfect information repli-

cates the positive autocorrelation in investment growth, while autocorrelation in in-

vestment growth is approximately zero in the two other models.

4.3 Forecastable Movements

Rotemberg and Woodford (1996) show that a standard real business cycle model with

random-walk technology makes predictions for the forecastable movements in macro-

economic variables that differ greatly from the data. In particular, a standard model

implies that a very small part of output movements is forecastable, and that consump-

tion and hours are expected to move in opposite directions. Contrarily, in the U.S.

data, about half of the output movements are forecastable, and consumption, hours,

output, and investment are all expected to move in the same direction.

In this subsection, we show that the model with both transitory and persistent

shocks to technology growth improves upon the standard model in replicating the

properties of the forecastable movements as found in the data. The improvement over

the standard model is obtained for both full and imperfect information.
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For any horizon (in quarters) k = 1, 2, ..., let

d∆ykt ≡ Et log(yt+k)− log(yt)

denote the percentage change in output per capita from period t to period t+ k that

is forecasted in period t. Following Rotemberg and Woodford (1996), we assume that

these forecasts are obtained by estimating a three-variable VAR that consists of output

growth, the log of consumption to output ratio, and the log of hours per capita, with

two lags of each variable.32 Also, let

∆ykt ≡ log(yt+k)− log(yt)

denote the percentage change in output from period t to period t + k. This includes

both forecastable and unforecastable changes in output. Similar notation is used for

per capita consumption (c), per capita hours worked (n), and per capita investment

(i).

We obtain the statistics for the forecastable movements implied by the single-shock

model in the same way as in Rotemberg and Woodford (1996). Specifically, we first

solve a log-linearized version of the model and write the solution in a VAR form. We

then use the VAR system to compute statistics for the forecastable changes.

We cannot write the solution to the model with both transitory and persistent

shocks to technology growth in a VAR form since the solution to the model is a non-

linear function of the state variables. Our strategy for computing the statistics for

the forecastable movements in this case is as follows. We first simulate the model to

generate data on consumption and output. We then use the simulated data to estimate

a bivariate VAR that consists of output growth and the log of consumption to output

ratio, with two lags of each variable. We do not estimate a three-variable VAR because

the model implies that one of the equations in the three-variable VAR system holds

without errors: the optimality condition (7) implies that the log of hours worked is a

linear function of the log of consumption to output ratio. After estimating a bivari-

ate VAR, we recover the structure of the three-variable VAR system by augmenting

32The only difference from the specification of Rotemberg and Woodford (1996) is that we use hours
per capita instead of linearly detrended total hours as a measure of hours worked. We do so because
the former corresponds more closely to the hours worked in the model. We find that this difference
has little effect on the results that we report here.
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the bivariate VAR system with the log-linearized version of the optimality condition

(7). We then use the resulting three-variable VAR system to compute statistics for

the forecastable movements. The statistics we report below are the mean from 1, 000

replications, with each simulation having 173 periods.

4.3.1 Size of Forecastable Movements

We begin our analysis by considering the properties of the forecastable movements im-

plied by a model with random-walk technology. Figure 9 presents the impulse response

to a 1% transitory shock to technology growth in this model.33 Since this is the only

kind of shock present in this particular model, we can understand the properties of

the forecastable movements from Figure 9 alone. As indicated by Figure 9, output is

expected to change little after the impact period. Almost all the changes in output,

which occur at the impact period, are not forecastable in this model. In other words,

output is close to a random walk.34 In contrast, about 50% of the output changes are

forecastable in the data, as seen in Table 3.

According to Table 3, the model with both transitory and persistent shocks to

technology growth implies that a sizeable fraction of output movements is forecastable,

for both full and imperfect information. This is so for several reasons. First, the

presence of a persistent shock to technology growth enables a model to generate a large

future deviation in output from its level at the impact period. This is true under both

full and imperfect information. Second, the size of unforecastable changes in output is

small in the model with both transitory and persistent shocks, again under both full

and imperfect information. Under full information, hours worked initially move in the

opposite direction from technology following a persistent shock to technology growth.

This decreases the size of unforecastable changes in output. The same mechanism is

present under imperfect information, although this mechanism is weaker than in the

case of full information. Third, under imperfect information, the size of unforecastable

changes in output is small following a transitory shock to technology growth. This is

because agents initially attribute part of an observed movement in technology growth

33As Rotemberg and Woodford (1996, section IV) argue, the main argument here does not depend
on the specifications of preferences and technology.
34Watson (1993) shows that the spectrum of output growth predicted by the model with random-

walk technology does not have any noticeable peak at business cycle frequencies unlike the spectrum
of output growth estimated from the data. This is another way to demonstrate the lack of forecastable
movements in output in the model with random-walk technology.
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to a persistent shock. This weakens the initial response of hours worked, and decreases

the size of unforecastable changes in output in the imperfect information model.

Table 4 compares the magnitudes of the forecastable changes in consumption, hours,

output, and investment. The single-shock model with random-walk technology implies

that the size of forecastable changes in consumption is larger than the size of fore-

castable changes in output. We see the opposite pattern in the data.

The model with both transitory and persistent shocks to technology growth brings

the model’s predictions closer to the data, especially for short horizons. This result

holds for both full and imperfect information. As previously noted, the size of fore-

castable changes in output is relatively large in the model with both transitory and

persistent shocks to technology growth. The size of forecastable changes in consump-

tion is relatively small in this model for the following reasons. Under full information, a

persistent shock to technology growth has a large wealth effect. This renders the size of

unforecastable changes in consumption large. Everything else equal, this implies that

the size of forecastable changes in consumption is small. The mechanism is also present

under imperfect information. In addition, under imperfect information, a transitory

shock to technology growth has a large wealth effect. This also increases the size of

unforecastable changes in consumption and decreases the size of forecastable changes

in consumption.

4.3.2 Correlations among Forecastable Movements

We now consider the models’ predictions for the correlations among the forecastable

movements in consumption, hours, output, and investment. As Rotemberg and Wood-

ford (1996) point out, predictions of the model with random-walk technology are not

consistent with the data in this respect. In particular, the model predicts that con-

sumption is expected to move in the opposite direction from hours and investment, as

seen from Figure 9. In contrast, consumption, hours, output, and investment are all

expected to move in the same direction in the data, as reported in Table 5.

We can attribute the failure of the standard model on this dimension to the fact that

the peak impacts on hours and investment occur immediately after a shock to technol-

ogy. The imperfect information model with both transitory and persistent shocks to

technology growth mitigates this problem by making the impact responses of hours and

investment weak. Table 5 shows that the correlations among the forecastable move-
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ments in consumption, hours, output, and investment are all positive in the imperfect

information model, consistent with the data.

The correlations among the forecastable changes implied by the imperfect informa-

tion model are not as strong as in the data, however. This is because the response of

the macroeconomic variables to a particular shock varies depending on several factors,

including the size of the shock, the direction of the shock, and the history of shocks.

The full information model with both transitory and persistent shocks to technology

growth improves slightly upon the single-shock model. In particular, Table 5 shows

that the correlation between the forecastable changes in consumption and output turns

slightly positive for a short forecast horizon. This improvement over the single-shock

model is brought about by the presence of a persistent shock to technology growth.

Following a persistent shock to technology growth, consumption, hours, output, and

investment are all expected to move in the direction of technology, especially for a short

horizon. However, due to the presence of transitory shocks to technology growth, the

overall correlations among the forecastable movements remain weak.

Finally, Table 6 reports the regression coefficients of the expected changes in con-

sumption, hours, and investment on the expected changes in output. In the model

with random-walk technology, the regression coefficient of the forecastable changes in

consumption on the forecastable changes in output is negative, inconsistent with the

data. Also, since forecastable changes in output are so small in this particular model,

the regression coefficients are too large (in absolute values) to be consistent with the

data. The model with both transitory and persistent shocks to technology growth

improves upon the model with random-walk technology in replicating the regression

coefficients among expected changes as found in the data.

5 Conclusion

This paper is based on the idea that it is difficult to distinguish between transitory and

persistent movements in technology growth in real time. To obtain the macroeconomic

implications, we have developed a real business cycle model in which both transitory

and persistent shocks affect technology growth. We have then analyzed the quantitative

properties of the model when agents do not observe the two shocks and solve a signal

extraction problem to infer their realizations.
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We have estimated a two-state regime-switching model of U.S. technology growth

to calibrate the technology shock parameters in the model. In our calibration, the

real-time inference about the persistent component of technology growth implied by

the model has characteristics similar to the Index of Consumer Sentiment over U.S.

business cycles.

We have found that the model with imperfect information replicates a feature of the

data in which the autocorrelations in the growth rates of hours, output, and investment

are higher than the autocorrelation in technology growth. In contrast, when agents

observe both transitory and persistent shocks to technology growth, the model predicts

that the autocorrelations in the growth rates of macroeconomic variables are no greater

than the autocorrelation in technology growth. Thus, the process of learning about the

drift of technology growth provides a model with an internal propagation mechanism.

We have also found that the model with both transitory and persistent shocks to

technology growth improves upon a model with random-walk technology in replicat-

ing the properties of the forecastable movements in consumption, hours, output, and

investment as found in the data. On this dimension, the model with full information

performs nearly as well as the model with imperfect information.
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Appendix

I. Definitions of the Variables in Equations (9) and (10)

This section provides the definitions of the variables in the Euler equations under
full information (9) and (10).
For j = H,L, ecjt is the consumption policy function when the current state is

(ekt, gt = gj):

ecjt ≡ ec³ekt, gt = gj
´
= exp

Ã
nX
i=1

aji × ϕi(ekt)
!
,

where ϕi(·) for i = 1, 2, ..., n are the basis functions. We use Chebyshev polynomials
as the basis.
Using cjt obtained in (A-1), hours in regime gj can be written as a function of

(ekt, gt = gj). For j = H,L:

njt ≡ n
³ekt, gt = gj

´
=

Ã
α
ek1−αtecjt

! 1
1−α

. (A-2)

Using (A-1) and (A-2), we can write investment in regime gj as a function of
(ekt, gt = gj). For j = H,L:

eijt ≡ei(ekt, gt = gj) = eyjt − ecjt = (njt)αek1−αt − ecjt . (A-3)

Usingeijt obtained in (A-3), we can write eks,jt+1 as a function of ³ekt, gt = gj, gt+1 = gs, εt+1
´
.

For j = H,L and s = H,L:

eks,jt+1 = 1

exp(gs + εt+1) exp(gp)

h
(1− δ)ekt +eijti . (A-4)

ecs,jt+1 is the consumption policy function in period t+1 when the state is (eks,jt+1, gt+1 =
gs). For j = H,L and s = H,L:

ecs,jt+1 ≡ ec³eks,jt+1, gt+1 = gs
´
= exp

Ã
nX
i=1

asi × ϕi(eks,jt+1)
!
. (A-5)

Using eks,jt+1 and ecs,jt+1 ≡ ec³eks,jt+1, gt+1 = gs
´
obtained in (A-4) and (A-5), ns,jt+1 for
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j = H,L and s = H,L can be written as

ns,jt+1 ≡ n
³eks,jt+1, gt+1 = gs

´
=

⎛⎜⎝α

³eks,jt+1´1−αecs,jt+1
⎞⎟⎠

1
1−α

. (A-6)

The investment in period t+ 1 is, for j = H,L and s = H,L:

eis,jt+1 ≡ ei³eks,jt+1, gt+1 = gs
´

(A-7)

= eys,jt+1 − ecs,jt+1 =
⎛⎜⎝α

³eks,jt+1´1−αecs,jt+1
⎞⎟⎠

α
1−α ³eks,jt+1´1−α − ecs,jt+1.

II. Definitions of the Variables in Equation (11)

This section provides the definitions of the variables in the Euler equation under
imperfect information (11).ect is the consumption policy function when the current state is (ekt, p[gt = gH |Ωt]):

ect ≡ ec(ekt, p[gt = gH |Ωt]) = exp

Ã
nX
i=1

ai × ϕi(ekt, p[gt = gH |Ωt])

!
, (B-1)

where ϕi(·) for i = 1, 2, ..., n are the basis functions.
Using ect ≡ ec(ekt, p[gt = gH |Ωt]) obtained in (B-1), hours can be written in terms of

(ekt, p[gt = gH |Ωt]):

nt ≡ n(ekt, p[gt = gH |Ωt]) =

Ã
α
ek1−αtect

! 1
1−α

. (B-2)

Using ect and nt obtained in (B-1) and (B-2), the investment can be written in terms
of (ekt, p[gt = gH |Ωt]):

eit ≡ei(ekt, p[gt = gH |Ωt]) = eyt − ect = nαt
ek1−αt − ect. (B-3)

Using ect, nt, and eit obtained in (B-1), (B-2), and (B-3), ekst+1 for s = gH , gL can be

written in terms of
³ekt, p[gt = gH |Ωt], gt+1 = gs, εt+1

´
:

ekst+1 = 1

exp(gs + εt+1) exp(gp)

h
(1− δ)ekt +eiti . (B-4)
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The consumption policy function in period t+ 1 in state (ekHt+1, p1[gt+1 = gH |Ωt+1])
is

ecHt+1 ≡ ec(ekHt+1, p1[gt+1 = gH |Ωt+1]) = exp

Ã
nX
i=1

ai × ϕi(ekHt+1, p1[gt+1 = gH |Ωt+1])

!
,

(B-5)
where Ωt+1 ≡ ( eAt+1, eAt, eAt−1, ...), and p1[gt+1 = gH |Ωt+1] is defined as

p1[gt+1 = gH |Ωt+1]

≡
f1( eAt+1|gt+1 = gH ,Ωt)×

P
i=gH ,gL

{p[gt+1 = gH |gt = i]× p[gt = i|Ωt]}

P
j=gH ,gL

"
f1( eAt+1|gt+1 = j,Ωt)×

P
i=gH ,gL

{p[gt+1 = j|gt = i]× p[gt = i|Ωt]}
# , (B-6)

where f1( eAt+1|gt+1 = gH ,Ωt) and f1( eAt+1|gt+1 = gL,Ωt) are defined as

f1( eAt+1|gt+1 = gH ,Ωt) ≡
1√
2πσε

exp

∙
− 1

2σ2ε
(gH + εt+1 − gH)2

¸
=

1√
2πσε

exp

∙
− 1

2σ2ε
ε2t+1

¸
and

f1( eAt+1|gt+1 = gL,Ωt) ≡ exp
∙
− 1

2σ2ε
(gH + εt+1 − gL)2

¸
.

The consumption policy function in period t+ 1 in state (ekLt+1, p2[gt+1 = gH |Ωt+1])
is

ecLt+1 ≡ ec(ekLt+1, p2[gt+1 = gH |Ωt+1]) (B-7)

= exp

Ã
nX
i=1

ai × ϕi(ekLt+1, p2[gt+1 = gH |Ωt+1])

!
,

where p2[gt+1 = gH |Ωt+1] is defined as

p2[gt+1 = gH |Ωt+1]

≡
f2( eAt+1|gt+1 = gH ,Ωt)×

P
i=gH ,gL

{p[gt+1 = gH |gt = i]× p[gt = i|Ωt]}

P
j=gH ,gL

"
f2( eAt+1|gt+1 = j,Ωt)×

P
i=gH ,gL

{p[gt+1 = j|gt = i]× p[gt = i|Ωt]}
# , (B-8)
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where f2( eAt+1|gt+1 = gH ,Ωt) and f2( eAt+1|gt+1 = gL,Ωt) are defined as

f2( eAt+1|gt+1 = gH ,Ωt) ≡
1√
2πσε

exp

∙
− 1

2σ2ε
(gL + εt+1 − gH)2

¸
and

f2( eAt+1|gt+1 = gL,Ωt) ≡
1√
2πσε

exp

∙
− 1

2σ2ε
(gL + εt+1 − gL)2

¸
=

1√
2πσε

exp

∙
− 1

2σ2ε
ε2t+1

¸
.

Using ekHt+1 and ecHt+1, hours in state (ekHt+1, p1[gt+1 = gH |Ωt+1]) is

nHt+1 ≡ n(ekHt+1, p1[gt+1 = gH |Ωt+1]) =

⎛⎜⎝α

³ekHt+1´1−αecHt+1
⎞⎟⎠

1
1−α

. (B-9)

Similarly,

nLt+1 ≡ n(ekLt+1, p2[gt+1 = gH |Ωt+1]) =

⎛⎜⎝α

³ekLt+1´1−αecLt+1
⎞⎟⎠

1
1−α

. (B-10)

The investment in state (ekHt+1, p1[gt+1 = gH |Ωt+1]) is

eiHt+1 ≡ ei(ekHt+1, p1[gt+1 = gH |Ωt+1]) (B-11)

= eyHt+1 − ecHt+1 =
⎛⎜⎝α

³ekHt+1´1−αecHt+1
⎞⎟⎠

α
1−α ³ekHt+1´1−α − ecHt+1.

Similarly,

eiLt+1 ≡ ei(ekLt+1, p2[gt+1 = gH |Ωt+1]) (B-12)

= eyLt+1 − ecLt+1 =
⎛⎜⎝α

³ekLt+1´1−αecLt+1
⎞⎟⎠

α
1−α ³ekLt+1´1−α − ecLt+1.
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III. Data Description

All the data except capital are quarterly, for 1959:I—2002:I.

Population (H) is the civilian noninstitutional population of 16 years and over,

obtained from the Bureau of Labor Statistics (BLS) (series ID: LNU00000000Q).

Output (Y ) is the quarterly nonfarm business sector real output index, obtained

from the BLS (series ID: PRS85006043).

Labor (N) is the quarterly index of total hours worked by all persons engaged in

the nonfarm business sector, obtained from the BLS (series ID: PRS85006033).

Capital (K) is based on the annual private nonfarm business sector capital service

index, obtained from the BLS (series ID: MPU750025). To construct a quarterly series,

we interpolate the annual series under the assumption that the quarterly growth rate

of capital is constant within each year. We assume that the capital service reported

for the year 1959, for example, is available for use between 1959:I and 1959:IV.

Consumption (C) is the sum of two items: (i) the personal consumption expendi-

tures on nondurable goods, and (ii) the personal consumption expenditures on services.

Both of these are obtained from National Income and Product Accounts (NIPA) table

1.15, and are converted to real terms with the appropriate deflators reported in NIPA

table 1.19.

Investment (I) is the sum of two items: (i) the personal consumption expenditures

on durable goods in NIPA table 1.15, deflated by the appropriate deflator in NIPA table

1.19, and (ii) the real gross private domestic investment (the sum of fixed investment

on equipment and structures and the change in inventories) reported in NIPA table

1.16.

Per capita variables are defined as y ≡ Y/H, n ≡ N/H, k ≡ K/H, c ≡ C/H, i ≡
I/H.

Technology (A) is constructed using the production function Y = (AN)αK1−α

with a labor share parameter α = 2/3. The technology series is constructed using the

expression A = [Y/(NαK1−α)]
1/α given the data on output (Y ), capital stock (K), and

hours of all persons (N). Beaudry and Portier (2006) construct a technology similarly.

The Index of Consumer Sentiment is obtained from the University of Michigan, Sur-

veys of Consumers. The quarterly index is available from 1960:I. We use the biannual

data for the year 1959.
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Table 1: Estimated Parameter Values for the Technology Shock Process

Parameter Description Estimate
p Transition probability: prob

£
gt+1 = gH |gt = gH

¤
0.9510
(0.0413)

q Transition probability: prob
£
gt+1 = gL|gt = gL

¤
0.6941
(0.1658)

gH Average technology growth rate in state gH 0.006533
(0.001418)

gL Average technology growth rate in state gL −0.009533
(0.004406)

σ2ε Variance of transitory shock to technology growth 0.014769
(0.002160)

37



Table 2: Unconditional Moments (First Difference of log Series)

Variable Std. dev. Relative std. dev. Autocorrelations Corr. with ∆ log(y)
1 2

Data
∆ log(y) 1.207 1 0.260 0.198 1
∆ log(c) 0.473 0.392 0.276 0.207 0.481
∆ log(i) 3.702 3.067 0.166 0.111 0.879
∆ log(k) 0.288 0.239 0.790 0.721 0.224
∆ log(n) 0.828 0.686 0.567 0.342 0.716
Model with two shocks and imperfect information
∆ log(y) 1.131 1 0.202 0.127 1
∆ log(c) 0.800 0.708 0.076 0.078 0.934
∆ log(i) 2.628 0.320 0.276 0.152 0.922
∆ log(k) 0.282 0.249 0.961 0.905 0.062
∆ log(n) 0.481 0.425 0.252 0.133 0.800
Model with two shocks and full information
∆ log(y) 1.351 1 0.089 0.055 1
∆ log(c) 0.785 0.581 0.077 0.079 0.673
∆ log(i) 4.609 3.408 −0.027 −0.027 0.903
∆ log(k) 0.305 0.225 0.903 0.814 −0.051
∆ log(n) 1.007 0.745 −0.081 −0.059 0.821
Model with random-walk technology
∆ log(y) 1.332 1 −0.002 −0.005 1
∆ log(c) 0.679 0.510 0.087 0.076 0.984
∆ log(i) 3.598 2.700 −0.029 −0.030 0.992
∆ log(k) 0.240 0.180 0.904 0.815 −0.040
∆ log(n) 0.675 0.507 −0.034 −0.034 0.984
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Table 3: Forecasted Changes in Output as a Fraction of Total Changes

Horizon (k) 1 4 8 12
Data
std
³d∆ykt

´
std(∆ykt )

0.586 0.510 0.505 0.547

Model with two shocks and imperfect information
std
³d∆ykt

´
std(∆ykt )

0.316 0.238 0.206 0.198

Model with two shocks and full information
std
³d∆ykt

´
std(∆ykt )

0.342 0.268 0.247 0.230

Model with random-walk technology
std
³d∆ykt

´
std(∆ykt )

0.003 0.005 0.006 0.006
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Table 4: Standard Deviations of Forecasted Changes

Horizon (k) std
³d∆ykt

´
std
³d∆ckt

´
std
³d∆ikt

´
std
³d∆nkt

´
Data
1 0.007 0.002 0.022 0.006
4 0.016 0.005 0.049 0.015
8 0.023 0.006 0.073 0.021
12 0.029 0.007 0.094 0.026
Model with two shocks and imperfect information
1 0.004 0.002 0.012 0.003
4 0.007 0.005 0.021 0.006
8 0.009 0.008 0.028 0.008
12 0.010 0.011 0.034 0.011
Model with two shocks and full information
1 0.005 0.002 0.017 0.005
4 0.008 0.005 0.034 0.009
8 0.011 0.007 0.049 0.014
12 0.012 0.008 0.057 0.017
Model with random-walk technology
1 3e-5 0.001 0.005 0.001
4 1e-4 0.004 0.020 0.004
8 2e-4 0.008 0.034 0.008
12 3e-4 0.010 0.046 0.010
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Table 5: Correlations among Forecasted Changes

Horizon (k) corr
³d∆ckt ,

d∆ykt

´
corr

³d∆ikt ,
d∆ykt

´
corr

³d∆nkt ,
d∆ykt

´
Data
1 0.864 0.989 0.880
4 0.911 0.994 0.881
8 0.869 0.993 0.838
12 0.850 0.993 0.827
Model with two shocks and imperfect information
1 0.495 0.921 0.857
4 0.464 0.771 0.598
8 0.361 0.584 0.370
12 0.301 0.485 0.288
Model with two shocks and full information
1 0.191 0.955 0.920
4 −0.075 0.850 0.789
8 −0.225 0.797 0.751
12 −0.277 0.779 0.743
Model with random-walk technology
Any k −1.000 1.000 1.000
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Table 6: Regression Coefficients among Forecasted Changes

Horizon (k) d∆ckt on
d∆ykt

d∆ikt on
d∆ykt

d∆nkt on
d∆ykt

Data
1 0.276 3.060 0.747
4 0.266 3.089 0.863
8 0.229 3.196 0.779
12 0.212 3.241 0.752
Model with two shocks and imperfect information
1 0.236 3.176 0.764
4 0.398 2.713 0.602
8 0.481 2.478 0.519
12 0.506 2.407 0.494
Model with two shocks and full information
1 0.070 3.648 0.931
4 −0.014 3.887 1.014
8 −0.096 4.119 1.096
12 −0.129 4.213 1.129
Model with random-walk technology
Any k −35.050 161.025 36.050
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Figure 1: Belief and the Index of Consumer Sentiment
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Figure 2: 1% Transitory Shock to Technology Growth Conditional on Regime gL
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Figure 3: Positive Permanent Shock to Technology Growth (Switch from gL to gH)
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Figure 4: 1% Transitory Shock to Technology Growth Conditional on Regime gH

(Solid Lines) and Conditional on Regime gL (Dashed Lines)
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Figure 5: Switch from gL to gH (Left Panels) and Switch from gH to gL (Right

Panels)
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Figure 6: Autocorrelation Function for Output Growth
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Figure 7: Autocorrelation Functions for Output Growth and Technology Growth
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Figure 8: Autocorrelation Function for Hours Growth (Upper Panel) and Investment

Growth (Lower Panel)
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Figure 9: 1% Transitory Shock to Technology Growth in the Model with

Random-Walk Technology
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