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1 Introduction

Modern macroeconomic theory provides two main explanations for why mon-
etary policy has real effects in the short run: imperfect information about
the policy shocks and short-run rigidity in price or wage adjustment. The
imperfect information approach was originally developed by Phelps (1970)
and Lucas (1972) in the era in which the traditional output-inflation relation-
ship collapsed. However, their arguments were criticized for their practical
irrelevance: the Phelps-Lucas models imply that the real effects of mone-
tary policy only last while the precise public information about aggregate
disturbances is unavailable, which seems to contradict the observed persis-
tence of business fluctuations despite the availability of macroeconomic data
with little delay.1 To analyze the persistent real effects of monetary policy,
many current macroeconomic models of business fluctuations assume short-
run rigidity in price or wage adjustment, typically by incorporating staggered
price setting as in Taylor (1980) or Calvo (1983).

Some authors have recently reconsidered the imperfect information ap-
proach. They have developed monetary business cycle models that can gen-
erate persistent real effects of monetary policy and can also overcome a major
problem in the Taylor-Calvo staggered price-setting models, namely their in-
ability to explain the observed inflation inertia. Mankiw and Reis (2002)
consider sticky information rather than sticky prices, which means parts of
current prices are chosen on the basis of old information. Woodford (2003a)
considers imperfect common knowledge about nominal disturbances in an
environment among monopolistically competitive suppliers whose optimal
pricing strategy depends not only on their own estimates of the aggregate
disturbances but also on their expectations of the average estimates by other
suppliers. These models can explain in particular the stylized fact identi-
fied in many empirical studies including Christiano, Eichenbaum, and Evans
(2005) that monetary policy shocks initially affect real variables and then
have delayed and gradual effects on inflation.

However, these models still leave the original problem in the Phelps-Lucas
models unsolved. The source of persistence of the real effects of monetary
policy in the Mankiw-Reis model is the outdated information that influences
current price setting. In their model some suppliers set their prices based on
very old information because the probability of obtaining new information in

1Lucas (1975) developed a monetary business cycle model that can generate persistent
real effects of monetary policy by introducing capital accumulation as well as information
lags. Such persistence can also be generated by introducing inventories into monetary
business cycle models based on imperfect information without assuming rigidity in price
or wage adjustment, as shown in Fukunaga (2005).
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each period is constant and identical for all suppliers however recent their last
updates. In the Woodford model, suppliers never obtain, nor pay attention
to, precise information about aggregate demand and even about the actual
quantities they sold at their chosen prices. They choose their prices solely on
the basis of the history of their subjective observations that contain idiosyn-
cratic perception errors. In both models, there would be no persistent real
effects of monetary policy if the true state of the economy were revealed to all
suppliers with a delay of only one period. These models do not explain why
price setters fail to use widely and readily available macroeconomic data.2

In this paper, I develop a model that integrates Woodford’s imperfect
common knowledge model with Taylor-Calvo staggered price-setting models
in order to overcome the problems in each of them and explain plausibly the
observed effects of monetary policy. The model is based on the standard
monopolistic competition framework as in Blanchard and Kiyotaki (1987).
Following Woodford, I assume that price setters can only observe the state
of the economy through noisy private signals so that the overall price level
depends on a weighted sum of price setters’ “higher-order expectations,”
that is, what others expect about what others expect ... about aggregate
demand.3 Meanwhile, I drop Woodford’s unrealistic assumption that price
setters never pay attention to widely available data by assuming that the
true state of the economy is revealed to all price setters with a delay of
one period. Given staggered price setting, however, the model can generate
persistent real effects of monetary policy. The average price chosen in each
period depends on higher-order expectations about not only the current state
of the economy but also about the states in the future periods in which
prices are to be fixed. Although these dynamic and staggered higher-order
expectations are complicated, the model can be solved analytically by virtue
of the assumption that the true current state becomes common knowledge
in the subsequent period.

The main results of the model are as follows. The noisier are the pri-
vate signals, the more sluggish is the initial response of prices to a monetary
disturbance. The response that operates through dynamic and staggered
higher-order expectations is, in most cases, more sluggish than the one that

2Some recent studies attempt to explain how agents rationally choose to be inatten-
tive under informational constraints: Sims (2003) considers limited capacity for processing
information, while Reis (2005) considers costs of acquiring, absorbing, and processing in-
formation and provides a micro-foundation to the assumption of Mankiw and Reis (2002).

3Keynes (1936) described the role of higher-order expectations in an asset-pricing con-
text by introducing the famous metaphor of financial markets as “beauty contests.” Re-
cently, higher-order beliefs have been extensively studied in the theoretical literature on
“global games” (Morris and Shin, 2003) and applied to various fields.
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operates through static and simultaneous higher-order expectations. Follow-
ing this initial response, price adjustments are delayed and inflation may
peak later than in the corresponding full-information staggered price-setting
model. The response of output is amplified by the lack of common knowledge
and continues to exceed the response in the full-information model. Even a
small amount of noise in the private signals may significantly delay the ad-
justment of prices and amplify the response of output. The model nests the
full-information staggered price-setting model as one limit case. As another
limit case, it also nests the predetermined-prices model, in which all firms
either have no information about the current aggregate disturbances or are
simply assumed to set their prices one period in advance.4 The case of im-
perfect common knowledge is between these two limit cases, and explains
endogenously how price adjustments are delayed.

I obtain these results analytically in the baseline model in which a lack
of common knowledge is incorporated into a simple two-period staggered
price-setting model, and then in more general price-setting models that al-
low for multiple-period staggered price setting including the one analogized
with Calvo-type price setting. The latter overcomes a major problem with
Calvo-type price setting, namely that the price level jumps in the period of
disturbance and inflation responds earlier than does output, which is incon-
sistent with the stylized fact mentioned above.

I extend my baseline model by introducing a noisy public signal in ad-
dition to the private signals and study the consequences of a more general
information structure following Hellwig (2002) and Amato and Shin (2003).
These authors emphasize the separation of information into public and pri-
vate signals and criticize the Woodford model for focusing only on private
signals and for lacking considerations of problems involving informational in-
teraction between decision makers. Whereas Amato and Shin assume that
price setters never obtain precise information as in the Woodford model, I
retain the assumption that the true state of the economy is revealed to all
price setters with a delay of one period. I show that provision of the public
signal alleviates the sluggishness in the initial response of prices to some ex-
tent, but the results in the baseline model, including the delayed response of
inflation and the amplified response of output, are robust.

The public signal in the extended model may represent preliminary data
that is to be revised or noisy information provided by the media, the gov-
ernment, and so on. When it is interpreted as a communication tool of the

4The latter limit case is analyzed in Section 3.1 of Chapter 3 in Woodford (2003b) to
demonstrate a simple and direct way of generating delayed effects of nominal disturbances
on inflation.
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monetary authority, the model has interesting implications for the conduct of
monetary policy involving, for example, commitment and transparency. As
Morris and Shin (2002) argue, in an economy in which decision makers’ in-
formation sets are heterogeneous, public information has disproportionately
large effects on their decisions. While provision of the public signal alleviates
the sluggishness in price adjustments to monetary disturbances, it exposes
firms to an additional disturbance, namely noise in the public signal, and
could destabilize the economy. In this extended model, I show that a nega-
tive informational disturbance, that is, downwardly biased information about
current aggregate demand, generates delayed inflation and positive response
of output as does a positive monetary disturbance. In addition, a small im-
provement in the precision of a relatively noisy public signal amplifies, rather
than reduces, the responsiveness to informational disturbances and increases
output volatility. Although I conduct neither practical policy analysis nor
rigorous welfare analysis in this paper, the introduction of the noisy public
signal is important for studying various consequences of a lack of common
knowledge as well as for checking the robustness of the results obtained from
the baseline model.

Recent studies on imperfect common knowledge have obtained impor-
tant results for the analysis of monetary policy and social welfare. Adam
(2006) determines the optimal monetary policy in an economy in which firms
have imperfect common knowledge about real demand and supply shocks.
Kawamoto (2004) examines the role of monetary policy in accommodating
technology improvements when the central bank as well as private agents
have imperfect common knowledge about the state of technology. Amato
and Shin (2003) consider a targeting rule in an economy in which firms can
access both public and private signals about the natural rate of interest.
Lately, there have been remarkable developments in the welfare analysis of
the precision of public signals, or central-bank transparency. Svensson (2005)
and Woodford (2005) cast doubt on the practical relevance of the main re-
sult of Morris and Shin (2002) that improving precision of public information
could lower welfare. In response, Morris, Shin, and Tong (2006) and Morris
and Shin (2006a) develop their arguments. Hellwig (2005) extends the Hell-
wig (2002) model of nominal adjustment and finds welfare-improving effects
of public information in the form of reduced price dispersion. Angeletos and
Pavan (2005) provides a general analytical framework that relates the inef-
ficiency of business cycles to the social value of information. These studies,
however, are typically based on static models, or assume an unrealistic lack
of awareness or attentiveness as does Woodford (2003a).

Meanwhile, the attempt to integrate imperfect common knowledge with
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staggered price setting has never been made until very recently.5 Nimark (2005)
considers firms’ private information about their own marginal costs that in-
cludes an idiosyncratic component, and derives a Phillips curve based on
Calvo-type price setting. Morris and Shin (2006b) consider higher-order ex-
pectations iterated in a forward-looking manner, which can be applied to the
purely forward-looking New Keynesian Philips curve based on Calvo-type
price setting. These approaches, however, are not sufficiently tractable for
obtaining various analytical results.

The remainder of the paper is organized as follows. In Section 2, I describe
the baseline model and present the main results on the effects of monetary
disturbances. In Section 3, I extend the baseline model by introducing a
noisy public signal, in addition to private signals, and examine the effects of
informational disturbances as well as monetary disturbances. In Section 4, I
consider more general price setting, including the one analogized with Calvo-
type price setting. Section 5 concludes.

2 The Baseline Model

In this section, I incorporate a lack of common knowledge into a simple
two-period staggered price-setting model and then analytically examine the
effects of monetary disturbances.

2.1 Set-up

Consider an economy in which a continuum of monopolistically competitive
firms indexed by i ∈ [0, 1] produce individual-specific goods and set their
own prices. Goods are perishable and capital is not required as a factor of
production. Following Woodford (2003a) and Mankiw and Reis (2002), I
begin with the static optimal price-setting condition of firm i.6

p∗t (i) = Ei
t pt + ξ Ei

t yt, 0 < ξ < 1 (1)

5It has been argued, however, that imperfect information and nominal rigidities are
closely related to each other as plausible explanations for the real effects of monetary policy.
Ball and Cecchetti (1988) develop a model in which monopolistically competitive firms
gain information by observing the prices set by others and then the staggered price setting
arises endogenously as the equilibrium outcome under certain conditions. Kiley (2000)
develops a model that has costs of nominal price adjustment as well as costs of acquiring
information in order to estimate the degree of price stickiness.

6This condition can be derived from a standard monopolistic competition model such
as Blanchard and Kiyotaki (1987). Woodford (2003a) provides a simple explanation of
the background of equation (1).
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All variables are expressed in terms of log deviations from the full-information
symmetric equilibrium. p∗t (i) is firm i’s desired price in period t and would
be the actual price if firms could set their prices flexibly. pt is the overall
price index and yt is the output gap. The parameter ξ is assumed to be less
than unity so that firms’ price-setting decisions are strategic complements.
The higher the elasticity of substitution among the differentiated goods or
the lower the elasticity of marginal cost with respect to output, the smaller
is ξ and the greater is the degree of strategic complementarity.

Firms cannot precisely observe aggregate variables such as pt and yt in the
current period, t. Moreover, their information sets are heterogeneous, which
is the main feature of this model. Accordingly the expectations operator
conditional on i’s information set at period t, Ei

t , is applied to pt and yt

in the above equation. In the next subsection, I explain the details of the
private information set and the signal extraction problem.

Next, I introduce the two-period staggered price setting as in Taylor
(1980). In period t, half of the firms in the economy set their prices for
the current period, t, and the next period, t + 1. Since they must set the
same price for both periods, prices are not just pre-determined but fixed.
The price chosen by firm i who sets its price in t is given by7

xt(i) =
1

2
(p∗t (i) + Ei

t p∗t+1(i)) (2)

=
1

2
(Ei

t pt + ξ Ei
t yt + Ei

t pt+1 + ξ Ei
t yt+1).

In period t + 1, the remaining half of the firms set their prices for periods
t + 1 and t + 2. In period t + 2, the firms who set their prices in period t
then re-set their prices for periods t + 2 and t + 3, and so on. The overall
price index is given by

pt =
1

2
(xt + xt−1), (3)

where xt is the average price chosen by the firms who set their prices in t,
that is, xt ≡ 2

∫ 0.5

0
xt(i) di when t = · · · ,−2, 0, 2, · · ·, and xt ≡ 2

∫ 1

0.5
xt(i) di

when t = · · · ,−1, 1, · · ·.
I specify the demand side of the economy by introducing an exogenous

stochastic process for aggregate nominal spending as follows.

mt − mt−1 = ρ (mt−1 − mt−2) + σ εt, εt ∼ N(0, 1) (4)

7For simplicity, I assume that the discount rate applied to the firm’s profits in the next
period is negligible.
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where

mt = pt + yt (5)

and εt is Gaussian white noise. One may interpret mt as “money” that
households must hold for their spending. Following Mankiw and Reis (2002),
I treat the above process as a plausible stochastic process for representing the
actual money supply (M2) in the U.S.8 Alternatively, mt can be interpreted
more broadly as a generic variable affecting aggregate demand. This simple
specification for aggregate demand, however it is interpreted, allows me to
concentrate on examining the consequences of alternative specifications for
price-setting behavior.

2.2 Signal Extraction

Here I specify firms’ information sets. As in Lucas (1972) and Woodford
(2003a), each individual firm estimates the current state of the economy by
using their private information. In period t, firm i has access to a noisy
private signal about current aggregate demand, mt, which is represented as
follows.

zt(i) = mt + σu ut(i), ut(i) ∼ N(0, 1) (6)

where ut(i) is Gaussian white noise, which is distributed independently of
both εt and ut(j) for all j 6= i. Unlike Woodford, I assume that the true value
of mt becomes common knowledge among all firms with a delay of only one
period, in period t+1. Therefore, the information set of firm i comprises the
private signal, zt(i), and the history of realized aggregate nominal spending,
{mt−s}∞s=1. The result of firms’ signal extraction for estimating mt is given
by

Ei
t mt ≡ E[ mt | zt(i), mt−1, mt−2, ... ]

= b zt(i) + (1 − b) {mt−1 + ρ (mt−1 − mt−2)} (7)

where

b ≡ σ2

σ2 + σ2
u

represents firms’ reliance on their private signals. Given the variance of ag-
gregate nominal spending, this reliance is greater, the higher is the precision
of the signals (the smaller is σu).

8Woodford (2003a) specifies almost the same stochastic process as (4), except that he
adds a drift term that represents the long-run average growth rate of aggregate nominal
spending.
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2.3 Higher-Order Expectations

Unlike the Lucas model, this model considers an environment among mo-
nopolistically competitive firms whose pricing strategies depend on the other
firms’ strategies. The prices chosen by the firms depend not only on their
own estimates of current aggregate demand but also on their expectations of
the average estimate among the other firms, their expectations of the average
estimate of that average estimate, and so on.

Averaging (7) over i, I have

Et mt = bmt + (1 − b) {mt−1 + ρ (mt−1 − mt−2)}
= b σ εt + {mt−1 + ρ (mt−1 − mt−2)}, (8)

where Et is the average expectations operator. The second line implies that
the average estimate is not equal to the true value of mt defined by (4) despite
the assumption that the mean of the private signals is equal to the true value.
The average estimate is closer to the true value when the private signals are
more precise and reliable. When σu = 0, all firms can access homogeneous
precise signals and the average expectations operator no longer needs to be
defined.

The average expectations operator, defined for heterogeneous information
sets, does not satisfy the law of iterative expectations. Firm i’s expectation
of the average estimate (8) can be calculated as follows.

Ei
t [ Et mt ] = b [ b zt(i) + (1 − b) {mt−1 + ρ (mt−1 − mt−2)} ]

+(1 − b) {mt−1 + ρ (mt−1 − mt−2)}

Averaging again over i, I have

Et [ Et mt ] = b2 mt + (1 − b2) {mt−1 + ρ (mt−1 − mt−2)}
= b2 σ εt + {mt−1 + ρ (mt−1 − mt−2)},

which differs from (8). Therefore, I need to define the j-th order average
expectations as follows.

E
(0)

t mt ≡ mt

E
(j+1)

t mt ≡ Et [ E
(j)

t mt ]

The higher-order average expectations can be calculated as

Ei
t [ E

(j)

t mt ] = bj+1 zt(i) + (1 − bj+1) {mt−1 + ρ (mt−1 − mt−2)}
E

(j+1)

t mt = bj+1 mt + (1 − bj+1) {mt−1 + ρ (mt−1 − mt−2)}
= bj+1 σ εt + {mt−1 + ρ (mt−1 − mt−2)}. (9)
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Since b is less than 1, the infinite-order average expectation converges to
the expectations that are conditional only on common knowledge about the
history of realized aggregate nominal spending.

2.4 Solving the Model

I seek to find a rational expectations equilibrium, which is defined as a set
of { pt, yt } that satisfies the model equations (1), (2), (3), and (5) given the
exogenous process for aggregate nominal spending (4) and the information
structure described in the preceding subsections. The key endogenous vari-
able in the model is the re-set price, xt. Combining equations (1) through
(5) yields

xt(i) =
1

2
(Ei

t pt + ξ Ei
t yt + Ei

t pt+1 + ξ Ei
t yt+1)

=
1

2
{ξ Ei

t mt + (1 − ξ) Ei
t pt + ξ Ei

t mt+1 + (1 − ξ) Ei
t pt+1}

=
1

2
{ξ Ei

t mt + ξ Ei
t mt+1 + (1 − ξ) Ei

t xt +
1 − ξ

2
Ei

t xt+1 +
1 − ξ

2
xt−1}

=
1

2
{ξ (2 + ρ) Ei

t mt − ξ ρ mt−1

+(1 − ξ) Ei
t xt +

1 − ξ

2
Ei

t xt+1 +
1 − ξ

2
xt−1}.

The price chosen by firm i who sets its price in period t depends on its
estimate of current aggregate demand, mt, its estimate of the average price
among the firms who set their prices in the same period, xt, and its estimate
of the future average price chosen by the other group of firms, xt+1. The
price also depends on the past realized value of aggregate nominal spending,
mt−1, and the past average price chosen by the other group of firms, xt−1,
which are known in period t and therefore the expectations operators need
not be added to these terms.

Averaging xt(i) over the group of firms who set their prices in t, I have

xt =
1

2
{ξ (2 + ρ) Et mt − ξ ρ mt−1 +

(1 − ξ) Et xt +
1 − ξ

2
Et xt+1 +

1 − ξ

2
xt−1}, (10)

where the average expectations operator is defined as Et(·) ≡ 2
∫ 0.5

0
Ei

t(·) di

when t = · · · ,−2, 0, 2, · · ·, and Et(·) ≡ 2
∫ 1

0.5
Ei

t(·) di when t = · · · ,−1, 1, · · ·.
Apart from the average expectations operator, the above equation can be

regarded as a second-order difference equation for xt, similar to the ordinary
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two-period staggered price-setting model with full homogenous information
sets. I suppose that all firms in both groups believe that the solution of the
difference equation takes the following form.

xt = λ xt−1 + C1 mt−1 + C2 mt−2 + C3 σ εt, (11)

where λ, C1, C2, and C3 are undetermined coefficients. By substituting this
solution form into (10), I eliminate the term of xt+1.

xt =
1

2
{ξ (2 + ρ) Et mt − ξ ρ mt−1 + (1 − ξ) Et xt

+
1 − ξ

2
(λ Et xt + C1 Et mt + C2 mt−1) +

1 − ξ

2
xt−1}

=
1

4
[ {2 ξ (2 + ρ) + (1 − ξ) C1}Et mt + {(1 − ξ) C2 − 2 ξ ρ}mt−1

+ (2 + λ) (1 − ξ) Et xt + (1 − ξ) xt−1 ]

Note that Ei
t εt+1(= Et εt+1) = 0 for all i. Then, iterative substitutions for

xt yield higher-order expectations about mt.

xt =
2 ξ (2 + ρ) + (1 − ξ) C1

4

∞
∑

j=1

{

(2 + λ) (1 − ξ)

4

}j−1

E
(j)

t mt

+
(1 − ξ) C2 − 2 ξ ρ

4 − (2 + λ) (1 − ξ)
mt−1 +

1 − ξ

4 − (2 + λ) (1 − ξ)
xt−1 (12)

This implies that firms consider the weighted sum of higher-order expec-
tations up to the infinite order when choosing their prices. Using (9) to

substitute for E
(j)

t mt, I obtain

xt =
b {2 ξ (2 + ρ) + (1 − ξ) C1}

4 − (2 + λ) (1 − ξ) b
σ εt

+
2 ξ (2 + ρ) + (1 − ξ) C1

4 − (2 + λ) (1 − ξ)
{mt−1 + ρ (mt−1 − mt−2)}

+
(1 − ξ) C2 − 2 ξ ρ

4 − (2 + λ) (1 − ξ)
mt−1 +

1 − ξ

4 − (2 + λ) (1 − ξ)
xt−1.

By matching this with the solution form (11), the values of the undetermined
coefficients, which provide a unique stable solution of the difference equation
for xt, are identified as follows.
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λ =
1 −

√
ξ

1 +
√

ξ
< 1

C1 =
2
√

ξ

1 +
√

ξ
+

2 ρ
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}

C2 = − 2 ρ
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}

C3 =
2
√

ξ (1 +
√

ξ) (1 +
√

ξ + ρ
√

ξ) b

{1 +
√

ξ − ρ (1 −
√

ξ)} {4 − b (3 − 2
√

ξ − ξ)}

The set of equilibrium paths { pt, yt } can be calculated as

pt =
1

2
(λ xt−1 + C1 mt−1 + C2 mt−2 + C3 σ εt

+λ xt−2 + C1 mt−2 + C2 mt−3 + C3 σ εt−1)

= λ pt−1 +
1

2
{C1 mt−1 + (C1 + C2) mt−2 + C2 mt−3 + C3 σ (εt + εt−1)} (13)

yt = mt − λ pt−1 −
1

2
{C1 mt−1 + (C1 + C2) mt−2 + C2 mt−3 + C3 σ (εt + εt−1)}

= λ yt−1 +

(

1 − λ + ρ − C1

2

)

mt−1 −
(

ρ +
C1 + C2

2

)

mt−2

−1

2
{C2 mt−3 + C3 σ (εt + εt−1)} (14)

2.5 Impulse Responses

From the solution of the model obtained in the previous subsection, I ex-
amine the impulse responses of output and inflation to a monetary distur-
bance. I compare the responses in the baseline model with those in the
full-information two-period staggered price-setting model to study the con-
sequences of a lack of common knowledge. The baseline model nests as a limit
case the full-information two-period staggered price-setting model in which
all firms can access homogeneous precise information about the realization
of the current aggregate disturbances, σu = 0, so that b = 1. The other limit
case, σu = ∞, so that b = 0, implies that all firms have no information about
the current aggregate disturbances or are simply assumed to set their prices
one period in advance. The case of imperfect common knowledge is between
these two limit cases, and explains endogenously how price adjustments are
delayed.
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The impulse responses of the price level and output to a unit positive
innovation in ε0 are calculated as a set of equilibrium paths { p̂t, ŷt } with
ε0 = 1, εt = 0 for all t 6= 0, p−1 = y−1 = m−1 = m−2 = m−3 = 0, and
limt→∞ yt = 0 in (13) and (14). The main analytical results are summarized
in the following proposition.

Proposition 1. i) The impulse response of output is decreasing in firms’
reliance on their private signals, b, i.e.,

∂ŷt

∂b
< 0, t ≥ 0.

ii) The impulse response of inflation is initially increasing in b and later
decreasing in b, i.e.,

∂(p̂t − p̂t−1)

∂b
> 0, t = 0, 1.

∂(p̂t − p̂t−1)

∂b
< 0, t ≥ 2.

Proof. i) Taking the partial derivative of ŷt with respect to b sequentially,
I have

∂ŷ0

∂b
= − 4

√
ξ (1 +

√
ξ) (1 +

√
ξ + ρ

√
ξ) σ

{1 +
√

ξ − ρ (1 −
√

ξ)} {4 − b (3 − 2
√

ξ − ξ)}2

∂ŷ1

∂b
= (1 + λ)

∂ŷ0

∂b
∂ŷt

∂b
= λ

∂ŷt−1

∂b
, t ≥ 2.

ii) Taking the partial derivative of (p̂t − p̂t−1) with respect to b sequentially,
I have

∂p̂0

∂b
=

4
√

ξ (1 +
√

ξ) (1 +
√

ξ + ρ
√

ξ) σ

{1 +
√

ξ − ρ (1 −
√

ξ)} {4 − b (3 − 2
√

ξ − ξ)}2

∂(p̂1 − p̂0)

∂b
= λ

∂p̂0

∂b
∂(p̂2 − p̂1)

∂b
= −(1 − λ2)

∂p̂0

∂b
∂(p̂t − p̂t−1)

∂b
= λ

∂(p̂t−1 − p̂t−2)

∂b
, t ≥ 3. �

The noisier are the private signals, that is, the smaller is b, the more
sluggish is the initial response of prices. Accordingly, price adjustments are
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delayed and inflation may peak later than in the full-information staggered
price-setting model. The response of output is amplified by the lack of com-
mon knowledge in period 0 and continues to exceed the response in the
full-information model even after precise information about the disturbances
becomes common knowledge in period 1. While it takes the same period of
time for the responses of output and inflation in the full-information and the
imperfect-common-knowledge models to die away, the differences between
those in these models persist until then.

Moreover, it can be shown that the extent to which a change in the
amount of noise affects the sluggishness in the initial response of prices is
greater when the private signals are more precise (b is closer to 1), that
is, ∂2p̂0/∂b2 > 0. This implies that even a small amount of noise in the
private signals may significantly delay the adjustment of prices and amplify
the response of output.

Sample sets of impulse responses in the models in which b = 0, 0.25, 0.5, 0.75,
and b = 1 (the full-information model) are shown in Figure 1. In the model
with b = 0.5, the size of the initial response of prices is about a third of that
in the full-information model. The response of output is amplified by more
than 45 percent in the first four periods, while the response in the model
with b = 0 is amplified by more than 65 percent.

In Figure 1, I set the parameter value for the strategic complementarity,
ξ, to 0.15 following Woodford (2003a), and set the AR(1) coefficient on the
process for quarterly aggregate nominal spending, ρ, to 0.5 following Mankiw
and Reis (2002). A smaller ξ, that is, a higher degree of strategic comple-
mentarity implies a larger λ, which indicates more persistent responses, and
also implies a smaller C3, which indicates more sluggishness in the initial re-
sponse of prices. A smaller ρ, that is, a less persistent shock process implies
a smaller C3 but has no implication for λ.

Another interesting comparison is the one between the amplitude of the
initial response of prices in the baseline model and that in a static model of
imperfect common knowledge without staggered price setting. In the static
model, averaging (1) over i yields the average price in the whole economy as
follows.

p = E p + ξ E y

= ξ E m + (1 − ξ) E p

= ξ
∞

∑

j=1

(1 − ξ)j−1 E
(j)

m,

where the average expectations operator is now defined as E(·) ≡
∫ 1

0
Ei(·) di.

Substituting (9) with εt = 1 and mt−1 = mt−2 = ρ = 0, I have

13



p̂S =
ξ b σ

1 − b (1 − ξ)
.

The corresponding result in the baseline model is (13) with ε0 = 1 and
p−1 = m−1 = m−2 = m−3 = ε−1 = ρ = 0, that is,

p̂D
0 =

√
ξ (1 +

√
ξ) b σ

4 − b (3 − 2
√

ξ − ξ)
.

If b and ξ are very small, in which case the private signals are very noisy and
the strategic complementarity in firms’ price-setting decisions is very strong,
p̂D

0 may exceed p̂S.9 However, for most range of the parameter values, p̂D
0

is smaller than p̂S, which implies that the response that operates through
dynamic and staggered higher-order expectations about the future states of
the economy as well as the current state is more sluggish than the one that
operates through static and simultaneous higher-order expectations.

3 Public Information

In this section, I introduce a noisy public signal in addition to private signals
into the baseline model and study the consequences of a more general infor-
mation structure following Hellwig (2002) and Amato and Shin (2003). The
public signal in the extended model may represent preliminary data that is
to be revised or noisy information provided by the media, the government,
and so on. As Morris and Shin (2002) argue, in an economy in which de-
cision makers’ information sets are heterogeneous, public information has
disproportionately large effects on their decisions.

3.1 Private and Public Signals

First I re-specify the firms’ information set. In period t, firm i has access to
not only private signals (6) but also the following public signal, which is not
necessarily precise.

zP
t = mt + σv vt, vt ∼ N(0, 1), (15)

where vt is Gaussian white noise distributed independently of both εt and
ut(i) for all i. Whereas Amato and Shin (2003) assume that price setters
never obtain precise information about aggregate disturbances as in the
Woodford model, I retain the assumption that the true value of mt is re-
vealed to all firms with a delay of only one period, in t + 1. Therefore, the

9The ratio of p̂D
0 to p̂S is decreasing in b, that is,

∂(p̂D

0
/p̂S)

∂b < 0.
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information set of firm i comprises the private and public signals and the his-
tory of realized aggregate nominal spending, in which noisy information, zP

t ,
as well as precise information, {mt−s}∞s=1, is common knowledge. Following
Hellwig (2002), firms’ signal extraction for estimating mt can be calculated
as

Ei
t mt ≡ E[ mt | zt(i), zP

t , mt−1, mt−2, ... ]

= α ∆ zt(i) + (1 − α) ∆ zP
t

+(1 − ∆) {mt−1 + ρ (mt−1 − mt−2)}, (16)

where

α ≡ σ2
v

σ2
v + σ2

u

represents firms’ reliance on their private signals relative to the public signal.
Given the precision of the public signal, this relative reliance is greater, the
higher is the precision of the private signals (the smaller is σu). In addition,

∆ ≡ σ2

σ2 + σ2
u

σ2
v

σ2
u
+σ2

v

=
σ2

σ2 + α σ2
u

represents firms’ reliance on the private and public signals. Given the vari-
ance of aggregate nominal spending, this reliance is greater, the higher is the
precision of the composite signal.

As in the baseline model, I calculate the higher-order expectations about
mt as follows.

Ei
t [ E

(j)

t mt ] = (α ∆)j+1 zt(i) +
1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆ zP

t

+

{

1 − (α ∆)j+1 − 1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆

}

{mt−1 + ρ (mt−1 − mt−2)} (17)

E
(j+1)

t mt = (α ∆)j+1 mt +
1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆ zP

t

+

{

1 − (α ∆)j+1 − 1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆

}

{mt−1 + ρ (mt−1 − mt−2)}

=

{

(α ∆)j+1 +
1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆

}

σ εt

+
1 − (α ∆)j+1

1 − α ∆
(1 − α) ∆ σv vt

+{mt−1 + ρ (mt−1 − mt−2)} (18)
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Compared with firm i’s own estimate of mt, (16), its expectation of the
higher-order average expectations, (17), is more responsive to public informa-
tion including the public signal and the history of realized aggregate nominal
spending, and less responsive to private information. The infinite-order av-
erage expectation converges to the expectations that are conditional only on
common knowledge.

3.2 Effects of Monetary Disturbances

Substituting (18) into (12) in the baseline model, I obtain a unique stable
solution of the following difference equation: xt = λ xt−1+C1 mt−1+C2 mt−2+
C3 σ εt + C4 σv vt, where λ, C1, and C2 are the same as in the baseline model
and

C3 =
2
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
{4 − α (3 − 2

√
ξ − ξ)}∆

{4 − α ∆ (3 − 2
√

ξ − ξ)} ,

C4 =
8
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
(1 − α) ∆

{4 − α ∆ (3 − 2
√

ξ − ξ)} .

As before, I examine the impulse responses of output and inflation to a
monetary disturbance, that is, a unit positive innovation in ε0, and compare
these responses with those in the baseline model as well as those in the full-
information staggered price-setting model. The baseline model without the
public signal corresponds to the case of σv = ∞, so that α = 1 and ∆ = b,
and the full-information staggered price-setting model corresponds to the
case of σu = 0 and σv = ∞, so that α = 1 and ∆ = 1. The responses of
the price level and output in this extended model are calculated as a set of
equilibrium paths { p̂P

t , ŷP
t } with ε0 = 1, εt = 0 for all t 6= 0, vt = 0 for

all t, p−1 = y−1 = m−1 = m−2 = m−3 = 0, and limt→∞ yt = 0. The main
analytical results are summarized in the following proposition.

Proposition 2. i) The impulse response of output is increasing in firms’
relative reliance on their private signals to the public signal, α, and decreasing
in their reliance on the private and public signals, ∆, i.e.,

∂ŷP
t

∂α
> 0,

∂ŷP
t

∂∆
< 0, t ≥ 0.

ii) The impulse response of inflation is initially decreasing in α and increasing
in ∆, and later increasing in α and decreasing in ∆ i.e.,

∂(p̂P
t − p̂P

t−1)

∂α
< 0,

∂(p̂P
t − p̂P

t−1)

∂∆
> 0, t = 0, 1.

∂(p̂P
t − p̂P

t−1)

∂α
> 0,

∂(p̂P
t − p̂P

t−1)

∂∆
< 0, t ≥ 2.
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Proof. i) Taking the partial derivatives of ŷP
0 with respect to α and ∆,

I have

∂ŷP
0

∂α
=

4
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
(3 − 2

√
ξ − ξ) ∆ (1− ∆) σ

{4 − α ∆ (3 − 2
√

ξ − ξ)}2

∂ŷP
0

∂∆
= − 4

√
ξ (1 +

√
ξ + ρ

√
ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
{4 − α (3 − 2

√
ξ − ξ)} σ

{4 − α ∆ (3 − 2
√

ξ − ξ)}2
.

From ŷP
1 onward,

∂ŷP
1

∂α
= (1 + λ)

∂ŷP
0

∂α
,

∂ŷP
1

∂∆
= (1 + λ)

∂ŷP
0

∂∆
.

∂ŷP
t

∂α
= λ

∂ŷP
t−1

∂α
,

∂ŷP
t

∂∆
= λ

∂ŷP
t−1

∂∆
, t ≥ 2.

ii) Taking the partial derivatives of p̂P
0 with respect to α and ∆, I have

∂p̂P
0

∂α
= − 4

√
ξ (1 +

√
ξ + ρ

√
ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
(3 − 2

√
ξ − ξ) ∆ (1 − ∆) σ

{4 − α ∆ (3 − 2
√

ξ − ξ)}2

∂p̂P
0

∂∆
=

4
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
{4 − α (3 − 2

√
ξ − ξ)} σ

{4 − α ∆ (3 − 2
√

ξ − ξ)}2
.

From p̂P
1 onward,

(∂p̂P
1 − ∂p̂P

0 )

∂α
= λ

∂p̂P
0

∂α
,

∂p̂P
1 − ∂p̂P

0

∂∆
= λ

∂p̂P
0

∂∆
.

(∂p̂P
2 − ∂p̂P

1 )

∂α
= −(1 − λ2)

∂p̂P
0

∂α
,

∂p̂P
2 − ∂p̂P

1

∂∆
= −(1 − λ2)

∂p̂P
0

∂∆
.

∂p̂P
t − ∂p̂P

t−1

∂α
= λ

∂p̂P
t−1 − ∂p̂P

t−2

∂α
,

∂p̂P
t − ∂p̂P

t−1

∂∆
= λ

∂p̂P
t−1 − ∂p̂P

t−2

∂∆
, t ≥ 3.

�

The greater is firms’ relative reliance on the public signal compared to the
private signals (the smaller is α), the less sluggish is the initial response of
prices. Provision of the public signal allows firms to gain common knowledge
and, hence, calculate the higher-order average expectations more precisely.
This alleviates the sluggishness in their initial response of prices to some
extent. Compared with the full-information staggered price-setting model,
however, the adjustment of prices is still delayed and the response of output
is amplified as long as the signals contain noise. The lower is firms’ reliance
on the private and public signals (the smaller is ∆), the more sluggish is
the initial response of prices. Either noisier private signals or a noisier public
signal makes the initial response of prices more sluggish, that is, ∂p̂P

0 /∂σu < 0
and ∂p̂P

0 /∂σv < 0.
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Sample sets of impulse responses in the full-information model, the base-
line model (b = 0.5), and the extended models (α = 0 and 0.5 with ∆ = 0.5)
are shown in Figure 2. The other parameter values, for ξ and ρ, are the
same as in Figure 1. In the extended model of α = 0, the size of the initial
response of prices is half of that in the full-information model. The response
of output is amplified by more than 30 percent in the first four periods.

As before, I compare the amplitude of the initial response of prices in
the extended model with that in a static model that incorporates the public
signal as well as the private signals. The average price in the static model is

p̂PS =
{1 − α (1 − ξ)}∆ σ

{1 − α ∆ (1 − ξ)} .

The corresponding result in the extended model is

p̂PD
0 =

√
ξ

(1 +
√

ξ)

{4 − α (3 − 2
√

ξ − ξ)}∆ σ

{4 − α ∆ (3 − 2
√

ξ − ξ)} .

If α is very close to 1 and ∆ and ξ are very small, p̂PD
0 may exceed p̂PS.

However, for most range of the parameter values, p̂PD
0 is smaller than p̂PS,

which implies that the response that operates through dynamic and staggered
higher-order expectations is more sluggish than the one that operates through
static and simultaneous higher-order expectations.

3.3 Effects of Informational Disturbances

While the public signal reduces uncertainty in firms’ higher-order expecta-
tions about aggregate nominal spending, the noise in the public signal itself
adds to aggregate uncertainty. Firms with heterogeneous information sets
might over-react to the noisy public signal to such an extent that the econ-
omy could be destabilized. I consider this side effect of public information
by using the extended model to examine the impulse responses to an infor-
mational disturbance in the public signal.

The responses of the price level and output to a unit positive innovation in
v0 are calculated as a set of equilibrium paths { p̃P

t , ỹP
t } with v0 = 1, vt = 0 for

all t 6= 0, mt = εt = 0 for all t, p−1 = y−1 = 0, and limt→∞ yt = limt→∞ pt = 0.
The responses of output and inflation are given by

ỹP
0 = − 4

√
ξ (1 +

√
ξ + ρ

√
ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
(1 − α) ∆ σv

{4 − α ∆ (3 − 2
√

ξ − ξ)}
ỹP

1 = (1 + λ) ỹP
0

ỹP
t = λ ỹP

t−1, t ≥ 2
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and

p̃P
0 =

4
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
(1 − α) ∆ σv

{4 − α ∆ (3 − 2
√

ξ − ξ)}
p̃P

1 − p̃P
0 = λ p̃P

0

p̃P
2 − p̃P

1 = −(1 − λ2) p̃P
0

p̃P
t − p̃P

t−1 = λ (p̃P
t−1 − p̃P

t−2), t ≥ 3.

Firms raise their prices when they receive a public signal biased upward
from the true value of m0(= 0), believing it to be unbiased. Since the ex-
ogenous process for mt is not affected by the informational disturbance, the
increase in prices leads to a corresponding decrease in output.

Sample sets of impulse responses of output and inflation to a negative in-
formational disturbance are shown in Figure 3.1, in which (α, ∆) = (0.5, 0.5)
and the other parameter values are the same as in Figure 2. Firms react to
the downward-biased public signal by reducing their prices, and output in-
creases accordingly. When the output gap begins to shrink, prices start
increasing and then inflation peaks later than output. A combination of this
pattern of responses to a negative informational disturbance and the pattern
of responses to a positive monetary disturbance examined in the previous
subsection further delays the response of inflation and further amplifies the
response of output.10 These effects of the informational disturbance in the
public signal could offset the effects of alleviating the sluggishness in the
initial response of prices to the monetary disturbance.

Improving precision of the public signal does not necessarily reduce the
amplitude of those responses to the informational disturbance. While a small
σv generates small responses of output and inflation, it also implies that
firms rely heavily on the public signal, in which case α is small and ∆ is
large, and therefore, indirectly generates high responsiveness to informational
disturbances.11 If the latter indirect effect dominates, improving precision of
the public signal induces firms to over-react to the signal and amplifies the
responses. The partial derivative of the initial response of prices with respect
to the amount of noise in the public signal is

∂p̃P
0

∂σv

=
4
√

ξ (1 +
√

ξ + ρ
√

ξ)

(1 +
√

ξ) {1 +
√

ξ − ρ (1 −
√

ξ)}
σ2

u σ2 { 4 σ2
u (σ2 − σ2

v) − σ2
v σ2 (1 +

√
ξ)2}

{4 σ2
u (σ2 + σ2

v) + σ2
v σ2 (1 +

√
ξ)2}2

.

The sign is ambiguous, depending on the magnitude of σv.

10A negative informational disturbance accompanied by a positive monetary disturbance
implies that the public signal (15) does not reflect the current monetary disturbance.

11It can be shown that ∂C4

∂α < 0 and ∂C4

∂∆ > 0, where ỹP
0 = − 1

2 C4 σv and p̃P
0 = 1

2 C4 σv.
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In Figure 3.2, I plot p̃P
0 as a function of the amount of noise in the pub-

lic signal, σv. For the amount of noise in the private signals, σu, and the
variance of aggregate nominal spending, σ2, I choose the following three
sets of parameter values: (σu, σ2) = (1, 0.5), (2, 0.5), (1, 1). When σv = 1,
these sets correspond to (α, ∆) = (0.5, 0.5), (0.2, 0.385), (0.5, 0.667), re-
spectively.12 The relationship between the precision of the public signal and
the responsiveness of prices and output to informational disturbances is non-
monotonic: improving precision reduces responsiveness when precision is high
(σv is small) but amplifies it when precision is low (σv is large). The “con-
servative benchmark” case proposed by Svensson (2005), in which the public
signal is as precise as the private signals, is contained within the range in
which the precision of public signal is relatively low.13 A small improvement
in the precision of such a relatively noisy public signal could increase output
volatility and destabilize the economy.14

4 General Staggered Price Setting

The preceding models are based on simple two-period staggered price set-
ting. In this section, I consider more general price setting that allows for
multiple-period staggered price setting. Of particular interest is Calvo-type
price setting, which is widely used in recent New Keynesian macroeconomic
models.

4.1 Set-up

Consider an economy in which a proportion θ1 of monopolistically compet-
itive firms i ∈ Θ1 set their prices in each period, θ2 of firms i ∈ Θ2 set
their prices every other period, θ3 of firms i ∈ Θ3 do so every three periods,
and θ4 of firms i ∈ Θ4 do so every four periods. Within Θj, the periods of
price setting are staggered among j equally-sized groups. I assume that the
maximum fixed-price length is four periods so that

∑4
j=1 θj = 1.

12The asterisk on the (σu, σ2) = (1, 0.5) line corresponds to the initial response of
inflation (price level) in Figure 3.1.

13Svensson (2005) argues that the public signal should be at least as precise as the
private signals in the context of central-bank transparency, and points out that improving
precision of the public signal is welfare-improving unless the public signal is much noisier
than the private signals in the Morris and Shin (2002) model. Meanwhile, Morris and
Shin (2006a) argue that it would be difficult to conclude on the relative precision without
taking account of its endogenous nature.

14Hellwig (2005) studies the welfare effects of providing public and private information
with taking account of price dispersion as well as output volatility.
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While the static optimal price-setting condition in the baseline model (1)
is unchanged, the individual price equation (2) is modified as follows.

xt(i) =















p∗t (i) for i ∈ Θ1
1
2
(p∗t (i) + Ei

t p∗t+1(i)) for i ∈ Θ2, t
1
3
(p∗t (i) + Ei

t p∗t+1(i) + Ei
t p∗t+2(i)) for i ∈ Θ3, t

1
4
(p∗t (i) + Ei

t p∗t+1(i) + Ei
t p∗t+2(i) + Ei

t p∗t+3(i)) for i ∈ Θ4, t

where Θj, t is 1/j of the firms within Θj who set their prices in period t.
Averaging over those firms i ∈ Θ1 ∪ Θ2, t ∪ Θ3, t ∪ Θ4, t yields

xt = ω1 p∗t + ω2 Et p
∗

t+1 + ω3 Et p
∗

t+2 + ω4 Et p
∗

t+3, (19)

where

p∗t = Et pt + ξ Et yt

and

ω1 = θ1 +
1

2
θ2 +

1

3
θ3 +

1

4
θ4

ω2 =
1

2
θ2 +

1

3
θ3 +

1

4
θ4

ω3 =
1

3
θ3 +

1

4
θ4

ω4 =
1

4
θ4.

The average expectations operator Et is now defined as the average of Ei
t

over i ∈ Θ1 ∪ Θ2, t ∪ Θ3, t ∪ Θ4, t.
The overall price index is the weighted sum of prices set in the current

and past periods as in the baseline model. Equation (3) can be rewritten as

pt = ω1 xt + ω2 xt−1 + ω3 xt−2 + ω4 xt−3. (20)

The demand side of the economy, represented by (4) and (5), is the same
as in the baseline model. The information structure is the same as in Section 3
in which the public signal and the private signals are incorporated.

4.2 Impulse responses

As before, I examine the impulse responses of output and inflation to a
monetary disturbance, and compare them with those in the corresponding
full-information staggered price-setting model.
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Since the analytical results corresponding to Proposition 2 in Section 3
are qualitatively little changed, I relegate them to the Appendix. Here, I
examine the sample sets of impulse responses shown in Figures 4, 5 and 6.
In Figure 4, for the model analogized with Calvo-type price setting, I set θj

to 0.5, 0.25, 0.15, and 0.1 for j = 1 to 4 respectively. This implies that the
constant probability with which each firm gets the opportunity to change its
price is approximated by ω1 = 0.7. The other parameter values are the same
as in the extended model in Section 3.

As in the two-period staggered price-setting models in the preceding sec-
tions, the size of the initial response of prices when there are only private
signals (α = 1 and ∆ = b = 0.5) is about a third of the size of the initial
response in the corresponding full-information staggered price-setting model.
When there are both private and public signals (α = 0 and ∆ = 0.5), the
corresponding proportion is a half. The initial response of output is amplified
by more than 80 percent when there are only private signals, and is amplified
by more than 60 percent when there are both private and public signals. Al-
though these rates of amplification exceed those in the two-period staggered
price-setting models in period 0, they monotonically decrease as the output
gap shrinks. However, the response of output remains amplified, that is,
it persistently exceeds that in the corresponding full-information staggered
price-setting model.

As mentioned in the introduction, a major problem with Calvo-type price
setting is that the price level jumps in the period of disturbance and inflation
responds earlier than does output. The above results show that this problem
can be overcome by incorporating a lack of common knowledge into the
model.

In Figure 5, I set θj to 0 for j = 1 to 3 and θ4 = 1 with other parame-
ter values unchanged, that is, I assume four-period staggered price setting.
When there are only private signals, the initial response of prices is about
40 percent of the size of the response in the corresponding full-information
staggered price-setting model, and is half its size when there are both pri-
vate and public signals. Thereafter, price adjustments in both cases are
slightly delayed but inflation peaks in the same period as it does in the full-
information staggered price-setting model. The initial response of output is
large but the rate of amplification is about 15 percent when there are only
private signals and is about 12 percent when there are both private and pub-
lic signals. These amplification rates remain almost constant (or increase) as
the output gap shrinks. Since the proportion of prices set in the period of
disturbance under imperfect common knowledge, ω1, is smaller than that in
the preceding Calvo-analogized model, the responses are closer to those in
the corresponding full-information staggered price-setting model.
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Lastly, to complete the discussion, I examine the responses to an informa-
tional disturbance. Sample sets of impulse responses of output and inflation
to a negative informational disturbance in the Calvo-analogized model and
the four-period staggered price-setting model are shown in Figure 6. While
the amplitude of the responses is larger in the former model, the persistence
is greater and the peaks are later in the latter model.

5 Concluding Remarks

In this paper I have studied the consequences of a lack of common knowl-
edge in the transmission of monetary policy by integrating the Woodford
(2003a) imperfect common knowledge model with Taylor-Calvo staggered
price-setting models. The average price set by monopolistically competitive
firms who can only observe the state of the economy through noisy private
signals depends on their higher-order expectations about not only the current
state of the economy but also about the states in the future periods in which
prices are to be fixed. This integrated model provides a plausible explana-
tion for the observed effects of monetary policy: it shows analytically how
price adjustments are delayed and how the response of output to a monetary
disturbance is amplified.

These results are robust in the model of Section 3, which incorporates a
noisy public signal as well as private signals, and in the models of Section 4,
which generalize staggered price setting. While provision of the public signal
alleviates the sluggishness in price adjustments to monetary disturbances, it
exposes firms to an additional disturbance, namely noise in the public signal,
and could destabilize the economy. The Calvo-analogized model in Section 4
overcomes a major problem with Calvo-type price setting that the price level
jumps in the period of disturbance and inflation responds earlier than does
output.

Based on the models developed in this paper, at least two directions for
future research can be pursued. One is policy research. The model of Section
3 could be further extended to obtain richer implications for the central
bank’s communication strategy. Another direction is empirical research. For
example, deep parameters such as price setters’ reliance on their private
information could be estimated by matching impulse responses obtained from
a structural model with those from an estimated VAR model. Although the
models in this paper may be too simple for practical use, they are tractable,
flexible, and based on plausible assumptions about information structure. I
hope these models serve as a useful building block for future research in those
directions.
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Appendix

Solution of the General Staggered Price-Setting Model

The key equations of the model are (19) and (20).

xt = ω1 p∗t + ω2 Et p
∗

t+1 + ω3 Et p
∗

t+2 + ω4 Et p
∗

t+3

pt = ω1 xt + ω2 xt−1 + ω3 xt−2 + ω4 xt−3

Combining these, I have

xt = ξ (M1 Et mt + M2 mt−1)

+(1 − ξ) (W1 xt−3 + W2 xt−2 + W3 xt−1

+W Et xt + W3 Et xt+1 + W2 Et xt+2 + W1 Et xt+3),

where

M1 ≡ ω1 + ω2 (1 + ρ) + ω3 (1 + ρ + ρ2) + ω4 (1 + ρ + ρ2 + ρ3)

M2 ≡ −{ω2 ρ + ω3 (ρ + ρ2) + ω4 (ρ + ρ2 + ρ3) }
W1 ≡ ω1 ω4

W2 ≡ ω1 ω3 + ω2 ω4

W3 ≡ ω1 ω2 + ω2 ω3 + ω3 ω4

W ≡ ω2
1 + ω2

2 + ω2
3 + ω2

4.

Suppose that all firms believe that the solution of the difference equation
for xt takes the following form.

xt = λ1 xt−1 + λ2 xt−2 + λ3 xt−3

+C1 mt−1 + C2 mt−2 + C3 σ εt + C4 σv vt.

As before, the undetermined coefficients are identified as follows.

C3 =
M∗ (1 − α W ∗) ∆

(1 − W ∗) (1 − α ∆ W ∗)

C4 =
M∗ (1 − α) ∆

(1 − W ∗) (1 − α ∆ W ∗)
,

where

M∗ ≡ ξ M1 + (1 − ξ) {W3 C1 + W2 C2 + (W2 λ1 + W1 λ2) C1 + W1 λ1 C2

+W1 λ2
1 C1 + (W2 C1 + W1 C2 + W1 λ1 C1 + W1 C1) (1 + ρ) + W1 C1 ρ }

W ∗ ≡ (1 − ξ) {W + W3 λ1 + W2 λ2 + W1 λ3

+(W2 λ1 + W1 λ2) λ1 + W1 λ1 λ2 + W1 λ3
1 },
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while λ1, λ2, λ3, C1, and C2 are determined independently of α and ∆ by
solving the following difference equation

(

1

1 − ξ
− W1 L−3 − W2 L−2 − W3 L−1 − W − W3 L − W2 L2 − W1 L3

)

xt

=
ξ

1 − ξ
(M1 + M2 L) mt,

where L is the lag operator defined as L xt ≡ xt−1.
Now I examine the impulse responses of output and inflation to a mon-

etary disturbance, that is, a unit positive innovation in ε0. The responses
are calculated as a set of equilibrium paths { p̂P

t , ŷP
t }, as in Proposition 2.

Taking the partial derivatives of ŷP
0 with respect to α and ∆, I have

∂ŷP
0

∂α
=

ω1 M∗ W ∗ ∆ (1 − ∆) σ

(1 − W ∗) (1 − α ∆ W ∗)2
,

∂ŷP
0

∂∆
= − ω1 M∗ (1 − α W ∗) σ

(1 − W ∗) (1 − α ∆ W ∗)2
.

As in Proposition 2, the former is positive and the latter is negative, unless
W ∗ > 1. Correspondingly, the partial derivatives of p̂P

0 with respect to α and
∆ are

∂p̂P
0

∂α
= − ω1 M∗ W ∗ ∆ (1 − ∆) σ

(1 − W ∗) (1 − α ∆ W ∗)2
,

∂p̂P
0

∂∆
=

ω1 M∗ (1 − α W ∗) σ

(1 − W ∗) (1 − α ∆ W ∗)2
.

The partial derivatives of the response of output evolve as follows.

∂ŷP
t

∂α
= λ1

∂ŷP
t−1

∂α
+ λ2

∂ŷP
t−2

∂α
+ λ3

∂ŷP
t−3

∂α
+

ωt+1

ω1

∂ŷP
0

∂α
, 0 ≤ t ≤ 3.

= λ1

∂ŷP
t−1

∂α
+ λ2

∂ŷP
t−2

∂α
+ λ3

∂ŷP
t−3

∂α
, t ≥ 4.

The evolution of the partial derivative with respect to ∆ is the same. These
imply that the response of output remains amplified as long as the roots λ1,
λ2, and λ3 are positive.

The partial derivatives of the response of inflation evolve as follows.

(∂p̂P
t − ∂p̂P

t−1)

∂α
= λ1

(∂p̂P
t−1 − ∂p̂P

t−2)

∂α
+ λ2

(∂p̂P
t−2 − ∂p̂P

t−3)

∂α

λ3

(∂p̂P
t−3 − ∂p̂P

t−4)

∂α
− ωt − ωt+1

ω1

∂p̂P
0

∂α
, 1 ≤ t ≤ 3.

= λ1

(∂p̂P
t−1 − ∂p̂P

t−2)

∂α
+ λ2

(∂p̂P
t−2 − ∂p̂P

t−3)

∂α

λ3

(∂p̂P
t−3 − ∂p̂P

t−4)

∂α
− ω4

ω1

∂p̂P
0

∂α
, t = 4.
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= λ1

(∂p̂P
t−1 − ∂p̂P

t−2)

∂α
+ λ2

(∂p̂P
t−2 − ∂p̂P

t−3)

∂α

λ3

(∂p̂P
t−3 − ∂p̂P

t−4)

∂α
, t ≥ 5.

The evolution of the partial derivative with respect to ∆ is the same. These
imply that the sign of the partial derivative in period 0 is later reversed, that
is, the price adjustments are delayed after the initial sluggish response.
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Figure 1: Baseline Model

    Figure 1.1: Impulse responses of OUTPUT to a positive monetary disturbance

    Figure 1.2: Impulse responses of INFLATION to a positive monetary disturbance
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Figure 2: Extended Model (Monetary Disturbance)

    Figure 2.1: Impulse responses of OUTPUT to a positive monetary disturbance

    Figure 2.2: Impulse responses of INFLATION to a positive monetary disturbance
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Figure 3: Extended Model (Informational Disturbance)

    Figure 3.1: Impulse responses to a NEGATIVE informational disturbance

    Figure 3.2: Initial response of prices as a function of the precision of public signal

Note: The asterisk on the (σu, σ
2)=(1, 0.5) line corresponds to

the response of inflation at t=0 in Figure 3.1.
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Figure 4: Calvo-type price setting

    Figure 4.1: Responses of OUTPUT to a positive monetary disturbance

    Figure 4.2: Responses of INFLATION to a positive monetary disturbance
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Figure 5: Four-period staggered price setting

    Figure 5.1: Responses of OUTPUT to a positive monetary disturbance

    Figure 5.2: Responses of INFLATION to a positive monetary disturbance
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Figure 6: General staggered price setting (Informational Disturbance)

Responses to a NEGATIVE informational disturbance

    Figure 6.1: Calvo-type price setting

    Figure 6.2: Four-period staggered price setting

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-1 0 1 2 3 4 5 6 7 8 9 10

Output
Inflation

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-1 0 1 2 3 4 5 6 7 8 9 10

Output
Inflation

(responses: log deviations from steady state)

(responses: log deviations from steady state)

(t)

(t)




