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1 Introduction

This paper considers the problem of testing for structural changes in the trend function of

a univariate time series without any prior knowledge as to whether the noise component is

stationary or contains an autoregressive unit root. This problem is of practical importance for

several reasons. For example, one is often interested in testing whether the rate of growth

of some macroeconomic variables, such as Real GDP, exhibits a structural change. With

data in logarithmic form, the coefficient on the trend component represents this average

growth rate. In many cases, however, one has no prior knowledge about whether the noise

component can be perceived as being stationary, or I(0), or as having an autoregressive unit

root, or I(1). Doing a structural change test using first-differenced data or growth rates, as is

commonly done, is tantamount to assuming an I(1) noise component and leads to tests with

very poor properties when the series has an I(0) noise component. But doing a structural

change test on the slope of a linear trend function for the level of the data entails different

limit distributions in both cases.

On the other hand to get information about whether the noise component is I(0) or I(1),

it is useful to have information about whether a structural change is present or not, at least

in the unknown break date. If the break date is known, as considered in Perron (1989),

one can have unit root tests with no knowledge about the presence or absence of a break

since it is possible to have tests that are invariant to the parameters of the trend function

with the inclusion of the appropriate dummy variables. In the case where the break date is

unknown, things are rather different and the usual tests, suggested by Zivot and Andrews

(1992) and others, are no longer invariant to the magnitude of change if one is present (see

Vogelsang and Perron, 1998, and Perron, 2005, for an extensive discussion). In the presence

of a change in trend both the size and the power of commonly used tests can be affected by

a change in slope or intercept. To devise unit root tests with good power, information about

the presence or absence of a change is needed (see, Kim and Perron, 2005).

The way to break this circular problem is to have tests for structural changes in level

and/or intercept that are valid whether the noise component is I(0) or I(1), the object of

our study. Papers related to the problem tackled here include the following. First, Perron

(1991) considers extensions of Gardner’s (1969) test for a change in the coefficients of a

polynomial trend function. The limit is shown to be different in the I(0) and I(1) cases but

the normalization to obtain a non-degenerate limit distribution is the same when accounting

for correlation in the noise component by using a parametric autoregressive approximation.
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One strategy is then to use the set of critical values that are largest across the I(0) and I(1)

cases. However, the test suffers from important problems of non-monotonicity in power,

i.e., the power function decreases as the magnitude of the change increases. Perron (1991)

shows that applying the test to first-differenced data can mitigate this problem when testing

for a change in slope. Vogelsang (1997) considers a similar strategy but using a Wald type

procedure and shows that its power is superior. But in both cases, the critical values in the

I(0) case are substantially smaller than those in the I(1) case so that the tests are quite

conservative in the I(0) case. The solution is then to devise a procedure that has the same

limit distribution in both the I(0) and I(1) cases. The first to provide such a solution in the

context of a change in the coefficients of a linear trend function is Vogelsang (2001), building

on prior work related to hypothesis testing on the coefficients of a polynomial time trend

reported in Vogelsang (1998). He considers again a setup where the correlation is accounted

for by a parametric autoregressive approximation so that the Wald test has a non-degenerate

limit distribution in both the I(0) and I(1) cases. The novelty is that he weights the statistic

by a unit root test scaled by some parameters. For any given significance level, a value of this

scaling parameter can be chosen so that the asymptotic critical values will be the same. His

simulations show, however, the test to have little power in the I(1) case so that he resorts

to advocating the joint use of that test and a normalized Wald test that has good properties

in the I(1) case but has otherwise very little power in the I(0) case.

We propose a new approach that builds on the work of Perron and Yabu (2005) who

analyzed the problem of hypothesis testing on the slope coefficient of a linear trend model

when no information about the nature, I(0) or I(1), of the noise component is available.

The method is based on a Feasible Quasi Generalized Least Squares approach that uses a

superefficient estimate of the sum of the autoregressive parameters α when α = 1. The

estimate of α is the OLS estimate obtained from an autoregression applied to detrended

data and is truncated to take a value 1 whenever the estimate is in a T−δ neighborhood of 1.

This makes the estimate “super-efficient” when α = 1 and implies that inference on the slope

parameter can be performed using the standard Normal or Chi-square distribution whether

α = 1 or |α| < 1. Theoretical arguments and simulation evidence show that δ = 1/2 is the
appropriate choice.

We extend Perron and Yabu’s (2005) analysis to the case of testing for changes in level

or slope of the trend function of a univariate time series. When the break date is known,

things are relatively straightforward as their asymptotic results directly apply, in particular

the standard Wald test from the GLS regression with the truncated estimate of α has a
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Chi-square limit distribution irrespective of the nature of the noise components, i.e., with

I(0) or I(1) errors. Our analysis shows that the procedure has in this case good finite

sample properties and a power function that is close to that attainable with the infeasible

GLS procedure that uses the true value of α. When the break dates are unknown, the limit

distributions of the Exp, Mean and Sup functionals of the Wald test across all permissible

breaks dates (see Andrews and Ploberger, 1994) is no longer the same in the I(0) and I(1)

cases. It turns out, however, that the limit distribution is nearly the same when considering

the Exp functional. Hence, it is possible to have tests with nearly the same size in both cases.

To improve the finite sample properties of the test, we also use a bias-corrected version of the

OLS estimate of α (obtained from an autoregression based on the residuals from estimating

the parameters of the trend function by OLS) as suggested by Roy and Fuller (2001). This

makes possible a testing procedure that has good size and power properties in finite sample.

Since the only other procedure that delivers a testing procedure valid with both I(0) and

I(1) errors is that of Vogelsang (2001), we make extensive comparisons of the finite sample

power of both set of tests. We show our procedure to be substantially more powerful and

also to have a power function that is close to that attainable if we knew the true value of α

in many cases.

The paper is organized as follows. Section 2 considers the basic case where the noise

component has an AR(1) structure and there is a single break. This permits a presentation

of the main ingredients and properties of our suggested procedure. Section 3 presents an

evaluation of the finite sample properties of our tests. Section 4 extends the analysis to the

case of a general correlation structure for the noise component. The extension to the case

of more than one break is discussed in Section 5. Section 6 presents empirical applications

related to real GDP series for a variety of counties. Section 7 offers brief concluding remarks

and an appendix some technical derivations.

2 The AR(1) Case

We start with the simple case of a single break where the noise component is an AR(1) in

order to highlight the main issues involved. Extensions to the general case are presented in

Section 4 and 5. The data generating process for a scalar random variable yt is assumed to

be:

yt = x0tΨ+ ut (1)

ut = αut−1 + et
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for t = 1, ..., T where et ∼ i.i.d. (0,σ2), xt is a (r × 1) vector of deterministic components,
and Ψ is a (r×1) vector of unknown parameters, which are model specific and defined below.
For simplicity, we let u0 be some finite constant. Here −1 < α ≤ 1, so that both stationary
and integrated errors are allowed.

We are interested in testing the null hypothesis RΨ = γ where R is a (q × r) full rank
matrix and γ is a (q × 1) vector, q being the number of restrictions. The restrictions to
be considered pertain to testing whether a structural change in a trend function occurs.

Hence, we shall consider the following three models where a change of intercept and/or slope

in a trend function occurs. Throughout, the break date is denoted T1 = [λ1T ] for some

λ1 ∈ (0, 1), where [·] denotes the largest integer that is less than or equal to the argument.
Also, 1(.) is the indicator function.

Model I: Structural change in intercept. Here xt = (1,DUt, t)
0 and Ψ = (µ0, µ1, β0)

0 where

DUt = 1(t > T1). This specification allows for one-time change in the intercept. The

hypothesis of interest is µ1 = 0.

Model II: Structural change in slope. Here xt = (1, t,DTt)
0, Ψ = (µ0, β0,β1)

0 where DTt =

1(t > T1)(t − T1). This specification allows for a one-time change in the slope of the trend
without a change in level so that the trend function is joined at the time of break. The

hypothesis of interest is β1 = 0.

Model III: Structural change in both intercept and slope. Here xt = (1,DUt, t,DTt)
0 and

Ψ = (µ0, µ1,β0, β1)
0. This specification allows for a simultaneous change in the intercept and

slope. The hypothesis of interest is µ1 = β1 = 0.

2.1 The Feasible GLS Estimate

We first consider the case where the break date T1 is known and return to the unknown

break date case in Section 2.4. Suppose, in addition, that the autoregressive coefficient α is

known. The GLS estimate of the parameters is then obtained by applying Ordinary Least

Squares (OLS) to the regression

(1− αL)yt = (1− αL)x0tΨ+ (1− αL)ut

for t = 2, ..., T together with

y1 = x
0
1Ψ+ u1.

It is well known that, in such a case, the Wald-statistic for testing the null hypothesis,

RΨ = γ, is asymptotically distributed as a chi-square random variable for any values of α.
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In practice, however, α is unknown and using an estimate can make things very different.

Consider the Cochrane-Orcutt (1949) FGLS estimate of Ψ that uses the following estimate

of α:

α̂ =
TX
t=2

ûtût−1/
TX
t=2

û2t−1 (2)

where {ût} are the OLS residuals from the regression of yt on xt. When |α| < 1, T 1/2(α̂ −
α) →d N(0, 1 − α2) and the Wald statistic obtained from the FGLS procedure still has a

χ2(q) limit distribution. Things are different when α = 1. From standard results,

T (α̂− 1) =⇒
Z 1

0

W ∗(r)dW (r)/
Z 1

0

W ∗(r)2dr ≡ κ

where W ∗(r), 0 ≤ r ≤ 1, is the continuous time residual function from a projection of a

Wiener process W (r) on the continuous-time version of the deterministic components (e.g.,

{1, 1(r > λ1), r} for Model I). The limit of the Wald statistic constructed from the FGLS

regression no longer has a chi-square limit distribution. To illustrate the problem, consider

the simple case with xt = DTt and Ψ = β1. The limit distribution of the t-statistic for

testing β1 = 0 is given by (see the appendix for details):

tF =⇒
W (1)−W (λ1)− κ

R 1
λ1
W (r)dr − κ[

R 1
λ1
(r − λ1)dW (r)− κ

R 1
λ1
(r − λ1)W (r)dr]

[(1− λ1)− κ(1− λ1)2 + κ2(1− λ1)3/3]1/2
(3)

which is different from a standard Normal distribution. Accordingly, the limit of the Wald

statistic, WF = tF
2, is no longer chi-square distributed.

Suppose now that κ, the limit of T (α̂ − 1), was zero, then, tF ⇒ [W (1) −W (λ1)]/(1 −
λ1)

1/2 =d N(0, 1) and hence WF ⇒ [W (1) −W (λ1)]2/(1 − λ1) =
d χ2(1). We would then

recover in the unit root case the same limiting distribution as in the stationary case and no

discontinuity would be present. Perron and Yabu (2005) exploit this fact to derive a testing

procedure with the same limit distribution in both the I(0) and I(1) cases.

2.2 A Super-Efficient Estimate When α = 1

Perron and Yabu (2005) proposed the use of a supper efficient estimate of α when α = 1

defined by:

α̂S =

 α̂ if T δ|α̂− 1| > d
1 if T δ|α̂− 1| ≤ d

(4)
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for δ ∈ (0, 1) and d > 0. Hence, when α̂ is in a T−δ neighborhood of 1 it is assigned a value
of 1. Perron and Yabu (2005) proved that (a) T 1/2(α̂S − α) →d N(0, 1− α2) when |α| < 1;
and (b) T (α̂S − 1) →p 0 when α = 1. Hence, κ, the limit of T (α̂S − 1), is zero when the
errors are I(1). The following theorem, proved in the Appendix, shows that tests based on

the FGLS procedure using α̂S have a χ
2(q) distribution in both the I(0) and I(1) cases.

Theorem 1 Let Ψ̂ be the FGLS estimate of Ψ using α̂S, i.e., the OLS estimate from a

regression of yα̂St on xα̂St where yα̂St = (1 − α̂SL)yt and x
α̂S
t = (1 − α̂SL)xt for t = 2, ..., T ,

yα̂S1 = y1 and x
α̂S
1 = x1. Denote the residuals associated with this regression by êt. The Wald

statistic for testing the null hypothesis RΨ = γ is:

WFS (λ1) = [R(Ψ̂−Ψ)]0[s2R(X 0X)−1R0]−1[R(Ψ̂−Ψ)] (5)

where X = {xα̂St } and s2 = T−1
PT

t=1 ê
2
t . Then, if |α| < 1,

WFS (λ1) =⇒ [R(

Z 1

0

F (r,λ1)F (r,λ1)
0
dr)−1

Z 1

0

F (r,λ1)dW (r)]
0[R(

Z 1

0

F (r,λ1)F (r,λ1)
0
dr)−1R0]−1

×[R(
Z 1

0

F (r,λ1)F (r,λ1)
0
dr)−1

Z 1

0

F (r,λ1)dW (r)]

≡ G0(λ1) =
d χ2(q)

where F (r,λ1) = [1, 1(r > λ1), r]
0, [1, r, 1(r > λ1)(r − λ1))]

0, and [1, 1(r > λ1), r, 1(r >

λ1)(r − λ1)]
0 for Models I, II, and III, respectively. If α = 1,

WFS (λ1) =⇒


limT→∞ e2[λ1T ]+1/σ

2

[λ1W (1)−W (λ1)]2/[λ1(1− λ1)]

limT→∞ e2[λ1T ]+1/σ
2 + [λ1W (1)−W (λ1)]2/[λ1(1− λ1)]

for Model I

for Model II

for Model III

≡ G1(λ1)

The limit distribution is χ2(q) for Model II, and if the errors are Normally distributed, also

for Models I and III.

Therefore, constructing the GLS regression with the truncated estimate, α̂S, effectively

bridges the gap between the I(0) and I(1) cases, and the chi-square asymptotic distribution

is obtained in both cases.

Remark 1 The limit chi-square distribution requires the assumption of Normality of the

errors for Models I and III to ensure that limT→∞ e2[λ1T ]+1/σ
2 v χ2(1). This is unavoidable
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since, when using a GLS type procedure when α = 1, a change in level becomes a single

outlier. For tests of hypotheses that do not involve the change in intercept, the Normality

assumption is not required.

2.3 The case with α local to unity

The result obtained in Theorem 1 is pointwise in α for −1 < α ≤ 1 and does not hold

uniformly, in particular in a local neighborhood of 1. Hence, it is of interest to see what

happens when the true value of α is close to but not equal to one. Adopting the standard

local to unity approach, we have the following result proved in the Appendix.

Theorem 2 Suppose that α = 1 + c/T , then

WFS (λ1) =⇒


limT→∞ e2[λ1T ]+1/σ

2

[λ1Jc(1)− Jc(λ1)]2/[λ1(1− λ1)]

limT→∞ e2[λ1T ]+1/σ
2 + [λ1Jc(1)− Jc(λ1)]2/[λ1(1− λ1)]

for Model I

for Model II

for Model III

≡ Gc(λ1)

where Jc(r) =
R r
0
exp(c(r − s))dW (s) ∼ N(0, (exp(2cr)− 1)/2c).

The results are fairly intuitive. Since the true value of α is in a T−1 neighborhood of

1, and α̂S truncates the values of α̂ in a T
−δ neighborhood of 1 for some 0 < δ < 1 (i.e.,

a larger neighborhood), in large enough samples α̂S = 1. Hence, the estimator of Ψ is

essentially the same as the first-difference estimator. Let us consider the case of Model II.

The first-difference estimator of β1 is:

β̂
FD

1 =

PT
t=1(DUt − T−1(T − T1))∆utPT
t=1(DUt − T−1(T − T1))2

Then, the Wald statistic has the following limit distribution:

WFD =
[
PT

t=1DUt∆ut − T−1(T − T1)
PT

t=1∆ut]
2

s2
PT

t=1(DUt − T−1(T − T1))2

=
[T−1/2(uT − uT1)− T−1(T − T1)T−1/2(uT − u0)]2

s2T−1
PT

t=1(DUt − T−1(T − T1))2

⇒ [λ1Jc(1)− Jc(λ1)]2
λ1(1− λ1)
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since T−1
PT

t=1(DUt − T−1(T − T1))2 → λ1(1 − λ1), T
−1/2u[rT ] ⇒ σJc(r), T

−1/2u0 = op(1),

and s2 = σ2 + op(1). This limit distribution is the same as that in Theorem 2 for Model II.

Note that when c = 0, we recover the result of Theorem 1 for the I(1) case. However, for

Models II and III, when c < 0, the variance of λ1Jc(1)− Jc(λ1) is different from λ1(1− λ1)

and the upper quantiles of the limit distributions are, accordingly, smaller than those of a

χ2(q), so that, without modifications, a conservative test may be expected for values of α

close to 1, relative to the sample size. Also, one can note that the limit of the variance of the

component [λ1Jc(1) − Jc(λ1)] is 0 as c → −∞, and we do not recover the same result that
applies to the I(0) case. As noted by Phillips and Lee (1996), the local to unity asymptotic

framework with c → −∞ involves a doubly infinite triangular array such that the limit of

the statistic depends on the relative approach to infinity of c and T . For the case of tests

on the coefficients of a linear trend function, Perron and Yabu (2005) showed that indeed,

the t-statistic has a N(0, 1) limit distribution as c→ −∞. What is especially interesting is
that to obtain this result, a condition on δ needs to be imposed, namely that δ ≥ 1/2. Their
result extends in a straightforward way to the present setup. This result is important for

the following reason. In order to bridge the gap between the I(0) and I(1) cases and ensure

that for values of the autoregressive parameter local to one the tests have the least possible

size distortions, we need δ ≥ 1/2. Otherwise, from Theorem 2, a conservative test is to be

expected. This in fact restricts the neighborhood where truncation applies. On the other

hand, increasing δ beyond 1/2 would imply that in moderate samples the truncation applies

less and less and that α̂S would basically be equivalent to the OLS estimate α̂. These

considerations suggest that δ = 1/2 should be the preferred choice. Indeed, simulations

reported in Perron and Yabu (2005) show that this value leads to a procedure which works

best in small samples. We also verified by simulations that δ = 1/2 is the best choice for

the Models considered here. Hence, we continue to use this value and will calibrate the

appropriate value of d using simulations.

Remark 2 It is important to remark that in Model I, the limit distribution does not depend

on c. Therefore, we can expect the tests in this case to be unaffected by size distortions for

values of α close to but not equal to 1. Simulation results will show that this is in fact the

case.

2.4 The Case with an Unknown Break Date

In general, the break date is unknown, and the analysis must be extended accordingly.

Following Andrews (1993) and Andrews and Ploberger (1994), we consider the following
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three functionals of the Wald test for different break dates:

Mean-WFS = T−1
X
Λ

WFS (λ
0
1)

Exp-WFS = log

"
T−1

X
Λ

exp

µ
1

2
WFS (λ

0
1)

¶#
(6)

sup -WFS = sup
Λ
WFS (λ

0
1)

where Λ = {λ01; ² ≤ λ01 ≤ 1− ²} for some ² > 0. Here T 01 (resp., λ01) denotes a generic break
date (resp., break fraction) used to construct a particular value of the Wald test, while T1

(resp., λ1) will continue to denote the true break date (resp., break fraction). Given that the

regressors are trending and the errors may have a unit root, none of these functionals need

have any optimal properties in our case. Nevertheless, given that they have some optimality

properties in the stationary case, it is worth considering them. Their limit distributions are

a simple consequence of Theorem 1, stated in the following Corollary.

Corollary 1 Let g(λ01) denote G0(λ
0
1) and G1(λ

0
1) for the I(0) and I(1) cases, respectively,

as defined in Theorem 1. Then,

Mean-WFS =⇒
Z
Λ

g(λ01)dλ
0
1

Exp-WFS =⇒ log

·Z
Λ

exp

µ
1

2
g(λ01)

¶
dλ01

¸
sup -WFS =⇒ sup

Λ
g(λ01)

Here things are not as simple as in the known break date case. Even though the dis-

tributions of G0(λ
0
1) and G1(λ

0
1) are both chi-square for any fixed λ

0
1, the two functions are

different. Accordingly, the limit distributions of the three tests are different in the I(0) and

I(1) cases. Table 1 presents the asymptotic critical values with a value for the trimming

parameter ² = 0.01 and 0.15 1. What transpires from these results is that, though the limit

distributions are different, the relevant quantiles are very similar for the I(0) and I(1) cases

when considering the Exp functional. For example, for Model II, the 5% critical values with

² = 0.01 are 1.97 and 2.02 for the I(0) and I(1) cases, respectively. Therefore, taking the

1The critical values were calculated by simulations using i.i.d. N(0, 1) random variables to approximate
the Wiener process. The integrals are approximated by normalized sums with 2000 steps, and the number
of replications used is 10,000.
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larger critical value, corresponding to 2.02, is expected to bring a powerful robust statistic

for both stationary and integrated errors.

Table 2 presents an extended grid of critical values for the Exp version of the test, which

also includes a wider range of values for the trimming parameter ². From this Table one can

deduce what is the asymptotic size of the test in both cases when the larger critical value is

used. For example, for Model I, when doing a 5% test, the critical values are largest for the

I(0) case and the asymptotic size in the I(1) case varies between 0.045 for ² = .25 and 0.035

for ² = 0.10. For Model II, the critical values are largest in the I(1) case but the asymptotic

size in the I(0) case is between 0.045 and 0.05 for all value of ². For Model III, the relevant

critical values correspond to those in the I(1) case and the size in the I(0) case is between

0.035 and 0.045. The discrepancies for other significance levels can be obtained from the

Table. Hence, overall, we see that the minimum value of the size for the I(0) and I(1) cases

is close to 5% and imply tests that are not very conservative, which is a useful feature to get

decent power.

Remark 3 One may be interested in using Model III and test only whether a shift in slope

is present (β1 with µ1 unrestricted), i.e., to allow the possibility of both a shift in intercept

and slope but only test if the latter is present. In that case, the limit distribution in the I(1)

case is the same as in Model II. In the I(0) case, it is different but very close to that in the

I(1) case, indeed even closer than for Model II. Hence, one can still use the critical values

corresponding to Model II.

The results also show the Mean and Sup versions of the test to be of little use in our

context. The discrepancies between the two sets of critical values being quite large, these

tests would implies substantial size distortions in either the I(0) or I(1) case depending on

which case has the largest critical value. Some of the results in Table 1 can be explained

using theoretical arguments. First, for Model I, the limit of the Mean test in the I(1) case

is (1 − 2²), or 0.98 and 0.7 for ² = 0.01, 0.15, respectively. The reason is that in large

samples, WFS(λ
0
1) is equivalent to e

2
T 01+1

/σ2 and hence the Mean test is T−1
P

ΛWFS(λ
0
1) =

(1− 2²)[(σ2(1− 2²)T )−1PΛ e
2
T 01+1

] + op(1)→p (1− 2²) using the fact that, from a standard

Law of Large Numbers [(1 − 2²)T ]−1PΛ e
2
T 01+1

→p σ2. To explain why, for the I(1) case,

the Sup version diverges in Models I (the explanation is similar for Model III), we again use

the fact that in large samples, WFS(λ
0
1) is equivalent to e

2
T 01+1

/σ2. Thus, the sup statistic is

sup
Λ
e2T 01+1

/ σ2 = maxΛ{e2T 01+1/σ
2}. The probability of sup-WFS < η is Pr(ΠΛ ∩ {e2T 01+1/σ

2 <

η}) = Pr(e2t/σ
2 < η)(1−2²)T using the assumption of independence. Therefore, Pr(sup-
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WFS < η) → 0 as T → ∞ if Pr(e2t/σ
2 < η) < 1, which is the case for any η < ∞. Hence,

sup-WFS diverges to infinite as T →∞.

2.5 Some Modifications to Improve Finite Sample Properties

It is well known that the OLS estimate of α is biased downward especially when α is near

one. Hence, in many cases no truncation may apply when some would be desirable. Perron

and Yabu (2005) recommend the use of a median-unbiased estimate. In the current context,

however, obtaining an exactly median unbiased estimate is computationally very demanding,

especially in the unknown break date case and more so when a more general AR(p) structure

for the noise component is entertained (as will be in Section 4). An alternative approach with

similar finite sample properties is the bias correction proposed by Roy and Fuller (2001),

which we shall adopt here.

Roy and Fuller (2001) proposed a class of bias corrected estimators and we consider

here that based on the OLS estimate 2. It is a function of a unit root test, namely the

t-ratio τ̂ = (α̂ − 1)/σ̂α, where α̂ is the OLS estimate and σ̂α its standard deviation. The

bias-corrected estimate is given by

α̂M = α̂+ C(τ̂)σ̂α, (7)

C(τ̂) =



−τ̂ if τ̂ > τ pct

IpT
−1τ̂ − (1 + r)[τ̂ + c2(τ̂ + a)]−1 if −a < τ̂ ≤ τ pct

IpT
−1τ̂ − (1 + r)τ̂−1 if −c1/21 < τ̂ ≤ −a

0 if τ̂ ≤ −c1/21
where τ pct is some percentile of the limiting distribution of τ̂ when α = 1, c1 = (1+r)T with r

the number of parameters estimated, c2 = [(1+r)T−τ 2pct(Ip+T )][τ pct(a+τ pct)(Ip+T )]−1 and
a is some constant. Also, Ip = [(p+ 1)/2] where p is the order of the autoregressive process

considered for the noise component (here 1 but different in the generalizations considered

in Section 4). The parameters for which specific values need to be selected are τ pct and

a. Based on extensive simulation experiments, we selected a = 10 since it leads to tests

with better properties 3, and for τ pct we use τ .95 for the known break date case and τ .99 for

2Roy et al. (2004) and Perron and Yabu (2005) use a similar bias corrected estimate but based on a
weighted symmetric least-squares estimate of α instead of the OLS estimate used here. Both lead to tests
with similar properties.

3Roy and Fuller (2001) select a = 5 in the context of a linear trend model. However, with a broken linear
trend the tails of the distribution of τ̂ are more important and chosing a = 5 would make the middle parts
of the modifications redundant.
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the unknown break date case (see Yabu, 2005, for details). Also, again based on extensive

simulations, we found that the value d = 1, for the truncation, leads to the best results in

finite samples. Hence, our suggested procedure involves the following steps:

1. For any given break date, detrend the data by OLS to obtain residuals, say ût;

2. Estimate an autoregression of order one for ût yielding the estimate α̂ and the t-ratio

τ̂ ;

3. Use α̂ and τ̂ to get the Roy and Fuller (2001) biase corrected estimates α̂M ;

4. Apply the truncation

α̂MS =

 α̂M if |α̂M − 1| > T−1/2
1 if |α̂M − 1| ≤ T−1/2

5. Apply a GLS procedure with α̂MS to obtain the estimates of the coefficients of the

trend and the estimate of the variance of the residuals and construct the standard

Wald-statistic, which we shall denote by WFMS.

6. When dealing with the case of an unknown break date, repeat the 5 steps above for all

permissible break dates and construct the Exp-Wald statistic, denoted by Exp-WFMS.

Remark 4 Using the biased corrected versions α̂M , instead of the OLS estimates, does not

change anything to the stated large sample results (Theorems 1 and Corollary 1). All that

is needed for these asymptotic results to hold is that T (α̂M − 1) = Op(1) when α = 1, and

T 1/2(α̂M − α) →d N(0, 1− α2) when α < 1. These conditions are satisfied.

3 Simulation Evidence

The aim in this section is to assess the finite sample properties of the procedure. We first

consider the size of the tests. To that effect the data are generated by a simple AR(1) process

of the form yt = αyt−1+et with et ∼ i.i.d. N(0, 1) and y0 = 0 (setting the constant and trend
parameters to zero is without loss of generality due to the fact that the tests are invariant

to them). The nominal size of the tests is 5% throughout. We consider the following sample

sizes, T = 100, 250, 500 for a known break date and T = 100, 250 for an unknown break

date. The value of the trimming parameter for the Exp-WFMS test in the unknown break

date case is set to ² = 0.01. The numbers of replications for the known and unknown break
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date cases are 5, 000 and 2, 000, respectively. Using these specifications, we evaluate the size

of the tests for values of α in the range of [0, 1] with increments of 0.05.

Figure 1 presents the results. In the case of a known break date, the size of the test is

very close to 5% for all values of the autoregressive parameters in all cases considered even

when T = 100. As expected the test is slightly conservative for Models II and III when α is

close to but not equal to one. In the case of an unknown break date, the test shows some

liberal size distortions when T = 100 and a change in intercept is involved (Models I and

III). But these distortions are virtually eliminated when T = 250, except when α is close to

but not equal to one, where the test is somewhat conservative, as expected.

We now consider the power of the tests. The specifications are the same except that the

data are generated by the following processes

• For Model I: yt = ηDUt + ut;

• For Model II: yt = ηDTt + ut;

• For Model III: yt = η(10DUt +DTt) + ut;

where ut = αut−1 + et with et ∼ i.i.d. N(0, 1) and u0 = 0. The break date is set to occur at
mid-sample, i.e., T1 = [0.5T ].

The power of our test is compared to three other tests: the Wald test based on the

infeasible GLS estimates which uses the true values of α and T1, as well as the T
−1WT and

the PST tests of Vogelsang (2001) and its Exp version in the case of an unknown break. For

Vogelsang’s tests, we use a 5% nominal size and, hence, the proper comparisons should be

made assuming they are applied independently. The power curves are plotted for α = 1.0,

0.95, 0.90, 0.80 and a range of values of η > 0.

Consider first Figure 2, which presents the results for Model I in the case of a known

break date for T = 100. For any values of α, our test is as powerful as that based on the

the infeasible GLS regression that uses the true value of α. The test is also substantially

more powerful than those of Vogelsang (2001). These results are quite remarkable since our

test, as any other, is inconsistent when α is local to 1 (which is the case for the values of

α considered) since the intercept shift is then basically only an outlier. But an inconsistent

test can still have decent power in finite samples. As expected, however, power does not

increase with the sample size but only with the magnitude of the change, accordingly the

results for T = 250 and T = 500 are basically identical and not reported. The results for the

case of an unknown break date, presented in Figure 3 for T = 100, yield similar conclusions
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with the exception that the power of our test is somewhat below what can be achieved with

the infeasible GLS procedure. Still, power rises rapidly with the magnitude of the change.

Consider now Model II. The power functions for the known break date case are presented

in Figures 4.a through 4.c, for T = 100, 250 and 500, respectively. When α = 1, our test is

as powerful as that based on the infeasible GLS estimates for any T . When α = 0.8, 0.9, 0.95

and T = 100, the power of our test is lower, in large part due to the fact that the size

in this case is conservative. Still it offers important power improvements over Vogelsang’s

tests. As T increases, the power function of our test gets closer to that of the infeasible

GLS test. For instance, the power functions are equivalent when T = 500 and α = 0.8, 0.9.

The power functions for the unknown break date case are presented in Figures 5.a through

5.b, for T = 100 and 250, respectively. The results are qualitatively similar with the power

functions being, as expected, lower. Also, our test no longer globally dominates both the

T−1W and PST tests of Vogelsang (2001), though individually each of these tests has very

poor power for some values of α. Figures 6.a through 6.c for the known break date case and

Figures 7.a through 7.b for the unknown break date case show that similar features hold for

Model III.

Overall these results are very encouraging and points to the usefulness of our testing

procedure. Below we extend them in two directions; first to allow a general serial correlation

structure in the noise component, and second to allow more than one break.

4 Generalization of the Error Component

We now consider an extension of the analysis to the case where the error term ut is allowed

to have a more general structure. The data generating process is now assumed to be given

by (1) with ut specified by

ut = αut−1 + vt (8)

vt = d(L)et

with

d(L) =
∞X
i=0

diL
i,
∞X
i=0

i|di| <∞, d(1) 6= 0.

and et ∼ i.i.d. (0,σ2). Again, we assume for simplicity that u0 is some constant. These

conditions imply that the following functional central limit theorem holds for the partial
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sums of vt, T
−1/2P[rT ]

t=1 vt ⇒ σd(1)W (r). Under the stated conditions, ut has an autoregres-

sive representation, say A(L)ut = et where A(L) = 1 −P∞i=1 aiLi. In the representation
(8), we wish to have the parameter α represent the sum of the autoregressive coefficients.

Accordingly, we have the representation

ut = αut−1 +A∗(L)∆ut−1 + et

with A∗(L) =
P∞

i=1 a
∗
iL

i where a∗i = −
P∞

j=i+1 aj.

4.1 The estimation of α

Since α represents the sum of the autoregressive coefficients, we cannot use the estimate (2)

based on an autoregression of order one since it is inconsistent for α when the errors ut are

a general I(0) process. Instead, we base our estimate on a truncated autoregression of order

k. Let ût be the residuals from a regression of yt on xt, then the estimate of α considered is

the OLS estimate eα obtained from the regression:

ût = αût−1 +
kX
i=1

ζi∆ût−i + etk (9)

When ut is I(0), T
1/2(eα − α) = Op(1). On the other hand, if α = 1 + c/T , T (eα − 1) ⇒

c + d(1)
R 1
0
J∗c (r)dW (r)/

R 1
0
J∗c (r)

2dr where J∗c (r) is the residual function from a regression

of Jc(r) ≡
R r
0
exp(c(r − s))dW (s) on the continuous time version of the deterministic com-

ponents. We also use the same bias correction for the lest-squares estimate as described

in Section 2.5, eαM , with the same specifications, and we apply the truncation (4) with eαM
instead of α̂. The truncated version of the bias-corrected estimate, eαMS, is still superefficient
under a local unit root, i.e. T (eαMS − 1) →p 0 when α = 1 + c/T . As usual, consistency

of eα and the truncated bias-corrected version, eαMS, depends on having the autoregressive
approximation k increase at a suitable rate as T increases, namely k →∞ and k3/T → 0 as

T →∞, see Berk (1974). Below we suggest using an information criterion such as the BIC,
which ensures that these properties are satisfied.

4.2 The Test Statistics

The estimate of Ψ considered is a quasi-FGLS estimate assuming AR(1) errors, i.e. the OLS

estimate in the transformed regression:

(1− eαMSL)yt = (1− eαMSL)x0tΨ+ (1− eαMSL)ut (10)
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for t = 2, ..., T , together with

y1 = x
0
1Ψ+ u1

Denote the resulting estimates by eΨ. The specific form of the Wald test depends on the

nature of the errors, I(0) or I(1), and the model.

Consider first the I(0) case. Then for any of the three models, one simply needs to replace

s2 in (5) by ĥv, an estimate of (2π times) the spectral density function at frequency zero of

vt = (1−αL)ut. We denote the resulting Wald test by WRQF (λ1) where the subscript RQF

stands for Robust Quasi Feasible GLS, more precisely

WRQF (λ1) = [R(eΨ−Ψ)]0[ĥvR(X 0X)−1R0]−1[R(eΨ−Ψ)] (11)

where X = {xeαMS
t }, xeαMS

t = (1− eαMSL)xt for t = 2, ..., T , and xeαMS
1 = x1. We consider two

types of estimates ĥv. One is based on a weighted sum of the autocovariance function given

by:

ĥv = T
−1

TX
t=1

v̂2t + T
−1

T−1X
j=1

ω(j,m)
TX

t=j+1

v̂tv̂t−j (12)

for some weight function ω(j,m) and bandwidth m, where v̂t are the OLS residuals from

the regression (10). The quadratic spectral window is used with the bandwidth m selected

according to the “plug-in method” advocated by Andrews (1991) using an AR(1) approxi-

mation.

The other estimate considered is an autoregressive spectral density estimate (at frequency

zero). Note that the residuals from the regression (10) are (1− eαSL)ut and, hence, in large
samples, they are equivalent to vt = (1 − αL)ut. When |α| < 1, A(L) is invertible so that
ut = A(L)

−1et and thus vt = (1 − αL)A(L)−1et. Since A(1) = 1 − α, the spectral density

at frequency zero of vt is simply σ
2. To obtain a consistent estimate, we use the following

approximate regression

yt − eαSyt−1 = x0tΨ∗ + kX
i=1

ρi∆yt−i + etk

with êtk the corresponding OLS residuals. The estimate of σ
2 is then σ̂2 = ĥv = (T −

k)−1
PT

t=k+1 ê
2
tk.

Consider now the case when the errors are I(1). For Model II, the form of the statistic is

the same as in the stationary case, except for the construction of the autoregressive spectral
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density estimate. With α = 1, in large samples (1 − eαMSL)ut is equivalent to vt = ∆ut

and an autoregressive spectral density estimate at frequency zero can be obtained from the

regression

v̂t =
kX
i=1

ζiv̂t−i + etk (13)

Denote the estimate by ζ̂(L) = (1− ζ̂1L · · ·− ζ̂kL
k) and σ̂2ek = (T − k)−1

PT
t=k+1 ê

2
tk. Then,

ĥv = σ̂2ek/ζ̂(1)
2.

With I(1) errors and for Models I and III when a change in intercept is involved, things

are somewhat more complex. Consider Model III, the limit distribution of the statistic

WRQF (λ1) defined by (11) is

lim
T→∞

v2[λ1T ]+1/hv + [λ1W (1)−W (λ1)]2/[λ1(1− λ1)]

where vt = ∆ut and hv = σ2e/ζ(1)
2. Things are fine for the second component, but the

first component involves two complications. The first is that hv is not the proper scaling,

instead one needs σ2v = var(vt) to have v
2
[λ1T ]+1

/ σ2v be χ
2(1). The other complication is that

v2[λ1T ] is not i.i.d. as in the case of the AR(1) specification. This matters because the limit

distribution of the test with an unknown break date will be different from that tabulated

earlier.

Now recall that eΨ = (eµ0, eµ1, eβ0)0 for Model I and eΨ = (eµ0, eµ1, eβ0, eβ1)0 for Model III.
To achieve the desired corrections one needs to replace eµ1 by µ∗1 which involves two mod-
ifications. The first is to get back e2[λ1T ]+1 instead of v

2
[λ1T ]+1

in the limit distribution.

Denote the sequence of estimates eµ1 for different values of the break date T1 by eµ1(T1)
for T1 = [²T ], ..., [(1 − ²)T ]. In large samples and under the null hypothesis of no break,eµ1(T1) ≈ v[λ1T ]+1 and, hence,

ζ̂(L)eµ1(T1) = eµ1(T1)− ζ̂1eµ1(T1 − 1) · · ·− ζ̂keµ1(T1 − k) ≈ e[λ1T ]+1
in large samples. The second modification is to ensure the proper scaling. To that effect we

define µ∗1 = ĥ
1/2
v ζ̂(L)eµ1(T1)/σ̂ek. Hence, the form of the Wald test used is

W ∗RQF (λ1) = [R(eΨ∗ −Ψ)]0[ĥvR(X 0X)−1R0]−1[R(eΨ∗ −Ψ)]
where eΨ∗ = (eµ0, µ∗1, eβ0)0 for Model I and eΨ∗ = (eµ0, µ∗1, eβ0, eβ1)0 for Model III, and X is as

defined in (11). Note that in the case of Model I with hypothesis testing pertaining only to
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the shift in intercept µ1, the statistic reduces to, with R = [0, 1, 0],

W ∗RQF (λ1) = (µ∗1)
2/[ĥvR(X

0X)−1R0]

= (ζ̂(L)eµ1(T1)/σ̂2ek)/[R(X 0X)−1R0]

and the estimate ĥv is not needed.

Again, the decision rule to select whether to use the form of the statistic corresponding to

the I(0) or I(1) case depends on whether the truncated value eαMS is 1 or not. Asymptotically,
this results in a correct classification and a consistent testing procedure. Hence, the procedure

we recommend is the following:

1. Detrend the data by OLS to obtain residuals ût;

2. Consider the autoregression (9) with k selected using an information criterion (we

recommend the Bayesian Information Criterion, BIC, with k allowed to be in the

range [0, 12(T/100)1/4], see Schwarz, 1978). The corresponding estimate is denoted eα.
If the order selected is k = 0, the procedure described in Section 2.5 applies, otherwise,

the next steps are applied.

3. Construct the bias corrected version of eα, eαM , as defined by (7) described in Section
2.5. Then apply the truncation

eαMS =
 eαM if |eαM − 1| > T−1/2

1 if |eαM − 1| ≤ T−1/2
4. Apply the quasi GLS procedure with eαMS to obtain the estimate of Ψ and construct
the Wald-statistic WRQF or W

∗
RQF depending on the Model and value of eαMS, using

one of the two versions of ĥv suggested to construct the estimate of (2π times) the

spectral density function at frequency zero of vt.

5. With an unknown break, the test statistic needs to be evaluated for each break date

candidate and the Exp functional defined by (6) is evaluated.

4.3 Finite Sample Simulations

We present results about the finite sample size and power of our test with an AR(2) error

component generated by:

ut = αut−1 + ψ(ut−1 − ut−2) + et (14)
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where et ∼ i.i.d. N(0, 1) and u0 = u−1 = 0. The number of replications is 1000 and we assess
the size properties of our test at the nominal 5% level for the following specifications: α =

1, 0.95, 0.90, 0.80, ψ = 0.0, 0.3, 0.5, 0.7, and T = 100. We consider positive AR coefficients

since this is the most relevant case in practice.

We consider three versions of our test that varies with the choice of ĥv. In the first case,

the estimate (12) is used and is referred to as “NP” (for Non Parametric). The second is

the autoregressive based estimates with k chosen by BIC. It is referred to as “AR” (for

Autoregressive). The third is a mixture of NP and AR. We use NP for the case |eαMS| < 1
and AR for eαMS = 1. It is referred to “AN” (for Autoregressive and Non Parametric) 4.
4.3.1 Known Break Date

Table 3 presents the size of the tests. The results suggest that the “AR” version can have

serious size distortions in some of the I(0) cases considered and that the “NP” specifications

in turn leads to size distortions in the I(1) case. Overall, the mixed method “AN” is a good

compromise and has acceptable size properties, though somewhat conservative when α is

close to but not equal to 1.

We now consider the power of our test with a break occurring at mid-sample, i.e., T1 =

[0.5T ]. We consider only the specification that uses the mixed method “AN” to estimate hv

and compare its properties with the T−1WT and the PST tests of Vogelsang (2001), again

using a 5% nominal size so that their properties pertain to the case when both tests are

applied independently. Table 4 presents the power results for η = 0, 0.1, 0.3, 0.5. Our test

again has good properties and dominates the others for all models and values of α and ψ.

4.3.2 Unknown Break Date

Table 5 shows the size properties of our test in the case of an unknown break date when the

Exp functional is used. The results suggest again that the mixed method “AN” to estimate

hv is preferable. The test based on the “AR” specification is too liberal especially when

α = 0.8, 0.9, and ψ > 0, and the test based on the “NP” specification is too liberal when

α = 1 and ψ > 0.

Next, we consider the power of our test with the “AN” specification. We only consider

the Exp versions of the T−1WT and the PST tests of Vogelsang (2001) as they work best for

4In the case of Model I, when eαMS = 1, we do not have to estimate the long-run variance. Therefore,
AN is the same as NP.
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all models (compared to the Mean and Sup functionals). Table 6 presents the power results

for η = 0, 0.1, 0.3, 0.5. Our test again dominates the others in most cases. For Models I and

III, our test is considerably superior and for Model II, it is competitive to the best of the

T−1WT and PST tests.

5 The Multiple Breaks Case

Our testing procedure extends, in principle, naturally to the case of multiple breaks. This is

important since, as discussed in Perron (2005), most tests may exhibit non monotonic power

functions if the number of breaks present under the alternative is greater than the number

of breaks explicitly accounted for in the construction of the tests. Consider the following

extended versions of our three Models for m breaks denoted (T1, ..., Tm) with corresponding

break fractions λi = Ti/T (i = 1, ...,m).

Model I (Multiple structural breaks in intercepts): xt = (1, DU1t, ...,DUmt, t)
0, Ψ =

(µ0, µ1, ..., µm,β0)
0 where DUit = 1(t > Ti). Here, the hypothesis of interest is µ1 = ... =

µm = 0.

Model II (Multiple structural breaks in slopes): xt = (1, t,DT1t, ..., DTmt)
0, Ψ =

(µ0, β0,β1, ...,βm)
0 where DTit = 1(t > Ti)(t − Ti). The hypothesis of interest is β1 =

... = βm = 0.

Model III (Multiple structural breaks both in intercepts and slopes): xt = (1, DU1t, ...,DUmt,

t, DT1t, ..., DTmt)
0, Ψ = (µ0, µ1, ..., µm,β0, β1, ...,βm)

0. The hypothesis of interest is µ1 =

... = µm = β1 = ... = βm = 0.

All theoretical results discussed for the case of a single break continue to hold with minor

modifications, as stated in the following Theorem.

Theorem 3 Consider first the case of known break dates. Let WFS(λ) denote the Wald

test for testing null hypothesis relevant to Models I, II or III. Under the data generating

process (1), when |α| < 1, the results of Theorem 1 continue to hold with F (r,λ1) replaced

by the following: for Model I, F (r,λ1, ...,λm) = [1, 1(r > λ1), ..., 1(r > λm), r]
0; for Model

II, F (r,λ1, ...,λm) = [1, r, 1(r > λ1)(r − λ1), ..., 1(r > λm)(r − λm)]
0; and for Model III,

F (r,λ1, ...,λm) = [1, 1(r > λ1), ..., 1(r > λm), r, 1(r > λ1)(r − λ1), ..., 1(r > λm)(r − λm)]
0. If
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α = 1,

WFS(λ)⇒


V1(λ)

V2(λ)

V1(λ) + V2(λ)

for Model I

for Model II

for Model III

where

V1(λ) = lim
T→∞

(e2[λ1T ]+1 + ...+ e
2
[λmT ]+1)/σ

2

V2(λ) = [R∗H(λ)−1Q(λ)]0[R∗H(λ)−1R∗0]−1[R∗H(λ)−1Q(λ)]

with R∗ =
£
0
¯
, I(m)

¤
a (m×m+1) matrix where I(m) is the identitiy matrix of order m and 0

¯
is a (m× 1) zero vector; Q(λ) = [W (1),W (1)−W (λ1), ...,W (1)−W (λm)]0 is a (m+1× 1)
vector; H(λ) is a (m+ 1×m+ 1) matrix defined by

H(λ) =


1 1− λ1 ... 1− λm

1− λ1 1− λ1 ... 1− λm
...

...
. . .

...

1− λm 1− λm ... 1− λm

 .

Also, the Exp-test defined by

Exp-WFS = log

"
T−m

X
Λ

exp

µ
1

2
WFS (λ

0)
¶#

where Λ = {(λ01, ...,λ0m); λ01 ≥ ², 1 − ² ≥ λ0m, λ
0
i − λ0i−1 ≥ ² for i = 2, ...,m} has a limit

distribution given by Exp-WFS ⇒ log
£R
Λ
exp

¡
1
2
g(λ0)

¢
dλ0
¤
, where g(λ0) is the relevant limit

function of the Wald test.

Remark 5 Q(λ) ∼ N(0,H(λ)). Therefore, R∗H(λ)−1Q(λ) ∼ N(0, R∗H(λ)−1R∗0) and

V2(λ) is a chi-square random variable with m degrees of freedom, which is independent of

V1(λ). It is also easy to see that when m = 1, we recover the results of Theorem 1.

While the theoretical extensions to the case with multiple breaks are straightforward,

there remains an important problem for practical implementations. The reason is that the

Exp-WFS (and the Mean and Sup versions) depends on Wald tests evaluated at a number of

partitions (or combinations of break dates) that is of order O(Tm). This becomes prohibitive
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for common sample sizes oncem is greater than 2. For the Sup-Wald test, an efficient solution

to find the partition that corresponds to the maximal value of the Wald test has been devised

based on a dynamic programming algorithm (see Bai and Perron, 2003). However, no such

efficient algorithm exists to compute the Mean and Exp-Wald tests in the case of multiple

breaks. So a full treatment will need to wait for advances in this respect. Nevertheless,

the case with two breaks is computationally feasible and also important in practice. For

example, Lumsdaine and Papell (1997) showed evidence that the Nelson and Plosser (1982)

data may have two breaks in a trend function. To that effect, Table 7 presents the relevant

quantiles of the limiting distributions of the Exp-WFS test statistic for both the I(0) and

I(1) cases. Again, one should use the largest of the two when performing hypothesis testing.

Note that, here also, the test is only slightly conservative (asymptotically) for the cases that

do not correspond to that from which the critical values are selected.

6 Empirical Applications

This section considers empirical applications related to real GDP series for several countries.

As discussed in the introduction, assessing the stability of the trend function of series of

aggregate economic activity is an important practical question. We present evidence using

different sets of series. The first relates to historical series for a variety of countries spanning

the period 1870 to 1986 and considers both real GDP series and their per capita counterparts.

The second set considers postwar real GDP series for the G7 countries.

6.1 Historical real GDP series

We consider a historical data set of (log) real GDP series and their per capita counterparts

from 1870 to 1986 for 10 different countries: Australia, Canada, Denmark, France, Germany,

Italy, Norway, Sweden, the United Kingdom and the United States 5. The series are presented

in Figures 8.a and 8.b. From these figures, it seems clear that most series are characterized

by at least one (and in most cases only one) major shift in the slope and/or intercept of the

5This data set is the same as used by Kormendi and Meguire (1990), Perron (1992) and Perron and Zhu
(2005), and was obtained through the Journal of Money, Credit and Banking editorial office. All series are
real GDP except for the United States for which real GNP is used. For the United States, the series is
real GNP from the National Income and Products Accounts for the period 1929-1986, spliced to Romer’s
(1989) estimates for the period 1870-1928. For the United Kingdom, the series is real GDP from Feinstein
(1972) for the period 1870-1947 spliced to the International Financial Statistics (IFS) series of the IMF for
the period 1948-1986. For the remaining countries, the series are indices of annual real GDP from Madison
(1982) spliced to the postwar IFS data. The population series used are from the same sources. All series are
analyzed with a logarithmic transformation.
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trend function. The dates of the breaks are not common across countries. They occur at

the time of World War II for France, Germany and Italy; at the beginning of the 30’s for

Australia and around the time of World War I for Sweden and the United Kingdom. While

these visual inspections are revealing, our test can give a more precise statement about

whether a break in the trend function exists or not, without any prior knowledge about the

I(0) or I(1) nature of the noise component.

To carry the testing procedure we used Model III, given the nature of the series. The

results are presented in Table 8. They clearly point to a strong rejection of the null hypothesis

that the trend function is stable in favor of a trend function with a shift for all countries, with

the exception of Canada. This conclusion remains whether we use real GDP series or their

per capita counterparts. Table 8 also presents an estimate of the break date obtained by

minimizing the sum of squared residuals from a regression of the relevant series on a constant,

a time trend, a level shift dummy and a slope shift dummy. As shown in Perron and Zhu

(2005), selecting the break date in this fashion leads to a consistent estimate whether the

errors are I(0) or I(1). In general, the break date selected is the same for the real GDP

series and its per capita counterpart (the exceptions are Norway and the U.S., and to a some

extent Germany). Also, these dates correspond to plausible events, most notably WWII for

the European Countries and WW I for the U.K.. Also, presented are the pre- and post-break

annual rates of growth. The differences are in many cases very large and, with the exception

of the U.S., the post break rates of growth are larger.

A related paper is that of Ben-David and Papell (1995). They analyzed real GDP and

per capita real GDP for 16 industrial countries over the period 1860-1989 (including many

of the countries considered here) and tested for the presence of a structural break using the

tests of Vogelsang (1997). Comparing their results to ours, we see stronger rejections for

more countries using our test.

6.2 Postwar Real GDP for the G7 Countries

We now consider quarterly (log) real GDP series for the G7 countries. For all countries

except the U.S., the data are from the International Financial Statistics (IFS) database.

The series start at different dates for each countries but all end in 2002:4 (see Table 9). For

the U.S., the data is from the Citibase databank and the sample period is 1947:1-1998:2

(it is the same series used in Perron and Wada (2005) who consider the related issue of

trend-cycle decompositions). Graphs of the series are presented in Figure 9. They show that

all countries experienced a decline in the rate of growth, the change occurring mostly in the
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seventies. To document whether such changes are significant, we report the results of our

test statistic using Model III. While some series do not show discontinuity in the form of

a level shift, using Model III may be more appropriate to crudely account for the gradual

nature of the change in slope. In any event, the conclusions are unchanged using Model II

in most cases, the exception being the U.S. which we discuss in more detail below.

The results are presented in Table 9. For Canada, France, Germany, Italy and Japan,

the evidence in favor of a structural change in the trend function is very strong with test

statistics having p-values well below 1%. For the U.K., a rejection is possible only at the

10% level. Table 9 also shows the estimates of the break dates (obtained as discussed above)

and the pre- and post-break annual rates of growth. For these six series, the break dates are

close to the oil price shock of 1973 and vary between 1972:1 (Japan) to 1978:1 (Italy). The

changes in the rates of growth are also very large. The smallest change is for the U.K, from

3.2% to 2.4%, which may explain the marginal rejection as being due to a potentially low

power of the test in this case. The largest change is for Japan which went from a 9.8% to a

2.6% growth rate.

We consider now the results for the U.S.. Here things are quite different when the

statistics are based on Model II or III. With Model III, a rejection at the 5% level is possible

but the break date is estimated to be at 1965:4 with the growth rate going from 3.5% to

2.8%. With Model II, the break date occurs at 1973:2 and the growth rate goes from 3.8% to

2.7%, a result in line with those of Perron and Wada (2005), but the statistic does not allow

a rejection at any significance level. Unreported estimations point to the fact that the results

are also quite sensitive to the exact sample period used. Perron and Wada’s (2005) results

are more in line with those of Model II. They document the fact that the change occurs

over several quarters around 1973:1, though the bulk of it is within a one year period. Also,

their results imply that the noise component is stationary, the sum of the autoregressive

coefficients being close to 0.9, a region of the parameter space where our test, or any other,

has low power.

7 Conclusion

We proposed new test statistics for structural breaks in a trend function when it is a priori

unknown whether the series is trend-stationary or contains an autoregressive unit root. The

test statistics are based on a Feasible Quasi Generalized Least Squares procedure with a

superefficient estimate of the sum of the autoregressive parameters α when α = 1. With

known break dates, the Wald test is asymptotically distributed as a chi-square random
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variable for any values of α. On the other hand, with unknown break dates, the limiting

distributions of test statistics still depend on the I(0) or I(1) dichotomy. Nevertheless, for the

Exp version the asymptotic critical values are very close for all significance levels, thereby

allowing a procedure with nearly the same asymptotic size in both the I(0) and I(1) cases.

Simulations have shown its usefulness and that it provides substantial improvements over

existing tests. Our empirical applications reveal that structural changes in the trend function

of real GDP series (or their per capita counterparts) are widespread across historical episodes

and countries.
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Appendix: Technical Derivations

Proof of equation (3): The t-statistic for β1 is given by:

tF =
T−1/2

PT
t=1(DTt − α̂DTt−1)(ut − α̂ut−1)

(s2T−1
PT

t=1(DTt − α̂DTt−1)2)1/2

=

(
T−1/2

TX
t=T1+1

et − T (α̂− 1)T−3/2
TX

t=T1+1

ut−1

−T (α̂− 1)[T−3/2
TX

t=T1+1

(t− T1)et − T (α̂− 1)T−5/2
TX

t=T1+1

(t− T1)ut−1]
)

/
©
s2[(1− λ1)− T (α̂− 1)(1− λ1)

2 + T 2(α̂− 1)2(1− λ1)
3/3]

ª1/2
+ op(1).

The result follows using the facts that T−1/2
P[rT ]

t=1 et ⇒ σW (r), T−3/2
PT

t=T1+1
(t− T1)et ⇒

σ
R 1
λ1
(r− λ1)dW (r), T−3/2

PT
t=T1+1

ut ⇒ σ
R 1
λ1
W (r)dr, T−5/2

PT
t=T1+1

(t− T1)ut ⇒ σ
R 1
λ1
(r−

λ1)W (r)dr, and s
2 = σ2 + op(1).

Proof of Theorem 1: We give the proof only for Model II, the derivations being similar
for all Models. We have

Ψ̂−Ψ =


q11 q12 q13

q12 q22 q23

q13 q23 q33


−1 

r1

r2

r3


where

q11 = 1 + (T − 1)(α̂S − 1)2

q12 = 1 + (1− α̂S)
TX
t=2

(t− α̂S(t− 1)) = 1− (T − 1)α̂S(α̂S − 1) + (α̂S − 1)2
TX
t=2

t,

q13 = (1− α̂S)
TX
t=1

(DTt − α̂SDTt−1) = −(α̂S − 1)
T−T1X
t=1

(α̂S − (α̂S − 1)t)

= −(T − T1)α̂S(α̂S − 1) + (α̂S − 1)2
T−T1X
t=1

t,

q22 =
TX
t=1

(α̂S − (α̂S − 1)t)2 = T α̂2S − 2α̂S(α̂S − 1)
TX
t=1

t+ (α̂S − 1)2
TX
t=1

t2,
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q33 =
T1X
t=1

(α̂S − (α̂S − 1)t)2 = (T − T1)α̂2S − 2α̂S(α̂S − 1)
T−T1X
t=1

t+ (α̂S − 1)2
T−T1X
t=1

t2,

q23 =
TX
t=2

(α̂S − (α̂S − 1)t)(DTt − α̂SDTt−1)

=
T−T1X
t=1

(α̂S − (α̂S − 1)T1 − (α̂S − 1)t)(α̂S − (α̂S − 1)t) = T1q13 + q33

r1 = u1 − (α̂S − 1)
TX
t=2

u∗t ,

r2 = u1 +
TX
t=2

u∗t (α̂S − (α̂S − 1)t) = u1 + α̂S

TX
t=2

u∗t − (α̂S − 1)
TX
t=2

tu∗t ,

r3 =
T−T1X
t=1

u∗T1+t(α̂S − (α̂S − 1)t) = α̂S

T−T1X
t=1

u∗T1+t − (α̂S − 1)
T−T1X
t=1

tu∗T1+t

where u∗t = ut − α̂Sut−1.

Stationary Case (|α| < 1). The convergence results for each components are as follows:

T−1/2
[Tr]X
t=1

u∗t = T−1/2
[Tr]X
1

(et − (α̂S − α)ut−1)

= T−1/2
[Tr]X
t=1

et − T−1/2(T 1/2(α̂S − α))(T−1/2
[Tr]X
t=1

ut−1)

= T−1/2
[Tr]X
t=1

et + op(1)⇒ σW (r),

T−1q11 ⇒ (1 − α)2, T−2q12 ⇒ (1 − α)2
R 1
0
rdr, T−2q13 ⇒ (1 − α)2

R 1
0
(r − λ1)1(r > λ1)dr,

T−3q22 ⇒ (1 − α)2
R 1
0
r2dr, T−3q33 ⇒ (1 − α)2

R 1
0
(r − λ1)

21(r > λ1)dr, T
−3q23 ⇒ (1 −

α)2
R 1
0
r(r − λ1)1(r > λ1)dr, T

−1/2r1 ⇒ σ(1 − α)W (1), T−3/2r2 ⇒ σ(1 − α)
R 1
0
rdW (r),

T−3/2r3 ⇒ σ(1− α)
R 1
0
(r − λ1)1(r > λ1)dW (r). Let ΥT = diag(T

1/2, T 3/2, T 3/2). Then, we
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have

Υ−1T (X
0X)Υ−1T =


T−1q11 T−2q12 T−2q13

T−3q22 T−3q23

T−3q33



⇒ (1− α)2


1

R 1
0
rdr

R 1
0
(r − λ1)1(r > λ1)drR 1

0
r2dr

R 1
0
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0
(r − λ1)

21(r > λ1)dr


= (1− α)2

Z 1

0

F (r)F (r)0dr

Υ−1T X
0U =


T−1/2r1

T−3/2r2

T−3/2r3

⇒ σ(1− α)


R 1
0
dW (r)R 1

0
rdW (r)R 1

0
(r − λ1)1(r > λ1)dW (r)


= σ(1− α)

Z 1

0

F (r)dW (r)

ΥT (Ψ̂−Ψ) = (Υ−1T X
0XΥ−1T )

−1(Υ−1T X
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⇒ ((1− α)2
Z 1

0

F (r)F (r)0dr)−1(σ(1− α)

Z 1

0

F (r)dW (r))

=
σ

1− α
(

Z 1

0

F (r)F (r)0dr)−1
Z 1

0

F (r)dW (r)

The result stated in Theorem 1 follows using the convergence results stated above noting
that we can express the Wald tests as:

WFS(λ1) = [RΥT (Ψ̂−Ψ)]0[s2RΥT (X 0
X)−1ΥTR0]−1[RΥT (Ψ̂−Ψ)] (A.1)

Unit Root Case (α = 1). Using the fact that T (α̂S − 1)→p 0, the convergence results for
each elements are:

T−1/2
[Tr]X
t=1

u∗t = T−1/2
[Tr]X
t=1

(et − (α̂S − 1)ut−1)

= T−1/2
[Tr]X
t=1

et − T (α̂S − 1)(T−1
[Tr]X
t=1

T−1/2ut−1)⇒ σW (r),
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q11 ⇒ 1, q12 ⇒ 1, q13 ⇒ 0, T−1q22 ⇒ 1, T−1q33 ⇒ (1 − λ1), T
−1q23 ⇒ (1 − λ1), r1 =

u1+ op(1),T
−1/2r2 ⇒ σW (1),T−1/2r3 ⇒ σ

R 1
λ1
dW (r). Let ΥT = diag(1, T

1/2, T 1/2). Then we
have

ΥT (Ψ̂(λ)−Ψ) = (Υ−1T X
0XΥ−1T )

−1(Υ−1T X
0U)

=


q11 T−1/2q12 T−1/2q13

T−1q22 T−1q23

T−1q33


−1 
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T−1/2r2
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1 0 0
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σ(W (1)−W (λ1))



=


e1

σW (λ1)
λ1

σ λ1W (1)−W (λ1)
λ1(1−λ1)


The result stated in Theorem 1 follows using the convergence results stated above and the
representation of the Wald test stated in (A.1).

Near Unit Root Case (αT = 1 + c/T , Proof of Theorem 2). As shown in Perron and
Yabu (2005), T (α̂S − 1) →p 0. Now, the true value of α is in a T

−1 neighborhood of 1 so
that in large sample α̂ is always truncated to take value one. Then, we have the following
limit results:

T−1/2
[Tr]X
t=1

u∗t = T−1/2
[Tr]X
t=1

(et +
c

T
ut−1 − (α̂S − 1)ut−1)

= T−1/2
[Tr]X
t=1

et + cT
−3/2

[Tr]X
t=1

ut−1 − T (α̂S − 1)(T−1
[Tr]X
t=1

T−1/2ut−1)

⇒ σ[W (r) + c

Z r

0

Jc(s)ds] = σJc(r),

q11 ⇒ 1, q12 ⇒ 1, q13 ⇒ 0, T−1q22 ⇒ 1, T−1q33 ⇒ (1 − λ1), T
−1q23 ⇒ (1 − λ1), r1 =

u1+op(1),T
−1/2r2 ⇒ σJc(1),T

−1/2r3 ⇒ σ
R 1
λ1
dJc(r). Let ΥT = diag(1, T

1/2, T 1/2). The result
stated in Theorem 2 follows using the convergence results stated above and the representation
of the Wald test stated in (A.1).
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Table 1: Asymptotic Distributions for One Break Occurring at an Unknown
Date

² = 0.01 ² = 0.15
sup-WFS Mean-WFS Exp-WFS sup-WFS Mean-WFS Exp-WFS

% I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

Model I
0.900 9.99 ∞ 1.72 0.98 1.59 1.60 8.96 ∞ 1.31 0.70 1.22 1.26
0.950 11.64 ∞ 2.11 0.98 2.07 1.92 10.60 ∞ 1.64 0.70 1.74 1.58
0.975 13.08 ∞ 2.50 0.98 2.60 2.32 12.17 ∞ 1.98 0.70 2.30 1.99
0.990 15.03 ∞ 3.04 0.98 3.33 2.99 14.30 ∞ 2.47 0.70 3.12 2.64

Model II
0.900 6.38 8.86 2.12 1.93 1.45 1.52 4.91 7.14 1.66 1.50 1.07 1.13
0.950 7.78 10.42 2.84 2.49 1.97 2.02 6.27 8.68 2.28 2.01 1.61 1.67
0.975 9.19 11.94 3.59 3.06 2.55 2.57 7.63 10.24 2.92 2.54 2.18 2.26
0.990 11.00 13.97 4.54 3.90 3.30 3.37 9.33 12.18 3.82 3.19 2.97 3.06

Model III
0.900 12.79 ∞ 3.36 2.91 2.68 2.96 11.11 ∞ 2.58 2.20 2.25 2.48
0.950 14.52 ∞ 4.16 3.47 3.34 3.55 12.86 ∞ 3.17 2.71 2.84 3.12
0.975 16.13 ∞ 4.96 4.04 3.94 4.15 14.38 ∞ 3.83 3.24 3.52 3.75
0.990 18.13 ∞ 6.11 4.88 4.67 5.02 16.66 ∞ 4.70 3.89 4.35 4.47



Table 2.a: Asymptotic Distribution of the Exp Test: Model I

² = 0.01 ² = 0.05 ² = 0.10 ² = 0.15 ² = 0.25
% I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0.900 1.59 1.60 1.47 1.52 1.33 1.41 1.22 1.26 0.83 0.91
0.905 1.60 1.61 1.51 1.55 1.36 1.43 1.26 1.28 0.86 0.93
0.910 1.62 1.62 1.56 1.57 1.40 1.45 1.30 1.30 0.90 0.96
0.915 1.66 1.65 1.59 1.59 1.44 1.46 1.35 1.34 0.93 0.98
0.920 1.71 1.67 1.63 1.62 1.50 1.49 1.40 1.36 0.98 1.01
0.925 1.76 1.70 1.67 1.65 1.55 1.52 1.46 1.40 1.03 1.04
0.930 1.81 1.74 1.71 1.69 1.59 1.55 1.50 1.43 1.09 1.08
0.935 1.85 1.78 1.75 1.72 1.66 1.58 1.56 1.47 1.15 1.11
0.940 1.92 1.81 1.82 1.76 1.72 1.62 1.61 1.51 1.20 1.16
0.945 1.98 1.86 1.89 1.82 1.80 1.66 1.69 1.56 1.28 1.21
0.950 2.07 1.92 1.97 1.86 1.88 1.70 1.74 1.58 1.33 1.26
0.955 2.14 1.97 2.05 1.92 1.96 1.76 1.85 1.67 1.41 1.33
0.960 2.22 2.04 2.16 1.99 2.05 1.82 1.93 1.73 1.51 1.40
0.965 2.33 2.11 2.25 2.07 2.18 1.88 2.02 1.81 1.61 1.49
0.970 2.44 2.23 2.40 2.16 2.30 1.98 2.14 1.88 1.73 1.58
0.975 2.60 2.32 2.53 2.29 2.45 2.07 2.30 1.99 1.92 1.68
0.980 2.74 2.50 2.69 2.41 2.60 2.19 2.50 2.14 2.11 1.81
0.985 3.02 2.81 2.90 2.60 2.79 2.39 2.74 2.36 2.35 2.01
0.990 3.33 2.99 3.24 2.81 3.05 2.67 3.12 2.64 2.83 2.32
0.995 3.91 3.62 3.84 3.26 3.60 3.29 3.55 3.28 3.33 2.91

Table 2.b: Asymptotic Distribution of the Exp Test: Model II

² = 0.01 ² = 0.05 ² = 0.10 ² = 0.15 ² = 0.25
% I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0.900 1.45 1.52 1.34 1.40 1.20 1.28 1.07 1.13 0.71 0.74
0.905 1.47 1.58 1.38 1.45 1.24 1.33 1.11 1.19 0.74 0.79
0.910 1.51 1.62 1.42 1.49 1.29 1.36 1.15 1.23 0.79 0.84
0.915 1.55 1.65 1.47 1.53 1.32 1.41 1.19 1.27 0.83 0.89
0.920 1.60 1.70 1.53 1.57 1.37 1.46 1.24 1.32 0.87 0.93
0.925 1.64 1.74 1.58 1.62 1.43 1.51 1.30 1.37 0.92 0.98
0.930 1.70 1.80 1.64 1.68 1.47 1.57 1.34 1.44 0.97 1.02
0.935 1.76 1.86 1.70 1.73 1.54 1.62 1.39 1.49 1.03 1.08
0.940 1.84 1.92 1.76 1.78 1.61 1.69 1.47 1.53 1.11 1.14
0.945 1.89 1.98 1.84 1.86 1.68 1.78 1.54 1.59 1.19 1.22
0.950 1.97 2.02 1.90 1.93 1.75 1.86 1.61 1.67 1.25 1.28
0.955 2.06 2.10 1.98 2.01 1.85 1.93 1.71 1.73 1.32 1.37
0.960 2.19 2.19 2.07 2.10 1.94 2.05 1.80 1.80 1.40 1.46
0.965 2.30 2.29 2.19 2.23 2.06 2.14 1.91 1.91 1.52 1.59
0.970 2.41 2.46 2.29 2.36 2.19 2.24 2.06 2.10 1.65 1.73
0.975 2.55 2.57 2.42 2.51 2.34 2.39 2.18 2.26 1.81 1.84
0.980 2.74 2.82 2.61 2.71 2.56 2.55 2.42 2.39 1.97 2.02
0.985 3.00 3.09 2.83 2.98 2.79 2.81 2.64 2.61 2.20 2.24
0.990 3.30 3.37 3.07 3.27 3.20 3.18 2.97 3.06 2.60 2.61
0.995 3.88 4.01 3.61 3.95 3.80 3.68 3.62 3.46 3.28 3.27



Table 2.c: Asymptotic Distribution of the Exp Test: Model III

² = 0.01 ² = 0.05 ² = 0.10 ² = 0.15 ² = 0.25
% I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

0.900 2.68 2.96 2.51 2.82 2.35 2.65 2.25 2.48 1.86 2.15
0.905 2.70 2.98 2.56 2.86 2.39 2.70 2.27 2.53 1.90 2.20
0.910 2.74 3.00 2.60 2.90 2.45 2.74 2.31 2.57 1.96 2.25
0.915 2.81 3.02 2.65 2.94 2.50 2.79 2.36 2.63 2.01 2.29
0.920 2.85 3.07 2.71 3.00 2.56 2.83 2.40 2.67 2.06 2.35
0.925 2.92 3.12 2.75 3.05 2.62 2.87 2.46 2.76 2.11 2.41
0.930 2.99 3.17 2.82 3.11 2.68 2.93 2.53 2.83 2.18 2.47
0.935 3.05 3.23 2.89 3.17 2.74 2.98 2.59 2.90 2.26 2.54
0.940 3.12 3.32 2.97 3.24 2.79 3.03 2.66 2.97 2.35 2.62
0.945 3.22 3.40 3.04 3.30 2.88 3.10 2.74 3.05 2.43 2.69
0.950 3.34 3.55 3.12 3.36 2.98 3.16 2.84 3.12 2.50 2.79
0.955 3.37 3.60 3.23 3.46 3.10 3.25 2.92 3.20 2.62 2.88
0.960 3.50 3.66 3.36 3.57 3.22 3.34 3.03 3.32 2.76 3.01
0.965 3.63 3.77 3.46 3.68 3.33 3.44 3.14 3.47 2.89 3.15
0.970 3.76 3.93 3.63 3.81 3.48 3.59 3.30 3.60 3.06 3.31
0.975 3.94 4.15 3.83 3.99 3.67 3.77 3.52 3.75 3.24 3.50
0.980 4.13 4.28 4.06 4.15 3.86 4.00 3.62 3.96 3.46 3.69
0.985 4.44 4.54 4.39 4.42 4.11 4.29 3.92 4.23 3.73 4.06
0.990 4.67 5.02 4.78 4.76 4.57 4.59 4.35 4.47 4.04 4.57
0.995 5.55 5.72 5.42 5.42 5.15 5.16 5.02 5.25 4.78 5.58



Table 3: Finite Sample Null Rejection Probability of WRQF

with 5% Nominal Size, T = 100, Known Break Date

AR(2) case: ut = αut−1 + ψ(ut−1 − ut−2) + et
Model I Model II Model III

α ψ AR AN AR NP AN AR NP AN

1.00 0.00 0.06 0.06 0.09 0.08 0.10 0.08 0.09 0.09
0.30 0.07 0.06 0.12 0.12 0.10 0.08 0.11 0.09
0.50 0.05 0.06 0.10 0.13 0.09 0.10 0.12 0.09
0.70 0.04 0.07 0.10 0.17 0.12 0.10 0.14 0.11

0.95 0.00 0.07 0.08 0.04 0.04 0.05 0.06 0.05 0.05
0.30 0.07 0.05 0.04 0.03 0.03 0.05 0.04 0.04
0.50 0.07 0.05 0.03 0.01 0.02 0.04 0.03 0.03
0.70 0.06 0.07 0.02 0.01 0.01 0.03 0.02 0.02

0.90 0.00 0.06 0.08 0.04 0.04 0.03 0.05 0.05 0.05
0.30 0.07 0.05 0.04 0.03 0.03 0.05 0.04 0.04
0.50 0.08 0.05 0.05 0.01 0.02 0.05 0.03 0.03
0.70 0.10 0.04 0.07 0.01 0.01 0.07 0.02 0.02

0.80 0.00 0.07 0.07 0.05 0.05 0.07 0.07 0.06 0.06
0.30 0.08 0.05 0.06 0.03 0.03 0.07 0.04 0.04
0.50 0.10 0.03 0.07 0.02 0.02 0.10 0.03 0.03
0.70 0.18 0.06 0.10 0.03 0.04 0.18 0.04 0.04



Table 4: Finite Sample Power, Known Break Date, T=100

AR(2) case: ut = αut−1 + ψ(ut−1 − ut−2) + et
Model I Model II Model III

α ψ η PS T−1W WRQF PS T−1W WRQF PS T−1W WRQF

1.00 0.00 0.10 0.04 0.05 0.18 0.05 0.07 0.11 0.06 0.08 0.20
0.30 0.08 0.14 0.85 0.11 0.24 0.35 0.12 0.27 0.90
0.50 0.12 0.28 1.00 0.17 0.54 0.71 0.20 0.60 1.00

0.30 0.10 0.03 0.06 0.18 0.04 0.09 0.12 0.04 0.08 0.19
0.30 0.05 0.10 0.84 0.06 0.17 0.23 0.06 0.17 0.85
0.50 0.07 0.19 1.00 0.09 0.34 0.45 0.11 0.40 1.00

0.50 0.10 0.03 0.06 0.19 0.03 0.08 0.10 0.02 0.09 0.17
0.30 0.03 0.09 0.84 0.03 0.13 0.17 0.03 0.15 0.83
0.50 0.04 0.15 1.00 0.05 0.23 0.31 0.05 0.29 1.00

0.70 0.10 0.01 0.07 0.19 0.01 0.11 0.11 0.01 0.13 0.18
0.30 0.01 0.09 0.86 0.02 0.13 0.14 0.02 0.16 0.81
0.50 0.02 0.12 1.00 0.02 0.16 0.21 0.02 0.20 1.00

0.95 0.00 0.10 0.07 0.05 0.20 0.05 0.02 0.07 0.05 0.02 0.18
0.30 0.10 0.15 0.86 0.14 0.21 0.34 0.16 0.24 0.87
0.50 0.18 0.33 1.00 0.28 0.65 0.77 0.27 0.70 1.00

0.30 0.10 0.05 0.05 0.17 0.03 0.01 0.05 0.03 0.01 0.13
0.30 0.08 0.11 0.82 0.07 0.09 0.17 0.08 0.09 0.84
0.50 0.12 0.21 0.99 0.16 0.35 0.50 0.16 0.41 1.00

0.50 0.10 0.05 0.04 0.18 0.01 0.00 0.02 0.02 0.01 0.10
0.30 0.06 0.08 0.82 0.04 0.04 0.10 0.05 0.03 0.78
050 0.09 0.14 099 0.10 0.17 0.23 0.10 0.18 100

0.70 0.10 0.04 0.04 0.18 0.00 0.00 0.02 0.00 0.00 0.08
0.30 0.05 0.05 0.81 0.02 0.01 0.04 0.02 0.01 0.72
0.50 0.05 0.08 0.99 0.04 0.04 0.09 0.03 0.04 0.99

0.90 0.00 0.10 0.08 0.04 0.19 0.06 0.00 0.09 0.08 0.00 0.15
0.30 0.15 0.16 0.83 0.27 0.23 0.33 0.26 0.21 0.89
0.50 0.29 0.41 1.00 0.43 0.79 0.85 0.43 0.82 1.00

0.30 0.10 0.07 0.03 0.16 0.04 0.00 0.06 0.04 0.00 0.12
0.30 0.13 0.09 0.81 0.17 0.07 0.24 0.17 0.07 0.83
0.50 0.21 0.23 0.99 0.33 0.48 0.55 0.34 0.50 1.00

0.50 0.10 0.06 0.02 0.16 0.02 0.00 0.04 0.03 0.00 0.10
0.30 0.09 0.05 0.76 0.13 0.02 0.21 0.13 0.02 0.76
0.50 0.16 0.14 0.99 0.29 0.22 0.37 0.26 0.22 1.00

0.70 0.10 0.04 0.00 0.14 0.02 0.00 0.04 0.01 0.00 0.08
0.30 0.07 0.02 0.66 0.08 0.00 0.20 0.07 0.00 0.72
0.50 0.13 0.06 0.95 0.23 0.04 0.35 0.18 0.03 0.99

0.80 0.00 0.10 0.09 0.01 0.18 0.12 0.00 0.22 0.15 0.00 0.24
0.30 0.28 0.15 0.85 0.60 0.30 0.53 0.58 0.28 0.90
0.50 0.54 054 1.00 0.81 0.97 0.92 0.81 0.98 1.00

0.30 0.10 0.07 0.00 0.15 0.11 0.00 0.17 0.11 0.00 0.21
0.30 0.24 0.07 0.77 0.56 0.09 0.59 0.54 0.07 0.89
0.50 0.49 0.32 1.00 0.83 0.83 0.81 0.76 0.79 1.00

0.50 0.10 0.06 0.00 0.10 0.09 0.00 0.16 0.08 0.00 0.17
0.30 0.20 0.03 0.64 0.58 0.02 0.72 0.55 0.01 0.91
0.50 0.46 0.18 0.97 0.85 0.52 0.84 0.78 0.43 1.00

0.70 0.10 0.04 0.00 0.11 0.08 0.00 0.21 0.04 0.00 0.19
0.30 0.15 0.00 0.55 0.61 0.00 0.86 0.52 0.00 0.94
0.50 0.35 0.05 0.94 0.89 0.09 0.94 0.81 0.08 1.00



Table 5: Finite Sample Null Rejection Probability of Exp-WRQF

with 5% Nominal Size, T = 100, Unknown Break Date

AR(2) Case: ut = αut−1 + ψ(ut−1 − ut−2) + et
Model I Model II Model III

α ψ AR AN AR NP AN AR NP AN

1.00 0.00 0.09 0.09 0.09 0.09 0.11 0.10 0.10 0.10
0.30 0.10 0.07 0.14 0.18 0.13 0.13 0.14 0.11
0.50 0.08 0.05 0.13 0.16 0.13 0.12 0.18 0.11
0.70 0.03 0.05 0.14 0.26 0.13 0.18 0.27 0.15

0.95 0.00 0.10 0.09 0.04 0.03 0.03 0.05 0.05 0.07
0.30 0.08 0.08 0.05 0.04 0.03 0.07 0.04 0.04
0.50 0.09 0.06 0.03 0.04 0.03 0.06 0.03 0.03
0.70 0.08 0.04 0.04 0.02 0.01 0.04 0.04 0.01

0.90 0.00 0.10 0.10 0.02 0.03 0.02 0.05 0.05 0.04
0.30 0.12 0.09 0.04 0.03 0.02 0.08 0.03 0.03
0.50 0.11 0.06 0.05 0.02 0.01 0.08 0.03 0.02
0.70 0.19 0.04 0.13 0.05 0.02 0.15 0.03 0.02

0.80 0.00 0.14 0.11 0.04 0.03 0.04 0.07 0.06 0.05
0.30 0.17 0.08 0.06 0.02 0.03 0.10 0.03 0.04
0.50 0.26 0.05 0.12 0.02 0.03 0.19 0.02 0.04
0.70 0.71 0.09 0.31 0.08 0.08 0.57 0.08 0.09



Table 6: Finite Sample Power, Unknown Break Date, T=100

AR(2) Case: ut = αut−1 + ψ(ut−1 − ut−2) + et
Model I Model II Model III

α ψ η PS T−1W WRQF PS T−1W WRQF PS T−1W WRQF

1.00 0.00 0.10 0.05 0.06 0.08 0.06 0.06 0.12 0.06 0.08 0.15
0.30 0.04 0.04 0.36 0.10 0.24 0.29 0.11 0.24 0.52
0.50 0.06 0.04 0.92 0.16 0.53 0.59 0.17 0.49 0.98

0.30 0.10 0.04 0.09 0.06 0.05 0.08 0.14 0.03 0.09 0.15
0.30 0.04 0.07 0.37 0.05 0.15 0.25 0.05 0.16 0.43
0.50 0.03 0.08 0.92 0.07 0.36 0.41 0.10 0.32 0.94

0.50 0.10 0.01 0.11 0.07 0.02 0.10 0.12 0.02 0.10 0.10
0.30 0.03 0.11 0.37 0.03 0.14 0.16 0.02 0.14 0.38
0.50 0.02 0.10 0.91 0.04 0.27 0.28 0.04 0.29 0.95

0.70 0.10 0.01 0.18 0.05 0.02 0.14 0.14 0.01 0.14 0.15
0.30 0.01 0.17 0.36 0.02 0.16 0.18 0.01 0.17 0.41
0.50 0.01 0.17 0.96 0.02 0.25 0.21 0.02 0.24 0.93

0.95 0.00 0.10 0.08 0.02 0.10 0.04 0.01 0.05 0.06 0.01 0.08
0.30 0.07 0.01 0.38 0.11 0.15 0.17 0.11 0.14 0.42
0.50 0.07 0.01 0.91 0.21 0.58 0.56 0.23 0.53 0.98

0.30 0.10 0.06 002 0.10 0.02 0.01 0.06 0.02 0.01 0.06
0.30 0.05 0.01 0.35 0.06 0.06 0.12 0.07 0.06 0.32
0.50 0.04 0.01 0.90 0.13 0.32 0.29 0.15 0.30 0.95

0.50 0.10 0.03 0.01 0.07 0.01 0.01 0.02 0.01 0.01 0.03
0.30 0.03 0.01 0.33 0.03 0.02 0.05 0.05 0.03 0.24
050 0.03 0.01 0.90 0.07 0.14 0.10 0.09 0.12 0.88

0.70 0.10 0.02 0.00 0.04 0.01 0.00 0.02 0.01 0.00 0.02
0.30 0.02 0.00 0.30 0.01 0.00 0.03 0.01 0.00 0.17
0.50 0.03 0.00 0.91 0.04 0.03 0.05 0.03 0.02 0.82

0.90 0.00 0.10 0.09 0.00 0.09 0.05 0.00 0.05 0.07 0.00 0.07
0.30 0.07 0.00 0.35 0.19 0.14 0.13 0.22 0.13 0.44
0.50 0.08 0.00 0.92 0.30 0.70 0.51 0.36 0.59 0.98

0.30 0.10 0.04 0.00 0.08 0.02 0.00 0.04 0.04 0.00 0.05
0.30 0.05 0.00 0.33 0.12 0.03 0.10 0.13 0.04 0.30
0.50 0.05 0.00 0.88 0.25 0.34 0.28 0.25 0.29 0.95

0.50 0.10 0.03 0.00 0.06 0.02 0.00 0.02 0.02 0.00 0.02
0.30 0.04 0.00 0.30 0.11 0.01 0.12 0.13 0.01 0.26
0.50 0.03 0.00 0.86 0.21 0.11 0.16 0.21 0.08 0.88

0.70 0.10 0.02 0.00 0.04 0.01 0.00 0.04 0.01 0.00 0.02
0.30 0.02 0.00 0.24 0.06 0.00 0.15 0.06 0.00 0.20
0.50 0.02 0.00 0.77 0.18 0.01 0.25 0.15 0.01 0.81

0.80 0.00 0.10 0.08 0.00 0.11 0.09 0.00 0.12 0.13 0.00 0.13
0.30 0.07 0.00 0.36 0.19 0.14 0.26 0.48 0.09 0.54
0.50 0.16 0.00 0.89 0.65 0.91 0.50 0.65 0.80 0.98

0.30 0.10 0.05 0.00 0.09 0.06 0.00 0.09 0.09 0.00 0.10
0.30 0.06 0.00 0.29 0.12 0.02 0.37 0.44 0.02 0.51
0.50 0.08 0.00 0.86 0.61 0.58 0.50 0.63 0.46 0.96

0.50 0.10 0.03 0.00 0.05 0.06 0.00 0.08 0.07 0.00 0.08
0.30 0.04 0.00 0.16 0.11 0.00 0.51 0.45 0.00 0.61
0.50 0.06 0.00 0.70 0.69 0.22 0.67 0.63 0.14 0.94

0.70 0.10 0.01 0.00 0.08 0.04 0.00 0.17 0.04 0.00 0.18
0.30 0.02 0.00 0.16 0.06 0.00 0.76 0.41 0.00 0.65
0.50 0.03 0.00 0.54 0.74 0.02 0.91 0.70 0.00 0.96



.Table 7: Asymptotic Distribution of the Exp-WFS Test for Two Breaks

² = 0.01 ² = 0.05 ² = 0.10 ² = 0.15 ² = 0.25
% I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1)

Model I
0.900 2.10 2.39 1.68 2.06 1.39 1.70 0.83 1.18 -0.81 -0.45
0.950 2.62 2.81 2.24 2.43 2.18 2.18 1.47 1.69 -0.15 0.02
0.975 3.14 3.22 2.87 3.09 2.67 2.67 2.21 2.27 0.51 0.54
0.990 4.03 3.99 3.53 4.25 3.47 3.43 3.27 2.96 1.49 1.35

Model II
0.900 1.75 1.97 1.44 1.58 1.10 1.20 0.50 0.73 -1.10 -0.98
0.950 2.51 2.56 2.06 2.06 1.77 1.90 1.36 1.23 -0.35 -0.35
0.975 3.10 3.16 2.62 2.65 2.44 2.60 1.93 1.80 0.30 0.38
0.990 3.96 3.96 3.40 3.54 3.31 3.52 2.77 2.69 1.22 1.22

Model III
0.900 3.81 4.68 3.43 4.24 3.16 3.81 2.57 3.39 0.81 1.49
0.950 4.75 5.33 4.23 4.96 3.94 4.55 3.38 4.14 1.57 2.23
0.975 5.62 6.11 5.01 5.75 4.67 5.23 4.19 4.87 2.23 2.96
0.990 6.91 6.85 5.87 6.82 5.60 6.04 5.39 5.88 3.23 4.07



Table 8: Historical Annual GDP Series: 1870-1986
GDP Per Capita GDP

Growth Rates Growth Rates
Country Model WRQF Break Pre- Post- WRQF Break Pre- Post-

Australia III 3.9b 1929 2.4% 4.0% 3.2b 1929 0.2% 2.2%
Canada III 1.6 1930 3.3% 4.8% 1.5 1930 1.6% 2.9%
Denmark III 8.9a 1939 2.7% 3.7% 9.4a 1939 1.6% 2.9%
France III 27.2a 1943 1.1% 5.0% 25.3a 1943 1.0% 4.1%
Germany III 32.1a 1954 2.2% 3.6% 55.7a 1945 1.4% 4.3%
Italy III 15.9a 1943 1.6% 4.9% 17.1a 1943 0.9% 4.3%
Norway III 7.3a 1948 2.2% 4.2% 7.7a 1925 1.0% 2.9%
Sweden III 12.9a 1916 2.5% 3.3% 13.6a 1916 1.9% 2.7%
U.K. III 11.8a 1919 1.8% 2.3% 11.0a 1919 1.0% 1.8%
U.S. III 6.1a 1929 3.7% 3.4% 5.6a 1940 1.6% 1.5%

Note: a, b and c denote a statistic significant at the the 1%, 5% and 10% level, respectively.

Table 9: Post War Real GDP Series for the G7 Countries
Annual Growth Rate

Country Period T Model WRQF Break Date Pre- Post-

Canada 1957:1-2002:4 184 III 5.2a 1973:4 5.5% 2.2%
France 1965:1-2002:4 152 III 37.1a 1974:2 5.4% 2.1%
Germany 1960:1-2002:4 172 III 34.9a 1974:4 5.1% 2.8%
Italy 1960:1-2002:4 172 III 97.7a 1978:1 6.1% 2.4%
Japan 1957:1-2002:4 184 III 40.4a 1972:1 9.8% 2.6%
U.K. 1957:1-2002:4 184 III 3.2c 1974:1 3.2% 2.4%
U.S. 1947:1-1998:2 206 II 0.5 1973:2 3.8% 2.7%

III 3.8b 1965:4 3.5% 2.8%

Note: a, b and c denote a statistic significant at the the 1%, 5% and 10% level, respectively.




































