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Abstract

In times of low-inflation, conventional monetary policy is perpetually
exposed to the risk of being caught by the liquidity trap. As a part of a
pre-emptive monetary policy to avoid the liquidity trap, many economists
have pointed out that this risk can be possibly circumvented by targeting a
small but positive inflation rate - i.e., so-caled the ‘buffer’ role of an
inflation target. In this paper, based on the stylized framework of a
central bank's linear-quadratic dynamic optimization problem taking into
account the zero lower-bound constraint on the nominal interest rate, we
analyze the role of an inflation target in reducing the long run stabilization
cost stemming from the liquidity trap. We prove the existence of the
‘buffer’ role of small but positive inflation in the presence of a liquidity
trap. Moreover, we anaytically show that a central bank's loss function
evaluated at the steady state is decreasing and convex function of an
inflation target. Finally, these analytical properties of an inflation target
are verified by a numerical method. Sensitivity analyses suggest that, in
the presence of a liquidity trap, a centra bank faced with volatile
macroeconomic shocks should consider the ‘buffer’ role of an inflation
target serioudly.
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“... there are several measures that the Fed (or any central bank) can

take to reduce the risk of falling into deflation. First, the Fed should try to
preserve a buffer zone for the inflation rate, that is, during normal times it
should not try to push inflation down all the way to zero. Most central banks
seem to understand the need for a buffer zone. For example, central banks
with explicit inflation targets almost invariably set their target for inflation
above zero, generally between 1 to 3 percent per year. Maintaining an infla-
tion buffer zone reduces the risk that a large, unanticipated drop in aggregate

demand will drive the economy far enough into deflationary territory to lower

the nominal interest rate to zero.” — Governor Ben S. Bernanke in remarks
titled “Deflation: Making Sure “It” Doesn’t Happen Here” (November 21,
2002).

“At the same time, the Governing Council agreed that in the pursuit
of price stability it will aim to maintain inflation rates close to 2% over
the medium term. This clarification underlines the ECB’s commitment to
provide a sufficient safety margin to gquard against the risks of deflation.” —
ECB Press Release: The ECB’s Monetary Policy Strategy (May 8, 2003).

1 Introduction

1.1 Motivation

Since the late 90’s, many countries have been experiencing low inflation and in some
cases, especially Japan, have experienced mild deflation. The trend of disinflation is
not only common for the industrialized countries, but also for the emerging market
economies (see Figure 1). For instance, China and Hong Kong have experienced mild,
but persistent deflation during the late 90’s. In an era when low inflation is the norm
for many countries, the scenario of deflation is no longer a myth. As the possibility of
deflation becomes a reality, central banks are now seriously exposed to the risk of falling
into the liquidity trap (see Figure 2).! A liquidity trap is a situation in which a central
bank can no longer rely on the nominal interest rate channel — the conventional monetary
policy — to control the economy. Once caught by the liquidity trap, conventional
monetary policy will be virtually impotent that, unless for some effective unconventional
monetary policy measure, the economy will likely experience prolonged recession and
deflation. In the hope of avoiding this unduly prolonged recession, a monetary policy
measure to prevent falling into the liquidity trap — i.e., the pre-emptive monetary policy

— has never been so important for central banks.

'The issue of the liquidity trap and its disasterous consequences has been resurrected by Krugman
(1998). For a study that reviewed the predicaments caused by the liquidity trap taking the case of
Japan’s ‘lost decade,’” see Ahearne et al. (2002).



As a part of this pre-emptive monetary policy measure, it has been pointed out that
the central bank can potentially circumvent the risk of falling into the liquidity trap by
targeting small but positive inflation. This particular function of small but positive
inflation can be interpreted as a social benefit aspect of inflation, in the sense that
inflation can reduce the central bank’s stabilization cost in the presence of the liquidity
trap. This social benefit aspect of small but positive inflation is not just a theoretical
possibility, but seems to be well understood by the central banks in practice. Indeed,
many central banks that adopt an explicit inflation target, set the target in the range of
1% to 3% (see Table 1) and this behavior by the central banks could be seen as evidence
that the social benefit role of inflation actually exists in the real world. Of course, one
reason for targeting small but positive inflation comes from the measurement bias in
inflation. As the Boskin Commission’s (1996) seminal study reports, there exists an
upward bias in inflation measurement ranging from 0.5 percent to 2 percent annually,
with a mid-point estimate of 1.1 percent for the U.S. consumer price index. A similar
study on the Japanese consumer price index was conducted by Shiratsuka (1999), who
reports a mid-point estimate of upward bias of 0.9 percent annually. However, even
taking into account the existence of a measurement bias in inflation (which is more or

less 1 percent annually), still it seems to be that the ‘true’ inflation target is positive.

Table 1: Range of Inflation Targets Set by Central Banks

Country Initiated Target Range*

New Zealand 1988 0~3%
Canada 1991 2+1%

United Kingdom 1992 2.5(£1)%
Sweden 1993 24+1%
Australia 1993 2~3%
South Korea 1998 2.5+1%
ECB 1998 ~2%0**

Source: Bernanke et al.. (1999), BOJ Policy Planning Office (2000a, b)
* As of year 2000. ** ECB sets the range in the context of ‘price stability.’
As of May 8, 2003, ECB announced that “it will aim to maintain inflation

rates close to 2% over the medium term.”

Turning to the theoretical development? of the social benefit aspect of small but

? Another theoretical justification for targeting small but positive inflation comes from the downward
rigidity in nominal wages. As Akerlof et al. (1996) pointed out, when there exists downward rigidity
in nominal wages, targeting too low an inflation rate will impair the adjustment of real wages, thereby
distorting the efficiency of the labor market. To support this view, Kuroda and Yamamoto (2003a,b)
found some empirical evidence on downward rigidity in nominal wages using Japanese micro data.

However, in order to keep our model manageable, in this paper, we maintain our focus on the social



positive inflation, several researchers have pointed out its importance in the presence of
the liquidity trap. Summers (1991) was perhaps the first to recognize the importance of
such social benefit aspect of inflation. He argued that “the optimal inflation rate is surely
positive, perhaps as high as 2 or 3 percent ” (p.627). Summers’ proposition of a positive
inflation target has long been ignored or given little attention, probably because low
inflation or deflation were hardly an issue during the early 90’s. However, since the late
90’s when many industrial countries have been experiencing low inflation, the side-effects
stemming from the liquidity trap have once again started to gain attention. Fischer
(1996) proposed an inflation target of 2% and emphasized that “the most important
factor is the difficulty for monetary policy posed by the lower bound of zero on the
nominal interest rate” (p.19). In the sequence of studies conducted by Bernanke and
Mishkin (1997), Posen (1998), and Bernanke et al. (1999), they suggested to add a 1

73 on top of the measurement bias when setting the inflation

percent “margin of safety
target. In the same spirit, Blinder (2000) specifically warned that “zero inflation is
something to be avoided” and suggested to set the inflation target “sufficiently high”
to keep the risk of being caught by the liquidity trap low (pp.1093-1094). Svensson
(1999), also being aware of the “potential drawbacks of too low an inflation target due
to nonnegative nominal interest rates” (p.649), supported the view of setting a positive
inflation target.

Several simulation studies were conducted to verify the social benefit aspect of infla-
tion. Fuhrer and Madigan (1997) showed that the impulse response of the output gap
and the inflation rate return to their steady states faster when the inflation target is set
significantly positive. Orphanides and Wieland (1998), in their stochastic simulation
study, showed that the probability of the economic state entering a liquidity trap will be
lower when the inflation target is set higher and concluded that the social welfare loss
can be reduced by setting a positive inflation target. Teranishi (2002), in his simulation
study, considered the case of a hybrid New Keynsian Phillips curve and showed the
social welfare loss to be minimized under positive inflation. Hunt and Laxton (2003),
using MULTIMOD simulation model, showed that targeting too low an inflation rate
will induce a central bank to be susceptible to a deflationary spiral and suggested to
target the inflation rate higher than 2% in the long run.

Unfortunately, however, studies regarding the social benefit aspect of inflation stem-
ming from the liquidity trap have been mainly conjectural or simulation studies. To the
best knowledge of the author, there has been no analytical study regarding the social
benefit aspect of inflation, let alone proof of its existence. The main contribution of this
paper is that we provide an analytical foundation for the social benefit from targeting

positive inflation in the presence of a liquidity trap — i.e, to borrow from Bernanke’s

benefit aspect of inflation solely arising from the liquidity trap.
3See Bernanke et al. (1999, pp. 316-317).



(2002) terminology, the ‘buffer’ role of an inflation target - and to prove that, indeed,
the stabilization cost in the long run is a decreasing-convex function of the inflation
target. Further, employing a numerical rather than simulation method, we numerically
approximate the steady state loss function in the presence of a liquidity trap and demon-
strate that the loss function is, indeed, decreasing and convex in the inflation target.
The strength of this numerical approach is that, unlike a simulation method, we can
numerically approximate the true loss function of the central bank to the magnitude of
arbitrary accuracy. In sum, we have analytically proved and numerically demonstrated

the followings:

e The existence of the social benefit role (or the buffer role) of inflation in the

presence of a liquidity trap.

e The steady state loss function of the central bank to be a decreasing-convex func-

tion of the inflation target.

1.2 Pre-emptive Monetary Policy and the ‘Backward-looking’ Econ-

omy

The analysis of pre-emptive monetary policy (including the buffer role of an inflation
target) is usually discussed in the context of the ‘backward-looking’ economy — i.e., ac-
celarationist Phillips Curve or Fuhrer and Moore’s (1995) hybrid New Keynsian Phillips

4 Now, what about pre-emptive monetary policy in the context of a pure forward-

Curve.
looking economy? To the best knowledge of the author, pre-emptive monetary policy
has never been associated with a forward-looking economy. And there is a reason for
this.

In a pure forward-looking economy, where the expectation channel exists, the lig-
uidity trap does not constitute a severe constraint on the conduct of monetary policy.
This is because, theoretically, a central bank can escape from a deflationary spiral by
exploiting the expectation channel through credible commitment. For instance, Krug-
man (1998) argues that the announcement of an inflation target may have an actual
impact on the economy via the expectation channel. Eggertsson (2003), in the context
of a dynamic general equilibrium (DGE) model with a sticky price setting, showed that
a central bank can extricate the economy from a deflationary spiral by committing to

higher money supply in the future.’ In such a purely forward-looking economy, provided

'For instance, Reifschneider and Williams (2000) analyze pre-emptive monetary policy in the frame-
work of an accelarationist Phillips Curve. Orphanides and Wieland (2000), Teranishi (2001), and Hunt
and Laxton (2003) analyze pre-emptive monetary policy in the framework of a hybrid New Keynsian

Phillips Curve.
®Theoretically speaking, however, as was pointed out by Benhabib et al. (2001), the issue of inde-

terminacy or sunspot equilibria can easily arise under both a flexible and sticky price DGE model. As



that an announcement or commitment is credible, expected inflation, and consequently
current inflation, will instantly become positive allowing the economy to escape from
a deflationary spiral. As such, the zero-bound constraint on the nominal interest rate
will not particularly hinge on the conduct of monetary policy, giving only a weak raison
d’étre for pre-emptive monetary policy in a forward-looking economy — i.e., no need
for an aggressive monetary policy conduct or no need for a buffer zone for an inflation
target.

In contrast, in a backward-looking economy,® where the expectation channel is non-
existent by construction, the conduct of pre-emptive monetary policy through the nom-
inal interest rate channel” will be crucial. Since a central bank cannot rely on the
expectation channel to extricate the economy from a deflationary spiral,® the existence
of a liquidity trap will pose a serious threat to the conduct of monetary policy. As
such, in a backward-looking economy, it is clearly in the interest of a central bank to
precautiously avoid being caught in a liquidity trap both in the short-run and long-run,
which gives a solid raison d’étre for pre-emptive monetary policy. In this paper, in
order to model pre-emptive monetary policy in the long-run — i.e., the buffer role of an
inflation target, we frame our analysis in the context of a backward-looking economy
with the nominal interest rate channel being the sole monetary transmission channel.

The remainder of this paper is organized as follows. In Section 2 we review the
design of monetary policy in the presence of a liquidity trap. In Section 3, building
upon the results stated in Section 2, we provide the analytical foundation for the social
benefit role of inflation in the presence of a liquidity trap. In Section 4 we conduct a
numerical analysis of the stabilization cost in the long run in the presence of a liquidity

trap. Concluding remarks are presented in Section 5.

Carlstrom and Fuerst (2000) state, the avoidance of sunspot equilibria is considered to be a “necessary
condition for any good monetary policy rule” (p.2). Thus, whenever considering monetary policy in

the context of a DGE model, one should be careful to rule out the possibility of sunspot equilibria.
In particular, what we have in mind here is sticky inflation. For the micro-foundation regarding

sticky inflation, see Woodford (2001b) and Mankiw and Reis (2002).
TOf course, if a fiscal instrument (such as purchase of real assets) is readily available to a central

bank or foreign exchange intervention is allowed, it may be possible for a central bank to rely on those
instruments to extricate the economy from a deflationary spiral even when the nominal interest rate is
binding at zero. In reality, however, since such policy options for a central bank are not readily available
or are constrained by institutional regulations, the focus of this paper is on the nominal interest rate
channel, which is readily available to a central bank.

8Here, one may question the effectiveness of an announcement or commitment in a backward-looking
economy. As far as the model in this paper is concerned, the announcement of an inflation target or
commitment to a higher money supply will have no effect on the economy. Under the backward-looking
Phillips Curve setting, since the private sector’s expected inflation is formed by the current inflation
and output gap, the expected inflation rate will never be positive unless a central bank actually realizes

a positive inflation or output gap. Nothing else matters.



2 Monetary Policy Rule and Liquidity Trap

2.1 Model Setup

The monetary authority is assumed to behave so as to minimize the squared deviation of
the inflation from its target and squared output gap (the percent deviation of real GDP
from its potential) over time by controlling for the policy instrument — i.e., the short-
term nominal interest rate in our case. Mathematically speaking, the inflation rate and
output gap can be considered as the state variables and the nominal interest rate as the
control variable for the monetary authority. The period-by-period loss function of the

monetary authority is assumed to take the standard form,

Li= 5 [+ Am Y @

where 7; and y; stand for the inflation rate and output gap at period t, respectively.
7* stands for the inflation target and A is the preference parameter of the monetary
authority. It should be noted that the inflation target, 7*, is set exogenously and,
therefore, the monetary authority is assumed to minimize the loss function over time
taking the level of the inflation target as given. Note further that the inflation target
is assumed to be constant over time. Also, implicit in the loss function above, the
monetary authority is assumed to target a zero output gap.

The economy is modeled as a conventional IS-LM, AD-AS type formulation following
Svensson (1997), Ball (1999), and Reifschneider and Williams (2000). Namely, the state

transition rule of the output gap is assumed to follow the simple IS type equation,

Yer1 = pyt — 6 (it — EyTyq1) + Ve, (2)

where i; stands for the nominal interest rate’ at period t. Eymy1 represents the ex-
pected next period’s inflation at period ¢, where E; stands for the expectation operator
conditioned upon the information set available at period t. Coefficient p represents the
magnitude of output gap stickiness and is assumed to be p > 0. Further, the output
gap at period t is assumed to be negatively related to the current real interest rate and,
therefore, the coefficient ¢, which controls the responsiveness of the output gap with
respect to the real interest rate, is assumed to be § > 0. Similarly, the state transition
process of the inflation is assumed to follow the simple AS type equation which can be

interpreted as a backward-looking accelerationist Phillips curve,

M1 = T + OYt + €y (3)

9Note that we have implicitly assumed the equilibrium real interest rate, r*, to be zero following

Svensson (1997). However, this can be easily modified without altering the main propositions of this

paper.



The stochastic disturbance vector representing IS and AS shocks, (vVty1,e¢41), is inde-
pendently and identically distributed with mean 0 and variance-covariance matrix €2.
Technically speaking, it should be noted that the monetary authority’s control vari-
able, i;, enters only through the transition equation (2), but not directly inside the loss
function.

Under this setup, the IS equation (2) contains a forward-looking variable, Eymsy;.
However, from the AS equation (3), the expected inflation rate can be simply expressed

as
Eymip1 = m + ayy. (4)

In other words, the linear combination of the current inflation rate and current out-
put gap constitutes sufficient statistics in forecasting the next period’s inflation rate.

Substituting eq. (4) for eq. (2), the IS equation can be transformed as
Yt+1 = (,0 + aé)yt + 6y — 01 + Vt41- (5)

Given the state transition rules of the state variables output gap and inflation rate and
loss function as above, we are now ready to describe the dynamic optimization problem

of the monetary authority.

2.2 Monetary Policy in the absence of a Liquidity Trap: The Taylor
Rule

We first consider the dynamic optimization problem of the monetary authority in the
absence of a liquidity trap - i.e., no lower-bound constraint on the nominal interest
rate.! Tt should be noted that, under this environment, a negative nominal interest rate
is permitted. Formally, the dynamic optimization problem of the monetary authority

can be described as follows.

o0
min By #L;, (6)
{1t+j};io =0
subject to
Yerjr1 = (p+ b))+ 6Terj — Oy + Vpjia
Ti+jtl = Titj + QY + Et4jit1

10Gtriclty speaking, the concept of a liquidity trap and zero-bound constraint on the nominal interest
rate are different concepts. In principle, if the ‘money demand’ curve becomes perfectly elastic above
the zero nominal interest rate, then it is possible that the nominal interest rate is bounded above zero,
say i > b. However, since the main implications of this paper are unaltered even when the lower-bound
is positive, for the sake of simplicity, we assume the liquidity trap to occur at a zero nominal interest

rate.



for Vj > 0, where the monetary authority’s discount factor 3 is assumed to be sufficiently
small for the Contraction Mapping Theorem to hold. Also, for this purpose, we have
assumed the monetary authority’s optimization horizon to be infinite. Under these
conditions,'! the above minimization problem can be restated as a recursive two-period

problem using the Bellman equation as follows,

g .
V (7t,yt) = min {5 i + Ay — 7)) + 5Etv(g(yta7ft,Ut+1,€t+1))} ) (7)
2t
where
p+ ad O Y 6 . V41
9y, T, Veg1,E041) = - it + .
o 1 " 0 €141

Thus, the problem can be regarded as a stochastic linear-quadratic (LQ) control problem
with linear state transition function. As is well known in the operation research litera-
ture, the optimal feedback rule will be a linear function of the state variables under the
LQ stochastic control and the value function will be a quadratic function of the state
variables. For the problem considered here, this implies that the optimal monetary
policy reaction function is a linear function of y; and 7 and the value function — rep-
resenting the long run stabilization cost borne by the monetary authority — V(m¢,yt),
is a quadratic function. This was first pointed out by Svensson(1997) and Ball (1999).
They further give an interpretation of its linearity with respect to theoutput gap and
inflation in the context of the Taylor Rule.

By invoking the Riccatti equation as in Svensson (1997), the optimal monetary policy

reaction function without zero-bound constraint (i.e., Taylor Rule) can be shown to be!?

artor 0+0—1 01 .
it (e, yt) = T + (CH- PT> Yt + (a—60> (me — "), (8)

where

9:aQﬁ)\+ﬁ+1+\/(32ﬁA+ﬁ+1)2—4ﬁand9>1. ©

It should be noted that the Taylor Rule stated above allows the nominal interest rate to
be negative, especially when the state of the economy is in severe recession or deflation.
2.3 Monetary Policy in the presence of a Liquidity Trap

In reality, however, the nominal interest rate cannot take a negative number.' Although

the issue of a liquidity trap is hardly relevant during an inflationary period such as

" For the lists of regularity conditions regarding the Contraction Mapping Theorem, see Stokey and

Lucas (1989). Throughout this paper, we simply assume that regurality conditions are satisfied.
12The coefficients on the output gap and inflation gap in our formulation is slightly different from

those of Svensson’s (1997) due to a difference in model specification.
13 As for the exceptional case, the overnight call rate on Japanese funds fell to negative 0.01 percent at

the end of January, 2003 for the first time in Japanese history, according to Sanchanta and Swann (2003).



70’s and 80’s, in a period of disinflation (or, even worse, deflation), the existence of a
liquidity trap poses a serious threat for the monetary authority.'* In order to address the
monetary authority’s problem in a realistic manner, we now explicitly take into account
the existence of a zero-bound constraint on the nominal interest rate. Formally, the

additional constraint,
i >0 (10)

is imposed to the dynamic optimization problem (6). The Bellman equation in the case

of this problem will be

N (1 . .
V (m,ye) = min {5 [ytz +Am —m )2] —+ ﬁEtV(g(yt,7Tt,Ut+1,€t+1))} , (11)
1=

which looks almost the same as eq. (7) except that the control variable is now bounded
by zero. This zero-bound constraint on the nominal interest rate appears to be in-
nocuous at first glance. However, this turns out to be misleading. As pointed out by
Chmielewski and Manousiouthakis (1996), when the control variable is constrained, the
optimal feedback rule is no longer a linear function of the state variables. In addition,
the loss function of the monetary authority is no longer a quadratic function of the state
variables, but will be a non-quadratic function. In the context of inflation targeting,
this implies that monetary policy should react more aggressively to a change in inflation
and output gap relative to the baseline Taylor Rule (8) as the threat of a liquidity trap
becomes more likely.!?

In such circumstances where the monetary authority needs to take into account
this occasionally binding zero-bound constraint, Kato and Nishiyama (2001) derive the

optimal monetary policy reaction function to be,

o) e+ (a + L;g_l> Ye + (—QQE;) (my — %) — h(mg,ye) for (my,ye) s.t.i* >0
t,Yt) = .
0 for (m¢,y) s.t.i* <0
(12)

It should be noted that, except for the modification term, h(m,y), the rest of the speci-

fication of monetary policy reaction is exactly the same as in the Taylor Rule laid out in

However, since this trade was settled between foreign banks that were constrained from depositing
additional funds in the BOJ reserve account due to their bylaws, this case really should be considered
as an aberration. Banks that are free from such bylaws are guaranteed to earn a zero interest rate by
depositing their funds in the BOJ reserve account.

“For an influential paper that studied the predicaments of deflation taking the case of Japanese ‘lost
decade,” see Ahearne et al. (2002).

15This has been pointed out by Reifschneider and Williams (2000), Blinder (2000), Orphanides and
Wieland (2000), Kato and Nishiyama (2001), and Hunt and Laxton (2003).



eq. (8). Thus, the function'® h(r,y) represents the deviation of the optimal monetary
policy reaction in the presence of a liquidity trap from the Taylor Rule and, therefore,
can be interpreted as the term representing the monetary authority’s pre-emptiveness
against the liquidity trap.

Although the closed form expression of h(m,y) does not exist due to its highly non-
linear nature stemming from the occasionally binding constraints, Kato and Nishiyama
(2001) and Kato (2002) neverthless prove that h(m,y) is positive, decreasing and convex
in both 7 and y. Since we build upon these qualitative properties of h(m,y) in analyzing
the buffer role of an inflation target in the next section, for the sake of convenience, we

state three properties in the form of lemma.

Lemma 1 (Positive h) The function h : R2 — R is defined as h(m,y) = i W (1 y)—
i*(m,y). Then for any state (m,y) where i* is strictly greater than zero, h is at least

greater than zero - i.e.,
h(m,y) >0 for¥(m,y) s.t. i*(m,y) > 0.
Proof. See ‘Proposition 1’ in Kato and Nishiyama (2001). m

Lemma 2 (Decreasing h) For any state (m,y) where i* is strictly greater than zero,

h s decreasing in both m and y - i.e.,
he(m,y) <0 and hy(m,y) <0 forV(m,y) s.t. i*(m,y) > 0.
Proof. See ‘Proposition 2’ in Kato and Nishiyama (2001). =

Lemma 3 (Convex h) For any state (7,y) where i* is strictly greater than zero, h is

convex in both m and y - t.e.,
har(m,y) > 0 and hyy(m,y) >0 for V(m,y) s.t. i*(m,y) > 0.

Proof. See Kato (2002). m

3 The Buffer Role of an Inflation Target

So far we have discussed the design of monetary policy rule in the presence of a liquidity
trap, taking the level of the inflation target as given. The natural next question is
then, “What if the inflation target is variable? Can the central bank further reduce the

stabilization cost by raising the inflation target?” As has been pointed out by several

16 Also note that the function h(w,%) is time-invariant. This indirectly follows from the assumption
that the Contraction Mapping Theorem holds for the value function in eq. (11). Since the value function

is time-invariant by assumption, as a collorary, the optimal reaction function also will be time-invariant.

10



researchers,'” there is a potential for the central bank to circumvent the risk of falling into
the liquidity trap by targeting some positive inflation rate which Bernanke (2002) termed
the ‘buffer’ zone. This role can be thought to be a social benefit aspect of inflation, in
the sense that the central bank can reduce the stabilization cost by targeting a positive
inflation rate in the long run. The purpose of this section is to provide the analytical
foundation for this social benefit aspect of inflation in the presence of a liquidity trap
and to prove that, indeed, the central bank can reduce the stabilization cost in the long

run by raising the inflation target — i.e., the buffer role of the inflation target.

3.1 Analytical Aspect of the Buffer Role of an Inflation Target
3.1.1 Steady State

As a preliminary step in analyzing the buffer role of an inflation target in the long-run,
we first derive the steady state of the output gap and inflation rate as a function of the
inflation target. Substituting the optimal monetary policy reaction function (12) into
the IS equation (5), we obtain the (controlled) AD equation augmented for a liquidity

trap as follows,

1-0 1-0
Yt+1 = (T) Yt + o0 (¢ — ) + 0h(Te, yt) + vey1, (13)

which can interpreted as the optimized state transition equation of the next period’s
output gap as a function of the current output gap and inflation rate. Noticing that
the coefficient on the inflation gap is negative and that the function h is decreasing with
respect to inflation (from Lemma 2), we know that the next period’s output gap is neg-
atively related with current inflation (which is consistent with the downward sloping!®
AD curve found in any macroeconomics textbook). Further noticing that the coefficient
on the current output gap is negative and the function h is decreasing with respect to
the output gap, we know that the next period’s and the current output gap have a neg-
ative relationship. This is due to the stabilizing force via the optimal monetary policy
reaction function. In other words, if the economy is in expansion (recession) during
the current period, then the monetary authority struggles to stabilize the economy to-
ward its potential by raising (cutting) the nominal interest rate, which in turn places

downward (upward) pressure on the next period’s output gap.

Y"For instance, see Summers (1991), Fischer (1996), Bernanke and Mishkin (1997), Orphanides and

Wieland (1998), Posen (1998), Bernanke et al. (1999), and Bernanke (2002) among others.
18 This is only true for the state such that i*(m¢,ye) > 0. Once the monetary authority is caught in a

liquidity trap, the AD equation will then be,
Yer1 = (p+ b))yt + 6 + vig1,

which yields an upward sloping AD curve in the (y¢+1,7¢) space. Indeed, this upward sloping AD curve

will be the source of a ‘deflationary spiral.’
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Combining AD equation (13) with AS equation (3) and by recursive substitution,

output gap at period t + 1 can be expressed as a response function of past states and

1-6\ 1 1-6\ 1 .
vt = T Jpet\Tae ) g

1-0\ <21
+6 <T> > =h(mi1 g ye1-5) + Shime,ye)

1—-0\ <21 /1
+ o )2 E&tfj-%-vtfj + V41, (14)

and, by the same token, the response function of the inflation rate at period ¢t + 1 can

shocks as

be expressed as

t—1
. 1 . 1 1
Tgp1 — T = E(Wo —7*) + aﬁyo + ad JE:O yh(ﬂtflfj,ytflfj)

t—1 1

+Z;y(6tj +ozvt,j) + €41, (15)
‘]:

where (79,y0) is an arbitrary chosen initial state such that i*(mp,yp) > 0. Recalling
that 6 > 1 from condition (9), the initial effect of both the output gap, yo, and inflation
gap, mo — 7", die out asymptotically and will only have a transitory effect on the future
inflation and output gap. By the same reasoning, the IS shock, v;—;, and AS shock,
et—i, will only have a transitory effect and have no effect on the steady state of the
output gap and inflation rate.

Next, tending time ¢ to infinity, the steady state (7°°,4y°%) can be characterized by

the following conditions,
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which, in turn, imply the steady state!” to be

y? = 0 (16)
50
758 = w*+%h(w55,0). (17)

As can be seen from condition (16), even in the presence of a liquidity trap, the steady
state of the output gap is zero regardless of the level of the inflation target. In contrast,
the steady state of the inflation rate is significantly affected by the presence of a liquidity
trap. Some remarks should follow for the steady state inflation rate. First, it should
be noted the steady state of the inflation rate is unique even in the presence of liquidity
constraint. Since the function h is monotone decreasing with respect to the arguments
(as stated in Lemma 2), this assures the uniqueness of the steady state inflation rate
in the state space such that ¢*(7,y) > 0. Second, since @« >0, § > 0,0 > 1 and h is
positive (as stated in Lemma 1), this implies that steady state inflation is greater than
the inflation target.2’ Of course, were it not for the fear of a liquidity trap, steady state
inflation and the inflation target would be the same, since h = 0 in that case. Finally,
as is obvious from eq. (17), steady state inflation is an implicit function of the inflation
target — i.e., 7%(7*). Thus, as the value of the inflation target varies, so does the

steady state inflation rate.
3.1.2 Properties of Steady State Loss Function with respect to an Inflation
Target

Having identified the steady state of the output gap and inflation rate, we are now in a

position to analyze how a change in inflation target can affect the monetary authority’s

90ne can derive this steady state more directly. By presupposing the existence of unique steady state

(7%%,y%%) and substituting them for eq. (3) and eq. (13), one obtains the following two conditions,

ss SS ss
™ = T + oy

ss _ 1%fyss_‘_ %(Wss — ) + 8h(x55 5%,
Obviously, the first steady state condition implies ¥ to be 0. Substituting % = 0 into the second
steady state condition, one obtains %% = m* + [@d0/(0 — 1)]h(7®,0) which is the exactly the same
condition shown in eq. (17). Of course, a drawback of this approach is the presumption of the existence
of a unique steady state. Moreover, this approach is silent about how the state converges from a
transitory state to steady state. In order to gain some intuition about the convergence mechanism, it

is essential to lay out the response function of the future state with respect to the initial state, (7o, yo).

20This result may appear to be surprising for some readers. A natural interpretation of this discrep-
ancy between the steady state inflation rate and inflation target is that it represents the inflation bias of
a central bank confronted with a liquidity trap. In other words, in order to avoid the risk of being caught
in a liquidity trap, it is in the interest of a central bank to deliberlately ‘miss’ the target upward. The
issue of inflation bias stemming from the liquidity trap is interesting and deserves a separate discussion.
For the rest of this paper, however, we will maintain our focus on the relationship between an inflation

target and the long run stabilization cost.
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stabilization cost in the long run. Here, the term ‘stabilization cost in the long run’
may have different meanings for different researchers. To avoid ambiguity, we define
‘stabilization cost in the long run’ as the value of loss function evaluated at the steady
state — or, steady state loss function for short. More precisely, the steady state loss

function is defined as,

155 _ %(yss)2 n %)\(Wss " (18)
which can be interpreted as the steady state counterpart of eq. (1). Thus, in this
paper, the relationship between the long run stabilization cost and inflation target is
actually proxied by the relationship between the steady state loss function and inflation
target. In particular, we say that there exist the buffer role of an inflation target when
the steady state loss function is decreasing in the inflation target.

Keeping this in mind, we now state the main proposition of this paper — i.e., the

existence of the buffer role of an inflation target in the presence of a liquidity trap.

LSS

Proposition 1 (Decreasing w.r.t. ™) The steady state loss function is decreas-

ing in the inflation target — i.e.,

SS
oL <0.
or* —
Proof. Differentiating steady state condition (17) with respect to 7* and invoking
the implicit function theorem, it follows that

onSS (7%) _ 1
on* ad0 _oh_ -

0—1 orSS

(19)

Now, since 0h/07%% < 0 from Lemma 2, the denominator of RHS of eq. (19) is greater
than 1. This, in turn, implies that

8WSS
on*
Finally, differentiating the steady state loss function (18) with respect to 7* and recalling

0<

<1. (20)

that y° is independent of 7* from steady state condition (16), it follows that

g —)\(7‘( ! ) ( g —1>.

Now, since A > 0, (7% — 7*) > 0 from eq. (17), and (%ﬁs —1) <0, it follows that

SS
66L7r* <0. m

Proposition 2 (Convexity of L% w.r.t. 7*) The steady state loss function is a con-

vex function of the inflation target — i.e.,

aZLS’S
87’(*2 Z
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Proof. Differentiating steady state condition (17) with respect to 7* twice and

invoking the implicit function theorem, it follows that

bl 82%h arss\ 2
92nSS 0—1 | 9(x55)2 \ on*

Omr*2 - adl _Oh ZO’ (21)

0—1 onSS

where the final inequality follows from Lemma 2 and Lemma 3. Now, differentiating
the steady state loss function (18) with respect to 7* twice and from the inequality
condition (21), it follows that

827TSS

2
—1) +)\(7rSS—7r*)—>O.

82LSS _ 87TSS
871'*2 —

o2 on*

Proposition 1 basically proves the existence of the buffer role of an inflation target.
In other words, in the presence of a liquidity trap, as long as the central bank preserves
the effectiveness of conventional monetary policy (i.e., the nominal interest rate is pos-
itive and not yet caught in a liquidity trap), there exists room for the central bank to
reduce the stabilization cost in the long run by raising the inflation target (of course,
in conjunction with the revision of the optimal monetary policy reaction function (12)
accordingly). Proposition 2 proves the convexity of the steady state loss function with
respect to the inflation target. This means that the significance of the buffer role of an
inflation target dissipates as the inflation target is set higher.

The intuition of the buffer role of an inflation target is as follows. In the presence of
a liquidity trap, the central bank is perpetually confronted with the risk of entering it.
By taking a more expansionary position relative to the Taylor Rule (i.e., by adopting
a pre-emptive monetary policy), it is possible for the central bank to circumvent the
liquidity trap risk, which can be considered as a benefit for the central bank. However,
the pre-emptive monetary policy proposed here is not a free-lunch, but comes with a
cost. As a trade-off for taking such a pre-emptive position, a persistent inflation bias
above target is created, which is a cost for the central bank. Taking the level of the
inflation target as given, the central bank needs to strike a balance between the benefit
of reduced liquidity trap risk and the cost of inflation bias by optimally choosing the
magnitude of pre-emptiveness.

Now, suppose the inflation target is set at a relatively low level — say, 7} ,,. Then
the risk of being caught in a liquidity trap will be relatively high that it induces the
central bank to behave more pre-emptively in order to offset some of the liquidity trap

risk. As a consequence of this significantly pre-emptive behavior, significant inflation
SS

bias is generated forcing the central bank to bear a high loss persistently —1i.e., L}> =

SS

oy Wj‘:ow)Q > 0. Next, consider the case where the inflation target is set at

(m

relatively high level — say, ﬂﬂigh. Then the risk of being caught in a liquidity trap
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will be relatively low that the central bank need not be too pre-emptive about the
liquidity trap risk. Thanks to the less pre-emptive behavior by the central bank, the
inflation bias, (ﬂ%‘zqh — ﬂ;”gh), will remain relatively low compared to that of a low
inflation target, (Wffw — 7o) As a result, when the target is set at a relatively

high level, the steady state loss borne by the central bank will be relatively small — i.e.,
LSS

7o, = (WSS Wzow)Q > Lflfgh = (Wfﬁgh — ﬂﬂigh)Q. This is the basic mechanism

Low
whereby an increase in the inflation target can lower the stabilization cost in the long
run.

Before we move on, some remarks are in order. First, if the central bank alone can
freely choose the inflation target, there exists an incentive for a central bank to set an
infinitely high inflation target in the presence of a liquidity trap (see Proposition 1).
This is because the cost of inflation for the central bank is defined as the deviation from
its target, rather than the level of inflation. In reality, however, there is obviously a
social cost of inflation and, therefore, the social benefit aspect of the inflation (i.e., the
buffer role) needs to be balanced. Second, in the absence of a liquidity trap, steady
state loss will be invariant to the level of the inflation target since the marginal steady
state loss with respect to the inflation target is zero. Therefore, in the absence of a

liquidity trap, the central bank will be indifferent to where to set the target.

3.2 Phase Diagram Illustration: The Buffer Role of an Inflation Target

In the previous subsection, we have analytically shown the social benefit role of an
inflation target. In other words, in the presence of a liquidity trap, the inflation target
can function as a buffer to circumvent the risk of falling into a deflationary spiral,
thereby reducing the stabilization cost in the long-run. In this subsection, we illustrate
this buffer role of an inflation target using the phase diagram. This phase diagram
approach to the dynamics of the inflation rate and output gap in the presence of a zero-
bound was first taken by Reifschneider and Williams (2000). In their phase diagram,
they show how the steady-state locus of the IS equation is altered in the presence of a
liquidity trap and further show how a deflationary spiral zone arises as a consequence.
In this paper, building upon Reifschneider and Williams (2000), we illustrate the risk of
falling into a deflationary spiral zone and further show how the risk can be reduced by
raising the inflation target.

Figure 3 shows the phase diagram of the controlled dynamics of the IS equation
(5) and AS equation (3) where the nominal interest rate, i, in the IS equation is now
substituted for the optimal monetary policy reaction function, i = f(m¢, y:), implied by
the Bellman equation (11). The dashed curve in Figure 3 represents the set of states
where the optimal monetary policy reaction function, ¢ = f(m¢,y;), just binds at zero.
The area above this dashed curve represents the set of states where ¢} is positive. Thus,

we can interpret this area as the place where ‘conventional’ monetary policy is taking
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effect. The area below the dashed curve represent the set of states where iy = 0 (i.e.,
zero-bound constraint is binding). We adopt Krugman’s (1998) terminology and refer
to this area as the ‘Liquidity Trap’ Zone, in the sense that the monetary authority has
exhausted the room for conventional monetary policy.

The bold vertical line and the kinked line in Figure 3, represent the loci such that
Am =0 and Ay = 0, respectively. It should be noted that the locus such that Ay =0
is negatively sloped in the region such that if > 0, yet is positively sloped within the
Liquidity Trap Zone. This can be easily verified by substituting i = 0 in the IS equation
(5). Point E; in Figure 3 represents the steady state of the economy, which is locally
stable, and it occurs when the output gap is zero and the inflation rate is equal to 755,
As pointed out by Reifschneider and Williams (2000), due to the zero-bound constraint,
there exists a saddle path running through the saddle point Es. The area above this
saddle path represents the set of states where, in the absence of stochastic disturbances,
the states eventually converge to the steady state Fy. For convenience, we call this area
the Controllable Zone. In contrast, the area below the saddle path represents the set of
states where both the inflation rate and output gap diverge to negative infinity, unless
for a favorable shock that pushes the state back to the Controllable Zone. In referring

21 In other words, once

to this area, we adopt the term ‘Deflationary Spiral’ Zone.
the state is enmeshed in this region, there occurs a vicious cycle of run-away deflation
and recession rendering the Cost-to-Go unaffordably high for the monetary authority to
bear.??

The black area in Figure 3 represents the probability measure or the risk of falling
into the Deflationary Spiral Zone from a steady state. The larger the area, the more the
monetary authority exposed to the risk of a deflationary spiral and vice versa. Thus,
in order to minimize the stabilization cost in the long-run, it is in the interest of the
monetary authority to reduce this risk by some measure. If the inflation target is
fixed, the best strategy for the monetary authority is to become more expansionary and

aggressive as the state approaches the Deflationary Spiral Zone, so that it can contain the

?Note that Reifschneider and Williams (2000) refer it as ‘Deflationary Trap.” However, since the term
Deflationary Trap is not often used by economists and slightly fails to capture the nuance of run-away
deflation and recession, we adopt the term Deflationary Spiral in this paper.

2 Qccasionally, the terms ‘liquidity trap’ and ‘deflationary spiral’ are used synonymously in the lit-
erature. However, as far as the model adopted in this paper is concerned, there is a subtle difference
between the two concepts. ‘Liquidity trap’ simply refers to the state in which the nominal interest
rate is binding at zero, yet this does not necessarily mean that the state of the economy is diverging
(i.e. uncontrolable). Indeed, as can be seen from Figure 3, there exists a region between the dashed
curve and the saddle path where the nominal interest rate is zero, but the state is still controlable in
the sense that the economy can autonomously converge back to the steady-state. On the other hand,
‘deflationary spiral,” in our definition, refers to a diverging state of the economy and this necessarily
implies that the nominal interest rate is zero. In other words, the Deflationary Spiral Zone is a subset

of the Liquidity Trap Zone, but the converse is not true.
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state in the controllable region as much as possible. This was the reasoning behind the
pre-emptive strategy that has been pointed out by Reifshcneider and Williams (2000),
Orphanides and Wieland (2000), Kato and Nishiyama (2001), and Hunt and Laxton
(2003).

Now, if the inflation target is variable — as considered in this paper —, the monetary
authority can reduce the stabilization cost in the long-run by raising the inflation tar-
get. By setting a high inflation target, the steady state inflation rate, 7%, will rise.
Consequently, in the phase diagram, the steady state E; will move up along the vertical
locus, thereby reducing the probability of the state falling into the Deflationary Spiral
Zone — i.e., the black area will shrink as the inflation target moves up. This is the

intuition behind the buffer role of an inflation target.

4 Numerical Illustration: A Quantitative Approach to the
Buffer Role of an Inflation Target

4.1 Motivation and Methodology

The main purpose of this section is the quantitative illustration of the main propositions
made in the previous section — i.e., the central bank’s long-run stabilization cost is
a decreasing-convex function of the inflation target. However, as was pointed out
by Chmielewski and Manousiouthakis (1996), the LQ stochastic control problem no
longer yields a linear feedback rule or a quadratic value function when a control variable
is constrained, but rather yields a non-linear feedback rule and non-quadratic value
function that does not have a closed form expression in general. In the context of
inflation targeting with a zero-bound constraint, this implies that neither the optimal
monetary policy reaction function (12) nor the monetary authority’s value function (11)
have a closed form expression.

Confronted with this difficulty, predecessors in this line of research have taken a
rather different approach mainly relying on a simulation method. For instance, Fuhrer
and Madigan (1997) showed that, in the presence of a liquidity trap, the impulse re-
sponse of inflation and the output gap return to their steady states faster when the
inflation target is set high. Orphanides and Wieland (1998), employing a stochastic
simulation approach, showed the frequency of the nominal interest rate binding at zero
to be high when the inflation target is set low and vice versa. Although these stud-
ies have eloquently demonstrated the predicament caused by the liquidity trap, their
approach is rather indirect in illustrating the social benefit role of an inflation target.
Moreover, since the monetary policy rules adopted in their studies are ad-hoc (i.e., not
the optimal monetary policy reaction function), their assessments do not represent the

‘true’ social benefit role of an inflation target.
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In this paper, we employ a rather direct approach in illustrating the social benefit
role of an inflation target quantitatively — i.e., we approximate the optimal monetary
reaction function and value function numerically. The strength of a numerical analysis
is that it allows us to numerically approximate the ‘true’ optimal reaction function and
value function to a degree of an arbitrary accuracy, where computational power is the
limit. Although the quantitative implication of the numerical approach will be inher-
ently parameter-dependent, we still can infer a significant amount of information from
the numerical approximation and can learn further the properties of the loss function
under the existence of a zero-bound constraint.

Some remarks regarding the numerical methodology adopted in this paper are in
order. Since the Bellman equation, which we considered in eq. (11), is a member of the
class of functional equations, the solution space of the dynamic programming problem
is inherently a functional space whose dimension is infinite. The idea of a numerical
approach in solving the dynamic programming is to reduce this infinite dimensional
problem into a finite dimensional problem, a process also known as discretization of the
space. In our paper we use a numerical technique, known as the Collocation method
[Judd(1998) and Miranda and Fackler (2002)], in reducing the infinite-dimensional prob-
lem into finite dimensional problem. For further details regarding the Collocation

method, see Appendix.

4.2 Preliminaries
4.2.1 Definition of Long-run Cost-to-Go

We first define the concept of ‘long-run Cost-to-Go,’?3 which is used as a proxy con-
cept for the central bank’s long-run stabilization cost in this section. A few words of
caution should follow. Strictly speaking, the concept of steady state Cost-to-Go (i.e.,
VS (w55 0, 7%) = 3220, B L5 = L9 /(1 — ), which is a proxy concept for the stabi-
lization cost in the long-run in the previous section) and long-run Cost-to-Go (which is a
proxy concept adopted in this section) are different concepts. The former cost concept,
V59 emerges when the value function is evaluated at the steady state (7TS s 0), whereas
the latter cost concept, VI, emerges when the value function is evaluated at the target
state (7*,0). The reason why we do not employ the steady state Cost-to-Go, V%,
is purely a technical one. In the process of numerical analysis, we faced a difficulty
in identifying precisely the value of the steady state (7%,0). In order to avoid this
difficulty, we instead employ the long-run Cost-to-Go, V¥ as a proxy concept for the
stabilization cost in the long-run. Notice that, even when the initial state is at the tar-

get state (7*,0), we know from eq. (14) and (15) that the state will eventually converge

23 Cost-to-Go is the actual number of the central bank’s value function evaluated at some certain state

and represents the discounted sum of future losses given that certain state.
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to the steady state (7°9,0). Thus, when the target state and steady state are not too
far apart, then the long-run Cost-to-Go and steady state Cost-to-Go should not be too
different. We now state the definition of the long-run Cost-to-Go formally.

Definition 1 (Long-run Cost-to-Go) Let V (7, ys; %) be the loss-function without a
zero-bound constraint on iy with an inflation target parameter m*. Let V(?Tt, yi; ) be the
loss-function with a zero-bound constraint. Then the long-run Cost-to-Go without a zero-
bound constraint is defined as the value of the loss-function evaluated at the (mw¢,ys) =
(7*,0); VER(z* 0;7%).  Similarly, the long-run Cost-to-Go with a zero-bound constraint
is defined as VIR (%, 0; 7).

In the remainder of this section, we will demonstrate that, indeed, the long-run
Cost-to-Go in the presence of a liquidity trap, VX, is a decreasing-convex function of

the inflation target by conducting a sensitivity analysis.

4.2.2 Parameter Values

As a preliminary step to compute the value of the long-run Cost-to-Go, we first numeri-
cally interpolate the central bank’s value function with and without the zero-bound. We
restrict the interpolation range of the value function to —10 < 7 < 10 and —10 <y < 10.
Regarding the parameter values governing the IS and AS equations, as a benchmark,
we take p = 0.6, 6 = 0.4, and a = 0.1. For the parameter values governing the pref-
erence of the central bank, we set the preference parameter, A, at 1 and the discount
rate, 3, at 0.7.2* Further, we temporarily set the inflation target, 7*, at 0. For the
sake of computational cost reduction, we specify the distribution of IS-AS shocks as
(vg, &) YN (0,01), where I stands for the 2 x 2 identity matrix. Thus, in this numer-
ical illustration, IS and AS shocks have a standard deviation of ¢ and are uncorrelated
with each other. Further, as a benchmark, we temporarily set the standard deviation,

o, at 1.

4.2.3 Interpolating Value Function

Figure 4 depicts the interpolated value function without a zero-bound constraint on

the nominal interest rate. This can be regarded as a visualization of eq. (7). The

2The value of the discount rate may seem to be extremely low. However, this parameter choice
is inevitable in a sense. Since the Cost-to-Go for the state inside the deflationary spiral zone tends
to be extremely costly, the discounted sum of future losses tends to diverge under the conventional
discount rate, such as 0.95. In order to keep the loss function visible under both a deflationary and a
non-deflationary spiral regime, we have set the discount rate at 0.7. Also, considering that governor’s
term of appointment is no more than five years for most central banks, a discount rate of 0.7 in the

infinite horizon model does not sound to be too unrealistic.
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qualitative feature to be noted here is the symmetry of the value function.?® This
implies that, in the absence of a liquidity trap, the stabilization cost in a deflationary-
recessionary state (i.e., third quadrant in 7,y space) is symmetrically equal to that of
inflationary-expansionary counterpart (i.e., first quadrant in 7,y space).

Figure 5 depicts the interpolated value function in the presence of a zero-bound
constraint. This can be regarded as a visualization of eq. (11). Unlike the symmetric
feature we observed in Figure 4, the value function in the presence of the zero-bound
reveals an asymmetric feature which entails the value function to be non-quadratic. The
asymmetry is most obvious by observing the sharp rise of Cost-to-Go in a deflationary-
recessionary state. This means that, with a liquidity trap present, the stabilization
cost in a deflationary-recessionary state is much higher than that of the inflationary-
expansionary counterpart. This is another exemplification why the central bank should

act pre-emptively to avoid the Deflationary Spiral Zone.

4.2.4 Identifying the Long-run Cost-to-Go

Having interpolated the value function, we are now ready to evaluate the central bank’s
long-run Cost-to-Go. Again, the idea is to evaluate the value function at the target
state, (m,y) = (7*,0). For visual convenience in identifying the long-run Cost-to-Go,
we rotate Figure 4 — the interpolated value function without a zero-bound — to offer the
(magnified) horizontal viewpoint and is shown in Figure 6. As can be seen from the
figure, the Cost-to-Go of the value function evaluated at the target state (7*,0) is 2.61.
This value represents the ‘long-run Cost-to-Go’ (which is a proxy of ‘stabilization cost
in the long run’ in this section), which we defined earlier in this section. It should be
noted that the long-run Cost-to-Go identified in Figure 6 was free of risk arising from a
liquidity trap.

In the same way, we rotate Figure 5 — the interpolated value function with a zero-
bound — to offer the (magnified) horizontal viewpoint and is shown in Figure 7. As can
be seen from the figure, the Cost-to-Go of the value function evaluated at the target
state (7*,0) is 3.27, which represents the long-run Cost-to-Go in the presence of the
zero-bound. Here we notice an important feature. Comparing the long-run Cost-to-
Go without a zero-bound to that with the zero-bound, we notice that the cost in the
presence of the zero-bound to be higher. This is exactly the feature we should expect
from the argument made in Section 3. Namely, in the presence of the zero-bound, a
central bank is exposed to the risk of being caught in a liquidity trap — an additional risk
factor that is non-existent in the case without a zero-bound constraint. Reflecting the

risk from a liquidity trap, the long-run Cost-to-Go with the zero-bound will necessarily

250r to be more specific, the quadratic nature of the loss function. When the objective function is
quadratic and the state transition function is linear, then the value function will be a quadratic function

of the state variables. This is a well known result in the linear-stochastic control literature.
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be costlier than that without it. Further, by subtracting the long-run Cost-to-Go in
Figure 6 from Figure 7, we can completely separate out the cost emerging from the
liquidity trap risk from the standard risk emerging from stochastic disturbances. In
this particular case, where parameters have been set at 7* = 0 (i.e., inflation target)
and o0 =1 (i.e., standard deviation of the stochastic disturbance terms), the portion of
the long-run Cost-to-Go emerging solely from the liquidity trap risk can be computed
as, V(*,0) — V(r*,0) =3.27 - 2.61 = 0.66.

4.3 Sensitivity Analysis I: Long-run Cost-to-Go and Inflation Target

Having identified the long-run Cost-to-Go emerging from the liquidity trap risk, we are
now ready to illustrate the relationship between an inflation target and the long-run
Cost-to-Go. In other words, in order to substantiate the proposition we have made in
Section 2, we demonstrate that, indeed, the long-run Cost-to-Go is a decreasing-convex
function of an inflation target.

Thus far, for simplicity, we have fixed the inflation target, n*, at zero. ~We now
conduct a sensitivity analysis of the long-run Cost-to-Go with respect to varying inflation
targets. Before examining the numerical results, it is useful to review the intuition
behind the decreasing-convex relationship between the long-run Cost-to-Go and the
inflation target. Suppose the inflation target has been set at an extremely low value,
say negative one percent. Since the risk of being caught in a liquidity trap will be high,
we expect to see the long-run Cost-to-Go to be also high. On the other hand, setting
a high inflation target will significantly mitigate the risk of being caught in a liquidity
trap so that we expect the long-run Cost-to-Go to be low. Keeping this conjecture in
mind, let us now turn to the numerical results.

Figure 8 depicts the relationship between the long-run Cost-to-Go with respect to
varying levels of inflation targets from -1% to 5%. Note that we have interpolated
the value functions for each inflation target and evaluated each long-run Cost-to-Go in
depicting the graph shown in Figure 8. The solid line represents the relationship in
the presence of the zero-bound and the dashed line represents the relationship without
the zero-bound. Let us first turn to the solid line, the long-run Cost-to-Go in the
presence of a liquidity trap. Conforming to our porpositions, the long-run Cost-to-
Go tends to be high when the inflation target is set low and vice-versa. Interpreting
the reduction of the long-run Cost-to-Go as a social benefit, this solid line exactly
captures the social benefit role (or the buffer role) of an inflation target in
the presence of a liquidity trap — i.e., the stabilization cost in the long-run
is a decreasing-convex function of the inflation target.

Next, let us turn to the long-run Cost-to-Go without the risk of a liquidity trap,
which is shown by the dashed line in Figure 8. Not surprisingly, the dashed line is
horizontal implying that, without the fear of a liquidity trap, the long-run Cost-to-Go
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is constant regardless of the choice of inflation target. In other words, the long-run
cost is invariant to the choice of inflation target that no matter how high the inflation
target may be, it is not possible for a central bank to reduce the stabilization cost in the
long-run. The reason is quite simple. In the absence of a zero-bound constraint, there
will be no risk of being caught in a liquidity trap. Therefore the long-run Cost-to-Go is
now composed of the standard stabilization cost arising from IS-AS shocks only. Since
the variance of IS-AS shocks is invariant with respect to the choice of inflation target,
the stabilization cost is constant regardless of the inflation target. This is the reason
behind the horizontal line depicted in Figure 8. To summarize, in the absence of a
liquidity trap, there is no social benefit role (or the buffer role) of an inflation
target — i.e., the stabilization cost in the long-run is invariant to the level of
the inflation target.

Some remarks are in order. As can be seen from Figure 8, the solid line always
lies above the dashed line, which is trivially saying that the long-run Cost-to-Go under
the risk of a liquidity trap is higher than that without it. This gap between the two
lines thus represents the stabilization cost solely arising from the liquidity trap risk. It
should be noted that this gap decreases as the inflation target increases implying that
the risk of being caught in a liquidity trap is decreasing. One should also note the
convergence of the solid line toward the dashed line as the inflation target gets higher.
This implies that the probability of the state entering the liquidity trap zone tends to

zero as the inflation target tends to infinity, which is a sensible result.

4.4 Sensitivity Analysis II: Long-run Cost-to-Go, Inflation Target and
Volatility

In the previous sensitivity analysis, we have fixed the standard deviation of IS-AS shocks
at one (i.e, 0 = 1), in order to illustrate the relationship between the long-run Cost-to-
Go and the inflation target. In this subsection, we relax this assumption and conduct
a sensitivity analysis of the long-run Cost-to-Go with respect to the varying levels of
volatility in IS-AS shocks.

Figure 9 depicts the long-run Cost-to-Go corresponding to various levels of inflation
targets and volatilities without a zero-bound constraint.  The interval of standard
deviation has been set from 0.25 to 2.5. From a careful examination of Figure 9, we can
make the following two observations. First, regardless of the magnitude of volatility,
the long-run Cost-to-Go is invariant to the level of inflation target. To put it differently,
the social marginal benefit with respect to the inflation target is zero regardless of the
level of volatility. Second, as the magnitude of volatility increases, the long-run Cost-
to-Go rises. Note that this increase in the long-run Cost-to-Go is simply capturing the
standard stabilization cost and nothing more than that.

Let us now turn to Figure 10, which depicts the long-run Cost-to-Go in the presence
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of a liquidity trap corresponding to various levels of inflation targets and volatilities.
Similar to the feature observed in Figure 9, we observe that the long-run Cost-to-Go
increases as volatility rises. However, it should be noted that, for any magnitude of
volatility, the long-run Cost-to-Go is no longer invariant to the level of the inflation
target. Indeed, it seems that the gradient of the long-run Cost-to-Go with respect to
the inflation target gets steeper as volatility rises, which is equivalent to saying that the
buffer role of an inflation target becomes more substantial as volatility increases.

In order to clearly illustrate the effect of volatility on the liquidity trap risk, we
calculate the difference between Figure 9 (which represents the long-run Cost-to-Go
emerging from the standard stabilization cost only) and Figure 10 (which represents
the cost emerging from both the standard stabilization cost and the liquidity trap risk).
The calculated difference is shown in Figure 11. Again, note that Figure 11 depicts
the component of long-run Cost-to-Go emerging solely from the liquidity trap risk.
As can be vividly seen from Figure 11, the gradient of the long-run Cost-to-Go with
respect to the inflation target gets steeper as volatility increases. In other words, the
social benefit role (or the buffer role) of an inflation target tends to be more
significant as the volatility of IS-AS shocks rises. This in turn implies that there
is a stronger incentive for a central bank to set a higher inflation target as the economy
becomes more uncertain.

So what is the intuition behind this result? Suppose the inflation target is set at
some constant level. An increase in the volatility of IS-AS shocks will then increase the
long-run Cost-to-Go of the central bank for two reasons. The first one is trivial. Due to
an increase in the volatility of IS-AS shocks, naturally the standard stabilization cost will
increase. This is true for both cases with or without the zero-bound. Another reason,
which is more intriguing, is that as the volatility of IS-AS shocks rises, the probability
of the state entering the Deflationary Spiral Zone will also rise, thereby increasing the
long-run Cost-to-Go — i.e., the component of stabilization cost emerging from the risk
of being caught in a liquidity trap. This is the reason why the buffer role of an inflation

target becomes more significant as the economy becomes more volatile.

5 Concluding Remarks

In times of low inflation when the event of deflation is no longer a myth, central banks
are seriously exposed to the risk of falling into a liquidity trap. Confronted with
this reality, the design of monetary policy in avoiding a liquidity trap — so-called pre-
emptive monetary policy — is now one of the most pressing issues for policymakers and
researchers alike. As a part of this pre-emptive monetary policy, it has been pointed
out that a central bank can potentially circumvent the risk of falling into a liquidity

trap by targeting small but positive inflation in the long-run. This particular function
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of positive inflation can be regarded as a social benefit aspect of inflation, in the sense
that it reduces the ex-ante long-run stabilization cost for a central bank. In reality, this
social benefit aspect of inflation arising from avoiding liquidity trap risk seems to be
well recognized by many central banks. Indeed, the central banks adopting an explicit
form of inflation target are setting their targets in the range of 1 to 3 percent. However,
the theoretical developments of a social benefit aspect of inflation arising from avoiding
liquidity trap risk have been mainly conjectural or have relied on simulation evidence.

In this paper, based on the stylized framework of a central bank’s dynamic optimiza-
tion problem following Svensson (1997), we have attempted to provide the analytical
foundation for a social benefit aspect of inflation stemming from the presence of a lig-
uidity trap. In particular, we have shown analytically that the long-run stabilization
cost of a central bank is a decreasing-convex function of an inflation target, implying
that, in the presence of a liquidity trap, it is possible for a central bank to reduce the
stabilization cost by setting a higher inflation target in the long-run. Putting it another
way, we have shown that an inflation target can play a key role in circumventing the risk
of falling into a liquidity trap, thereby reducing the stabilization cost in the long-run —
i.e., the ‘buffer’ role of an inflation target.

Further, in order to demonstrate the analytical properties proven, employing the
numerical method — also known as the Collocation method — , we have directly interpo-
lated the (non-linear) optimal monetary policy reaction function and the (non-quadratic)
value function. Conforming to the analytical properties, sensitivity analysis results have
shown the stabilization cost in the long-run to be decreasing and convex in inflation tar-
get and also have shown the buffer role of an inflation target to be more significant as
the volatility of the economy rises.

In sum, this paper has analytically and numerically clarified the mechanism by which
an inflation can play a social benefit role in the presence of a liquidity trap, providing
a theoretical justification for targeting small but positive inflation in the long-run. Of
course, in reality the social benefit role of inflation is not confined to the ‘buffer’ role
discussed in this paper, but also can arise from other factors. For instance, as was
pointed out by Akerlof et al. (1996), when there exists a downward rigidity in nominal
wages, too low an inflation rate will impair real wage adjustment, thereby disrupting
the efficiency of the labor market. In this sense, as they point out, small but positive
inflation can serve as a ‘grease’ for efficient clearing of a labor market. Thus, in this
sense, the ‘buffer’ role of inflation should not be seen as ‘the’ social benefit aspect of
inflation, but rather should be regarded as ‘a’ social benefit. =~ With no doubt, the
complete picture of the social benefit of inflation will include the ‘grease’ role as well as
the ‘buffer’ role.

Before closing this paper, some remarks should be made regarding the optimal level

of inflation target. As King (1999) states, “as inflation has fallen from earlier high

25



levels toward something approaching price stability, the question of what is the optimal
inflation rate has become more important” (p.15). Although we understand and share
King’s view, nevertheless, we have kept our focus on identifying the social benefit role of
an inflation target in this paper, merely offering a qualitative justification for targeting
positive inflation in the long-run, but have deliberately kept silent about where to target.
This is not without reason. In discussing the optimal inflation rate, it is essential to
identify the social benefit as well as cost of inflation. However, since the theory of the
social cost of inflation is still in development and considering that the potential factors

constituting the social cost of inflation cover a wide spectrum,?®

we are not yet aware
of a model that incorporates all factors under one model. Conceding that it may be
possible to incorporate some aspects of the social cost of inflation under one model and
that it may be possible to derive the ‘optimal’ inflation rate, however, can we really be
confident in calling it as the optimal inflation rate while being aware that some aspects
of social cost are lacking? Nevertheless, we still share King’s view and further research
in pursuit of the optimal inflation rate is definitely important, especially in this era of

low inflation.

%6 For instance, to name the few, Lucas (2000) discusses the ‘shoe leather’ cost of inflation, Feldstein
(1997) discusses the ‘tax distortion’ cost caused by inflation, Woodford (2001a) discusses the ‘relative
price’ distortion caused by inflation, and Cecchetti and Ehrmann (1999) point out that high inflation
is historically associated with high volatility. For a survey on the costs of inflation (as well as on the
benefits of inflation), see Shiratsuka (2001).
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A Appendix: Collocation Method

In this appendix, we explain the numerical algorithm in approximating the value function
in the presence of a zero-bound constraint. Specifically, we employ a numerical method
known as the Collocation method?” in solving the functional fixed-point problem posed
by the Bellman equation.

For convenience, let us restate the Bellman equation (eqn (7)) suppressing the time

subscripts as follows,
V(m,y) = min{f(m,y;7*) + BEV(g(m,y, 2, v,€)}, (22)

where f(m,y;7*) stands for the period-by-period loss function with the inflation target
parameter, 7%, and g(7,y, z,v,e) stands for the state transition function. Note that the
nominal interest rate, denoted by x in this appendix, is constrained by the zero lower
bound. The state transition function is linear in the state variables and the coefficient
matrix is time-invariant, i.e.,
g(m,y,x,v,e) = ptab o vl_|° e+ |
« 1 m 0

Given the above specification of the Bellman equation and the state transition function,
our goal is to interpolate the value function V(m,y) in the interval of —10 < 7 < 10 and
—-10 <y < 10.

The Collocation method proceeds in the following steps. First, we discretize the state
space by the set of interpolation nodes such that Node = {(7pn,,Yn,)| nr = 1,2, , Ny
and ny, =1,2,--- ,Ny}.28 Thus, we discretize the state space into a total of N x IV,

interpolation nodes. Then we interpolate the value function V'(-) using a cubic spline

function?? over these interpolation nodes as follows.
N7r Ny
V(TonsYn,) = DD eV M)V (yn,), for each (T, yn,) € Node.  (23)
i=1 j=1

*"For complete elucidation regarding the Collocation method, see Judd (1998, Ch.11 and 12) and

Miranda and Fackler (2002, Ch.8 and 9).
28 There are several ways to discretize the state space. One example is Chebychev nodes. However,

in order to preserve an exact solution of the value function and optimal policy reaction function at the

equally distributed states, equally distributed interpolation nodes have been chosen in this paper.
*There are several other options for the basis function. One of the most frequently used basis

functions is the Chebychev polynomial, which is known to possess superior properties when the curvature
of the function to be interpolated is “nice and smooth.” In contrast, the cubic spline function is known
to possess superior properties when the function contains some “kinks.” Since the value function and
the optimal policy reaction function are kinked due to the presence of the zero lower bound in this
paper, the cubic spline function will be our choice as a basis function. For more details regarding cubic
spline interpolation, see Judd (1998, Ch.6), Cheney and Kincaid (1999), and Miranda and Fackler (2002,
Ch.6).
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The basis functions 7] (75, ) and 74 (yn, ) take the form of cubic spline functions and are
defined as
%(1 - 6‘]72r(1 - QW)) if gr = W—lm;v_m <1
Vi (Tn,) = 31— ar)? if 1 < gr <2

0 otherwise

2(1 - 6g2(1 - q,)) ifgq, = e ul <

w
0 otherwise

where m; = w + wi, where w is an equal step from the lower bound of state 7 (which is
-10 in this paper) to the upper bound (which is 10 in this paper). The definition of y;
is similar. Interpolation equations (23) could be expressed compactly using the tensor

product notation as follows,
v=[r,er,) ¢ (24)

where v stands for Nz N, x 1 vector of the values of V (7, ,¥n,) for each interpolation
node, I'; stands for Ny x N matrix of the basis functions 77 (7, ) (i.e., each matrix
element is defined as I'z[i,ng] = 77 (mp,)), I'y stands for N, x N, matrix of the basis
functions 7? (Yn, ), and c stands for NN, x 1 vector of the basis coefficients c;;.

Next, we turn to the right-hand side of the Bellman equation (22). In approximating
the expected value function, i.e., E[V (g(m,y,x, v, )], we assume the distribution of the
error terms (v,e) to be i.i.d. multivariate normal. Under the assumption of normal
distribution, the expected value function can be approximated by the Gaussian-Hermite
quadrature method®’ — a type of Gaussian quadrature method which is specifically
used when the error terms are normally distributed. The Gaussian-Hermite quadrature
method discretizes the random space with a set of quadrature nodes such that Q Node =
{(Vhy,en)|h = 1,2,--- M, and h. = 1,2,--- M.} with corresponding quadrature
weights wp,,p.. Thus, we discretize the random space into a total of M, x M, quadrature
nodes. Then by substituting the interpolation equation (23) for the value function

V(g(m,y,z,v,e), the right-hand side of the Bellman equation can be approximated as

Mv ME N‘rr Ny

RHSmrny (C) = min f(ﬂ'nmyny) + ﬁ Z Z Z thuhscij'Yij(g(ﬂ-nw,yny,x7vhu76hs)) )
h

z>0 . -
v=1he=1i=1 j=1
(25)

for each (7, ,¥yn,) € Node where v,;; stands for the cross products of the basis func-

tion. The minimization of the above problem with respect to x can be attained using

30For more details regarding the Gaussian Quadrature method, see Judd (1998, Ch.7) and Miranda
and Fackler (2002, Ch. 5).
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a standard Quasi-Newton optimization method. It should be noted that when imple-
menting this minimization problem, one should pay attention to the corner solution of
the minimization problem due to the zero lower bound constraint on the control variable
x.

Finally, by equating eqn (23) and eqn (25) for each interpolation node, we obtain

the following approximation of the Bellman equation (22),

Nx Ny

Z Z CijVi (Tne )V (Yn,) = RHSppn, (c) for each (., yn,) € Node. (26)
i=1 j=1

Using the tensor product notation, the above equation can be compactly expressed as
T, @0 Jc = RHS(c), (27)

where RHS(c) stands for N;N, x 1 vector of the values of RHS,, »,(c). Now the
task is to find the unknown basis coefficient vector c¢ from the above nonlinear equation
system (27). The nonlinear equation system can be solved using an iterative nonlinear
root-finding technique such as the Functional Iteration method, Newton’s method or
a Quasi-Newton method.?! For computational ease, we have adopted the Functional

Iteration method as the solution algorithm.??

Algorithm 3 (Functional Iteration method)

Step 1:  Choose the degree of approximation Ny ,Ny,M,, and M.. Then set the appro-
priate interpolation nodes and quadrature nodes for the state space and random space,
respectively. Guess the initial basis coefficients vector cgp.

Step 2: Update the basis coefficient vector by the following functional iteration;

i1 — [T '@y '] - RHS(cy).

Step 3:  Check for convergence. If |cijpt1 — Ciji| < T for any i and j, where T is a

convergence tolerance parameter, then stop. Otherwise, repeat step 2.

Once convergence has been reached, interpolation of the value function V' (7,y) has
been achieved. Of course, as a by-product of interpolating the value function, the ap-
proximation of the optimal policy function x*(7,y) will also be attained at the same
time. It should be noted that one can attain the desired level of approximation by con-
trolling the degree of interpolation nodes, quadrature nodes and convergence tolerance

parameter 7 with a trade-off of convergence speed.??

31 For more details regarding the nonlinear root-finding technique, see Judd (1998, Ch.5) and Miranda

and Fackler (2002, Ch.3).
32We also tried the Quasi-Newton method and obtained virtually the same result.
%1In our paper, we have set the parameter values as follows; N, = 20, N, = 20, M, = 3, M. = 3
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Figure 2: Money Market Rates in Industrial and Emerging Market

Economies
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Phase Diagram Illustration:
Intuition behind the Buffer Role of an Inflation Target
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Note: The monetary authority can reduce the risk of falling into a
deflationary spiral by raising the inflation target in the long-run. Note
that steady-state inflation is an increasing function of the inflation

target.



Figure 4: Interpolated Value Function without Zero-Bound (17'=0, 0=1)
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Figure 5: Interpolated Value Function with Zero-Bound (
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Figure 6: Horizontal View of Figure 4 (1t=0, 0=1)
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Figure 8: Relationship between Long-run Cost-to-Go and Inflation Target
(Giveno=1)
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Note: The solid curve represents the long-run Cost-to-Go in the presence of a liquidity
trap as a function of the inflation target, while the dashed curve represents the long-run
Cost-to-Go in the absence of a liquidity trap. As can be seen from the figure, the long-
run Cost-to-Go is a decreasing-convex function of the inflation target, which implies
that a central bank’s stabilization cost could be reduced by setting a higher inflation
target in the long-run — i.e., the buffer role of an inflation target. It should be noted
that this buffer role of an inflation target is non-existent when there is no liquidity trap
in the economy. In other words, the long-run Cost-to-Go is invariant to the level of the

inflation target when there is no liquidity trap.



Figure 9: Relationship among LR Cost-to-Go, Inflation Target, and Volatility

(No Liquidity Trap)
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Figure 11: Difference in LR Cost-to-Go with and without Liquidity Trap
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Note: The figure represents the portion of long-run Cost-to-Go solely arising from the
risk of falling into a liquidity trap. It should be noted that this particular cost
approaches zero, as the inflation target is set higher. As can be seen from the figure,
the buffer role of an inflation target becomes more substantial as the economy becomes

more volatile.
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