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1. INTRODUCTION

It has long been recognized that daily asset returns are leptokurtic, and

hence some authors model stock returns as i.i.d. draws from fat-tailed distri-

butions (see Mandelbrot (1963) and Fama (1965)). It is also a well-known

phenomenon that the asset return volatility changes randomly over time.

If so, the unconditional distribution is leptokurtic even though the condi-

tional distribution is normal (see Bollerslev et al. (1994, p2963)). Note,

however, that it does not mean that the leptokurtosis of asset returns can

fully be explained by changes in volatility. Actually, several authors have

found that the conditional distribution is also leptokurtic by assuming lep-

tokurtic distributions for the conditional distribution in ARCH-type models.

For instance, Bollerslev (1987) uses the Student-t distribution, while Nel-

son (1991) uses the generalized error distribution (GED). Bollerslev et al.

(1994) and Watanabe (2000) have found that the Student t-distribution is

adequate for capturing the excess kurtosis of the conditional distribution for

daily US and Japanese stock returns respectively.

Such studies using the stochastic volatility (SV) model, which is a differ-

ent model of changing volatility, are scarce because the volatility in the SV

model is a latent variable and hence it is difficult to estimate the parameters

in the SV model using the conventional maximum likelihood method. The

only exception is Liesenfeld and Jung (2000), who fit a Student-t distribu-

tion and a GED as well as a normal distribution to the error distribution in

the SV model using the simulated maximum likelihood method developed

by Danielsson and Richard (1993) and Danielsson (1994). This article also

considers a normal distribution, a Student-t distribution, and a GED as the

error distribution in the SV model and compares which distribution is the

most adequate. Unlike Liesenfeld and Jung (2000), we extend the Bayesian
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method introduced by Jacquier et al. (1994) and developed by Shephard and

Pitt (1997). Specifically, both the model parameters and the latent volatil-

ity are sampled from their posterior distribution using Markov-chain Monte

Carlo (MCMC) techniques, and simulated draws are used for Bayesian pos-

terior analysis. We sample the latent volatility using the multi-move sampler

proposed by Shephard and Pitt (1997) to improve the convergence rate of

the MCMC. We calculate Bayes factors using the method proposed by Chib

(1995) and Chib and Jeliazkov (2001) to compare the fit of distributions.

Using the MCMC Bayesian method, the SV models with a normal dis-

tribution, a Student-t distribution, and a GED are fitted to daily data from

the Yen/Dollar exchange rate and the TOPIX. According to Bayes factors,

we find that the Student-t distribution fits the both data better than the

normal and the GED. We also examine how the specification of error distri-

butions influences the autocorrelation functions of squared returns and the

confidence intervals of future returns.

The rest of this article is organized as follows. Section 2 briefly explains

the SV model with a normal distribution, a Student-t distribution, and a

GED. Section 3 develops the Bayesian method for the analysis of the SV

models with these distributions. These SV models are fitted to daily data

from the Yen/Dollar exchange rate and the TOPIX in Section 4. Conclusions

and extensions are given in Section 5.

2. STOCHASTIC VOLATILITY MODELS WITH

HEAVY-TAILED DISTRIBUTIONS

The stochastic volatility (SV) model analyzed in this article is the stan-
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dard one given by

rt = exp(ht/2)εt, εt ∼ i.i.d., E(εt) = 0, V (εt) = 1, (1)

ht = µ+ φ(ht−1 − µ) + ηt, ηt ∼ i.i.d.N(0, σ2
η), (2)

where rt is the asset return on day t from which the mean and autocorrela-

tions are removed. We call exp(ht/2) as volatility, so that ht represents the

log of squared volatility. We assume that εt and ηs are mutually independent

for all t and s. We also assume that |φ| < 1.

It is a well-known phenomenon that daily asset returns have leptokurtic

distributions. The kurtosis of rt following the above SV model is given by

k =
E(r4

t )
E(r2

t )2
= E(ε4t ) exp

[
σ2
h

]
, (3)

where

σ2
h =

σ2
η

1− φ2
,

which represents the unconditional variance of ht (see Appendix A in Liesen-

feld and Jung (2000) for the derivation).

The standard normal distribution is usually assumed for the distribution

of εt. If so, E(ε4t ) = 3 and hence the kurtosis of rt is:

k = 3exp
[
σ2
h

] ≥ 3,
where k = 3 only if σ2

h = 0. This result indicates that, as long as the volatil-

ity changes over time, the unconditional distribution of rt is leptokurtic even

if εt follows the standard normal. However, it does not necessarily follow

that the leptokurtosis of asset returns can fully be explained by changes in

volatility. The distribution of εt itself may possibly be leptokurtic. In this

article, we also fit leptokurtic distributions to εt. Specifically, we consider a

Student-t distribution and a generalized error distribution (GED).
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The probability density function (PDF) of the t-distribution with mean

zero and variance normalized to one is given by

f(εt) = [π(ν − 2)]−1/2 Γ((ν + 1)/2)
Γ(ν/2)

[
1 +

ε2t
ν − 2

]−(ν+1)/2

, ν > 2, (4)

where the parameter ν represents the degree-of-freedom and Γ(·) denotes
the gamma function. As long as ν > 4, the kurtosis of the t-distribution is

E(ε4t ) = 3(ν − 2)/(ν − 4),

which is greater than three if ν < ∞. Needless to say, the t−distribution
approaches the standard normal distribution when ν → ∞.

The PDF of the GED with mean zero and variance one is given by

f(εt) =
υ exp

[−1
2 |εt/β|υ

]
βΓ(1/υ)2(1+1/υ)

, 0 < υ < ∞, (5)

where

β =
[
2−2/υΓ(1/υ)

Γ(3/υ)

]1/2
. (6)

The kurtosis of the GED is given by

E(ε4t ) = Γ(1/υ)Γ(5/υ)/ [Γ(3/υ)]
2 ,

which is greater than three if υ < 2. The GED becomes the standard normal

distribution when υ = 2.

3. BAYESIAN ANALYSIS

In this section, we explain the method used in this article for the anal-

ysis of the SV models with a normal distribution, a Student-t distribution,

and a GED. As is well known, it is difficult to estimate the parameters in

the SV model using the maximum likelihood method. Several alternative

methods have, however, been proposed. Among such methods, we extend
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the Bayesian method using Markov-chain Monte Carlo (MCMC) techniques

introduced by Jacquier et al. (1994) and developed by Shephard and Pitt

(1997).

3.1 Parameter Estimation

For the unknown parameters in the SV-normal model, following Kim et al.

(1998), we work with the following prior distributions.

µ ∼ N(k1, k2),

2φ− 1 ∼ Beta(φ1, φ2),

σ2
η ∼ IG(σr/2, Sσ/2),

where N(·, ·), Beta(·, ·), and IG(·, ·) represent the normal, beta, and in-
verse gamma distributions respectively. Specifically, we set k1 = 0, k2 = 10,

φ1 = 20, φ2 = 1.5, σr = 5, and Sσ = 0.01 × σr. We sample these pa-

rameters as well as the latent variable {ht}Tt=0 from their full conditional

distributions using MCMC techniques. The prior distribution of h0 is set to

be the unconditional distribution of ht, i.e. h0 ∼ N(µ, σ2
η/(1 − φ2)). It is

straightforward to obtain the full conditional distributions of the parameters

and h0 and sample from them (see Appendix A1 for their full conditional

distributions). For sampling {ht}Tt=1, we use the multi-move sampler pro-

posed by Shephard and Pitt (1997), where a block of disturbances {ηs}t+k
s=t

in equation (2) are sampled from their conditional density

f({ηs}t+k
s=t |ht−1, ht+k+1, {rs}t+k

s=t , θ). (7)

where θ = (µ, φ, σ2
η) (see Appendix A1 for details).

In the SV-t model, εt can be represented by:

εt =
√
ωtzt, (8)
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where zt ∼ i.i.d.N(0, 1) and (ν − 2)/ωt ∼ i.i.d.χ2(ν).

We sample {ωt}Tt=1 and ν as well as the other parameters and {ht}Tt=0 from

their full conditional distributions. For µ, φ, and σ2
η , we adopt the same

priors as those in the SV-normal model, so that their full conditional distri-

butions remain the same. Following Geweke (1992b, 1993) and Fernández

and Steel (1998), we set the prior distribution for ν as a truncated exponen-

tial with probability density function (PDF),

f(ν) =
{

cλ exp(−λν), ν > 4,
0, otherwise,

(9)

where c = exp(4λ). Specifically, we set λ equal to 0.1. We sample ν and

{ωt}Tt=1 from their conditional distributions f(ν| {ωt}Tt=1) and f({ωt}Tt=1 |ν,
{εt}Tt=1). Conditional on ν, the (ε2t + ν− 2)/ωt follow independent χ2(ν+1)

distribution. Hence, it is straightforward to sample from f({ωt}Tt=1|ν,{εt}Tt=1).

It is, however, more troublesome to sample from f(ν| {ωt}Tt=1). We use the

method proposed by Watanabe (2001), which is based on the acceptance-

rejection/Metropolis-Hastings (A-R/M-H) algorithm proposed by Tierney

(1994) (see Appendix A2 for details). We employ the multi-move sampler

again to sample the latent variable {ht}Tt=1.

When εt follows the GED, it is not possible to represent it as equation (8).

Hence, for the SV-GED model, we sample υ as well as the other parameters

and {ht}Tt=0 from their full conditional distributions. The priors for µ, φ,

and σ2
η remain the same. The prior distribution for υ is given by

υ = I[1, 2], (10)

where I[1, 2] is the indicator function of the interval [1, 2]. We sample υ from

its conditional distributions f(υ|{εt}Tt=1) using the A-R/M-H algorithm (see

Appendix A3 for details). We employ the multi-move sampler again to

sample the latent variable {ht}Tt=1.
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3.2 Bayes factors

Model comparison in a Bayesian framework can be performed using posterior

odds ratio. Let R = {rt}Tt=1 denote the observation vector. Then, posterior

odds ratio between model i, Mi, and model j, Mj, is given by

POR =
f(Mi|R)
f(Mj|R) =

f(R|Mi)
f(R|Mj)

f(Mi)
f(Mj)

,

where f(R|Mi)/f(R|Mj) and f(Mi)/f(Mj) are called Bayes factor and prior

odds ratio respectively.

As is the usual practice, we set the prior odds to be 1, so that the pos-

terior odds ratio is equal to the Bayes factor. To evaluate the Bayes factor,

which is the ratio of the marginal likelihoods, we follow the basic marginal

likelihood identity in Chib (1995). The log (base 10) of the marginal likeli-

hood of model Mi can be written as1

log f(R|Mi)

= log f(R|Mi, θi) + log f(θi|Mi)− log f(θi|Mi, R), (11)

where θi is the set of unknown parameters for model Mi, log f(R|Mi, θi) is

the likelihood, log f(θi|Mi) is the prior density, and log f(θi|Mi, R) is the

posterior density.

The above identity holds for any value of θi, but following Chib (1995),

we set θi at its posterior mean calculated using the MCMC draws. The

likelihood is evaluated using the Accelerated Gaussian Importance Sam-

pling (AGIS) proposed by Danielsson and Richard (1993) and Danielsson

(1994), and the posterior density is calculated using the method of Chib

and Jeliazkov (2001), which is based on the Metropolis-Hastings algorithm

(see Appendix B).

1Bayes factor is usually shown as its log (base 10) value. We denote log (base 10) as
log and log (base e) as ln in this article.
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4. EMPIRICAL APPLICATION

4.1 Data Description and Preliminary Results

We illustrate our method using daily data of the following financial series:

the spot exchange rates for the Japanese Yen/U.S. Dollar exchange rate

from January 4, 1990 to December 28, 1999 and the Tokyo stock price index

(TOPIX) from January 4, 1990 to September 30, 1999. We define the both

returns as

100× {ln(Pt)− ln(Pt−1)}

where Pt is the closing price on day t.

The descriptive statistics are summarized in Table 1. The statistics

reported are the mean, the standard deviation, the kurtosis, and the Ljung-

Box (LB) statistics for 12 lags corrected for heteroskedasticity following

Diebold (1988). The kurtosis of the returns for the both series is signif-

icantly above three, indicating leptokurtic return distributions. The LB

statistics indicate that the return for the yen/dollar exchange rate is serially

uncorrelated while the return for the TOPIX is serially correlated. Hence, as

for {rt}, we use for the former series returns with the mean subtracted and
for the latter series the residuals from the AR(2) model, where the lag length

2 is selected based on the Schwartz (1978) Information Criterion (SIC).

4.2 Estimation Details

For parameter estimation, we conduct the MCMC simulation with 15000

iterations. The first 5000 draws are discarded and then the next 10000

are recorded. Following Kim et al. (1998), we record ση and exp(µ/2)

in place of σ2
η and µ. Using these 10000 draws for each of the parame-

ters, we calculate the posterior means, the standard errors of the posterior
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means, the 95% intervals, and the convergence diagnostic (CD) statistics

proposed by Geweke (1992a). The posterior means are computed by av-

eraging the simulated draws. The standard errors of the posterior means

are computed using a Parzen window with a bandwidth of 1000 (see Shep-

hard and Pitt (1997) for details). The 95% intervals are calculated using

the 2.5th and 97.5th percentiles of the simulated draws. Geweke (1992a)

suggests assessing the convergence of the MCMC by comparing values early

in the sequence with those late in the sequence. Let θ(i) be the ith draw

of a parameter in the recorded 10000 draws, and let θ̄A = 1
nA

∑nA
i=1 θ

(i) and

θ̄B = 1
nB

∑10000
i=10001−nB

θ(i). Using these values, Geweke (1992a) proposes the

following statistic called convergence diagnostics (CD).

CD =
θ̄A − θ̄B√

σ̂2
A/nA + σ̂2

B/nB

, (12)

where
√

σ̂2
A/nA and

√
σ̂2
B/nB are standard errors of θ̄A and θ̄B. If the

sequence of θ(i) is stationary, it converges in distribution to the standard

normal. We set nA = 1000 and nB = 5000 and compute σ̂2
A and σ̂2

B using

Parzen windows with bandwidths of 100 and 500 respectively.

An advantage of using the MCMC Bayesian method is that we can also

sample the parameters such as the kurtosis and the unconditional variance,

which are functions of the model parameters, from their posterior distri-

butions. For example, all we have to do to sample the kurtosis from its

posterior distribution is to substitute the draws of the model parameters

sampled from their posterior distribution into equation (3). Hence, we cal-

culate the posterior means, the standard errors of the posterior means, the

95% intervals, and the CD statistics for the unconditional variance and the

kurtosis as well as the model parameters.

The details of the marginal likelihood evaluation are provided in Ap-

pendix B.

9



4.3 Estimation Results

Table 2 shows the results for the mean-subtracted return for the Yen/Dollar

exchange rate. Table 2(A) presents log (base 10) of Bayes factors. The

log value of Bayes factor of the SV-normal model compared to the SV-t is

−6.96 and that of the SV-t compared to the SV-GED is 3.14, indicating that
the SV-t fits the exchange rate data better than the SV-normal and the SV-

GED. This result is consistent with that of Liesenfeld and Jung (2000). Table

2(B) shows the posterior means, the 95% intervals, and the CD statistics,

which has already been explained in the previous subsection, for the model

parameters, the unconditional variance of volatility σ2
h(= σ2

η/(1− φ2)), and

the kurtosis. According to the CD values, the null hypothesis that the

sequence of 10000 draws is stationary is accepted at any standard level for

all parameters in all models. The posterior mean and 95% interval of φ of

the SV-t are placed on upward, compared to those of the SV-normal and

the SV-GED, showing a higher persistence in volatility of the SV-t than

those of the other two models. The posterior means and 95% intervals of

the conditional standard deviation of volatility ση and the unconditional

variance of volatility σ2
h are both smaller in the SV-t than those in the

SV-normal and SV-GED, indicating that the volatility of the SV-t is less

variable than those of the other models. These results are also consistent

with those of Liesenfeld and Jung (2000). The posterior mean and 95%

interval of the kurtosis of the SV-t are larger than those of the SV-normal

and the SV-GED while the 95% intervals of the kurtosis in all models include

the sample kurtosis of 6.5889.

Table 3 shows the results for the AR(2) residuals of the TOPIX return se-

ries, which are qualitatively unaltered, although the quantitative differences

among the three models are smaller, compared to those for the Yen/Dollar
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exchange rate series. Log values of Bayes factors presented in Table 3(A)

indicate that the SV-t fits the TOPIX data better than the SV-normal and

the SV-GED. According to the estimates of φ, ση, and σ2
h in Table 3(B), the

posterior mean and 95% interval of φ are larger and those of the conditional

standard deviation and the unconditional variance of volatility are smaller

in the SV-t than those in the SV-normal and the SV-GED. The posterior

mean and 95% interval of the kurtosis of the SV-t are larger than those of

the SV-normal and the SV-GED while the 95% intervals of the kurtosis in

all models include the sample kurtosis of 7.2813.

The reason why the volatility of the SV-t is estimated to be more per-

sistent and less variable can be understood by comparing the probability

density function (PDF) of the t-distribution to those of the normal and

GED. Figures 1 and 2 show these PDFs for the Yen/Dollar exchange rate

and the TOPIX respectively, where the parameters ν and υ are set equal

to the corresponding posterior means. Needless to say, the PDFs of the

t-distribution and GED have fatter tails than that of the normal. The PDF

of the GED puts emphasis on the sharpness around the mean rather than

the tail fatness, so that the PDF of the t-distribution has a fatter tail than

that of the GED. Therefore, the SV-t attributes a larger proportion of ex-

treme return values to εt instead of ηt than the SV-normal and the SV-GED

do, making the volatility of the SV-t less variable. It also increases the

persistence in volatility of the SV-t if extreme returns are less persistent.

This interpretation is confirmed by comparing the volatility estimates.

Figures 3 and 4 plot the posterior means of volatilities {exp(ht/2)} jointly
with the squared returns for the returns of the Yen/Dollar exchange rate

and the squared residuals for the AR(2) residuals of the TOPIX returns

respectively. For the exchange rate data, the posterior means of volatilities

from the SV-t model exhibit smoother movements than those from the SV-
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normal and SV-GED models. Extreme returns such as the returns at the

Asian currency crisis beginning in July 1997 make the difference among the

three models clear. The volatilities associated with these extreme return

values jump up more under the SV-normal and the SV-GED than under the

SV-t model. Contrary to the exchange rate data, no major difference in the

posterior means of volatilities among the three models can be seen in the

TOPIX data because the differences in parameter estimates are small.

Next, we evaluate the three SV models by comparing the posterior dis-

tributions for the autocorrelation coefficients of squared returns to the corre-

sponding sample autocorrelation coefficients. It is straightforward to sample

the autocorrelation coefficients of squared returns from their conditional dis-

tributions. The τth order autocorrelation of r2
t is given by

ρ(τ) =
exp(σ2

hφ
τ )− 1

E[ε4t ] exp(σ
2
h)− 1

. (13)

All we have to do is to substitute the draws of the parameters sampled from

their posterior distributions into the above equation. Figures 5 and 6 show

the posterior means of autocorrelation coefficients up to the 100th order

and the 95% confidence interval jointly with the sample autocorrelation co-

efficients for the two series. In the exchange rate data, the autocorrelation

function of the SV-t is flatter than those of the SV-normal and SV-GED

because the estimates of φ for the SV-t is closer to one than those for the

other two models. The 95% intervals for the SV-t include the corresponding

sample autocorrelation coefficients more than the other two models espe-

cially in the higher order area. The same is true for the TOPIX data but

the differences are smaller.

From the viewpoint of Value at Risk (VaR), it is important to exam-

ine how the specification of conditional distribution influences the Bayesian

confidence intervals of future returns. The Bayesian confidence interval of
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rT+1 can be obtained by sampling from

f(rT+1|R) =
∫

f(rT+1|hT+1, R)f(hT+1|hT )f(hT |R)dhT+1dhT , (14)

where R = {rt}Tt=1. This sampling is straightforward. First, N draws{
h

(1)
T , . . . , h

(N)
T

}
are sampled from f(hT |R) jointly with the model parame-

ters using the MCMC method explained in Section 3. Then, given these N

draws, sample N draws {h(1)
T+1, . . . , h

(N)
T+1} from f(hT+1|h(1)

T ), . . . , f(hT+1|
h

(N)
T ) using equation (2). Finally, given these N draws, sample N draws

{r(1)
T+1,. . . ,r

(N)
T+1} from f(rT+1|h(1)

T+1),. . . ,f(rT+1|h(N)
T+1) using equation (1).

N is set equal to 10000. Although methods for sampling from the standard

normal and t-distribution are well known, it is not obvious for the GED. We

propose a method for sampling from the GED by using the inverse incom-

plete gamma function and probability integral transformation (see Appendix

C). For each model, we calculate the 90%, 95%, and 99% intervals with the

posterior mean of volatility, exp(hT+1/2). The confidence intervals of rT+1

would become narrower in ordering of the SV-t, the SV-GED, and the SV-

normal if the volatility exp(hT+1/2) were the same in all three models. The

volatility estimates, however, differ among the three models, so that the

effect of the specification of conditional distribution on the widths of confi-

dence intervals is vague. For the exchange-rate data, the means of volatility

decrease in ordering of the SV-t, the SV-GED, and the SV-normal, so that

the confidence intervals become narrower in the same order. The TOPIX

data, however, is not the case. Since the means of volatility decrease in

ordering of the SV-normal, the SV-t, and the SV-GED, the confidence in-

tervals in the SV-GED is narrower than those of the SV-normal. In any

case, since the specification of the conditional distribution obviously affects

the confidence intervals of rT+1, it is important to specify the conditional

distribution correctly in constructing confidence intervals.
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All analyses so far are based on the SV model defined by equations (1)

and (2). To analyze the effect of the volatility specification on the estimates

of ν and υ, we also estimate the following GARCH model with different

distributions for {εt}.

rt = σtεt, E(εt) = 0, V (εt) = 1,

σ2
t = a0 + a1r

2
t−1 + b1σ

2
t−1.

Although it is possible to estimate the GARCHmodel using MCMCBayesian

methods (see Bauwens and Lubrano (1998), Nakatsuma (2000), and Mitsui

and Watanabe (2000)), we simply apply the conventional maximum likeli-

hood method. Table 5 shows the estimation results. For the both Yen/Dollar

exchange rate and TOPIX, the estimates of ν in the GARCH-t model and υ

in the GARCH-GED model are much smaller than the corresponding pos-

terior means in the SV-t and SV-GED models. This result indicates that

the GARCH model requires a more leptokurtic distribution for εt than the

SV model. Volatility in the GARCH model is determined only by the past

volatility σ2
t−1 and the past squared return r2

t−1, while that in the SV model

depends also on the current shock ηt, which increases the leptokurtosis of rt

and the estimates of ν and υ. In the GARCH model, volatility persistence

is measured by a1+ b1. In ordering of GARCH-normal, GARCH-GED, and

GARCH-t, the estimates of a1 + b1 rise, which is consistent with the result

based the SV model.

5. CONCLUSIONS AND EXTENSIONS

This article analyzes SV models with the Student-t distribution or gen-

eralized error distribution (GED). A Bayesian method via Markov-chain

Monte Carlo (MCMC) techniques is used to estimate parameters and Bayes

factors are calculated to compare the fit of distributions. The results, based
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on daily data from the yen/dollar exchange rate and the TOPIX, reveal that

the t distribution fits the both data better than the normal and the GED.

We also examine the effects of the choice of the conditional distribution on

the shapes of autocorrelation functions and the confidence intervals of future

returns.

This article has certain contributions, but several extensions are still

possible.

1. We focus on leptokurtic distributions as distributions for εt, but it

is also worthwhile fitting skewed distributions such as skewed t dis-

tribution (see Hansen (1994) and Fernández and Steel (1998)) and

the generalized exponential beta distribution (GEB) (see Wang et al.

(2001)).

2. We specify the log of volatility as a simple AR(1) process. According to

Figures 5 and 6, the number of the sample autocorrelation coefficients

that are not included in the 95% intervals is, however, not negligible

even in the SV-t model. Hence, more elaborate models such as higher

order ARMA models and long memory models may be required for

the specification of volatility.

3. We neglect the well-known phenomenon in stock markets of a neg-

ative correlation between current returns and future volatility. A

stochastic volatility model extended to accommodate this phenomenon

(see Danielsson (1994), Harvey and Shephard (1996), and Watanabe

(1997)) should also be applied to the TOPIX data.2

2The application of multimove sampler to such an asymmetric SV model is under study.
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APPENDIX A: SAMPLING METHOD FOR

THE SV MODELS

A.1 The SV-normal Model

As shown by Kim et al. (1998), the full conditional distributions of µ and

σ2
η are given by

µ|· ∼ N
(
µ̂, σ2

µ

)
, (A.1)

σ2
η |· ∼ IG(A,B), (A.2)

where

σ2
µ =

k2σ
2
η

k2 {T (1− φ)2 + 1− φ2}+ σ2
η

,

µ̂ = σ2
µ

{
(1− φ2)

σ2
η

h0 +
(1− φ)

σ2
η

T∑
t=1

(ht − ht−1) +
k1

k2

}
,

A =
T + 1 + σr

2
,

B =
1
2

{
Sσ + (h0 − µ)2(1− φ2) +

T∑
t=1

(ht − µ(1− φ)− φht−1)2
}

.

It is straightforward to sample from these distributions.

The log of the full conditional distribution of φ is represented by:

ln f(φ|·) = const + g(φ)−
∑T

t=1 {ht − µ(1− φ)− φht−1}2

2σ2
η

, (A.3)

where

g(φ) = ln f(φ)− (h1 − µ)2(1− φ2)
2σ2

η

+
1
2
ln(1− φ2).

To sample from this distribution, we use the method of Chib and Greenberg

(1994), which is based on the Metropolis-Hastings algorithm. Specifically,

given the current value φ(i−1) at the (i − 1)-st iteration, sample a proposal
value φ∗ from the truncated normal distribution N(φ̂, Vφ)I[−1, 1] where φ̂ =∑T

t=1(ht − µ)(ht−1 − µ)/
∑T

t=1(ht−1 − µ)2 and Vφ = σ2
η/
{∑T

t=0(ht − µ)2
}
.
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Then, accept this proposal value as φ(i) with probability exp{g(φ∗)−g(φ(i−1)

)}. If the proposal value is rejected, set φ(i) to equal φ(i−1).

The full conditional distribution of h0 is:

h0|· ∼ N(µ(1− φ) + φh1, σ
2
η). (A.4)

It is straightforward to sample from this distribution.

The log of the conditional distribution (7) is expressed as

ln f({ηs}t+k
s=t |·)

= const + ln f({ηs}t+k
s=t ) + ln f({rs}t+k

s=t |{hs}t+k
s=t)

= const− 1
2σ2

η

t+k∑
s=t

η2
s +

t+k∑
s=t

ln f(rs|hs). (A.5)

For the SV-normal model, we have

ln f(rs|hs) = const− 1
2
hs − r2

s

2
exp(−hs). (A.6)

We denote (A.6) by l(hs) and write the derivative of this density with respect

to hs as l′ and l′′ respectively. Applying a Taylor series expansion to the

log-density ln f({ηs}t+k
s=t |·) around some preliminary estimate {η̂s}t+k

s=t , we

have

ln f({ηs}t+k
s=t |·)

≈ const− 1
2σ2

η

t+k∑
s=t

η2
s +

t+k∑
s=t

{
l(ĥs) + (hs − ĥs)l′(ĥs) +

1
2
(hs − ĥs)2l′′(ĥs)

}

= ln g, (A.7)

where {ĥs}t+k
s=t are the estimate of {hs}t+k

s=t corresponding to {η̂s}t+k
s=t .

Define variables vs and ŷs as follows.3 For s = t, . . . , t+ k − 1,

vs = −1/l′′(ĥs) (A.8)

ŷs = ĥs + vsl
′(ĥs). (A.9)

3Shephard and Pitt (1997) define vs and ŷs for all s using equations (A.8) and (A.9).
Watanabe and Omori (2001) show that this mistake may cause a significant bias in esti-
mates for the both parameters and latent variables. When t + k < T , vt+k and ŷt+k must
be defined using equations (A.10) and (A.11).
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For s = t+ k, if t+ k < T ,

vt+k = σ2
η/
{
φ− σ2

ηl
′′(ĥt+k)

}
(A.10)

ŷt+k = ĥt+k

+vt+k

[
l′(ĥt+k) + φ

{
ht+k+1 − µ(1− φ)− φĥt+k

}]
, (A.11)

and if t+ k = T ,

vt+k = −1/l′′(ĥt+k) (A.12)

ŷt+k = ĥt+k + vt+kl
′(ĥt+k). (A.13)

Then, the normalized version of g is a k-dimensional normal density,

which is the exact density of {ηs}t+k
s=t conditional on {ŷs}t+k

s=t in the linear

Gaussian state space model:

ŷs = hs + εs, εs ∼ N(0, vs), (A.14)

hs = φhs−1 + ηs, ηs ∼ N(0, σ2
η), (A.15)

Applying the de Jong and Shephard (1995) simulation smoother to this

model with the artificial {ŷs}t+k
s=t enables us to sample {ηs}t+k

s=t from the

density g.

Following Shephard and Pitt (1997), we select the expansion block {ĥs}t+k
s=t

as follows. Once an initial expansion block {ĥs}t+k
s=t is selected, we can cal-

culate the artificial {ŷs}t+k
s=t . Then, applying the Kalman smoother to the

linear Gaussian state space model that consists of equations (A.14) and

(A.15) with the artificial {ŷs}t+k
s=t yields the mean of {hs}t+k

s=t conditional on

{ŷs}t+k
s=t in the linear Gaussian state space model, which is used as the next

{ĥs}t+k
s=t . We use five iterations of this procedure to obtain the expansion

block {ĥs}t+k
s=t .

Since g does not bound f , we cannot use the conventional acceptance-

rejection sampling method to simulate {ηs}t+k
s=t from the true density f .
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Instead, Shephard and Pitt (1997) suggest using the Acceptance-Rejection/

Metropolis-Hastings (A-R/M-H) algorithm proposed by Tierney (1994) (see

also Chib and Greenberg (1995) for details). Let us denote the previously

sampled value of {ηs}t+k
s=t by x. Suppose that the candidate y is produced

from the acceptance-rejection algorithm. Then, the A-R/M-H algorithm

proceeds as follows.

1. If f(x) < g(x), then let α = 1;

If f(x) ≥ g(x) and f(y) < g(y), then let α = g(x)/f(x);

If f(x) ≥ g(x) and f(y) ≥ g(y), then let α = min
{
f(y)g(x)
f(x)g(y) , 1

}
.

2. Generate u from a standard uniform distribution.

3. If u ≤ α, return y.

Else, return x.

To implement the multi-move sampler, we must select the knots. Fol-

lowing Shephard and Pitt (1997), we select the K knots, that is equivalently

K + 1 blocks, randomly with Ui being independent uniforms and

ki = int[T × {(i+ Ui)/(K + 2)}], i = 1, . . . ,K,

where int[x] represents the operator that rounds x down to the nearest

integer. The stochastic knots ensure that the method does not become stuck

by an excessive amount of rejections. In all of the analyses in this paper,

the number of knots K are set equal to 40 for the Yen/Dollar exchange rate

and 50 for the TOPIX.

A.2 The SV-t Model

For the SV-t model that consists of equations (1), (2), and (8), we sample

{ωt}Tt=1 and ν as well as the other parameters and {ht}Tt=0 from their full

conditional distributions. The full conditional distributions for µ, φ, σ2
η, and
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h0 are the same as those in the SV-normal model. It is straightforward to

sample {ht}Tt=1 from their full conditional distributions using the multi-move

sampler. All we have to do is to replace equation (A.5) by

ln f(rs|hs, ωs) = const− 1
2
hs − r2

s

2ωs
exp(−hs). (A.16)

Conditional on ν, the (ε2t + ν − 2)/ωt follow independent χ2(ν + 1) dis-

tribution. Hence, it is straightforward to sample from f({ωt}Tt=1 |ν, {εt}Tt=1).

Under the prior (9), the log of conditional distribution of ν is given by

ln f(ν| {ωt}Tt=1)

= const +
Tν

2
ln
(
ν − 2
2

)
− T ln Γ

(ν
2

)
− ην, (A.17)

where

η =
1
2

T∑
t=1

{
ln(ωt) +

1
ωt

}
+ λ. (A.18)

To sample from this distribution, we use the method proposed by Watan-

abe (2001), which is based on the A-R/M-H algorithm proposed by Tierney

(1994). Specifically, we use a normal distribution as a proposal density in

the A-R step. The mean and variance of this distribution are chosen as

follows. We find the mode of ν∗ by numerical optimization, which is used

for the mean, and calculate d2 ln f(ν|·)/dν2 at ν = ν∗, which is used for the

variance. It follows from the following theorem that the variance is always

positive.

Theorem. For the full conditional distribution of ν defined in equation

(A.17), the second derivative is negative for all ν > 0, that is

d2 ln f(ν|·)
dν2

< 0. (A.19)
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Proof. Differentiating equation (A.17), we have

d2 ln f(·)
dν2

=
T

2

{
ν − 4
(ν − 2)2 − 1

2
ψ′
(ν
2

)}
, (A.20)

where ψ(x) is a psi (digamma) function defined by ψ(x) = d ln Γ(x)/dx and

ψ′(x) is a trigamma function defined by ψ′(x) = dψ(x)/dx.

ln Γ(ν/2) is represented by

ln Γ
(ν
2

)
=
ln(2π)
2

+
ν − 1
2

ln
(ν
2

)
− ν

2
+

θ

6ν
, 0 < θ < 1, (A.21)

(see equation 6.1.38 in Abramowitz and Stegun (1970)). Substituting the

derivative of (A.21) into (A.20) yields

d2 ln f(ν|·)
dν2

= − Tθ

3ν3
− T (ν2 + 4)
2(ν − 2)2ν2

< 0.

A.3 The SV-GED Model

For the SV-GED model, we sample υ as well as the other parameters and

{ht}Tt=0 from their full conditional distributions. The full conditional distri-

butions for µ, φ, σ2
η , and h0 are the same as those in the SV-normal and SV-t

models. We sample {ht}Tt=1 from their full conditional distributions using

the multi-move sampler. All we have to do is to replace equation (A.5) by

ln f(rs|hs) = const− hs
2

− 1
2

∣∣∣∣rsβ
∣∣∣∣
υ

exp(−υ
hs
2
), (A.22)

where β is defined by equation (6). It is straightforward to prove that this

is log-concave.

Under the prior (10), the log of conditional distribution of υ is given by

ln f(υ|{rs}Ts=1, {hs}Ts=1)

= const + T lnυ − T lnβ − T

(
1 +

1
υ

)
ln 2

−T ln Γ
(
1
υ

)
− 1
2

T∑
s=1

∣∣∣∣rsβ
∣∣∣∣
υ

exp
(
−hs
2
υ

)
. (A.23)
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To sample from this density, we use the A-R/M-H algorithm similar to that

used to sample ν in the SV-t model. The problem is that ln f(υ|·) is no
longer concave and hence d2 ln f(υ|·)/dυ2 can be positive.

To see this, we use the second derivative of ln f(υ|·),

1
T

d2 ln f(υ|·)
dυ2

=
[
− 1
υ2

− d2 lnβ
dυ2

− 2
υ3

[
ln 2 + ψ

(
1
υ

)]
− 1

υ4
ψ′
(
1
υ

)]

− 1
2βυ

1
T

T∑
s=1

|εs|υ
[
−d2 lnβ

dυ2
+
(
d lnβ
dυ

+
hs
2

)2
]
.(A.24)

Noting that

ψ(x) = lnx− 1
2x

− θ

12x2
, 0 < θ < 1,

which we used in Appendix A.2, we have

d ln β
dυ

=
1
υ2
(ln 2 + 3 ln 3− 2 ln υ) + θ

18
> 0,

d2 lnβ
dυ2

= − 1
υ3
(1 + ln 2 + 3 ln 3− 2 ln υ) < 0,

for 1 ≤ υ ≤ 2. We obtained these inequalities by 3 > e > υ. Hence, we have

− 1
2βυ

1
T

T∑
s=1

|εs|υ
[
−d2 lnβ

dυ2
+
(
d ln β
dυ

+
hs
2

)2
]
< 0.

Thus, the second term of equation (A.24) is always negative. But, the

derivative of ψ(x) is

ψ′(x) =
1
x
+

1
2x2

+
θ

6x3
,

which implies that, for the first term of (A.24),

[
− 1
υ2

− d2 lnβ
dυ2

− 2
υ3

[
ln 2 + ψ

(
1
υ

)]
− 1

υ4
ψ′
(
1
υ

)]

=
1
υ3

[
5
2
(2− υ) + 2 ln

(
2
υ

)
+
1
3
(4− θυ2) + 6 ln 3− 4− 2 ln 2

]
> 0.

Therefore, it depends on the values of T−1
∑T

s=1 |εs|υ, T−1
∑T

s=1 |εs|υhs and
T−1

∑T
s=1 |εs|υh2

s that d2 ln f(υ|·)/dυ2 is positive or negative.
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If it is positive, the variance of the proposal density will be negative. In

such a case, we can implement an ad hoc adjustment; we set the variance of

the proposal density as −1/Ds(ĥs) where

Ds(ĥs) = min
[
d2 ln f(υ|·)

dυ2

∣∣∣∣
υ=υ∗

,−0.0001
]
. (A.25)

We should note that d2 ln f(υ|·)/dυ2 is always negative in our empirical

analysis.

APPENDIX B: EVALUATING BAYES

FACTORS

B.1 Likelihood Estimation

Let R = {rt}Tt=1 and H = {ht}Tt=0. Then, the likelihood of the SV models

is given by

f(R|θ) =
∫
Rt

f(R,H|θ)dH. (B.1)

The joint density f(R,H|θ) can be factorized in an importance function (IF)
ψ(H|R) and a remainder function (RF) π(H,R) such that

f(R,H|θ) = π(H,R)ψ(H|R). (B.2)

Thus, the likelihood f(R|θ) is the expectation Eψ [π(H,R)], which can be

estimated by sampling
{
H(k)

}K
k=1

from ψ(H|R) and calculating the sample
mean

f̂N (R|θ) = 1
K

K∑
k=1

π(H,R). (B.3)

An initial factorization is obtained as follows:

ψ0(H|R) = f(h0)
T∏
t=2

f(ht|ht−1) (B.4)

π0(H,R) =
T∏
t=1

f(rt|ht), (B.5)
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where f(ht|ht−1) is the density of ht conditional on ht−1, which is, according

to equation (2), the normal with mean µ(1−φ) and variance σ2
η. f(h0) is the

unconditional density of ht, which is the normal with mean µ and variance

σ2
η/(1 − φ2). f(rt|ht) is the density of rt conditional on ht. For the SV-

normal model, f(rt|ht) is the normal with mean 0 and variance exp(ht). For
the SV-t and SV-GED models, f(rt|ht) are respectively given by

f(rt|ht) = [π(ν − 2) exp(ht)]−1/2 Γ((ν + 1)/2)
Γ(ν/2)

[
1 +

r2
t

exp(ht)(ν − 2)
]−(ν+1)/2

,

(B.6)

and

f(rt|ht) =
υ exp

[−1
2 |rt/ {exp(ht/2)β} |υ

]
exp(ht/2)βΓ(1/υ)2(1+1/υ)

, (B.7)

where β is defined in equation (6).

This initial factorization is, however, inefficient in the sense that the

resulting sampling variance of f̂N (R|θ) increases dramatically with the di-
mension of the integral T . To solve this inefficiency problem, Danielsson and

Richard (1993) propose an acceleration method, called Accelerated Gaussian

Importance Sampling (AGIS). The AGIS method searches for a Gaussian

IF which minimizes the sampling variance of the corresponding RF.

LetQ0 denote a 2×2 matrix andQt denote a 3×3 matrix for t = 1, . . . , T .
Also, define

λ′
0 = (h0, 1),

and

λ′
t = (ht, ht−1, 1), t = 1, . . . , T.

Then, a variance reduction function ξ(H,Q) is defined as

ξ(H,Q) =
T∏
t=0

ξ(ht, Qt), (B.8)
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where

ξ(ht, Qt) = exp
(
−1
2
λ′
tQtλt

)
. (B.9)

This variance reduction function is used to construct a new pair of an

IF and a RF as follows:

ψ(H|R) = ψ0(H|R)ξ(H,Q)/k(Q), (B.10)

π(H,R) = π0(H,R)k(Q)/ξ(H,Q), (B.11)

where k(Q) represents the integration constant which ensures that the new

IF integrates to one and is given by

k(Q) =
∫
RT

ψ(H|R)ξ(H,Q)dH. (B.12)

Starting with the initial IF ψ0(H|R), an initial simulated sample {H0,n}Nn=1

is drawn and used to run the regression for every time period t = 1, . . . , T :

lnπ0(h0,n,t) = a1,t + b1,th0,n,t + c1,th
2
0,n,t + error term, n = 1, . . . ,N.

(B.13)

Then, the OLS-estimates of the coefficients are used to construct the follow-

ing matrix for every period t:

Q̂1,t =


 −2ĉ1,t 0 −b̂1,t

0 0 0
−b̂1,t 0 −2â1,t


 , t = 1, . . . , T. (B.14)

A first new IF is given by ψ1(H|R) = ψ0(H|R)ξ(H, Q̂1)/k(Q̂1) where Q̂1 ={
Q̂1,t

}T
t=1
. A second-step IF ψ2(H|R) is constructed in the same fashion

by drawing a random sample from ψ1(H|R) and regressing lnπ0(h1,n,t) on

a constant, h1,n,t, h2
1,n,t. With the resulting sequence of matrices Q̂2, one

can determine ψ2(H|R). This procedure is repeated until Q̂j is sufficiently

close to the one-step-ahead matrices Q̂j−1. Danielsson and Richard (1993)

showed that the convergence is reached very quickly, typically after less than
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five iterations. Finally, the simulated {Hj,n}Nn=1 from ψj(H|R) is used to
calculate the jth step AGIS estimate of the integral

f̂N,j(R|θ) = 1
N

N∑
n=1

π0(Hj,n, R)k(Q̂j)
ξ(Hj,n, Q̂j)

. (B.15)

Here, a simulation sample size of N = 5000 and four iterations for the AGIS

algorithm are used.

B.2 Posterior Density Estimation

We first consider the SV-normal model, whose posterior density at the pos-

terior mean (σ2∗
η , µ∗, φ∗) is represented by

log f(σ2∗
η , µ∗, φ∗|R)

= log f(σ2∗
η |R) + log f(φ∗|R,σ2∗

η ) + log f(µ
∗|R,σ2∗

η , φ∗). (B.16)

To estimate f(σ2∗
η |R), we do not need any additional MCMC runs. All

we have to do is to substitute the MCMC draws
{
H(m), µ(m), φ(m)

}M
m=1

obtained for the parameter estimation into the following equation.

f
(
σ2∗
η |R)

=
1
M

M∑
m=1

f
(
σ̂2
η|R,H, µ(m), φ(m)

)

=
1
M

M∑
m=1

exp

(
A ln(B(m))− (A+ 1) ln(σ2∗

η )− ln Γ(A)−
B(m)

σ2∗
η

)
,

(B.17)

where

A =
T + 1 + σr

2
,

B(m) =
1
2

{
Sσ + (1− φ(m)2)(h(m)

0 − µ(m))2

+
T∑
t=1

(h(m)
t − µ(m)(1− φ(m))− φ(m)h

(m)
t−1)

2

}
.
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It is more troublesome to estimate f(φ∗|R,σ2∗
η ) because its normalizing

constant is unknown. To overcome this problem, we use the method of

Chib and Jeliazkov (2001). Let q(φ, φ′|R,H, σ2∗
η , µ) denote the proposal

density for the transition from φ to φ′. Specifically, q(φ, φ′|·) is given by
the truncated normal distribution N(φ̂, Vφ)I[−1, 1] where φ̂ =

∑T
t=1(ht −

µ)(ht−1 − µ)/
∑T

t=1(ht−1 − µ)2 and Vφ = σ2
η/
{∑T

t=0(ht − µ)2
}
. Also, let

α(φ,φ′|R,H, σ2∗
η , µ)

= min

[
1,

f(φ′|R,H, σ2∗
η , µ)q(φ′, φ|R,H, σ2∗

η , µ)
f(φ|R,H, σ2∗

η , µ)q(φ, φ′|R,H, σ2∗
η , µ)

]
(B.18)

denote the probability of move. Chib and Jeliazkov (2001) proved that the

following equation holds.

f(φ∗|R,H, σ2∗
η )

=
E1

[
α(φ,φ∗|R,H, σ2∗

η , µ)q(φ, φ∗|R,H, σ2∗
η , µ)

]
E2

[
α(φ∗, φ|R,H, σ2∗

η , µ)
] , (B.19)

where the numerator expectation E1 is with respect to the distribution

f(φ, µ,H|R,σ2∗
η ) while the denominator expectation E2 is with respect to

the distribution f(µ,H|R,φ∗)q(φ∗, φ|R,H, σ2∗
η , µ).

To estimate the numerator, since the expectation is conditioned on σ2∗
η ,

we continue the MCMC simulation for an additional G iterations with σ2
η

given at σ2∗
η . Specifically, given σ2∗

η , we sample φ and µ from their full condi-

tional densities and H using the multi-move sampler. For the denominator,

since the expectation is conditioned on σ2∗
η and φ∗, we continue the MCMC

simulation for an additional J iterations. Specifically, given σ2∗
η and φ∗,

we sample µ from its full conditional densities and H using the multi-move

sampler. At each iteration of this reduced run, given the values (µ(j),H),

we also generate a variate

φ(j) ∼ q(φ∗, φ|R,σ2∗
η , µ(j),H(j)).
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The resulting triple (µ(j),H(j), φ(j)) is a draw from the distribution

f(µ,H|R,σ2∗
η , φ∗)q(φ∗, φ|R,σ2∗

η , µ,H).

The marginal ordinate can now be estimated as

f(φ∗|R,σ2∗
η )

=
1
G

∑G
g=1

[
α(φ(g), φ∗|R,σ2∗

η , µ(g),H(g))q(φ(g), φ∗|R,σ2∗
η , µ(g),H(g))

]
1
J

∑J
j=1

[
α(φ∗, φ(j)|R,σ2∗

η , µ(j),H(j))
] .

(B.20)

Next, to estimate the reduced conditional ordinate f(µ∗|R,σ2∗
η , φ∗), we

only need to use the values of H(j) from the above reduced run to form the

average

f(µ∗|R,σ2∗
η , φ∗) =

1
J

J∑
j=1

f(µ∗|R,σ2∗
η , φ∗,H(j)).

A similar method can be applied to the SV-t and SV-GED models.

We apply the method of Chib and Jeliazkov (2001) to the estimation of

the conditional densities f(ν∗|·) and f(υ∗|·). Notice, however, that this

method requires the normalized constant of the proposal densities q(ν, ν ′|·)
and q(υ, υ′|·). If we use the A-R/M-H algorithm to sample ν and υ, the

normalizing constant of the proposal density is unknown. Hence, we use

the A-R/M-H algorithm in the MCMC runs for the parameter estimation

while we remove the A-R step and use the M-H algorithm without the A-

R step in those for the posterior density estimation. Then, the proposal

densities q(ν, ν ′|·) and q(υ, υ′|·) in the latter MCMC runs are given by the
truncated normal distributions N(ν∗, B)I[4,∞] and N(υ∗, C)I[1, 2], where

ν∗ and υ∗ are the mode of the conditional densities f(ν|·) and f(υ|·) and
B = d2 ln(ν|·)/dν2|ν=ν∗ and C = d2 ln(υ|·)/dυ2|ν=ν∗ . In this article, we set

G = J = 5000.
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APPENDIX C: SAMPLING FROM GED

The density function of the GED with mean zero and variance one is

given by equation (5), which can be written as

f(x) = Kβ−1 exp
(
−1
2

∣∣∣∣xβ
∣∣∣∣
v)

, 0 < v < ∞, (C.1)

where

β =
[
2−2/v Γ(1/v)

Γ(3/v)

]1/2
, K = v

[
Γ(1/v)2(1+1/v)

]−1
.

Since the cumulative distribution function (CDF) of the GED is expressed

by using the incomplete gamma function, we propose a sampling method by

the probability integral transformation.

When x < 0, the CDF of GED is given by

F (x) =
∫ x

−∞
Kβ−1 exp(−(−y/β)v/2)dy

=
∫ ∞

x∗
(K21/v/v)t1/v−1e−tdt

= (K21/v/v)
∫ ∞

x∗
t1/v−1e−tdt

= (KΓ(1/v)21/v/v){1− P (1/v, x∗)}

=
1
2

{
1− P

(
1
v
, x∗
)}

,

where x∗ = (−x/β)v/2, and P (·, ·) is the incomplete gamma function defined
in Abramowitz and Stegun (1970, p.260). We can easily verify that

F (0) =
Γ(1/v,0)
2Γ(1/v)

=
Γ(1/v)
2Γ(1/v)

= 1/2.

Since GED is a symmetric distribution, we have, for x ≥ 0,

F (x) =
1
2

{
1− P

(
1
v
,
1
2

(
x

β

)v)}
.

Setting u = F (x), we have the inverse function

x = F−1(u) =

{
−β
{
2P−1

(
1
v , 1− 2u

)}1/v (u < 0.5)
β
{
2P−1

(
1
v , 2u− 1)}1/v (u ≥ 0.5).

(C.2)
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We can rewrite the above equation by using the CDF of a χ2-variant.

Since the CDF of z ∼ χ2(k) is given by Q(z | k) = P (k/2, z/2), the CDF of

the GED becomes

F (x) =
{

1
2{1−Q((−x/β)v | 2/v)} (x < 0)
1
2{1 +Q((x/β)v | 2/v)} (x ≥ 0).

Thus, its inverse function is

x = F−1(u) =

{
−β
{
Q−1

(
1− 2u| 2

v

)}1/v (u < 0.5)
β
{
Q−1

(
2u− 1| 2

v

)}1/v (u ≥ 0.5).
(C.3)

We can, therefore, sample from GED by using equation (C.2) or (C.3) and

the probability integral transformation.
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TABLE 1. Descriptive Statistics of Daily Returns (%) for the Yen/Dollar
Exchange Rate and the TOPIX

Yen/Dollar rate TOPIX
Statistics

Raw data Raw data Residual
Sample size 2467 2403 2401
Mean -0.0143 -0.0268 0
St. dev. 0.7395 1.2753 1.2615
Kurtosis 6.5889 7.4684 7.2813
LB(12) 8.73 35.09 10.40
NOTE: For the Yen/Dollar exchange rate, statistics for the
raw return series are calculated. For the TOPIX, statistics
for the raw return series and the residual series from the
AR(2) model are calculated. LB(12) is the heteroskedasticity-
corrected Ljung-Box statistic including twelve lags for the re-
turn series. The corrected Ljung-Box statistic is calculated
following Diebold (1988). The critical values for LB(12) are:
18.55 (10%), 21.03 (5%), 26.22 (1%).
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TABLE 2. Estimation Results for the Yen/Dollar Exchange Rate

(A) Bayes Factors

t GED
Normal -6.96 -3.82
t – 3.14
NOTE: The numbers in the table are log (base
10) of Bayes factors for row model against column
model.

(B) Parameter Estimates

Parameter Mean Standard Error 95% Interval CD
Normal Distribution

exp(µ/2) 0.6307 0.0008 [0.5620,0.7051] -1.43
φ 0.9583 0.0013 [0.9317,0.9780] -1.52
ση 0.2113 0.0039 [0.1595,0.2785] 1.48
σ2

h 0.5678 0.0040 [0.4011,0.7995] 0.79
kurtosis 5.3224 0.0203 [4.4802,6.6734] 0.76

Student t Distribution
exp(µ/2) 0.6503 0.0011 [0.5478,0.7621] -0.84
φ 0.9827 0.0007 [0.9688,0.9930] 1.50
ση 0.1234 0.0032 [0.0897,0.1622] -1.69
ν 8.1161 0.1851 [5.8650,11.5648] 0.34
σ2

h 0.4830 0.0034 [0.2882,0.8514] -1.23
kurtosis 7.7837 0.1612 [5.5983,11.8064] -0.07

GED
exp(µ/2) 0.6441 0.0004 [0.5593,0.7353] -0.34
φ 0.9742 0.0010 [0.9532,0.9881] 1.50
ση 0.1542 0.0036 [0.1118,0.2174] -1.40
υ 1.5715 0.0048 [1.4270,1.7357] -1.15
σ2

h 0.4896 0.0025 [0.3205,0.7695] -0.61
kurtosis 6.0101 0.0266 [4.9353,7.8503] -0.47
NOTE: The first 5000 draws are discarded and then the next 10000 are
used for calculating the posterior means, the standard errors of the pos-
terior means, 95% interval, and the convergence diagnostic (CD) statistics
proposed by Geweke (1992). The posterior means are computed by aver-
aging the simulated draws. The standard errors of the posterior means are
computed using a Parzen window with a bandwidth of 1000. The 95% in-
tervals are calculated using the 2.5th and 97.5th percentiles of the simulated
draws. The CD is computed using equation (12), where we set nA = 1000
and nB = 5000 and compute σ̂2

A and σ̂2
B using a Parzen window with

bandwidths of 100 and 500 respectively. σ2
h represents the unconditional

variance of volatility σ2
η/(1 − φ2)
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TABLE 3. Estimation Results for the TOPIX

(A) Bayes Factors

t GED
Normal -2.67 -1.28
t – 1.39
NOTE: The numbers in the table are log (base
10) of Bayes factors for row model against column
model.

(B) Parameter Estimates

Parameter Mean Standard Error 95% Interval CD
Normal Distribution

exp(µ/2) 1.0449 0.0011 [0.9254,1.1772] 0.84
φ 0.9552 0.0008 [0.9334,0.9737] 1.19
ση 0.2478 0.0026 [0.1997,0.3020] -1.26
σ2

h 0.7221 0.0031 [0.5279,0.9890] -0.79
kurtosis 6.2223 0.0195 [5.0859,8.0660] -0.67

Student t Distribution
exp(µ/2) 1.0699 0.0021 [0.9300,1.2268] -0.68
φ 0.9676 0.0008 [0.9485,0.9823] -0.67
ση 0.2002 0.0027 [0.1581,0.2497] 0.71
ν 13.2045 0.5077 [7.3395,21.4837] -0.52
σ2

h 0.6545 0.0033 [0.4531,0.9739] 0.21
kurtosis 7.3334 0.0997 [5.7225,10.5928] 0.42

GED
exp(µ/2) 1.0617 0.0011 [0.9351,1.2110] -0.05
φ 0.9627 0.0006 [0.9424,0.9792] 0.90
ση 0.2154 0.0024 [0.1640,0.2666] -1.09
υ 1.6975 0.0037 [1.5281,1.8873] -1.33
σ2

h 0.6561 0.0036 [0.4640,0.9376] -1.11
kurtosis 6.5877 0.0151 [5.3530,8.6671] -0.68
NOTE: The first 5000 draws are discarded and then the next 10000 are
used for calculating the posterior means, the standard errors of the pos-
terior means, 95% interval, and the convergence diagnostic (CD) statistics
proposed by Geweke (1992). The posterior means are computed by aver-
aging the simulated draws. The standard errors of the posterior means are
computed using a Parzen window with a bandwidth of 1000. The 95% in-
tervals are calculated using the 2.5th and 97.5th percentiles of the simulated
draws. The CD is computed using equation (12), where we set nA = 1000
and nB = 5000 and compute σ̂2

A and σ̂2
B using a Parzen window with

bandwidths of 100 and 500 respectively. σ2
h represents the unconditional

variance of volatility σ2
η/(1 − φ2)
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TABLE 4. Confidence Intervals for Return at T + 1

Normal t GED
Exchange Rate
90% [-0.7632,0.7943] [-0.9821,0.9967] [-0.8200,0.8216]
95% [-0.9419,0.9761] [-1.2528,1.2406] [-1.0263,1.0393]
99% [-1.3385,1.4120] [-1.9177,1.9182] [-1.5398,1.4701]
mean of exp(hT+1/2) 0.4479 0.5171 0.4896
TOPIX
90% [-3.2686,3.1970] [-3.3220,3.3391] [-3.1261,3.1016]
95% [-4.0301,3.9822] [-4.3015,4.2163] [-3.8508,3.8180]
99% [-5.6504,5.4389] [-6.4485,6.1505] [-5.4893,5.6495]
mean of exp(hT+1/2) 1.9128 1.8544 1.8429

TABLE 5. Maximum Likelihood Estimates for GARCH Models

(A) Yen/Dollar Exchange Rate
Normal t GED

a0 0.0180 0.0076 0.0109
(0.0049) (0.0029) (0.0040)

a1 0.0871 0.0603 0.0702
(0.0136) (0.0120) (0.0140)

b1 0.8805 0.9279 0.9102
(0.0199) (0.0145) (0.0188)

ν 5.5129
(0.5946)

υ 1.3298
(0.0495)

log-likelihood −1.0434 −1.0127 −1.0177
a1 + b1 0.9676 0.9882 0.9804

(B) TOPIX-Residual
Normal t GED

a0 0.0703 0.0492 0.0574
(0.0094) (0.0125) (0.0137)

a1 0.1443 0.1187 0.1275
(0.0127) (0.0170) (0.0179)

b1 0.8166 0.8554 0.8394
(0.0160) (0.0197) (0.0222)

ν 5.8686
(0.7142)

υ 1.3408
(0.0480)

log-likelihood −1.5478 −1.5199 −1.5234
a1 + b1 0.9610 0.9741 0.9669
NOTE: QML standard errors are in parenthesis.
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