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1 Introduction

Over the past years, there has been a lot of research, both theoretical and empirical, in

financial market microstructure. Several theoretical contributions emphasize that the waiting

times between intra-day market events like trades, quote updates, price changes, and order

arrivals play a key role for understanding the processing of private and public information in

financial markets. See O’Hara’s book (1995) for many details and references, and Goodhart

and O’Hara (1997) and Madhavan (2000) for more recent surveys. On the empirical side,

the accessibility of high-frequency data at a micro level, which ideally includes real time

recordings of trades, order arrivals and quote updates, as well as the corresponding prices,

volumes and time stamps, opened new perspectives for the empirical analysis of the market

microstructure of financial markets.

In econometrics, one area of research that has developed directly in connection with the

empirical aspects just mentioned is duration analysis in a dynamic framework. An economet-

ric model of serially correlated event arrival times was provided by Engle and Russell (1998),

who introduced the autoregressive conditional duration (ACD) model. The ACD approach

combines elements from transition analysis (Lancaster, 1990) and Engle’s (1982) autore-

gressive conditional heteroskedasticity (ARCH) model. Indeed, the motivation behind the

ACD and the ARCH models appears similar: financial market events, like trades and quote

changes, occur in clusters. Following the contribution of Engle and Russell (1998), several

modifications of the basic models have been put forward. Bauwens and Giot (2000) intro-

duced a logarithmic version of the ACD model, which implies a nonlinear relation between the

duration and its lags. As an alternative to the exponential and Weibull distributions used in

Engle and Russell (1998) seminal paper, Lunde (2000) and Grammig and Maurer (2000) con-

sidered ACD specifications based on the generalized gamma and the Burr distribution (both

nest Weibull and exponential as special cases). Zhang, Russell, and Tsay (2001) advocated

the Threshold ACD model, formulated in the spirit of threshold autoregressive models, in or-

der to capture a possible nonlinear relation between the duration and predetermined variables

and to account for regime switches. Ghysels, Gouriéroux, and Jasiak (2004) developed the

stochastic volatility duration (SVD) model, a dynamic two factor model, which is designed

to account both for mean and variance dynamics in financial duration processes. Another

(single) factor model, the stochastic conditional duration model (SCD), was put forth by
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Bauwens and Veredas (2003).

Bauwens, Giot, Grammig, and Veredas (2004) compare and evaluate most of these dura-

tion models on trade durations pertaining to stocks traded on the New York Stock Exchange

(NYSE). In this paper, firstly, we analyze statistically trade durations of four stocks listed

on the Tokyo Stock Exchange (TSE) in 2003. We find that these data display the stylized

facts of inverted-U shape intra-daily pattern, clustering and overdispersion, found for simi-

lar data of the NYSE. We also find that the trade durations of the stocks we study feature

less overdispersion than for NYSE stocks, and even in some cases, the durations are slightly

underdispersed. However, it is quite likely that the duration dispersion is artificially underes-

timated due to the way the data are recorded, since actually small durations are not precisely

measured.

Secondly, we estimate autoregressive conditional duration models for the durations. We

find that, like for comparable data of the NYSE, some models fit in a satisfactory way the

dynamic properties of the durations, but do not always fit well the conditional distribution

of the data.

The structure of the paper is the following: in Section 2, we describe the features of the

trading mechanism of the TSE which are required to understand the data that we model;

Section 3 serves to describe the data; in Section 4 we review duration models and report the

empirical results, and the last section offers our conclusions.

2 TSE Trading System

This section serves to describe briefly the TSE trading system, in particular the features that

help to understand the data we model. As these data consist in durations between trades

executed on the market for a given stock, it is important to understand how the trades are

generated and how the data are collected. For a more comprehensive description of the trading

method on TSE, we refer to TSE (2003).

In 2003, which is the year which we have data for, the TSE was functioning as an order

driven market. We refer to Bauwens and Giot (2001, Chapter 1) for a review of market

types, in particular the distinction between price driven and order driven markets. In an

order driven market, trading participants, i.e. securities companies licensed by the exchange

to trade on the market, may enter two types of orders: limit orders and market orders. Each
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type of order may be a buy order or a sell order. Actually, other types of orders exist on the

TSE, which are limit or market orders only effective under certain conditions, but they are

not relevant for our analysis.

Each limit order specifies a quantity for sale at a given minimum price (called ask or offer

price) or a quantity to buy at a given maximum price (called bid price). At any time, the

whole set of limit orders constitute the order book. Normally, the best (i.e. lowest) ask price

is strictly larger than the best (i.e. highest) bid price, in which case no exchange is possible.

Traders who issued the limit orders are waiting for other traders to match their limit orders

by market orders or limit orders. A trader who wants to buy or sell immediately issues a

market order for a given quantity, meaning that he is willing to buy or to sell no more than

the specified volume, at the best available price. Hence, limit orders provide liquidity, while

market orders consume it.

The top panel of Table 1 illustrates an order book with three limit sell orders, with the

lowest ask price at 100 and the highest price at 104, and two limit buy orders at prices of

98 and 96. The middle panel of the same table shows the state of the order book after the

execution of a market buy order of 1000 shares. This order has been crossed with the lowest

limit sell order, hence the transaction price is 100. The bottom panel of the table shows the

state of the book after the execution of a subsequent market sell order of 1500 shares. This

order exhausts the highest limit buy order (750 units at 98) and consumes 750 shares of the

next best limit buy order (at the price of 96). In this case, the average price per share is

97. Another possibility is that only 750 shares are exchanged at the price of 98, while the

remaining 750 shares are entered in the order book as a limit sell order at the executed price

of 98 (it is also possible to cancel automatically the non executed part of the order). In this

example, two trades have occurred, corresponding to two executed market orders.

The trading system described above functions during the trading sessions of the TSE (it

is named the ‘Zaraba’ method). There are two trading sessions per week day: the morning

session, which starts at 9:00 and ends at 11:00, and the afternoon session, from 12:30 till

15:00. Market and limit orders are submitted during these sessions, though limit orders may

be entered also before the start of the sessions: from 8:00 till 9:00 and from 12:05 till 12:30.

The opening price of each trading session is the result of an opening auction, and the closing

price is the result of a closing auction. These auctions correspond to a Walrasian type auction
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(named the ‘Itayose’ method), in that demands and offers are accumulated (resulting from

the limit orders), and a price which clears the market as much as possible is fixed. This results

of course usually in transactions. The system provides a ‘clean’ order book at the beginning

of a session, i.e. there is no bid at a price higher than the best ask price and no ask at a price

lower than the best bid price.

Table 1: Order book

Sell side volume Unit price Buy side volume
Start state:
1000 104
1800 102
4000 100

98 750
96 2000

State after a market buy order of 1000 shares:
1000 104
1800 102
3000 100

98 750
96 2000

Next state after a market sell order of 1500

shares:
1000 104
1800 102
3000 100

96 1250

3 Data Description

In this section we describe what raw data we have used (sub-section 3.1), what transformations

we have applied to these data (sub-section 3.2), and what are the main statistical features of

the data from a descriptive viewpoint (sub-section 3.3).
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3.1 Raw Data

We use intra-daily data of four major stocks listed on the TSE: Nippon Steel (NPS), Sony

(SON), Tokyo Electric (TKE), and Toyota (TOY). The data have been bought at Bloomberg.

The sampling period correspond to the months from March till July 2003. For each stock

and each trading day, the raw data come as shown in columns 2 to 5 in Table 2: records 1

to 13 correspond to the beginning, and records 14 to 31 to the end of the morning session.

A record with the label ‘Bid price’ (‘Ask price’) presumably provides the best bid (ask) price

and the corresponding buy (sell) volume available at this price in the order book; this volume

may of course be the sum of bids (asks) of different traders. A record with the label ‘Last

price’ corresponds to a transaction presumably due to a market order. For example, the trade

reported in record 8 is done at the ask price available at 9:00:26 (record 7), and it results

from executing a market buy order for 30000 units of volume. One can see that the new

ask volume is 1308000 (record 10), down from 1338000, the volume on the ask side available

before the market order was executed. Notice that it is not always possible from the data

to know exactly what has happened, since the data do not actually provide full information

about the order book. For example, orders may be cancelled, and new orders may arrive in

the system, such that the change of the bid (or ask) volume is not necessarily equal to the

amount reported in the last trade.

A few special features of the data appear. The first one is that some mistakes appear (see

records 29-31), but they are obviously linked to the closing. Such records can be eliminated

without harm. The second one is that the order of the records is seemingly not always as

it should be: usually the bid and ask price records reflecting the new situation after a trade

appear just after the ‘Last Trade’ record, with the same time stamp (see e.g. records 8-10,

11-13 and others), but in some cases they appear just before it (e.g. records 21-23). The

third feature is the fact that all time stamps are ending with an even number of seconds.

This is quite strange and implies that any duration between two events is an even number if

measured in seconds. Our understanding is that the TSE system sends the data whenever a

new trade or change of the best bid/ask situation occurs, with time stamps to the minute, and

that Bloomberg affixes the seconds corresponding approximately to moments when it receives

the data. It seems that in this process the seconds in the time stamps are somewhat rounded

to even numbers. No explanation for this is available from the data vendor. Therefore we
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Table 2: Raw data example

time label price volume duration
1 08:59:56 Bid Price 164.000 2624000
2 08:59:56 Ask Price 165.000 3497000
3 09:00:10 Bid Price 164.000 2902000
4 09:00:10 Ask Price 165.000 3545000
5 09:00:26 Last Trade 164.000 2216000 -
6 09:00:26 Bid Price 164.000 686000
7 09:00:26 Ask Price 165.000 1338000
8 09:00:30 Last Trade 165.000 30000 4
9 09:00:30 Bid Price 164.000 686000

10 09:00:30 Ask Price 165.000 1308000
11 09:00:34 Last Trade 164.000 10000 4
12 09:00:34 Bid Price 164.000 676000
13 09:00:34 Ask Price 165.000 1308000
...
14 10:59:32 Bid Price 162.000 228000
15 10:59:32 Ask Price 163.000 1382000
16 10:59:48 Last Trade 162.000 1000 -
17 10:59:48 Bid Price 162.000 227000
18 10:59:48 Ask Price 163.000 1382000
19 10:59:50 Bid Price 162.000 209000
20 10:59:50 Ask Price 163.000 1382000
21 11:00:00 Bid Price 162.000 199000
22 11:00:00 Ask Price 163.000 1382000
23 11:00:00 Last Trade 162.000 10000 12
24 11:00:02 Bid Price 162.000 202000
25 11:00:02 Ask Price 163.000 1382000
26 11:00:06 Last Trade 162.000 24000 6
27 11:00:06 Bid Price 162.000 180000
28 11:00:06 Ask Price 163.000 1382000
29 11:01:24 Bid Price 0.000
30 11:01:24 Ask Price 0.000
31 11:02:06 Last Trade 159.000
Data for Nippon Steel stock on March 3, 2003. Source: Bloomberg.

Price in yen. Volume in number of shares. Duration in seconds.
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consider for the analysis of the data that the precision of time recording is of two seconds,

rather than one second, as in the Trades and Quotes (TAQ) data base of the NYSE (New

York Stock Exchange); see Bauwens and Giot (2001, Chapter 2) for a description of the TAQ

data base. Finally, there are zero durations between some trades, which is not surprising

given the data precision. Two orders executed almost at the same time (within two seconds)

have an identical time stamp. We consider that the trades have been executed in the order

in which they are recorded, and we choose to assign a duration of one second between such

‘simultaneous’ trades. This is more correct than just discarding the zero durations, as this

would truncate the distributions of the durations at two seconds.

As we are interested in the analysis of durations between trades, we select all correct

records with the ‘Last trade’ label, provided they are time stamped in the range 9:00:00-

11:00:59 in the morning, and 12:30:00-15:00:59 in the afternoon. We keep the trades stamped

to the first minute after the official closing times because we suspect there is some delay in

reporting the trades, i.e. we choose to consider them as normal trades. From these records,

we compute the intertrade durations of each session. The first duration of a session is the one

between the first two trades after the opening, and the last one corresponds to the difference

between the time stamps of the last two trades (see the last column of Table 2). The duration

between the last trade of a session and the first trade of the next session is obviously not

used, since it would be artificially long. Finally, we divide all durations by 2, i.e. the unit for

measuring durations is 2 seconds. In this way, we avoid artificially non-existing odd durations.

For further use, we denote by ti the value of the time point of the i-th trade of a stock,

and by Xi the corresponding ‘raw’ duration, i.e. Xi = ti − ti−1.

3.2 Intra-daily Seasonality of Durations

The next step consists in adjusting the raw durations for their intra-daily seasonal pattern.

Indeed, it is well known that activity on stock markets is subject to variations linked to the

time of the day. This is due to the institutional features of the exchanges, such as the opening

and closing times, and the habits of traders (in particular the lunch time effect, however not

relevant on the TSE since there is a break from 11 to 12:30). Usually trading activity is the

most intense, hence inter-trade durations are the shortest (on average), at the beginning and

at the end of the day. At the start of the day, trading is very active as the opening of the
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market prompts traders to take positions such that the information brought about by news

events that occurred before the opening (macroeconomic news, or news released by companies

after the previous market close) is included in the prices of assets. High trading activity at

the end of the day is partly justified by the fact that traders often wish to close their positions

before the end of the trading session. Given that a midday break is a feature of TSE, it is of

interest to know if the general pattern of intra-daily seasonality of durations on this market

is fundamentally different from that of exchanges that do not organize a break (the inverted

U shape alluded above, see Bauwens and Giot, 2001, Chapter 2, for illustrations in the case

of the NYSE).

Figure 1: Time of day functions (in 2 seconds), all months, NPS and TOY

The intra-daily seasonal pattern may be defined as the expectation of the variable of in-

terest (trade duration) conditioned on time-of-day. We estimate the expectation by averaging

the observed durations over thirty minute intervals for each day of the month. This is equiva-

lent to assuming that the trading day is divided in intervals of 30 minutes (4 in the morning,

5 in the afternoon), and that each expectation is constant in the 30 minute interval. The last
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hypothesis is of course too coarse in practice, as each expectation may change throughout

the trading day. Assuming that such changes happen gradually, cubic splines are then used

on the thirty minute intervals to smooth the time-of-day functions. In doing so, the morning

and the afternoon sessions are treated separately.

Figure 1 and 2 display the time of day functions of the durations of the four stocks of our

database, for the months of March until July 2003. For SON and TOY, the functions are at

about half of the level of the other stocks (TKE and NPS), corresponding to a higher activity

level (and therefore smaller durations). For the morning session, the time of day function has

in most cases an inverted-U pattern with starting point lower than end point (higher in a few

cases). For the afternoon session, the function is in most cases decreasing, sometimes with a

flat or even slightly increasing section in the beginning. Note that the starting point in the

afternoon is in all cases larger than the end point of the morning. Over a complete day, we

recover essentially the inverted-U shape found in other exchanges, albeit with the change of

level at 12:30 due to the midday break.

Figure 2: Time of day functions (in 2 seconds), all months, TKE and SON
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Over the period March-July 2003, there is seemingly no general trend in the level of

activity. For NPS and TKE, the level of the curves for June and especially July is lower than

for the previous months, which may indicate a positive trend in activity. For TOY and SON,

there is no such clear pattern. We have no information on why there may be a positive trend

in activity of NPS and TKE, and not in the other stocks. Explaining these differences could

be of interest but should certainly be based on a larger sample of stocks and on a longer time

span than the five months we have at our disposal.

For each stock, the raw durations, denoted by Xi, are transformed into time-of-day ad-

justed durations (hereafter named TA-durations), denoted by xi, by assuming the following

relation:

xi = Xi/φ(ti), (1)

where φ(ti) is the time-of-day effect at time ti (i.e. the value of the estimated spline function

at ti, as detailed above). An alternative method of estimating the time-of-day function is to

fit a curve by non-parametric regression of raw durations against time-of-day. Equation (1)

corresponds to a deterministic multiplicative intra-daily seasonality function. It means that

the raw duration Xi is divided by the value of the time-of-day function at time ti, which is

the ‘clock’ time at which the duration Xi ends (since Xi = ti − ti−1). The resulting ratio is

the TA-duration.

The time-of-day function φ(ti) acts like a seasonal index used for seasonal adjustment of a

time-series. However our time-of-day function is not normalized as is usually done in seasonal

adjustment. Therefore the scale of the adjusted durations xi is quite different from the scale

of the raw durations Xi: compare the means of the raw durations given for several stocks

in Table 3, to the mean of the adjusted durations, always equal to 1 by construction. The

fact that the adjusted durations have a mean equal to 1 is an advantage for the numerical

maximization of the likelihood function of the models we present in Section 4 (this helps to

avoid overflows or underflows). The fact that we do not normalize the time-of-day function

only changes the scale of the durations but does not change their time series properties

(autocorrelations are not changed). Therefore the ML estimation results of the paper would

not be affected (except for constant terms) if we had normalized the time-of-day function.
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3.3 Statistical Properties of Durations

In Table 3, we report statistics on the data. For each stock and each month, we provide

the number of durations (n), and the number of zero durations (n0) that are turned into

durations of 0.5 unit (given that we use 2 seconds as unit). We report also the mean (X̄),

standard deviation (S), dispersion index (S/X̄), minimum (MIN, always equal to 0.5), max-

imum (MAX), autocorrelation coefficient of order 1 (R1) and Ljung-Box statistic of order 5

(Q5) of the raw durations. The corresponding statistics (denoted with lower case letters) for

the TA-durations are given in the last three rows of each panel of the table (the mean x̄ is

not given since it is equal to 1 as a result of the way the time-of-day adjustment is defined).

To fix the interpretation, consider the Nippon Steel stock in March. There are 14605

durations, corresponding to 730 trades per day on average, or a mean duration time of 22

seconds between two trades. The smallest duration is one second, and the longest one is

almost 6 minutes. The first autocorrelation coefficient of the trade durations is 0.15. A

graph of the autocorrelation function is in Figure 3 (top left panel). The Q5 statistic of 1346

indicates strong autocorrelation after 5 lags, and on the figure, one sees that this persists at

many higher lags. For the TA-durations, the autocorrelation function starts at a lower value

(top right panel), but still reveals strong dependence in the data, although the q5 statistic is

less extreme than for raw durations. This indicates that the time-of-day adjustment reduces

the dependence but does not render the durations serially uncorrelated. Note that the time-

of-day adjustment changes the value of the durations, but the ratio of the maximum to the

minimum is not much changed (13.1/0.04=328, compared to 352 for the raw data).

The statistics for the other stocks are generally similar, after accounting for the difference

of general activity level (mean durations for SON and TOY are about half of those of the

NPS and TKE stocks). This is even more the case if we compare the different months for the

same stock. However some differences are worth noticing:

1. The dispersion index (ratio of standard deviation to mean) is smaller than 1 for the two

most active stocks, whereas it is larger than one for the other two stocks. Applying the

test described by Engle and Russell (1998, p 1144) for a dispersion index equal to one,

this hypothesis is rejected at the level of 1 % for all stocks and all months. This happens

even if the dispersion index is equal to 1.02 as is the case for NPS and TKE in July, due

to the large sample sizes (approximately 24,000 observations). These rejections reflect
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Table 3: Statistics on trade and TA-trade durations

March (20) April (21) May (21) June (21) July (22)
NPS
n, n0 14605, 55 13337, 30 13402, 42 18556, 109 23943, 235
X̄, S 11.1, 12.5 12.7, 14.6 12.7, 14.2 9.2, 9.8 7.4, 7.8
S/X̄ 1.13 1.15 1.12 1.07 1.05
MIN, MAX 0.5, 176 0.5, 232 0.5, 161 0.5, 137 0.5, 117
R1, Q5 0.15, 1346 0.14, 887 0.09, 782 0.11, 1099 0.10, 1375
s/x̄ 1.08 1.11 1.09 1.04 1.02
min, max 0.04, 13.1 0.03, 16.4 0.03, 12.1 0.04, 16.7 0.06, 16.4
r1, q5 0.13, 954 0.12, 593 0.07, 543 0.09, 734 0.08, 990
SON
n, n0 28998, 272 36918, 440 44120, 619 39920, 938 44699, 1403
X̄, S 5.53, 5.40 4.14, 3.89 3.83, 3.43 4.24, 3.69 3.77, 3.42
S/X̄ 0.98 0.94 0.90 0.87 0.91
MIN, MAX 0.5, 119 0.5, 70 0.5, 56 0.5, 47 0.5, 59
R1, Q5 0.10, 1187 0.15, 4031 0.15, 4483 0.08, 1104 0.14, 3660
s/x̄ 0.96 0.92 0.88 0.85 0.89
min, max 0.08, 28.1 0.11, 15.2 0.12, 13.6 0.10, 10.0 0.12, 14.3
r1, q5 0.08, 691 0.13, 3197 0.14, 3710 0.06, 490 0.11, 2648
TKE
n, n0 16724, 171 16871, 114 15927, 127 18893, 347 24339, 542
X̄, S 9.66, 10.5 10.1, 11.1 10.7, 11.5 8.98, 9.72 7.31, 7.65
S/X̄ 1.09 1.10 1.08 1.08 1.05
MIN, MAX 0.5, 133 0.5, 140 0.5, 176 0.5, 112 0.5, 144
R1, Q5 0.08, 587 0.10, 781 0.10, 719 0.08, 833 0.09, 1242
s/x̄ 1.04 1.06 1.05 1.04 1.02
min, max 0.04, 12.3 0.04, 15.0 0.04, 14.5 0.04, 9.97 0.06, 18.6
r1, q5 0.06, 290 0.07, 476 0.09, 498 0.05, 354 0.07, 754
TOY
n, n0 29018, 305 34724, 419 29718, 287 33136, 653 33815, 903
X̄, S 5.56, 5.51 4.89, 4.56 5.71, 5.60 5.12, 4.93 5.02, 4.89
S/X̄ 0.99 0.93 0.98 0.96 0.97
MIN, MAX 0.5, 77 0.5, 69 0.5, 62 0.5, 75 0.5, 63
R1, Q5 0.11, 1634 0.10, 1510 0.08, 882 0.09, 1490 0.10, 1713
s/x̄ 0.95 0.91 0.95 0.95 0.95
min, max 0.07, 12.4 0.09, 16.0 0.07, 11.4 0.08, 15.1 0.08, 10.9
r1, q5 0.09, 922 0.08, 1023 0.06, 471 0.07, 933 0.08, 1160
n: number of durations; n0: number of removed zeroes; X̄: mean; S, s: standard deviations;

MIN, min: minima; MAX, max: maxima; R1, r1: autocorrelation coefficients of order 1;

Q5, q5: Ljung-Box statistics of order 5. X̄, S, MIN, MAX, R1, Q5 are for raw durations,

lower case equivalent for TA durations (x̄ = 1 by construction). The unit for X̄, S, MIN,

MAX, min and max is 2 seconds. The number of trading days for each month is indicated

after the name of the month. One day of data is missing for SON and TOY in July.
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In the ACF graphs, horizontal lines indicate the limits of 95 per cent confidence intervals (±1.96/
√

n).

Densities are estimated by a kernel method.

Figure 3: ACF, histograms and duration sequences, NPS, March
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See Figure 3 for details.

Figure 4: ACF, histograms and duration sequences, SON, March
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that the unconditional distributions of the durations are not exponential distributions.

2. The ratio of (initially) zero to positive durations, n0/n, is larger for the two most active

stocks than for the other.

The statistical properties of the trade durations (whether TA or not) share the stylized

properties also found for comparable data from other markets:

1. Duration clustering: long durations occur in clusters, and likewise short durations. This

is directly seen in the duration sequences shown in the bottom panels of Figure 3 and

4. Clustering induces positive autocorrelations and shows up in a slowly decreasing

autocorrelation function that starts at a low value (between 0.05 and 0.15).

2. Duration over/underdispersion: there are more/less extreme (small and large) durations

than is compatible with an exponential distribution. Note that previous studies have

consistently reported that trade durations are overdispersed. To our knowledge, the

underdispersion of the durations of SON and TOY is a specific feature of these stocks.

This feature of the trade durations of Sony and Toyota might be an artifact due to

the problem of bad measurement of the very small durations. If very small durations

are underrepresented, the mean of the durations are overestimated and the standard

deviation underestimated, which clearly results in an underestimated dispersion index.

The densities of the durations have a narrow peak over small durations, and a long right

tail (as exemplified in Figures 3 and 4, where the densities are estimated by a kernel

method).

Since independent exponentially distributed durations characterize the Poisson process, the

latter is not suitable to characterize trade durations. One needs a dynamic model compatible

with overdispersion for trade durations.

4 Duration Analysis

We present briefly in sub-section 4.1 the dynamic models we use for duration analysis of TSE

data. We expose and discuss the estimation results in sub-section 4.2.
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4.1 Models

We estimated autoregressive conditional duration (ACD) models, including logarithmic ver-

sions of this model (Log-ACD). There exist other models, see Bauwens, Giot, Grammig, and

Veredas (2004) for a presentation. These authors conclude that (Log-)ACD models perform

at least as well as more complex ones, that are much more costly to estimate and to evaluate.

Indeed ACD models are easy to estimate by maximum likelihood (ML).

ACD models (Engle and Russell 1998) specify the dynamics of the durations conditionally

on the past durations through an autoregressive moving average structure. When modelling

intertrade durations, a first choice to make is whether to model the raw durations or the TA-

durations. The first option requires to include in the model the time-of-day function and to

maximize jointly the likelihood function with respect to the parameters of this function and the

parameters of the dynamic part (defined below). This approach is more efficient statistically.

The second option simplifies the numerical aspect of estimation without sacrificing consistency

of the estimator, at the cost of some efficiency loss. In large samples like those used for the

estimations reported in this paper, the efficiency loss is not likely to be a big concern, especially

since the two options yield very similar (see Engle and Russell 1998, p 1137). This is why we

chose the second option and report estimations of ACD models for the TA-durations.

The most important assumption of ACD models is that the dependence in the duration

process {xi} can be captured through the conditional expectation function E [xi|Hi], denoted

in the sequel by Ψi for simplifying notation, where Hi = {xi−1, xi−2, . . . , x0}.
This is supposed to hold in such a way that {xi/Ψi = εi} is independent and identically

distributed. Hence, let {εi} (i = 1, . . . , n) be an IID process of positive random variables with

E [εi|Hi] = E(εi) = 1

Var(εi|Hi) = Var(εi) = σ2.

The εi are the “error terms” of the model.

The simplest version is the ACD(1,1) model is defined by

xi = Ψiεi, (2)

Ψi = ω + αxi−1 + βΨi−1, (3)

where ω > 0, α > 0 and β ≥ 0 are parameters. The positivity restrictions ensure that

Ψi cannot be negative or null, which it cannot be since it is the conditional mean of a
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positive random variable. This model may be transformed into the equivalent ARMA(1,1)

model xi = ω + (α + β)xi−1 + ui − βui−1 where ui = xi − Ψi has conditional expectation

equal to 0. This implies directly that the condition α + β < 1 must hold for xi to be

covariance-stationary, and that α + β is the autoregressive coefficient, which gives a measure

of the persistence of the process. What the ARMA equation above also shows is that the

autoregressive and moving average parameters differ only due to the parameter α. Therefore,

from the properties of ARMA(1,1) models (see e.g. Hayashi 2000, Ch. 6), we can deduce that

the autocorrelation function (ACF) of the process starts at a value slightly larger than α and

then decays geometrically at the rate α + β. With α small (say, between 0.05 and 0.1), and

α + β large (between 0.9 and 1), this type of ACF matches the empirical ACF of intertrade

durations rather well. The similarity of the ACD(1,1) model to the GARCH(1,1) model of

Bollerslev (1986) is obvious.

The ACD(1,1) model allows for conditional overdispersion (when σ2 > 1) as well as

underdispersion (σ2 < 1), since the conditional dispersion index, defined as the ratio of the

conditional standard deviation to the conditional mean of xi, is equal to σ. The unconditional

dispersion index, defined as the ratio
√

Var(xi)/[E(xi)] is always greater than σ unless α =

β = 0 (for a proof, see Bauwens and Giot (2001, pp 71-72)). The intuition of the result is

that positive autocorrelation (α and β > 0) creates sequences of long durations and of short

durations more than if the durations were independent (i.e. α = β = 0). These sequences

increase the dispersion compared to the case of independence. Therefore, autocorrelation

increases the dispersion index of εi.

By using the exponential transformation, the Log-ACD class of model avoids the need

for positivity restrictions on the parameters to ensure positivity of Ψi (this was the main

motivation behind the introduction of this model by Bauwens and Giot 2000). The version

we use is the Log-ACD(1,1) of type 2, taken from the reference just cited:

xi = eψiεi, (4)

ψi = ω + αεi−1 + βψi−1 = ω + α
xi−1

eψi−1
+ βψi−1 (5)

In this model, the dynamics bear on the logarithm of Ψi. Unconditional moments and sta-

tionarity conditions of xi are therefore not so easy to obtain as in the ACD model. One

important necessary condition for stationarity is β < 1. The parameter β corresponds to

α + β (rather than to β) in the ACD model. Other conditions and expressions of moments
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are given in Bauwens and Giot (2001, Ch. 3). The model has about the same properties as

the ACD model, for example larger persistence or autocorrelation (corresponding to larger

values of β) also incresases the dispersion index. However, there some minor differences: for

example Bauwens, Galli, and Giot (2003) show that the ACF decreases at a slower rate than

β at low lag orders, and that this feature is sometimes more in agreement with the shape of

empirical ACF functions of durations than the geometric rate of decline implied by the ACD

model.

ACD and Log-ACD models are flexible enough to fit the stylized properties of durations.

Their specification must be completed by an assumption on the distribution of the error term

εi, if maximum likelihood estimation is used. We use the assumption that the distribution of

εi is generalized gamma (GG). The density is

fGG(εi) =
γ

cνγΓ(ν)
ενγ−1
i exp

[
−

(εi

c

)γ]
, (6)

where ν > 0, γ > 0 and c > 0 are parameters, and Γ(ν) =
∫∞
0 uν−1e−udu is the gamma

function. All moments exist. In particular, if c = Γ(ν)/Γ(ν + γ−1), then E(εi) = 1, hence

we use this expression for c and simply write εi ∼ GG(ν, γ). This dispersion index can be

larger or smaller than one, depending on values of ν and γ (see Table 3.A.1 in Bauwens

and Giot 2001, p 100). This is important in our context since the duration series we handle

are not always overdispersed. The GG density encompasses as particular cases the Weibull

density (when ν = 1), the gamma density (when γ = 1), and the exponential density (when

ν = γ = 1). Examples of GG densities are shown in Figure 5 for values of γ and ν obtained by

estimation of some models. The two displayed densities are underdispersed, with dispersion

indices equal to 0.96 for the GG(4.56,0.51) and 0.79 for the GG(8.10,0.45).

Another flexible candidate distribution for εi is the Burr. Its density is

fB(εi) =
γ

c

( ε

c

)γ−1 [
1 + λ

(εi

c

)γ]−(1+λ−1)
, (7)

where γ > 0, λ > 0, and c > 0 are parameters. By setting c = λ1+γ−1
Γ(1 + λ−1)/[Γ(1 +

γ−1)Γ(λ−1 − γ−1)], the mean is equal to one, and the density has two free parameters (like

the GG density). However not all its moments exist (e.g. the mean exists if γ > λ). The

dispersion index (when it exists) can be below or above one. The Weibull density obtains

as a particular case when λ tends to 0, which is on the boundary of the admissible values,

something inconvenient. Since our estimation results for TSE data show that Burr-ACD
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models don’t pass residual autocorrelation tests as well as GG-ACD models, we refer the

reader to the appendix in Chapter 3 of Bauwens and Giot (2001) for more details on the

properties of the Burr distribution.

Denoting generally by fε(εi; θ2) the density function of εi, which can depend on some

parameters θ2 (equal to (γ, ν) for the GG density, and to (γ, λ) for the Burr), the conditional

density of xi is fx(xi|Hi; θ) = fε( xi
Ψi

; θ2)Ψ−1
i . Then the log-likelihood function (LLF) for

θ = (θ1, θ2) where θ1 collects the parameters of Ψi (typically ω, α, and β) is

l(θ) =
n∑

i=1

ln fx(xi|Hi; θ) =
n∑

i=1

[
ln fε(

xi

Ψi
; θ2)− lnΨi

]
. (8)

In this expression, Ψi corresponds to (3) in the ACD(1,1) model, or to expψi with ψi as defined

in (5) in the Log-ACD(1,1) specification. Numerical maximization of the LLF delivers the

maximum likelihood estimator (MLE) θ̂ with the usual large sample approximate normality

property θ̂ ∼ N(θ0, V (θ0)), where θ0 is the so-called true value, and V (θ0) is the variance-

covariance matrix. The latter can be estimated consistently as minus one times the inverted

Hessian matrix of the LLF at the maximum. Therefore one can conduct asymptotically valid

hypothesis tests on θ by usual standard normal and chi-squared tests.

4.2 Estimation Results

In Table 4 we provide estimation results and diagnostics for all stocks in March, and in

Table 5 for the NPS stock in all months (the second columns of both tables are identical).

These results are representative of what is obtained for other stock-month pairs. We report

results for the GGACD (ACD with generalized GG density) and ELACD2 (type 2 Log-ACD

with exponential density) models for reasons explained below. For each model-stock-month

combination, we report ML estimates (with standard errors) and residual diagnostics (mean,

dispersion index, TED, Sk, for k = 1, 5, 10, 50). Sk is the ratio of the Ljung-Box Q-statistic

of order k of the residuals, to the 95% quantile of the χ2(k) distribution. A value above 1 is

therefore indicating significant autocorrelation of order k at the 5% level, while a value smaller

than 1 is indicating the reverse. To complement this information, several panels in Figure 5

show the plot of the autocorrelation coefficients up to order 50 with the 95% confidence band.

Checking residual autocorrelation is an important criterion for model evaluation: estimation is

based on the assumption of IID errors, therefore significant autocorrelation in the estimated
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Table 4: Estimation results, March, all stocks

NPS3 TKE3 SON3 TOY3
GGACD
ω 0.021 0.031 0.045 0.049

(0.0056) (0.012) (0.018) (0.016)
α 0.057 0.043 0.051 0.063

(0.0071) (0.0065) (0.0084) (0.0082)
β 0.921 0.925 0.902 0.886

(0.012) (0.019) (0.027) (0.024)
γ 0.51 0.49 0.45 0.46

(0.019) (0.023) (0.023) (0.021)
ν 4.56 4.74 8.10 7.97

(0.33) (0.43) (0.80) (0.71)
ε̄, d 1.01, 1.00 1.01, 1.02 1.01, 0.92 1.01, 0.91
S1, S5 0.15, 0.22 0.35, 0.52 0.00, 0.65 0.11, 0.40
S10, S50 0.58, 0.84 0.86, 1.23 0.67, 2.46 0.62, 2.38
ELACD2
ω -0.032 -0.019 -0.019 -0.026

(0.0046) (0.0026) (0.0021) (0.0032)
α 0.032 0.019 0.019 0.026

(0.0045) (0.0026) (0.0021) (0.0032)
β 0.994 0.995 0.996 0.994

(0.0019) (0.0014) (0.0010) (0.0015)
ε̄, d 1.00, 0.99 1.00, 1.01 1.00, 0.90 1.00, 0.90
TED -0.54 -0.53 -11.0 -11.9
S1, S5 1.32, 1.71 0.07, 0.44 3.40, 2.19 2.88, 2.62
S10, S50 1.22, 0.98 1.03, 1.06 1.70, 1.05 1.74, 1.03
n 14605 16724 28998 29018
Standard errors are reported in parantheses below the estimates. ε̄, d:

mean and dispersion index (standard deviation/mean) of residuals;

TED: N(0,1)-test statistic for overdispersion of residuals under ex-

ponential null hypothesis; Sk, k = 1...50: ratio of Ljung-Box Q-statistic

of order k of residuals to 95 % quantile of χ2(k); n: number of obser-

vations used for estimation.

20



Table 5: Estimation results, NPS, all months

March April May June July all
GGACD
ω 0.021 0.024 0.026 0.028 0.011 0.017

(0.0056) (0.0060) (0.0059) (0.0050) (0.0021) (0.0017)
α 0.057 0.063 0.051 0.058 0.038 0.045

(0.0071) (0.0074) (0.0051) (0.0047) (0.0033) (0.0023)
β 0.921 0.913 0.922 0.913 0.951 0.938

(0.012) (0.013) (0.010) (0.0091) (0.0053) (0.0039)
γ 0.51 0.49 0.51 0.47 0.52 0.41

(0.019) (0.020) (0.017) (0.015) (0.014) (0.0088)
ν 4.56 4.49 4.12 5.48 5.13 7.07

(0.33) (0.34) (0.27) (0.34) (0.26) (0.30)
ε̄, d 1.01, 1.00 1.01, 1.04 1.01, 1.03 1.01, 0.97 1.01, 0.94 1.01, 0.99
S1, S5 0.15, 0.22 0.73, 0.95 3.51, 1.33 0.25, 0.23 0.84, 0.32 0.04, 0.27
S10, S50 0.58, 0.84 0.76, 1.30 1.00, 0.93 0.23, 0.70 0.30, 0.64 0.33, 0.98
ELACD2
ω -0.032 -0.035 -0.033 -0.041 -0.021 -0.030

(0.0046) (0.0044) (0.0038) (0.0045) (0.0020) (0.0018)
α 0.032 0.035 0.033 0.041 0.020 0.029

(0.0045) (0.0043) (0.0037) (0.0044) (0.0020) (0.0018)
β 0.994 0.994 0.991 0.988 0.997 0.995

(0.0019) (0.0018) (0.0023) (0.0026) (0.00063) (0.00073)
ε̄, d 1.00, 0.99 1.00, 1.02 1.00, 1.02 1.00, 0.97 1.00, 0.94 1.00, 0.98
TED -0.54 1.76 1.64 -2.88 -6.94 -3.76
S1, S5 1.32, 1.71 3.48, 1.71 1.58, 1.03 0.03, 0.43 0.03, 0.59 1.37, 3.76
S10, S50 1.22, 0.98 1.07, 1.29 0.93, 0.77 0.36, 0.83 0.57, 0.73 2.57, 2.09
n 14605 13337 13402 18556 23943 83843
For definitions and details, refer to Table 4.
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Horizontal lines in ACF indicate the limits of 95 per cent confidence intervals (±1.96/
√

n). Densities

of residuals are estimated by a kernel method. GG density is evaluated at the parameter estimates.

Density duration ranges from 0 to largest residual.

Figure 5: ACF and densities of residuals and model, March
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residuals is an indication of a misspecified model. TED is the test statistic of Engle and

Russell (1998, p 1144), asymptotically N(0,1), for the null that the dispersion index of the

errors is equal to 1 and applies only to the ELACD2 residuals.

The set of models that were fitted to each stock-month data set include the ACD model

defined by equations (2)-(3) and the Log-ACD model defined by (4)-(5), each combined with

the following distributions for εi: generalized gamma, defined by equation (6), Burr, Weibull,

and exponential, making a total of eight models.

Equations (3) and (5) correspond to (1,1)-models and can be extended to include more

lags of the duration and its conditional expectation (a model is said to be of order (p, q) if

it includes p lags of the duration and q lags of the conditional expectation). Concerning the

choice of p and q, it is almost a stylised fact that (1,1)-models provide a correct specification

of the dynamics of the durations and are not dominated by models with p or q greater than

one (this is like what happens with GARCH models). Therefore, we started our specification

search (for each possible type of model) with the (1,1)-model and did not look for models

of higher order if the (1,1)-model passed the residual autocorrelation checks. This does not

exclude that, for example, a (2,1)-model can be correctly specified. However in that case

we prefer the most parsimonious model provided it is not rejected by a likelihood ratio test

against the more general model. In this context, the AIC or BIC criterion could be used as

a model choice criterion (rather than the likelihood ratio test), and the final outcome may

depend on the criterion used. Our specification searches resulted in the choice of (1,1)-models

in all cases. A synthesis of the results follows.

1. Across all months/stocks the GGACD model is generally the best overall fitting model,

i.e. it has usually better specification diagnostics than other model/distribution com-

binations. This is not surprising if one compares it with models using the Weibull (or

exponential) density since these densities have one (or two) parameters less and are

therefore much less able to fit the data. The Burr distribution has as many parameters

as the GG but typically in our results the residuals of Burr ACD models are signifi-

cantly autocorrelated (at the 5% level) even at low lags whereas this is not the case with

GGACD models (with the exception of the results for NPS in May, see Tables 4 and 5).

Moroever, since numerical convergence problems occur in estimating the GGLACD2

models (for unknown reasons) it is not possible to compare GGACD with GGLACD2
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models.

2. Many models still have autocorrelated residuals at some lags, even if autocorrelation is

considerably reduced compared to what is found in the TA-durations. In this respect,

GGACD models for TOY and SON (the most active stocks) have still strongly significant

residual autocorrelation at lag 50 (see the value of S50 and the ACF panels of Figure

5), while this is much less true for the other stocks (NPS and TKE). This feature may

indicate the need for using a model compatible with ‘long memory’ for such series.

3. ELACD2 model estimates are reported for comparison with the GGACD estimates,

In terms of diagnostics, the GGACD models generally do a better job in removing

autocorrelation from the residuals, although there are few exceptions (e.g. S10 and S50

for NPS in May are much lower under ELACD2 than GGACD).

4. Estimates of the parameters of the autoregressive equation are in the stationary region

but close to the boundary, reflecting the high degree of autocorrelation of the durations.

However, the sum of the estimates of α+β is more distant from one in GGACD models

than in other ACD models (see also the very close to one β estimates in ELACD2

results). When we use an exponential distribution, α + β is pushed toward the value

one since this allows to capture the dispersion of the data better. When parameters like

those of the GG density are present, they help to capture this feature and free to some

extent the dynamic parameters of this aspect. It is likely that more flexible ACD models

will help to better separate the need to fit both the persistence and the dispersion of the

process. The Markow switching ACD model (Hujer, Vuletic, and Kokot, 2002) and the

mixture duration model (DeLuca and Gallo 2004, Hujer and Vuletic 2004) have been

proposed recently as valuable extensions of ACD models.

5. In all cases, a formal statistical test of goodness-of-fit of the estimated distribution of

εi rejects the assumed form of distribution at any conventional significance level (this is

the test for uniform distribution of the probability integral transforms of the durations

described in Bauwens, Giot, Grammig, and Veredas, 2004, see formula 4). The value

of the test statistic is less extreme for the GG density than for the competitors (Burr,

Weibull, exponential), indicating that the GG density is the ‘least bad’ choice. The

panels of Figure 5 showing the fitted GG density and a kernel density of the residuals
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for NPS and SON illustrate the inadequacy of the GG density to fit the density of the

residuals. Even though the shapes of the two curves are rather similar, the GG density

puts too little mass in the area around the mode, and consequently too much mass on

surrounding areas. The discrepancy is larger for SON than for NPS. Bauwens, Giot,

Grammig, and Veredas (2004) report similar results that for NYSE trade durations.

6. For GGACD models, the dispersion index of the residuals is close to one in most cases.

It is smaller than one for SON and TOY in March, where it takes a value close to

0.91, and for NPS in July (0.94) and June (0.97). The results are very similar for

ELACD2 models. The TED statistic in this case reveals that the dispersion index is

significantly different from one for SON and TOY in March, and for NPS in June and

July. Although the TED statistic is not applicable to the GG density, one may presume

that the dispersion index values for SON and TOY in March and NPS in July and June

mentioned above for GGACD models are also significantly different from one. Notice

that finding (as in the other cases) that they are not significantly different from one

does not imply that the exponential distribution is the best choice.

7. Estimates for different months on the same stock are rather stable. See Table 5 for

the NPS stock. This indicates that the process generating the trades has been stable

over the period March-July 2003. For comparison, we also report the estimates for the

pooled data sets of NPS (five months altogether), see last column of Table 5. Note the

acceptable dynamic specification of the GGACD model in this case (no Sk is larger than

1). A likelihood ratio test of equality of the parameters for the five months rejects the

null hypothesis at any conventional level, but this is hardly surprising given the large

sample size. The most different parameters are those of the GG density.

8. We also estimated the models when the raw durations that are equal to 0 second are

removed rather than replaced by durations equal to 1. The previous comments remain

valid since the estimations results are not much changed. The most sensitive estimates

are the parameters of the GG density. This is not surprising since these parameters

serve to fit the distribution and the removal of observations occurs mainly at the left

tail of the distribution. For example, the estimates for the TKE stock in March are

ν̂ = 5.29 γ̂ = 0.47 instead of 4.74 and 0.49. For SON in March, they are 8.86 and
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0.44, instead of 8.10 and 0.45. Such changes are of course less important when the

number of zero durations (turned into 1) is very small (like for NPS in March). The

most interesting difference is that residual autocorrelation is generally more important

for GGACD models when the zero durations are removed from the data.

Table 6: Summary of TSE and NYSE trade durations and ACD models

TSE NYSE

Durations:
-intra-daily pattern inverted-U same
-dispersion index between 0.85 and 1.10 larger than 1
-autocorrelations start around 0.10 same

decrease slowly same
-density mode about 0.3 same
-density shape very sharp around mode, same

with long right tail same

Best fitting models:
-type ACD ACD and Log-ACD
-persistence high high
-distribution generalized gamma same or Burr
The qualitative features pertain to highly traded stocks. For details about trade

durations of NYSE stocks, see Bauwens and Giot (2001). Duration features,

except the intra-daily pattern, are for time of day adjusted durations.

5 Conclusion

The main purpose of this paper is to characterize the statistical properties of inter-trade

durations of four stocks traded on the TSE, and to estimate econometric dynamic duration

models that fit the data. We find that the generalized gamma ACD(1,1) model captures

correctly the dynamic properties of the durations, although for two stocks, there remains

some significant autocorrelation (at order 20 or higher) in the residuals. We stress that

despite this shortcoming, the degree of autocorrelation of the residuals is very much lower

than what it is for the durations (a similar result is reported by Engle and Russell for the

trade durations of the IBM stock on NYSE), indicating the usefulness of the ACD model.

26



It should be borne in mind that the data we analyzed pertain to highly traded stocks

and that the properties found for these data do not extend necessarily to much less traded

stocks. Not surprisingly, the TSE data share the main properties of comparable data for

other markets like the NYSE, but we found some small differences, which are linked to the

specificity of TSE and to the imperfect nature of the recording of the data. We think that

more in-depth studies of the TSE market would benefit from more precise and extensive data

recording. Table 6 provides, in qualitative terms, a comparison of the main features of trade

durations and estimated ACD-type models for TSE and NYSE stocks.
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