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I. Introduction

Many financial institutions hold large portfolios of interest rate derivatives transactions.
In many cases, the maturity of these transactions is long and the number of contracts in
a portfolio will not decrease in a short time. Therefore, an efficient calculation method
is needed, not only for pricing specific transaction, but also for evaluation and risk
management of the portfolio. An efficient calculation method has two features. (1) it
is not computer-intensive for the valuation of a portfolio. (2) it can handle many types
of products, including swaps, caps, and constant maturity swaps (“CMS”), within the
same model to avoid inconsistent valuations among products. In this paper, we develop
easily implemented approximations of the prices of several interest rate derivatives. We
study swaptions, CMS and CMS options.

Jamshidian (1989) derived an exact analytical pricing formula for options on coupon
bonds with a one-factor model. However, except for the forward swap measure approach
of Jamshidian (1997), a closed formula for swaptions has not been obtained in multi-
factor models due to the difficulty of identifying the exercise boundary with respect to
the underlying factors. Brace (1997) proposed a rank-r approximation method for swap-
tion prices in the LIBOR market model. Singleton and Umantsev (2002) linearized the
exercise boundary (or the corresponding swap rate) with respect to the state variables
under essentially affine term structure models. An innovative approximation method for
swaptions was proposed by Collin-Dufresne and Goldstein (2002) (hereafter, “CDG”).
They developed an approximation method under Gaussian and CIR (Cox-Ingersoll-Ross,
[1985]) models by approximating the density function. For both models, their approach
produces accurate approximation and fast calculation compared with Monte Carlo sim-
ulations.

For swaption prices, we simplify and complement the approach of CDG to obtain
a swaption pricing formula that can be easily implemented for particular types of term
structure model. We use a Gram–Charlier expansion of the density function of the
underlying swap at the swaption expiry under the forward measure associated with the
expiry. The coefficients of the series are expressed by the cumulants or, equivalently, by
the moments. This approach works, as CDG explained, when the moments are calculated
analytically, as in, e.g., affine term structure models and Gaussian Heath–Jarrow–Morton
models (see, e.g., Musiela and Rutkowski [2005]). Our formula is closely related to several
results based on the Malliavin calculus and the Fourier transform. This is because the
Gram–Charlier expansion is obtained by using a Fourier inversion of the characteristic
function. It is also a version of the Wiener Chaos expansion. Note that we approximate
the density function of a swap value that takes both positive and negative values. Hence,
it is not subject to the criticism that the distribution of a price that takes only positive
values cannot be approximated by normal distributions.

Following CDG, we expand the density function of the underlying swap. However,
whereas CDG carried out their calculations under many forward measures associated with
the swaption expiry and cash-flow timing, we use only one forward measure associated
with the swaption expiry. Thus, our formula is easier to implement and more accurate.
Our numerical study of affine term structure models confirms that our method yields bet-
ter approximations than that of CDG. We conclude that higher-order approximations
are sufficiently accurate for pricing specific transactions, while lower-order approxima-
tions are speedily obtained and suitable for portfolio evaluation and risk management.

1



However, the error depends on the model parameters, such as the level of the yield curve
or the mean reversion speed.

In addition, we approximate CMS rates by using moments of bonds (“bond mo-
ments”), and approximate the prices of CMS options by combining our two methods.
Benhamou (2000) derived an approximation of the convexity adjustment of a CMS rate
for lognormal zero coupon models by using a Wiener Chaos expansion. The literature
on convexity adjustment is cited in Benhamou (2000). Calculating the convexity adjust-
ment for a CMS rate is difficult because the swap value and duration, each of which is a
linear combination of bond prices, are correlated. Hence, bond moments can be used to
price the convexity adjustment. To approximate CMS option prices, we combine the two
methods, the Gram–Charlier expansion and bond moments. Although there is a paral-
lelism in the form of results between this paper and Benhamou (2000), our approach can
be easily applied to wider classes of models.

The rest of this paper is organized as follows. In Section II, we develop an approxima-
tion method by using a Gram–Charlier expansion. We present formulae for swaptions,
CMS, and option on CMS based on the cumulants of the underlying swap. In Section
III, we describe affine term structure models and derive bond moments and Greeks. In
Section IV, we perform numerical calculations for affine term structure models. Section
V concludes the paper.

II. Approximating Interest Rate Derivative Price by using

a Gram–Charlier Expansion

A. The valuation of a swaption

We denote by P (t, T ) the time-t price of a zero coupon bond with a maturity date of T .
(Ω,F , P ) is a probability space with a J-dimensional standard Brownian motion W . We
assume that tradable assets comprise zero coupon bonds and a money-market account,
and that there is a risk-neutral measure, Q, with the Brownian motion W Q.

We consider a swaption with the expiry T0 and the fixed rate K (per payment and
notional amount) during a period [T0, TN ]. We fix the relevant dates, T0 < T1 < · · · < TN ,
which are set at regularly spaced time intervals, with δ = Ti − Ti−1 for all i. The value
SV (t) of the underlying swap at time t is given by

SV (t) =

{

−P (t, T0) + δK
∑N

i=1 P (t, Ti) + P (t, TN ), for the receiver’s swaption,

P (t, T0) − δK
∑N

i=1 P (t, Ti) − P (t, TN ), for the payer’s swaption,

≡
N

∑

i=0

aiP (t, Ti), (1)

where ai is the amount of cash flow at time Ti. Following from the usual discussion about
no-arbitrage and the change of measure, the swaption value, SOV (t), at time t is first
evaluated under the risk-neutral measure Q, and then converted to the expected value
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of the gain from exercising under the T0-forward measure, P T0 , as follows

SOV (t) = EQ
[

e−
� T0
t rsds max(SV (T0), 0) | Ft

]

= P (t, T0)E
T0

[

1{SV (T0)>0}SV (T0) | Ft

]

= P (t, T0)

∫ ∞

0
xf (x)dx, (2)

where f is the density function of the swap value SV at the expiry date T0 under the
T0-forward measure conditioned by Ft.

B. The Gram–Charlier expansion

Following Stuart and Ord (1987), we derive the Gram–Charlier expansion and show its
relationship to the Edgeworth expansion. As shown below, the Edgeworth expansion
is obtained by using the inverse Fourier transform of the characteristic function in a
multiplicative form. The Gram–Charlier expansion is further expanded and reordered
as an orthogonalized series of the Edgeworth expansion in additive form. The Gram–
Charlier expansion is more useful for many practical purposes.

We define the Chebyshev–Hermite polynomial as Hn(x) = (−1)nφ(x)−1Dnφ(x) with
H0(x) = 1, where D = d

dx and φ(x) = (2π)−1/2 exp(−x2/2). 1 The Chebyshev–Hermite
polynomials have the orthogonal property

∫ ∞
−∞ Hm(x)Hn(x)φ(x)dx = δmnn! with respect

to the Gaussian measure, ν, which has a standard normal distribution, N(0, 1). As shown
in equation (3) below, by using the properties of the Chebyshev–Hermite polynomials,
the Gram–Charlier expansion is an orthogonal decomposition with {Hnφ}n of a density
function that has coefficients qn, each of which depends on a given set of cumulants.

Proposition 1. Assume that a random variable Y has the density function f and has

cumulants ck (k ≥ 1), all of which are finite and known. Then the followings hold.

(i) f can be expanded as follows

f(x) =

∞
∑

n=0

qn√
c2

Hn

(x − c1√
c2

)

φ
(x − c1√

c2

)

, (3)

where qn =
1

n!
E[Hn

(Y − c1√
c2

)

]

=











1, if n = 0,
0, if n = 1, 2,
∑[n/3]

m=1

∑∗∗ ck1
···ckm

m!k1!···km!

(

1√
c2

)n
, if n ≥ 3,

(4)

∑∗∗
means

∑

k1+···+km=n,ki≥3

.

1We use Hn for the Chebyshev–Hermite polynomial, which should not be confused with the Hermite

polynomial, H̃n(x), defined by H̃n(x) = (−1)nex2

Dne−x2

= 2n/2Hn(
√

2x). By definition,

H0(x) = 1, H1(x) = x, H2(x) = x
2 − 1, H3(x) = x

3 − 3x, H4(x) = x
4 − 6x

2 + 3,

H5(x) = x
5 − 10x

3 + 15x, H6(x) = x
6 − 15x

4 + 45x
2 − 15, H7(x) = x

7 − 21x
5 + 105x

3 − 105x.
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(ii) for any a ∈ R,

E[1{Y >a}] = N
(c1 − a√

c2

)

+

∞
∑

k=3

(−1)k−1qkHk−1

(c1 − a√
c2

)

φ
(c1 − a√

c2

)

,

E[1{Y >a}Y ] = c1N
(c1 − a√

c2

)

+
√

c2φ
(c1 − a√

c2

)

+

∞
∑

k=3

(−1)kqk

(

−aHk−1

(c1 − a√
c2

)

+
√

c2Hk−2

(c1 − a√
c2

)

)

φ
(c1 − a√

c2

)

.

Proof. The characteristic function GY of a random variable Y is defined by the Fourier
transform of f as

GY (t) =

∫ ∞

−∞
eitxf(x)dx = eitc1

∫ ∞

−∞
ei
√

c2tx√c2f(c1 +
√

c2x)dx. (5)

On the other hand, by the definitions of the cumulants, this can be expressed as

GY (t) = exp
[

∞
∑

k=1

ck

k!
(it)k

]

= eitc1

∫ ∞

−∞
ei
√

c2tx exp
[

∞
∑

k=3

(−1)kck

k!

( D√
c2

)k]

φ(x)dx. (6)

This is because, for any sequence {an}, it follows that

exp
(

−c2

2
t2 +

∞
∑

n=1

an(−i
√

c2t)
n
)

=

∫ ∞

−∞
ei
√

c2tx exp
(

∞
∑

n=1

anDn
)

φ(x)dx.

We further expand the integrand of equation (6) by using the Taylor expansion. We then
reorder the terms as follows

exp
[

∞
∑

k=3

(−1)kck

k!

( D√
c2

)k]

φ(x)

=
(

1 +

∞
∑

m=1

1

m!

[

∞
∑

k=3

(−1)kck

k!

( D√
c2

)k]m)

φ(x)

=
(

1 +

∞
∑

m=1

1

m!

∑

k1,··· ,km≥3

(−1)k1+···+kmck1 · · · ckm

k1! · · · km!

( D√
c2

)k1+···+km
)

φ(x)

=
(

1 +
∑∗ ck1 · · · ckm

m!k1! · · · km!

( 1√
c2

)n
Hn(x)

)

φ(x),

where
∑∗means

∑∞
n=3

∑[n/3]
m=1

∑

k1+···+km=n,ki≥3. We use the relationship Hn(x)φ(x) =
(−1)nDnφ(x) in the last equality. Then, equation (6) can be written as

eitc1

∫ ∞

−∞
ei
√

c2txφ(x)dx + eitc1

∫ ∞

−∞
ei
√

c2tx
∑∗ ck1 · · · ckm

m!k1! · · · km!

( 1√
c2

)n
Hn(x)φ(x)dx. (7)

By using the inverse Fourier transforms of both equations (5) and (7) and by changing
the relevant variable, we obtain the following Gram–Charlier expansion around the mean
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2:

f(x) =
1√
c2

φ
(x − c1√

c2

)

+
1√
c2

∑∗ ck1 · · · ckm

m!k1! · · · km!

( 1√
c2

)n
Hn

(x − c1√
c2

)

φ
(x − c1√

c2

)

.

The proof of (ii) is straightforward by using (i) and the properties of Chebyshev–Hermite
polynomials.

The Gram–Charlier expansion may be interpreted as the Wiener Chaos expansion
of f̃ /φ ∈ L2(R,B(R), ν), where f̃(x) =

√
c2f(c1 +

√
c2x) is the density function of the

standardized random variable (Y − c1)/
√

c2. The Wiener Chaos expansion states that
the Chebyshev–Hermite polynomials form a complete orthonormal system in the Hilbert
space, L2(R,B(R), ν) (see Nualart [1995], p.7). The advantages of the Gram–Charlier
expansion are that it is written in additive form and the coefficients qn are easily expressed
by the given cumulants as follows 3

q0 = 1, q1 = q2 = 0, q3 =
c3

3!c
3/2
2

, q4 =
c4

4!c2
2

,

q5 =
c5

5!c
5/2
2

, q6 =
c6 + 10c2

3

6!c3
2

, q7 =
c7 + 35c3c4

7!c
7/2
2

. (8)

The cumulants, cj , can be calculated from the moments, µj, around zero. 4

In the proof of Proposition 1, the inverse Fourier transforms of both equations (5)
and (6) yield the Edgeworth expansion

f(x) =
1√
c2

exp
[

∞
∑

k=3

(−1)kck

k!
Dk

]

φ
(x − c1√

c2

)

. (9)

However, this multiplicative form is not useful for approximating option prices. Hence,
we require an additive form. Both the Gram-Charlier and the Edgeworth expansions
are equivalent (have the same value) when the summation is taken over infinite terms,

2For the density function of a standardized random variable, an expansion around zero f(x) =
� ∞

k=0 qkHk(x)φ(x), where qk = 1
k!

E[Hk(Y )] =
� [k/2]

l=0
(−1)l

l!(k−2l)!2l
E[Y k−2l], is known as a Gram–Charlier

series of type A (Stuart and Ord [1987]).
3In this context, it is well known that 3!q3 represents skewness and 4!q4 represents the excess kurtosis.
4See Stuart and Ord (1987). For example,

c1 = µ1, c2 = µ2 − µ
2
1, c3 = µ3 − 3µ1µ2 + 2µ

3
1,

c4 = µ4 − 4µ1µ3 − 3µ
2
2 + 12µ

2
1µ2 − 6µ

4
1,

c5 = µ5 − 5µ1µ4 − 10µ2µ3 + 20µ
2
1µ3 + 30µ1µ

2
2 − 60µ

3
1µ2 + 24µ

5
1,

c6 = µ6 − 6µ1µ5 − 15µ2µ4 + 30µ
2
1µ4 − 10µ

2
3 + 120µ1µ2µ3 − 120µ

3
1µ3

+ 30µ
3
2 − 270µ

2
1µ

2
2 + 360µ

4
1µ2 − 120µ

6
1,

c7 = µ7 − 7µ1µ6 − 21µ2µ5 − 35µ3µ4 + 140µ1µ
2
3 − 630µ1µ

3
2 + 210µ1µ2µ4

− 1260µ
2
1µ2µ3 + 42µ

2
1µ5 + 2520µ

3
1µ

2
2 − 210µ

3
1µ4 + 210µ

2
2µ3 + 840µ

4
1µ3

− 2520µ
5
1µ2 + 720µ

7
1.
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but the truncated sum may lead to differences between them. However, in many prac-
tical applications, the finite sum is the same after a further approximation is made on
the Edgeworth expansion. The approximation based on the Gram–Charlier expansion
ignores the “orthogonalized moments”, qn, in the context of equation (8), whereas the
approximation based on the Edgeworth expansion ignores the higher cumulants, cn.

C. Swaption

Suppose that we know the j-th cumulant, cj , of the underlying swap value at the expiry T0

under the forward measure P T0 that is associated with the option expiry with condition
Ft. We set the following: Cj = cjP (t, T0)

j and qk = qk(c1, . . . , ck) = qk(C1, . . . , Ck),
which is calculated from equation (8). Then, the swaption value is obtained from equation
(2) as

SOV (t)

= P (t, T0)E
T0

[

1{SV (T0)>0}SV (T0) | Ft

]

= P (t, T0)
[

c1N
( c1√

c2

)

+
√

c2φ
( c1√

c2

)

+
√

c2φ
( c1√

c2

)

∞
∑

k=3

(−1)kqkHk−2

( c1√
c2

)

]

= C1N
( C1√

C2

)

+
√

C2φ
( C1√

C2

)

+
√

C2φ
( C1√

C2

)

∞
∑

k=3

(−1)kqkHk−2

( C1√
C2

)

. (10)

In particular, the truncated sum of equation (10) yields an approximation of the swaption
value.

Proposition 2. The swaption value is approximated as

SOV (t) ≈ C1N
( C1√

C2

)

+
√

C2φ
( C1√

C2

)

+
√

C2φ
( C1√

C2

)

L
∑

k=3

(−1)kqkHk−2

( C1√
C2

)

. (11)

We refer to this expression as the L-th order approximated price, GCL.

Hence, the calculation of the swaption is reduced to the value of cumulants cj of the
underlying swap or the swap moments

Mm(t) = ET0

[

(SV (T0))
m | Ft

]

= ET0

[(

N
∑

i=0

aiP (T0, Ti)
)m

| Ft

]

=
∑

0≤i1,... ,im≤N

ai1 · · · aimµT0(t, T0, {Ti1 , . . . , Tim}), (12)

where T0 is the expiry date of the swaption, T1, . . . , Tm are the coupon payment dates
and

µT (t, T0, {T1, . . . , Tm}) ≡ ET
[

m
∏

i=1

P (T0, Ti) | Ft

]

(13)
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is the bond moments under the T -forward measure with T ≥ T0. As shown subsequently,
µT0(t, T0, {T1, . . . , Tm}) can be calculated analytically for particular classes of interest
rate models.

It is worth mentioning that other approaches based on the Edgeworth expansion can
be used to reach the same conclusion as that implied by equation (11). For a given
forward measure, the two expansions, the Gram–Charlier expansion and the Edgeworth
expansion, are numerically equivalent and the truncated sums are numerically equivalent
when an appropriate approximation is made.

The asymptotic expansion approach is developed by using Malliavin calculus (see,
e.g., Kunitomo and Takahashi [2001]). Essentially, it used a third-order Edgeworth
expansion and an approximation as

f(x) ≈ 1√
c2

exp
[−c3

3!
D3

]

φ
(x − c1√

c2

)

≈ 1√
c2

[

1 − c3

3!
D3

]

φ
(x − c1√

c2

)

=
1√
c2

[

1 +
c3

3!(
√

c2)3
H3

(x − c1√
c2

)]

φ
(x − c1√

c2

)

.

It seems that the numerical performance of Kunitomo and Takahashi (2001) is similar to
ours. Kawai (2003) approximates swaptions by using an asymptotic expansion approach
in the LIBOR market model. In existing studies, the swaption value is often decomposed
into weighted cash-flow values based on the exercise probabilities under the forward
measures associated with the cash-flow timing,

SOV (t) =

N
∑

i=0

aiP (t, Ti)E
Ti

[

1{SV (T0)>0} | Ft

]

. (14)

When calculating the probability of ending up in-the-money under the forward measure,
CDG used a seventh-order Edgeworth expansion. They ignored terms higher than D7 in
a further expanded series by a Taylor expansion of the exponential,

f(x) ≈ 1√
c2

exp
[

7
∑

k=3

(−1)kck

k!
Dk

]

φ
(x − c1√

c2

)

≈ 1√
c2

(

1 +
7

∑

k=3

(−1)kck

k!
Dk +

1

2

((c3

3!
D3

)2 − 2
c3

3!

c4

4!
D3D4

)

)

φ
(x − c1√

c2

)

=
1√
c2

(

1 + q3H3 + q4H4 + q5H5 + q6H6 + q7H7

)

φ
(x − c1√

c2

)

,

where Hk = Hk

(

x−c1√
c2

)

. This approximation of the density is exactly the same as ours

when L = 7. Furthermore, CDG found that c6 and c7 were negligible in equation (8)
relative to c2

3 and c3c4, respectively. Thus, q6 and q7 are represented by low-degree
cumulants, which reduces computational time.

The truncated Edgeworth expansion,

1√
c2

exp
[

L
∑

k=3

(−1)kck

k!
Dk

]

φ
(x − c1√

c2

)
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makes full use of the properties of a finite set of cumulants, c1, . . . , cL. CDG’s recalcula-
tion of q6 and q7 with c6 = c7 = 0 may be regarded as a way of using as much information
on c3, c4, and c5 as possible. However, the truncated Gram–Charlier expansion,

L
∑

n=0

qn√
c2

Hn

(x − c1√
c2

)

φ
(x − c1√

c2

)

,

does not fully reflect the properties of the cumulants c3, . . . , cL because of the truncation.
This is a disadvantage of the orthogonal decomposition and may explain why a higher-
order approximation does not necessarily yield a better approximation than a lower-order
approximation.

Equations (2) and (14) are equivalent. However, in the applications, their computa-
tional efficiency and approximation errors differ. When the swaption value is expressed as
equation (2), we work under the T0-forward measure, P T0 . On the other hand, CDG pro-
posed taking the set of forward measures {PTi}i and working with equation (14). In this
case, appropriate formulae must be used to calculate probability ETi

[

1{SV (T0)>0} | Ft

]

for each measure. Using equation (2) rather than equation (14) reduces the time taken
to compute the moments because there are fewer underlying measures. In terms of ap-
proximation error, one would conjecture that equation (14) might accumulate the error
of each expectation. The main difference between CDG’s approach and ours is the choice
of the measures. Thus, CDG’s results may differ from ours. In the section on numerical
examples, we compare the results of the two approaches.

D. Constant Maturity Swap (CMS)

In this subsection, we demonstrate the another usefulness of the bond moments in an
approximation of the convexity adjustment of a CMS rate. A CMS is a swap contract
between two parties to exchange a fixed rate and a floating rate, which has a reference rate
that is a swap rate with a specified time to maturity. The fixed rate to be exchanged on
a CMS is called the CMS rate. Similar products to CMS include 15-year floating coupon
Japanese Government Bonds (“JGB”) with a 10-year JGB coupon 5, and Long-Term
Prime Rate swaps with a reference rate that is a coupon of a 5-year bank debenture.

We fix the relevant dates, T0 < T1 < . . . < Tn < . . . < Tn+m, which are set at
regularly spaced time intervals with δ = Ti − Ti−1 for all i. We consider a CMS to be
traded at time t < T0 for the exchange of a fixed rate CMS(t) with the observed swap
rates for a maturity of τ = mδ in arrears during the period [T0, Tn]. The fixing dates
are Ti (i = 0, . . . , n − 1) and the payment dates are Ti+1. By the usual discussion, the
time-t value of the floating rate amount that is fixed at time Ti and settled at time Ti+1

is written as

δP (t, Ti+1)E
Ti+1 [S(Ti, Ti, τ) | Ft],

where S(u, Ti, τ) is the forward swap rate for the period [Ti, Ti + τ ] at time u,

S(u, Ti, τ) =
P (u, Ti) − P (u, Ti + τ)

δ
∑i+m

j=i+1 P (u, Tj)
.

5This kind of bond, whose coupon is linked to a yield or a coupon rate of Government bonds with a
predetermined time to maturity, is called a constant maturity treasury (“CMT”).
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The fixed rate on the CMS is given by

CMS(t) =

∑n
i=1 P (t, Ti+1)E

Ti+1 [S(Ti, Ti, τ) | Ft]
∑n

i=1 P (t, Ti)
. (15)

(See Musiela and Rutkowski [2005].)
The expectation of the swap rate, ETi+1 [S(Ti, Ti, τ) | Ft], is close to the forward swap

rate S(t, Ti, τ). They coincide if the swap rate is a martingale under the forward measure.
Otherwise, a difference between them exists and it is called the convexity adjustment in
a broad sense (bCA). 6 Hence, it is sufficient to consider the bCA of the single-period
CMS rate; n = 1, and

bCA = ET1 [S(T0, T0, τ) | Ft] − S(t, T0, τ).

Now let t ≤ u ≤ T0. We consider a receiving swap with a coupon rate of S(t, T0, τ)
for a period of [T0, Tm]. Recall that the time-u swap value is given by

SV (u) = δ

m
∑

j=1

P (u, Tj)(S(t, T0, τ) − S(u, T0, τ)).

We define the duration (or basis point value) of the swap Dur(u) as follows

Dur(u) = δ

m
∑

j=1

P (u, Tj). (16)

Given that

S(u, T0, τ) = S(t, T0, τ) +

∑m
j=1 P (u, Tj)(S(u, T0, τ) − S(t, T0, τ))

∑m
j=1 P (u, Tj)

= S(t, T0, τ) − SV (u)

Dur(u)
, (17)

by taking expectations of both sides, we have

bCA = −ET1 [SV (T0)Dur(T0)
−1 | Ft]. (18)

A major problem in evaluating the CMS is that no general analytical expression exists
for the expectation of SV (T0)Dur(T0)

−1. We propose a simple approximation of this
expectation based on bond moments. We make use of the fact that both the swap
value and the duration are affine functions of bond prices. Let us denote by D(t) =
δ
∑m

j=1 P (t, Tj)/P (t, T0) the forward duration of the swap. This would be close to the
conditional mean of a random variable, Dur(T0). We can approximate the stochastic
duration by a first- or second-order deterministic duration as follows

Dur(T0)
−1 =

D(t)−1

1 + Dur(T0)−D(t)
D(t)

≈







1
D(t)

(

2 − Dur(T0)
D(t)

)

(for the first-order approx.),

1
D(t)

(

3 − 3Dur(T0)
D(t) +

(

Dur(T0)
D(t)

)2)

(for the second-order approx.).

(19)
6bCA for the LIBOR is zero because a forward LIBOR of maturity date Ti+1 is a martingale under

the Ti+1-forward measure S(t, Ti, δ) = ETi+1 [S(Ti, Ti, δ) | Ft].
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Note that (1 + x)−1 ≈ 1 − x (the first-order approximation) and (1 + x)−1 ≈ 1 − x + x2

(the second-order approximation). Then, for the first-order approximation, we obtain
the following result, which can be modified for the second-order approximation. Bond
moments allow us to calculate the convexity adjustment easily.

Proposition 3. The first-order approximation of the single-period CMS rate is given by

ET1 [S(T0, T0, τ) | Ft] ≈ S(t, T0, τ) −
m

∑

j=0

aj

(2µT1(t, T0, {Tj})
D(t)

− δ
m

∑

k=1

µT1(t, T0, {Tj , Tk})
D(t)2

)

,

where 7

aj =







−1 if j = 0,
δS(t, T0, τ) if 0 < j < m,

1 + δS(t, T0, τ) if j = m.

Note that the bCA represents convexity adjustment with different timings for the
observation, T0, and the payment, T1. We can consider a convexity adjustment with the
same timing and call it the convexity adjustment in a narrow sense (nCA). 8 By noting
that ET0 [SV (T0) | Ft] = 0, equation (18) can be decomposed into two terms, as follows

bCA = −ET1 [SV (T0)Dur(T0)
−1 | Ft]

= −CovT0 [SV (T0),Dur(T0)
−1 | Ft]

+
(

ET0 [SV (T0)Dur(T0)
−1 | Ft] − ET1 [SV (T0)Dur(T0)

−1 | Ft]
)

.

The first term, −CovT0
t [SV (T0),Dur(T0)

−1](= −ET0 [SV (T0)Dur(T0)
−1 | Ft]), is the

nCA, which represents adjustment based on the same timing for the observation and
the payment. The remaining term in the bracket, ET0 [· · · ]−ET1 [· · · ], represents timing
adjustment (TA). This is because the observation, T0, and the settlement, T1, have
different timing.

E. CMS Option

The methods we have discussed so far are useful. The approximated price of an option
contract on a CMS swap can be obtained by combining the two methods to approximate a
swaption price by the Gram–Charlier expansion (in Section II.C) and a convexity adjust-
ments of a CMS rate with bond moments (in Section II.D). We present the approximated
price of a floor of a single period CMS.

CMS options are often incorporated in structured products such as callable bond
and capped floater. The 15-year JGB incorporates a floor for the CMT rate since the
coupon is set as the maximum of either zero or the current 10-year JGB coupon minus
some constant alpha.9 Therefore, the valuation of these options is of great interest to
practitioners.

7aj (j = 0, . . . , m) is the cash flow at time Tj , used to represent the swap with the fixed rate of
S(t, T0, τ ).

8Convexity adjustment for bond yields is an example of nCA.
9In the 15-year JGB issued on 2005 July, alpha is set at 0.95 percent; i.e., the floor is struck at 0.95

percent.

10



A swap rate is observed on T0. The observed swap is assumed to start on T0 and is
assumed to include the coupon exchanges on T1, . . . , Tm with δ = Ti −Ti−1 and τ = mδ.
The strike rate of the floor is K and the payment of the floor is made on T1. The value
is then given by

CMSFloor(t) = EQ
[

exp
(

−
∫ T1

t
rsds

)

δ max(K − ST0 , 0) | Ft

]

= δP (t, T1)E
T1

[

max(K − S(T0, T0, τ), 0) | Ft

]

.

From equations (17) and (19), we can approximate the observed swap rate as

S(T0, T0, τ) = S(t, T0, τ) − SV (T0)

Dur(T0)

≈ S(t, T0, τ) − SV (T0)
( 2

D(t)
− 1

D(t)2
Dur(T0)

)

Thus, we obtain an approximated price of the CMS floor as

CMSFloor(t)

≈ δP (t, T1)E
T1

[

max
(

K − S(t, T0, τ) +
2

D(t)
SV (T0) −

1

D(t)2
SV (T0)Dur(T0), 0

)

| Ft

]

.

This can be approximated further by using the Gram–Charlier expansion and the bond
moments. The positive part of the cash flow at the expiry consists of three parts: (i)
a constant, K − S(t, T0, τ); (ii) a linear combination of bond prices, 2

D(t)SV (T0); and

(iii) a quadratic combination of bond prices− 1
D(t)2

SV (T0)Dur(T0). Thus, while it is

straightforward to calculate the swap moments, this requires higher order bond moments
because of the quadratic terms.

III. Affine Term Sructure Models and the Greeks

Our methods for approximating swaptions and CMS prices are independent of any model
if bond moments can be obtained analytically or numerically. If a specific model with
state variables is applied to the underlying model, we may be able to calculate the
Greeks of the swaptions with respect to the state variables based on the approximation.
Examples include not only affine term structure models (ATSMs), but also Gaussian
quadratic term structure models (see, e.g., Ahn et al. [2002]) and Gaussian Heath–
Jarrow–Morton models. In this section, we introduce ATSMs, on which the numerical
examples in Section IV are based. Then, we evaluate the deltas of a swaption price for
ATSMs.

In an ATSM, the bond price is expressed in the form of an exponentially affine
function,

P (t, T ) = exp(A(t, T ) + B(t, T )>X(t)), (20)

of a vector of factors (or state variables), X = (X1, . . . ,XJ )>, which follows dX(t) =
µX(X(t), t)dt+ σX (X(t), t)dWQ(t) under Q. Duffie and Kan (1996) characterized affine

11



models. Under certain conditions, expressing the bond price in the above form is equiv-
alent to assuming that the short rate r, the drift term µX , and σXσX

> are affine func-
tions of X. It is sufficient to restrict our attention to the case in which r and X satisfy
r(t) = δ0 + δX

>X(t), and dX(t) = KQ(θQ − X(t))dt + ΣD(X(t))dWQ(t), respectively,
where δ0, α ∈ R, δX , θQ, β ∈ R

J , and KQ ∈ R
J×J , D(X(t)) is the diagonal matrix

D(X(t)) = diag
[

√

α1 + β1
>X(t), . . . ,

√

αJ + βJ
>X(t)

]

, and Σ ∈ R
J×J is a matrix such

that ΣΣ> is a covariance matrix.
The Feynman–Kac formula yields the following system of ordinary differential equa-

tions:

∂

∂t
A(t, T ) = −(KQθQ)>B(t, T ) − 1

2

J
∑

j=1

(Σ>B(t, T ))j
2
αj + δ0, A(T, T ) = 0,

∂

∂t
B(t, T ) = KQ>

B(t, T ) − 1

2

J
∑

j=1

(Σ>B(t, T ))j
2
βj + δX , B(T, T ) = 0. (21)

This system can be solved in a closed form for special cases and can be solved numerically
in many other cases. An important characteristic of ATSMs is that the zero rate, R(t, T ),
and the instantaneous forward rate, f(t, T ), for a maturity date of T at time t, are affine
functions of X. They are given by

R(t, T ) = −(T − t)−1(A(t, T ) + B(t, T )>X(t)),

f(t, T ) = −∂A(t, T )

∂T
− ∂B(t, T )

∂T
X(t).

As is the bond price, the moments are exponentially affine, and are of the form

µT (t, T0, {T1, . . . , Tm}) =
exp(M(t) + N(t)>X(t))

P (t, T )
,

where M(t) = M(t, T, T0, {T1, . . . , Tm}) and N(t) = N(t, T, T0, {T1, . . . , Tm}) satisfy the
same system of ordinary differential equations

∂

∂t
M(t) = −(KQθQ)>N(t) − 1

2

J
∑

j=1

(Σ>N(t))j
2
αj + δ0,

∂

∂t
N(t) = KQ>

N(t) − 1

2

J
∑

j=1

(Σ>N(t))j
2
βj + δX . (22)

The terminal conditions are

M(T0) =
m

∑

i=1

A(T0, Ti) + A(T0, T ), N(T0) =
m

∑

i=1

B(T0, Ti) + B(T0, T ).

These follow from the Feynman–Kac formula. In Gaussian-type and CIR-type mod-
els, there are explicit solutions for A,B,M, and N . These solutions are given in the
Appendix. Given these formulae, it is straightforward to apply the Gram–Charlier ex-
pansion for swaption prices.
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Using these functional forms, it is easy to show that the swaption delta with respect
to the initial value Xi(0) is given by

∂SOV (0)

∂Xi(0)
=

1

2C2

∂C2

∂Xi(0)
SOV (0)

+
( ∂C1

∂Xi(0)
− C1

2C2

∂C2

∂Xi(0)

)(

N(
C1√
C2

) +

∞
∑

k=3

(−1)k−1qkHk−1(
C1√
C2

)φ(
C1√
C2

)
)

+
√

C2

∞
∑

k=3

(−1)k
∂qk

∂Xi(0)
Hk−2(

C1√
C2

)φ(
C1√
C2

). (23)

The Greeks with respect to other parameters can be obtained in a similar way.
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IV. Numerical examples

In this section, we give numerical examples using two ATSMs (a three-factor Gaussian
model and a two-factor CIR model), following CDG. We compute the (receiver’s) swap-
tion prices of various strikes by using a Gram–Charlier expansion and compare them
with prices calculated by a Monte Carlo simulation with respect to accuracy and com-
putational burden. In addition, approximations of CMS rates are investigated in each
model.

A. Parameters

Parameters are selected as shown in Table 1, so that the induced rates approximately
fit observed Japanese Yen data. One of the reasons for choosing the Japanese Yen data
is its closeness to the non-positive area for interest rates, which will distinguish various
numerical performances. Figure 1 shows three series of Japanese Yen swap rates, the
observed yield curve in markets on 23 February 2005, and the yield curves implied by the
two models. Table 2 shows the option data implied by the Gaussian model, which include
the at-the-money-forward (ATMF) receivers’ swaption prices in basis points (bp) and two
types of volatilities in percents (pct), which we will explain shortly. The reader can grasp
the level of swaption prices before we discuss the accuracy of the approximation.

As there is no standard pricing formula for interest rate derivatives, a swaption is
traded by two parties after they agree on the premium (swaption price). Volatility
is treated simply as a reference for their negotiations. Usually, swaption prices are
quoted in units of basis points by market traders and brokers. There are two types
of reference volatility. Yield volatility is used when using Black’s formula to value an
option. Yield volatility is also known as relative volatility because of its form. The other
type of volatility, absolute volatility, is yield volatility multiplied by the ATMF rate.
Yield volatilities are more widely used than absolute volatilities among practitioners
in financial markets. However, a benefit of the absolute volatility is that its intuitive
meaning roughly represents the annual standard deviation of a particular swap rate to
be observed. Other advantages are that the surface of the absolute volatilities is relatively
flat and there is little dependence on the level of yield curve. We consider a one-year into
a 10-year swaption (“1 into 10”) as a reference because our parameters imply a relatively
low cumulative absolute volatility compared with other expiries and maturities.

First, we check the approximated distributions of 10-year swap rates (and values) one
year later. Figure 2 shows the distribution of the swap rates. Figures 3 and 4 show the
density function of the value of a 10-year receiving swap one year later, for the Gaussian
and CIR models, respectively. The swap rate is set to the ATMF rate. In the case
of the Gram–Charlier expansion, the density function of the swap value is obtained by
using equation (3) up to a particular order. For the Monte Carlo method, the density
is obtained by simulation with exact distributions at expiry for both the Gaussian and
CIR models. Note that the Gram–Charlier expansion provides a good approximation for
the Gaussian model. However, in the CIR model, it overweights the probability around
the lower rates by one percent more than the ATMF rate and underweights it around
the higher rates.
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Gaussian CIR

δ0 -0.0065 -0.02

δ [1 1 1] [1 1]

K [0.05 0.1 1] [0.05 0.5]

θ [0.015 0.02 0.02] [0.085 0.01]

Σ diag[0.01 0.02 0.03]V diag[0.08 0.05]V

V V >





1 −0.8 0.7
−0.8 1 −0.9
0.7 −0.9 1





(

1 0
0 1

)

X0 [0.005 -0.02 0.02] [0.01 0.01]

Table 1: Parameters
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Figure 1: Japanese Yen swap rates
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Premium (bp) Maturity
Expiry 1 2 3 5 7 10

1 32 57 84 138 183 231
2 44 84 125 200 259 322
3 54 105 154 241 309 381
5 67 129 186 285 362 444
7 73 138 199 302 382 467
10 74 140 200 302 381 466

Yield vol. (pct) Maturity
Expiry 1 2 3 5 7 10

1 200 117 89.8 64.9 50.6 37.4
2 102 79.8 68.5 53.4 43.1 33.1
3 7.4 62.7 55.3 44.9 37.4 29.5
5 5.1 43.5 39.6 33.7 29.4 23.7
7 4.0 33.1 30.9 27.0 23.7 20.0
10 3.1 24.7 23.3 20.8 18.9 16.1

Absolute vol. (pct) Maturity
Expiry 1 2 3 5 7 10

1 0.94 0.76 0.74 0.73 0.70 0.64
2 0.86 0.80 0.79 0.76 0.71 0.64
3 0.86 0.82 0.80 0.76 0.71 0.63
5 0.88 0.80 0.77 0.72 0.67 0.60
7 0.87 0.75 0.73 0.67 0.62 0.56
10 0.82 0.68 0.65 0.61 0.56 0.51

Table 2: ATMF receiver’s swaption prices based on the Gaussian model (top), yield
volatilities (middle), and absolute volatilities (bottom) (expiries and maturities measured
in years)
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Figure 5: Pricing errors by strikes and orders of approximation
(1 into 10, Gaussian)
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B. Swaption prices based on the Gaussian model

In this subsection, we analyze the pricing errors of the swaption prices in the Gaussian
model. Figure 5 illustrates pricing errors for a one-year into a 10-year swaption with
several strike rates (from ATMF−2.5% to ATMF+2.5%). The horizontal axis represents
the difference, ∆K, between the strike rate and the ATMF rate. The pricing error is
calculated as the approximated price equation (11) based on the Gram–Charlier expan-
sion (“GC price”) minus the price from the Monte Carlo simulation (“MC price”). GC7′

is obtained from GC7 with the sixth and seventh cumulants being set equal to 0 in
equation (8). 10 The MC price is obtained by simulating 400 million times (20 million
runs multiplied by 20 to calculate MC error) with the negative correlation technique,
and using Gaussian distribution of state variables at the expiry to avoid the discretizing
error. The standard error is of the order of 10−6 for a one-year into 10-year swaption.

All pricing errors are within 0.3 bp for GC3, GC4, and GC5, and within 0.1 bp for
GC6, GC7′, and GC7. The results of GC7′ are similar to those of GC7. Note that the
higher-order approximations (GC4 and GC5) do not necessarily produce more accurate
prices than lower order approximations (GC3). The reason is that the Gram–Charlier
expansion is an orthogonal expansion. Table 3 shows the GC prices and MC prices used
in Figure 5. Note that for the ATMF swaption (C1 = 0), there are no contributions
from the odd-order term because H2k+1(0) = 0. In addition, the contribution of each
term of the odd (even) order behaves like an odd (even) function of ∆K because of the
properties of the Chebyshev–Hermite polynomials.

Similar wave patterns of pricing errors are reported for other combinations of expiries
and maturities in Figures 6 and 7. The magnitudes of the fluctuations depend on the
expiry and maturity. Nevertheless, the errors for various strikes in five-year into 10-year
swaptions based on GC3 are, at most, 2 bp. Due to the higher absolute volatilities of
shorter maturities (one-year into 5-year swaptions) compared with one-year into 10-year
swaptions, the option delta is higher for the same distance from the ATMF rate, so that
the shape of Figure 6 is a zoomed-in picture of a certain part of Figure 5. A similar
explanation applies to Figure 7. This is because the standard deviation of a swap rate
at the expiry T grows at the order

√
T when the absolute volatility is constant. Figure 8

illustrates pricing errors for ATMF swaptions based on a seventh-order approximation.
This figure shows that most pricing errors for ATMFs are within 1 bp.

Table 4 shows the calculation time for each method based on using Visual C in a 2.4
GHz Pentium 4 CPU. The time for the Gram–Charlier expansion increases substantially
with the order of the approximation and the maturity of the underlying swaps. This is
due to the associated increase in the number of terms in the summation.

By considering the accuracy and the computational time, we conclude that a higher
order approximation GC7′ yields very accurate prices enough to price a specific transac-
tion, and that a lower order one GC3 attains good approximation in a very short time
so that it is suitable for the portfolio evaluation and the risk management. However,
the level of the accuracy depends on the model parameters. One should note that we
compare the pricing errors of several approximation orders by using the same model
parameters. It is obvious that the error depends on the model parameters such as the
level of the yield curve or the mean reversion speed.

10CDG use the same method as GC7′ to calculate the probabilities of ending in in-the-money under
several relevant forward measures.
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∆K -1% -0.5% 0% 0.5% 1%

3rd 12.600 68.438 230.926 535.646 945.868

4th 12.849 68.311 230.353 535.482 946.112

5th 12.847 68.237 230.353 535.558 946.130

6th 12.692 68.187 230.691 535.532 945.930

7′th 12.662 68.277 230.674 535.440 945.964

7th 12.652 68.278 230.691 535.435 945.955

MC 12.673 68.237 230.660 535.455 945.933

Table 3: GC prices and MC prices (bp)
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Figure 6: 1 into 5
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Figure 7: 5 into 10
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Figure 8: Pricing errors for ATMF (Gaussian, GC7)

1 into 5 ATMF 1 into 7 ATMF 1 into 10 ATMF

GC3 <0.000 <0.000 <0.000
GC5 <0.000 0.031 0.156
GC7′ <0.000 0.031 0.156
GC7 0.063 0.438 3.453

MC(20million) 78.266 90.766 109.531

Table 4: Calculation times (sec., Gaussian)
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C. Swaption prices based on the CIR model

It is important for practitioners to recognize the pattern and the level of the pricing errors
before implementing our approach. As expected, the CIR model has larger standard
errors from the Monte Carlo simulation and poorer approximations than those of the
Gaussian model, by about one digit. However, the main features are similar to those of
the Gaussian model.

Figure 9 shows the pricing errors for one-year into 10-year swaptions from the CIR
model. The corresponding figure for the Gaussian model is Figure 5. For the CIR model,
the MC price is obtained by simulating 100 million times (5 million runs multiplied by
20) by using noncentral chi-squared distributions of the state variables at the expiry to
avoid the discretizing error. The basic features of the pricing errors of the CIR model
look similar to those of the Gaussian. The pricing errors are no more than 4 bp based
on GC3 and are about 2 bp based on GC7. Figure 10 shows the pricing errors from the
ATMF based on a seventh-order approximation. It seems that these errors for the CIR
model are not at critical levels for the practitioners’ purposes in their daily activities,
such as pricing and risk management. Calculation times are similar for the CIR and
Gaussian models. Therefore, the conclusion from the Gaussian model also applies to the
CIR model.

As mentioned in footnote 10, CDG use the same method used for GC7′ to calculate
the probabilities of being in-the-money under several relevant forward measures. Figure
11 compares the performance of the CDG approach to our approach for coupon-bond
option prices (a two-year option on 12-year bond) by using the same parameters used
by CDG. This figure indicates that our approach is better than that of CDG. Especially,
difference between GC7′ and CDG shows accumulated pricing error due to the number
of forward measures. Again, accuracy depends on the model parameters. The order of
the errors are quite different between Figures 9 and 11 since the pricing error for the
CIR model will be smaller if the underlying yield is higher.

D. Convexity adjustments for CMS rates

In this subsection, we investigate how accurately our approximation methods with bond
moments calculate the convexity adjustments of CMS rates. The convexity adjustments
(bCA, nCA, and TA) of one-period CMS rates under the Gaussian model are calculated
by the Monte Carlo method, as shown in Table 5, to grasp the magnitudes. The longer
the time to the observation or the longer the maturity of the observed swaps, the bigger
the adjustments are. The pricing errors are reported in Tables 6, 7, and 8 for the Gaussian
with the first-order approximation, the CIR with the first-order approximation, and the
CIR with the second-order approximation, respectively.

The Gaussian first-order approximation performs well. The pricing errors are, at
most, 0.29 bp for the CA in a broad sense, 0.24 bp for the CA in a narrow sense, and
0.05 bp for the timing adjustment (Table 6). The CIR first-order approximation does not
perform well, as Table 7 shows. The second-order approximation reduces the errors from
Table 7 by roughly half, so that they are relatively small (see Table 8). Our methods are
practical.
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Figure 9: Pricing errors by strikes and orders of approximation
(1 into 10, CIR)
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Figure 10: Pricing error for ATMF (CIR, GC7)
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(bCA) 1 3 5 7 10 20

1 0.14 0.65 1.18 1.60 2.00 2.30
3 0.46 2.24 3.74 4.83 5.81 6.45
5 0.76 3.49 5.65 7.17 8.54 9.51
10 1.14 5.08 8.08 10.21 12.19 13.99

(nCA) 1 3 5 7 10 20

1 0.51 0.85 1.32 1.72 2.10 2.38
3 1.47 3.05 4.45 5.47 6.37 6.85
5 2.38 4.86 6.86 8.26 9.50 10.18
10 3.56 7.18 9.96 11.90 13.66 15.03

(TA) 1 3 5 7 10 20

1 -0.37 -0.20 -0.14 -0.12 -0.10 -0.08
3 -1.01 -0.82 -0.71 -0.64 -0.56 -0.40
5 -1.62 -1.37 -1.22 -1.10 -0.95 -0.67
10 -2.43 -2.10 -1.87 -1.69 -1.48 -1.04

Table 5: Adjustments for single-period CMS swap rates (bp) for the Gaussian model
(payment due six months later than the observation): Convexity adjustments in the
broad sense (bCA, top); Convexity adjustments in the narrow sense (nCA, middle); and
Timing adjustments (TA, bottom). Rows 1 to 10 express observation years, and columns
1 to 20 are maturities (in years) of observed swap rates.

(bCA) 1 3 5 7 10 20

1 0.00 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 0.01 0.02 0.04 0.06
5 0.00 0.01 0.03 0.05 0.08 0.14
10 0.00 0.02 0.05 0.09 0.16 0.29

(nCA) 1 3 5 7 10 20

1 0.00 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 0.01 0.02 0.03 0.05
5 0.00 0.01 0.02 0.03 0.06 0.11
10 0.00 0.01 0.04 0.07 0.12 0.24

(TA) 1 3 5 7 10 20

1 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.01
5 0.00 0.00 0.01 0.01 0.02 0.02
10 0.00 0.01 0.02 0.02 0.04 0.05

Table 6: Pricing errors of adjustments for single-period CMS swap rates (bp) for the
Gaussian model: price approximated by bond moments − MC price
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(bCA) 1 3 5 7 10 20

1 -0.00 -0.01 -0.03 -0.05 -0.07 -0.11
3 -0.03 -0.13 -0.26 -0.40 -0.58 -0.91
5 -0.08 -0.33 -0.66 -0.99 -1.42 -2.19
10 -0.24 -0.98 -1.88 -2.77 -3.90 -5.94

(nCA) 1 3 5 7 10 20

1 -0.00 -0.02 -0.03 -0.05 -0.07 -0.12
3 -0.03 -0.13 -0.27 -0.41 -0.60 -0.94
5 -0.08 -0.35 -0.69 -1.03 -1.48 -2.28
10 -0.25 -1.04 -2.00 -2.94 -4.15 -6.30

(TA) 1 3 5 7 10 20

1 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.01 0.01 0.02 0.03
5 0.00 0.01 0.03 0.04 0.06 0.09
10 0.02 0.06 0.12 0.18 0.24 0.36

Table 7: Pricing errors of adjustments for single-period CMS swap rates (bp) for the
CIR model (first-order approximation)

(bCA) 1 3 5 7 10 20

1 0.00 -0.00 -0.00 -0.01 -0.01 -0.02
3 -0.00 -0.01 -0.04 -0.08 -0.14 -0.30
5 -0.01 -0.05 -0.12 -0.24 -0.42 -0.89
10 -0.03 -0.19 -0.50 -0.89 -1.53 -3.09

(nCA) 1 3 5 7 10 20

1 0.00 -0.00 -0.00 -0.01 -0.01 -0.02
3 -0.00 -0.01 -0.04 -0.08 -0.14 -0.31
5 -0.01 -0.05 -0.13 -0.25 -0.44 -0.93
10 -0.03 -0.20 -0.53 -0.94 -1.61 -3.25

(TA) 1 3 5 7 10 20

1 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.01
5 0.00 0.00 0.00 0.01 0.02 0.03
10 0.00 0.01 0.03 0.05 0.08 0.16

Table 8: Pricing errors of adjustments for single-period CMS swap rates (bp) for the
CIR model (second-order approximation)
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V. Conclusion

We have developed easy-to-use approximation methods for pricing several interest rate
derivatives by using the Gram–Charlier expansion and by using bond moments. Approx-
imation accuracy depends on the underlying model, the detailed characteristics of the
products, and the model parameters. From numerical studies for swaption prices, our
method yields smaller pricing errors than the method used by Collin-Dufresne and Gold-
stein (2002). We conclude that a higher order approximation GC7′ yields very accurate
prices enough to price a specific transaction, and that a lower order one GC3 attains good
approximation in a very short time so that it is suitable for the portfolio evaluation and
the risk management. Using bond moments to calculate the convexity adjustments of
constant maturity swap rates is novel and the approximation method performs well. We
also derive an approximated option price on CMS rates by combining the two methods.
These approximations can be applied to CMT products such as 15-year floating coupon
JGB.

23



References

[1] Ahn, D., R. Dittmar and A.R. Gallant “Quadratic Term Structure Models: Theory
and Evidence,” Review of Financial Studies, 15, 2002, pp. 243-288.

[2] Benhamou, E. “Pricing Convexity Adjustment with Wiener Chaos,” Working paper,
London School of Economics, 2000.

[3] Brace, A. “Rank-2 Swaption Formulae,” Working paper, University of New South
Wales, 1997.

[4] Collin-Dufresne, P., and R.S. Goldstein “Pricing Swaptions Within an Affine Frame-
work,” Journal of Derivatives, 10, 2002, pp. 1-18.

[5] Cox, J. C., J. E. Ingersoll and S. A. Ross, “A Theory of the Term Structure of Interest
Rates, � Econometrica, 53, 1985, pp. 385-407.

[6] Duffie, D., and R. Kan “A Yield Factor Model of Interest Rates,” Mathematical

Finance, 6, 1996, pp. 379-406.

[7] Jamshidian, F. “An Exact Bond Option Pricing Formula,” Journal of Finance, 44,
1989, pp. 205-209.

[8] Jamshidian, F. “LIBOR and Swap Market Models and Measures,” Finance and

Stochastics, 1, 1997, pp. 293-330.

[9] Jarrow, R., and A. Rudd “Approximate Option Valuation for Arbitrary Stochastic
Processes,” Journal of Financial Economics, 10, 1982, pp. 347-369.

[10] Kawai, A. “A New Approximate Swaption Formula in the LIBOR Market Model:
An Asymptotic Expansion Approach,” Applied Mathematical Finance, 10, 2003, pp.
49-74.

[11] Kunitomo, N. and A. Takahashi “The Asymptotic Expansion Approach to the Val-
uation of Interest Rate Contingent Claims,” Mathematical Finance, 11, 2001, pp.
117-151.

[12] Musiela, M., and M. Rutkowski Martingale Methods in Financial Modelling,
Springer-Verlag, Berlin Heidelberg New York, 2005.

[13] Nualart, D. The Malliavin Calculus and Related Topics, Springer-Verlag, New York,
1995.

[14] Singleton, K. and L. Umantsev “Pricing Coupon-Bond Options and Swaptions in
Affine Term Structure Models,” Mathematical Finance, 12, 2002, pp. 427-446.

[15] Stuart, A. and J.K. Ord Kendall’s Advanced Theory of Statistics, Volume 1 Distri-

bution Theory, Oxford University Press, 1987.

24



A. Affine term structure models

A. A0(J) Gaussian Model

The coefficients of a J-factor Gaussian model, A0(J), are given by

δX = 1J , KQ = diag[K1, . . . ,KJ ] (0 < K1 < · · · < KJ),

Σ = diag[σ1, . . . , σJ ]V, where V V > = (ρij)ij , D(X(t)) = IJ .

Bond prices and bond moments can be obtained from

A(t, T ) = −(T − t)
(

δ0 +

J
∑

i=1

(1 − D(Ki(T − t)))θi −
1

2

J
∑

i=1

J
∑

j=1

ρijσiσj

KiKj

×
(

1 − D(Ki(T − t)) − D(Kj(T − t)) + D((Ki + Kj)(T − t))
)

)

,

Bj(t, T ) = −τD(Kj(T − t)),

M(t) = A(t, T0) + F0 + τ

J
∑

j=1

KjθjFjD(Kjτ) +
τ

2

J
∑

i,j=1

ρijσiσj

(

FiFjD((Ki + Kj)τ)

+ Fi
D((Ki + Kj)τ) − D(Kiτ)

Kj
+ Fj

D((Ki + Kj)τ) − D(Kjτ)

Ki

)

,

Nj(t) = Bj(t, T0) + Fj exp(−Kj(T0 − t)),

where D(x) = 1−e−x

x , τ = T0−t, F0 =
∑m

i=1 A(T0, Ti)+A(T0, T ) and Fj =
∑m

i=1 Bj(T0, Ti)+
Bj(T0, T ).

B. AJ(J) CIR Model

The coefficients of a J-factor CIR model, AJ(J), are given by

δX = 1J , KQ = diag[K1, . . . ,KJ ], θ = (θ1, . . . , θJ)>, (θj > 0),

Σ = diag[σ1, . . . , σJ ], D(X(t)) = diag[
√

X1(t), . . . ,
√

XJ(t)].

Bond prices and bond moments can be obtained from

A(t, T ) = −δ0(T − t) −
J

∑

j=1

Kjθj

[ 2

σ2
j

ln
(Kj + γj)(e

γj (T−t) − 1) + 2γj

2γj
+

2

Kj − γj
(T − t)

]

,

Bj(t, T ) =
−2(eγj (T−t) − 1)

(Kj + γj)(eγj (T−t) − 1) + 2γj

,

M(t) = F0 − δ0τ −
J

∑

j=1

Kjθj

[ 2

σ2
j

ln
(Kj + γj − σ2

j Fj)(e
γjτ − 1) + 2γj

2γj

+
(Kj + γj)Fj + 2

Kj − γj − σ2
j Fj

τ
]

,

Nj(t) =
−((Kj − γj)Fj + 2)(eγj τ − 1) + 2γjFj

(Kj + γj − σ2
j Fj)(eγjτ − 1) + 2γj

,

where γj =
√

K2
j + 2σ2

j , τ = T0−t, F0 =
∑m

i=1 A(T0, Ti)+A(T0, T ) and Fj =
∑m

i=1 Bj(T0, Ti)+

Bj(T0, T ).
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