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consistency with expected utility maximization and elimination of tail risk.
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I. Introduction
In this paper, we compare expected shortfall and VaR from two aspects:

consistency with expected utility maximization and elimination of tail risk.

We use the concept of stochastic dominance in studying the two aspects of

risk measures.

Expected utility maximization is the most widely accepted

preference representation in finance and economics literature.  It

represents the rational investor’s preference if we accept the four axioms

put forward by von Neumann and Morgenstern [1953].

In this paper, we define the consistency of a risk measure with

expected utility maximization.  A risk measure is consistent with expected

utility maximization if it provides the same ranking of investment

opportunities (portfolios) as expected utility maximization does.  The use of

a risk measure consistent with expected utility maximization leads to

rational investment decisions in the sense of von Neumann and

Morgenstern [1953].

Also, in this paper, we define tail risk as follows.  A risk measure is

free of tail risk if it takes into account information about the tail of the

underlying distribution.  The use of a risk measure free of tail risk avoids

extreme loss in the tail of the underlying distribution.

Several studies have discussed the concept of tail risk.  The BIS

Committee on the Global Financial System [2000] proposes and describes

the concept of tail risk with simple illustrations.  It shows that a single set

of risk measures, including VaR and the standard deviation, disregards the

risk of extreme loss in the tail of the underlying distribution.  Basak and

Shapiro [2000] show that the use of VaR, which disregards the loss beyond

the quantile of the underlying distribution, increases the extreme loss in the

tail of the distribution.  Yamai and Yoshiba [2001a] point out the same

problem in the use of VaR for managing options and loan portfolios.

Those studies, however, do not give a definition of tail risk.

A number of comparative studies have been done on expected
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shortfall and VaR1.  Those studies describe the advantages and the

disadvantages of expected shortfall over VaR in various aspects.  For

example, Artzner et al. [1997, 1999] say that expected shortfall is sub-

additive2 while VaR is not.  Rockafeller and Uryasev [2000] show that

expected shortfall is easily optimized using the linear programming

approach, while VaR is not.  Yamai and Yoshiba [2001b] show that expected

shortfall needs a larger sample size than VaR for the same level of accuracy.

The rest of the paper is as follows.  Chapter II gives the definition of

consistency with expected utility maximization and elimination of tail risk.

Chapter III considers whether expected shortfall and VaR are consistent

with expected utility maximization and whether they are free of tail risk.

Chapter IV provides an example in which expected shortfall is neither

consistent with expected utility maximization, nor free of tail risk.

Chapter V concludes the paper.

II. Expected Utility Maximization and Tail Risk

In this chapter, we describe the definition of and concept involved in

consistency with expected utility maximization and elimination of tail risk.

We use the concept of stochastic dominance in defining and studying these

two aspects of risk measures.

In this paper, we suppose that investment opportunities (portfolios)

                                                
1  See, for example, Acerbi and Tasche [2001], Acerbi, Nordio and Sirtori [2001], Artzner et

al. [1997, 1999], Basak and Shapiro [2000], Bertsimas, Lauprete and Samarov [2000],
Pflug [2000], Rockafeller and Uryasev [2000], and Yamai and Yoshiba [2001a, b].

2  A risk measure ρ  is sub-additive when the risk of the total position is less than or equal

to the sum of the risk of individual portfolios.  Intuitively, sub-additivity requires that
“risk measures should consider risk reduction by portfolio diversification effects.”
  Sub-additivity can be defined as follows.  Let X  and Y  be random variables denoting
the losses of two individual positions.  A risk measure ρ  is sub-additive if the following

equation is satisfied.

)()()( YXYX ρρρ +≤+
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are described by the set of possible payoffs (profit and loss) and their

probabilities.  For simplicity, we consider only static investment problems,

or one period of investment uncertainty between two dates 0 and 1.  We

also assume that the distribution functions of the payoffs are continuously

differentiable, and thus possess density functions.

A. Consistency with expected utility maximization

Expected utility maximization is one of the most widely accepted preference

representations for the analysis of decision under uncertainty.  If we

accept the axioms put forward by von Neumann and Morgenstern [1953],

every rational investor should follow expected utility maximization as

his/her decision criterion3.

Finance and economics literature usually considers the class of

utility functions )(XU  that satisfy 0)(' ≥xU  (non-decreasing) and

0)('' ≤xU  (concave) for Rx ∈∀ .  This means that investors are nonsatiated

and are risk averse.

We study whether expected shortfall and VaR are consistent with

expected utility maximization.  We say that a risk measure is consistent

with expected utility maximization when it provides the same ranking of

portfolios as expected utility maximization does.  If a risk measure is

consistent with expected utility maximization, the use of the risk measure

leads to a rational decision.

In order to consider consistency of risk measures with expected

utility maximization, we use the concept of stochastic dominance.

Stochastic dominance ranks investment opportunities using partial

information regarding utility functions.  Stochastic dominance is a

practical concept since one is able to rank portfolios without specifying the

                                                
3  See Ingersoll [1987], and Huang and Litzenberger [1993] for the details of expected

utility maximization.
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forms of the utility functions used4,5.

In this section, we describe the definition and the concept6 of

stochastic dominance in order to consider the consistency of risk measures

with expected utility maximization.

1. Second order stochastic dominance

We describe the definition and concept of second order stochastic dominance,

which employs nonsatiety and risk aversion as partial information about

the preferences.

Second order stochastic dominance is defined by the cumulation of

distribution functions.  Let X  be a random variable denoting the profit

and loss of a portfolio.  Suppose that X  has a distribution function )(xF

and a density function )(xf .  We then define the cumulation of the

distribution function of X  as follows.

duuFxF
x

� ∞−
= )()()2( . (1)

We call this function “the second order distribution function.”

The next theorem shows that the second order distribution function

is equal to the first lower partial moment (denoted by )(,1 XLPM x  below), a

risk measure first proposed by Fishburn [1977] (See p.139 of Ingersoll

[1987] for the proof).

Theorem 1

         )()()()()( ,1
)2( XLPMduufuxduuFxF x

xx
≡−== �� ∞−∞−

(2)

                                                
4  See Levy [1998], Bawa [1975], Ingersoll [1987], and Huang and Litzenberger [1993] for

the details of stochastic dominance.
5  Cumperayot et al. [2000], Guthoff, Pfingsten and Wolf [1997], Ogryczak and Ruszczynski

[1999, 2001], Pflug [1999, 2000] consider consistency of risk measures with stochastic
dominance.

6  We refer to Levy [1998] and Ingersoll [1987] in describing the concept and definition of
stochastic dominance.
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Second order stochastic dominance is defined as follows.7

Definition 1

Let 1X  and 2X  be random variables denoting the profit and loss of two

portfolios.  We say that 1X  dominates 2X  in the sense of second order

stochastic dominance ( 21 XX SSD≥ ) if the following holds.

      
)()( )2(

2
)2(

1 xFxF ≤  for Rx ∈∀ (3)

where )()2(
1 xF  and )()2(

2 xF  are the second degree distribution functions of

1X  and 2X  respectively.

Figure 1 shows the distribution functions and the second order

distribution functions of two random variables 1X  and 2X .  In this figure,

1X  dominates 2X  in the sense of second order stochastic dominance

( 21 XX SSD≥ ).  Even though the distribution functions cross each other, the

two random variables are ranked by second order stochastic dominance as

long as the second degree distribution functions do not cross each other.

                                                
7  First order stochastic dominance is defined as follows.

A random variable 1X  dominates a random variable 2X  in the sense of first order

stochastic dominance ( 21 XX FSD≥ ) if )()( 21 xFxF ≤  for Rx ∈∀ , where )(1 xF
and )(2 xF  are the distribution functions of 1X  and 2X  respectively.

 Then, the following theorem holds (See Theorem 3.1 of Levy[1998] for the proof).

Let 1X  and 2X  be random variables denoting the profit and loss of two portfolios.

21 XX FSD≥  if and only if )]([)]([ 21 XUEXUE ≥  for all )(xU  satisfying

0)( ≥′ xU  for all x  (with at least one )(0 xU  satisfying 0)(0 >′ xU  for some x ).
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Figure 1  Second order stochastic dominance
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Theorem 1 shows that second order stochastic dominance is defined

also by the first lower partial moment as follows.

)()( 2,11,1 XLPMXLPM xx ≤ , (4)

The following theorem shows that second order stochastic

dominance employs nonsatiety and risk-aversion as partial information

about the preference (See Theorem3.2 of Levy [1998] for the proof).
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Theorem 2

21 XX SSD≥  if and only if

      )]([)]([ 21 XUEXUE ≥ , (5)

for all )(xU  satisfying 0)( ≥′ xU  and 0)( ≤′′ xU  for all x  (with at least one

)(0 xU  satisfying 0)(0 >′ xU  and 0)(0 <′′ xU  for some x ).

The condition that )(xU  is non-decreasing and concave for all x
means that )(xU  represents a nonsatiated and risk-averse preference.

Thus, this theorem says that every risk-averse investor chooses 1X  over

2X  if 1X  dominates 2X  in the sense of second order stochastic dominance.

It should be noted that second order stochastic dominance only

provides a “partial ordering” of portfolios.  This means that second order

stochastic dominance is unable to rank all the portfolios.  For example, if

the second order distribution functions were to cross each other in Figure 1,

neither )()( )2(
2

)2(
1 xFxF ≤  Rx ∈∀  nor )()( )2(

2
)2(

1 xFxF ≥  Rx ∈∀  holds.  Thus,

one is unable to tell which portfolio dominates the other in the sense of

second order stochastic dominance.  This corresponds to the situation

where one non-decreasing, concave utility function prefers 1X  while

another non-decreasing, concave utility function prefers 2X .

When portfolios are not ranked by second order stochastic

dominance, one needs to examine third or higher order stochastic

dominance in order to rank those portfolios.

2. n -th order stochastic dominance

We now define n -th order stochastic dominance, which is able to rank a

larger class of portfolios.  N-th order stochastic dominance is defined by

n -th order distribution functions defined inductively below.

)()()1( xFxF ≡ , duuFxF
x nn

� ∞−

−≡ )()( )1()( ,

      where )(uF  is the distribution function. (6)
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The n -th order distribution function is shown to be equal to the

scalar multiple of the ( 1−n )-th lower partial moment (denoted by

)(,1 XLPM xn−  below), a risk measure proposed by Fishburn [1977] (See p.139

of Ingersoll [1987] for proof).

Theorem 3

       )(
)!1(

1)()(
)!1(

1)( ,1
1)( XLPM

n
duufux

n
xF xn

x nn
−∞−

−

−
≡−

−
= � (7)

  N-th order stochastic dominance is defined as follows.

Definition 2

Let 1X  and 2X  be random variables denoting the profit and loss of two

portfolios.  We say that 1X  dominates 2X  in the sense of n -th order

stochastic dominance ( 2)(1 XX nSD≥ ) if the following holds.

      
)()( )(

2
)(

1 xFxF nn ≤  for Rx ∈∀ , (8)

where )()(
1 xF n  and )()(

2 xF n  are the n -th degree distribution functions of

1X  and 2X  respectively.

The following theorem characterizes the relationships between

different orders of stochastic dominance.

Theorem 4

If 2)(1 XX nSD≥ , then 2)1(1 XX nSD +≥ .

Proof

If 2)(1 XX nSD≥  holds, then Equation (8) holds for all x .  Thus, the following

also holds for all x .

�� ∞−∞−
≤

x nx n duuFduuF )()( )(
2

)(
1 , (9)

From Equation (6) the following holds for all x .
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)()( )1(
2

)1(
1 xFxF nn ++ ≤ , (10)

Therefore, by definition, 2)1(1 XX nSD +≥ . QED

This theorem shows that, if 1X  dominates 2X  in the sense of n -th

order stochastic dominance, 1X  dominates 2X  in the sense of all higher

order stochastic dominance.

The following theorem shows how the n -th order stochastic

dominance is related to expected utility maximization (see p.139 of Ingersoll

[1987] and pp.116-7 of Levy [1998] for the proof).

Theorem 5

2)(1 XX nSD≥  if and only if

      )]([)]([ 21 XUEXUE ≥ , (11)

for all )(xU  satisfying ),,3,2,1(0)()1( )( nkxU kk
�=≤−  for all x  (with at least

one )(0 xU  satisfying with inequality for some x ).

Thus, n -th order stochastic dominance is consistent with expected utility

maximization for utility functions )(xU  satisfying 0)()1( )( ≤− xU kk

),,2,1( nk �= .

N-th order stochastic dominance is still a partial ordering, and is

unable to rank all the portfolios.  However, n -th order stochastic

dominance is more applicable than first or second order stochastic

dominance in that it is able to rank broader class of portfolios.

3. Consistency of risk measures with stochastic dominance
Following Guthoff, Pfingsten and Wolf [1997], Ogryczak and Ruszczynski

[1999, 2001], and Pflug [1999, 2000], we define consistency of risk measures

with stochastic dominance as follows.
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Definition 3

We say that a risk measure )(Xρ  is consistent with n -th order stochastic

dominance if the following holds.

         2)(1 XX nSD≥  => )()( 21 XX ρρ ≤ . (12)

Taking contraposition of Definition 3, we see that the following

holds if a risk measure )(Xρ  is consistent with n -th order stochastic

dominance.

)()( 21 XX ρρ >  => not ( 2)(1 XX nSD≥ ). (13)

Thus, when )()( 21 XX ρρ >  holds, either of the following holds.

(i) 2X  dominates 1X  in the sense of n -th order stochastic dominance.

(ii) n -th order stochastic dominance is unable to rank 1X  and 2X .

Theorem 5 shows that, when (i) holds, )(Xρ  is consistent with

expected utility maximization since it always chooses portfolios whose

expected utility is higher.  Thus, if portfolios are ranked by n -th order

stochastic dominance, a risk measure consistent with n -th order stochastic

dominance is also consistent with expected utility maximization.

On the other hand, when (ii) holds, )(Xρ  is not necessarily

consistent with expected utility maximization.  Thus, if portfolios are not

ranked by n -th order stochastic dominance, consistency with stochastic

dominance is not equivalent to consistency with expected utility

maximization.

The following theorem shows the relationship between risk

measures and orders of stochastic dominance.

Theorem 6

A risk measure consistent with ( 1+n )-th degree stochastic dominance is also

consistent with n -th order stochastic dominance.

Proof

From Theorem 4, the following holds.
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2)(1 XX nSD≥  => 2)1(1 XX nSD +≥ . (14)

If a risk measure )(Xρ  is consistent with ( 1+n )-th order stochastic

dominance, then:

2)1(1 XX nSD +≥  => )()( 21 XX ρρ ≤ . (15)

From Equations (14) and (15),

2)(1 XX nSD≥  => )()( 21 XX ρρ ≤ . (16)

Therefore, )(Xρ  is consistent with n -th order stochastic dominance.

                                                       QED

This theorem shows that, if a risk measure is consistent with n -th

order stochastic dominance, the risk measure is consistent with all lower

order stochastic dominance.  Thus, a risk measure consistent with higher

order stochastic dominance is more applicable than a risk measure

consistent with lower order stochastic dominance.

B. Tail risk
1. Definition of tail risk
In this section, we provide our definition of tail risk.  Our definition is based

on our concept of tail risk: a risk measure fails to eliminate tail risk when it

fails to summarize the choice between portfolios as a result of its disregard of

information on the tail of the distribution.  This concept is motivated by the

BIS Committee on the Global Financial System [2000], which shows that a

single set of risk measures, including VaR and the standard deviation,

disregards the risk of extreme loss in the tail of the underlying distributions.

Furthermore, Basak and Shapiro [2000] show that the use of VaR, which

disregards the loss beyond the quantile of the underlying distribution,

increases the extreme loss in the tail of the distribution.  Yamai and Yoshiba

[2001a] point out the same problem in the use of VaR for managing options

and loan portfolios.

Based on this concept, we provide our definition of tail risk
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according to what kind of partial information about the tail is taken into

account by risk measures.  We take partial information since a single risk

measure is not able to consider all information about the tail.

As a first step, we take the value of the distribution function at some

level of loss as partial information on the tail of the profit and loss

distributions.  Suppose there are two portfolios 1X  and 2X .  Also suppose,

at some level of loss l , the value of the distribution function of 1X  is larger

than the value of the distribution function of 2X .  Then, the probability

that the loss is larger than l  is higher for portfolio 1X  than for portfolio 2X .

Thus, any reasonable risk measure should consider 1X  to be the riskier

portfolio.

From this observation, we define “first order tail risk” as follows.

Definition 4

We say that a risk measure )(Xρ  is free of first order tail risk with a

threshold K  if the following holds for any two random variables 1X  and

2X  with )()( 21 XX ρρ < .

      )()( 21 xFxF ≤ , Kxx ≤∀ (17)

where )(1 xF  and )(2 xF  are the distribution functions of 1X  and 2X .

This definition essentially says that, when a risk measure )(Xρ  is free of

first order tail risk with a threshold K , the portfolio with the smallest

)(Xρ  has the lowest probabilities of any loss beyond the threshold K .

Thus, a risk measure free of first order tail risk takes into account partial

information about the tail.

The following theorem shows the relationship between first order

tail risk and first order stochastic dominance.

Theorem 7

When portfolios are ranked by first order stochastic dominance, a risk

measure consistent with first order stochastic dominance is free of first

order tail risk with any level of threshold.
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Proof

Let 1X  and 2X  denote two random variables that are ranked by first order

stochastic dominance.  Suppose a risk measure )(Xρ  is consistent with

first order stochastic dominance and )()( 21 XX ρρ <  holds.

Since 1X  and 2X  are ranked by first order stochastic dominance,

21 XX FSD≥  holds.  From the definition of first order stochastic dominance,

Equation (17) holds, with any level of threshold K . QED

Thus, when portfolios are ranked by first order stochastic dominance, the

risk measure )(Xρ  is free of first order tail risk with any level of threshold

K .

On the other hand, when portfolios are not ranked by first order

stochastic dominance, one is unable to tell whether a risk measure is free of

first order tail risk.  We need a more applicable definition of tail risk since

the condition that portfolios are ranked by first order stochastic dominance

is strict.

As a more applicable definition, we define “second order tail risk” as

follows.

Definition 5

A risk measure )(Xρ  is free of second order tail risk with a threshold K  if

the following holds for any two random variables 1X  and 2X  with

)()( 21 XX ρρ < .

      �� ∞−∞−
−≤−

xx
duufuxduufux )()()()( 21 , Kxx ≤∀ (18)

where )(1 xf  and )(2 xf  are the density functions of 1X  and 2X .

This definition uses the expectation as partial information on the tail.

This is a more applicable definition than first order tail risk since it

penalizes larger losses more than smaller ones.

From Theorem 1, Equation (18) is equivalent to the following.

)()( )2(
2

)2(
1 xFxF ≤  Kxx ≤∀ . (19)
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The following theorem8 holds in the same way as Theorem 7 does.

Definition 8

When portfolios are ranked by second order stochastic dominance, a risk

measure consistent with second order stochastic dominance is free of second

order tail risk with any level of threshold.

The relationship between second order tail risk and first order tail

risk is characterized by the following theorem.

Theorem 9

When portfolios are ranked by first order stochastic dominance, a risk

measure free of second order tail risk with any level of threshold is also free

of first order tail risk with any level of threshold.

This theorem comes from Theorem 6 and the definitions of first and second

order tail risk.

We are unable to determine whether a risk measure is free of second

order tail risk when portfolios are not ranked by second order stochastic

dominance.  We may need a more applicable concept of tail risk in this

case.

As a more applicable definition, we define n -th order tail risk as

follows.

                                                
8   This theorem is consistent with a result of Rothschild and Stiglitz [1970].  They say that

second order stochastic dominance of portfolio X over portfolio Y is equivalent to “portfolio
Y having more weight in the tails than portfolio X.”
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Definition 6

We say that a risk measure )(Xρ  is free of n -th order tail risk with a

threshold K  if the following holds for any two random variables 1X  and

2X  with )()( 21 XX ρρ < .

      �� ∞−

−

∞−

− −≤−
x nx n duufuxduufux )()()()( 2

1
1

1 , Kxx ≤∀ (20)

where )(1 xf  and )(2 xf  are the density function of 1X  and 2X .

This definition uses the ( 1−n )-th lower partial moment as partial

information on the tail.  This is a more applicable definition of tail risk

than second order tail risk since it penalizes larger losses more than smaller

ones because it takes the ( 1−n )-th power of the loss.

From Theorem 3, Equation (20) is equivalent to the following

equation.

)()( )(
2

)(
1 xFxF nn ≤  Kxx ≤∀ . (21)

The following theorem holds in the same way as Theorem 7 does.

Theorem 10

When portfolios are ranked by n -th order stochastic dominance, a risk

measure consistent with n -th order stochastic dominance is free of n -th

order tail risk with any level of threshold.

The relationship between different orders of tail risk is

characterized by the following theorem.  This holds in the same way as

Theorem 9 does.

Theorem 11

When portfolios are ranked by n -th order stochastic dominance, a risk

measure free of ( 1+n )-th order tail risk with any level of threshold is also

free of n -th order tail risk with any level of threshold.
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III. VaR and Expected Shortfall

In this chapter, we study whether expected shortfall9 and VaR10 are

consistent with expected utility maximization and whether they are free of

tail risk.  We show in Chapter II that a risk measure consistent with n -th

order stochastic dominance is also consistent with expected utility

maximization and free of tail risk, if portfolios are ranked by n -th order

stochastic dominance.  Thus, we check whether expected shortfall and VaR

are consistent with stochastic dominance in order to study their consistency

with expected utility maximization and elimination of tail risk.

A. VaR
In this section, we show that VaR is consistent with expected utility

maximization and free of tail risk under two conditions.  The first is that

portfolios are ranked by first order stochastic dominance.  The second is

that the underlying distributions are elliptical.

1. Consistency with first order stochastic dominance
Levy and Kroll [1978] show that VaR is consistent with first order stochastic

dominance as follows (Levy and Kroll [1978] Theorem 1’).

                                                
9  VaR at the 100(1-α)% confidence level, denoted )(XVaRα , is the lower 100α percentile

of the profit-loss distribution.  This is defined by the following equation.

}][inf{)( αα >≤−= xXPxXVaR ,

  where X  is the profit-loss of a given portfolio.  }|inf{ Ax  is the lower limit of x  given

event A , and }][|inf{ α>≤ xXPx  indicates the lower 100α percentile of profit-loss
distribution.

10  Expected shortfall is the conditional expectation of loss given that the loss is beyond the
VaR level.  When the underlying distributions are continuous, expected shortfall at the
100(1-α)% confidence level ( )(XESα ) is defined by the following equation.

        ])([)( XVaRXXEXES αα ≥−−= .

  When the underlying distributions are discrete, we have to adopt the definition by Acerbi
and Tasche [2001], so that expected shortfall is sub-additive.  See the Definition 2 of
Acerbi and Tasche [2001] for details.
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Theorem 12

VaR is consistent with first order stochastic dominance.  That is, if we let

1X  and 2X  be random variables denoting profit and loss of any two

portfolios, the following holds.

      21 XX FSD≥  => )()( 21 XVaRXVaR αα ≤ . (22)

Thus, when portfolios are ranked by first order stochastic dominance, VaR

is consistent with expected utility maximization and is free of tail risk (first

order tail risk).

However, the condition that portfolios are ranked by first order

stochastic dominance is too strict to hold in practice.  This condition means

that the value of the distribution function of one variable is always larger

than that of the other.

While VaR is consistent with first order stochastic dominance, it is

not generally consistent with second order stochastic dominance, as is

shown by Guthoff, Pfingsten and Wolf [1997].  We describe this

inconsistency using the illustration in Guthoff, Pfingsten and Wolf [1997].

Figure 2 shows the distribution functions of two random variables 1X  and

2X , where 21 XX SSD≥  holds.  VaR at the 95% confidence interval, or the 5%

quantile of the profit-loss distribution, corresponds to the point where the

distribution function and the horizontal line at the cumulative probability of

5% intersect.  In this case, )()( 21 XVaRXVaR >  while 21 XX SSD≥ .  Thus,

1X  is preferred to 2X  based on VaR while 2X  is preferred to 1X  based on

second order stochastic dominance.  This means that the ranking of

portfolios according to VaR contradicts the ranking of portfolios according to

second order stochastic dominance.
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Figure 2  Inconsistency of VaR and second order stochastic dominance
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2. Elliptical Distributions
VaR is consistent with expected utility maximization and is free of tail risk

when the underlying profit-loss distribution is an elliptical distribution.

Elliptical distributions are defined as follows.

Definition 7
A n -dimensional random vector T

nRRR ][ 1�=  has an elliptical distribution

if the density function of R  (denoted by )(Rf ) is represented below with a

function );( n⋅ϕ :

      ));()((1),;( 1
21 nRRRf T θθϕθ −Σ−

Σ
=Σ − , (23)

where Σ  is a n -dimensional positive definite matrix (“scale parameter

matrix”), θ  is a n -dimensional column vector (“location parameter

vector”).
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Elliptical distributions include the normal distribution as a special

case, as well as the Student’s t-distribution and the Cauchy distribution.

Elliptical distributions are called “elliptical” since the contours of equal

density are ellipsoids (See Fang and Anderson [1990] for the concepts and

definitions of elliptical distributions).

VaR has useful properties when the underlying distributions are

elliptical.  The following is the most important property of VaR in an

elliptical distribution (See Embrechts, McNeil, and Straumann[1998])11.

Theorem 13
When a random variable X  has an elliptical distribution with finite

variance ][XV , VaR at the 100 )1( α− % confidence level ( )(XVaRα ) is

represented as follows.

      ][][)( XVqXEXVaR αα += , (24)

where αq  is the 100α  percentile of the standardized distribution of this

type.

This theorem shows that VaR and the standard deviation share the

same properties when the underlying distribution is elliptical12.  In

particular, VaR, like the standard deviation, is consistent with second order

stochastic dominance in an elliptical distribution.

                                                
11  This theorem holds since the elliptical distributions share many properties with the

normal distribution: the linear combination of elliptically distributed random vectors is
also elliptical; the variance of an elliptically distributed random variable is a scalar
multiple of the scale parameter.

12  This holds only if the underlying distributions are of the same type of elliptical
distribution in all portfolios.  For example, if one portfolio has a normal distribution and
another has the Pareto distribution, VaR does not have the same properties as the
standard deviation.
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Theorem 14
VaR is consistent with second order stochastic dominance when portfolios’

profits and losses have an elliptical distribution with finite variance and the

same mean.

Proof

According to the Proposition 6 of Ogryczak and Ruszczynski [1999], the

standard deviation is consistent with second order stochastic dominance if

the mean of profit and loss is equal across portfolios.

Let 1X  and 2X  denote profit and loss of two portfolios with equal

mean.  Then,

21 XX SSD≥  => ][][ 21 XVXV ≤ . (25)

Therefore, from Equation (24) and ][][ 21 XEXE = ,

21 XX SSD≥  => ][][ 21 XVXV ≤

  => ][][][][ 2211 XVqXEXVqXE αα +≤+  => )()( 21 XVaRXVaR αα ≤ .
(26)

This shows that VaR is consistent with second order stochastic dominance.

     QED

Thus, VaR is consistent with second order stochastic dominance if

the underlying distribution is elliptical and the mean of profit and loss are

equal across portfolios13.  From Theorem 2 and 8, VaR is consistent with

expected utility maximization and free of tail risk under this condition.

Elliptical distributions include fat-tailed distributions such as the

Student’s t-distribution and the Pareto distribution.  Thus, the fat tails of

the underlying distributions do not necessarily indicate VaR’s inconsistency

with expected utility maximization and failure to eliminate tail risk14.

                                                
13  Selecting a minimum-risk portfolio within the portfolios of equal mean return is the first

step in the mean-risk analysis, which is the most popular approach in financial practice.
14  This holds only if the underlying distributions are of the same type of elliptical

distribution in all portfolios.  See Footnote 12.
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B. Expected shortfall
In this section, we show that expected shortfall is consistent with expected

utility maximization and free of tail risk if portfolios are ranked by second

order stochastic dominance.  This holds since expected shortfall is

consistent with second order stochastic dominance.

The following theorem shows that expected shortfall is consistent

with second order stochastic dominance.

Theorem 15
Expected shortfall is consistent with second order stochastic dominance.

Proof

Let X  be a random variable denoting the profit and loss of a portfolio.  We

suppose X  has a density function )(xf .

Expected shortfall at the )%1(100 α−  confidence level is:

,)()(1
)]([

)](;[)](|[)(

)(

� ∞−
−=

≥−
≥−−=≥−−=

α

α

α
αα

α
q

dxxfx

XVaRXP
XVaRXXEXVaRXXEXES

where )(αq  is the α -quantile of X . (27)

Let )(xF  denote the distribution function of X  and suppose txF =)( .

Then, the following equation holds from dtdxxf =)( , αα =))((qF  and

0)( =−∞F .

� �� −=−=−= −

∞−

α αα

α ααα 0 0

1)(
)(1)(1)()(1)( dttqdttFdxxfxXES

q
. (28)

From Theorem 5’ of Levy and Kroll [1978]15, the following holds for

any two random variables 1X  and 2X .

                                                
15  Bertsimas, Lauprete and Samarov [2000] first adopted the result of Levy and Kroll

[1978] to show the consistency of expected shortfall with second order stochastic dominance.
Ogryczak and Ruszczynski [2001] independently prove Theorem 5’ of Levy and Kroll [1978]
with conjugate convex functions.
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21 XX SSD≥  <=> � � ≤≤∀≥
α α

αα
0 0 21 )10()()( dttqdttq , (29)

where )(1 tq  and )(2 tq  are t -quantiles of 1X  and 2X .

Thus, from Equations (28) and (29), the following holds.

21 XX SSD≥  => )()( 21 XESXES αα ≤ . (30)

This shows that expected shortfall is consistent with second order

stochastic dominance.

QED

From this theorem, expected shortfall is shown to be consistent with

expected utility maximization and free of tail risk if portfolios are ranked by

second order stochastic dominance.

Thus, expected shortfall is consistent with expected utility

maximization and free of tail risk under more lenient conditions than VaR is.

In Section A, we show that VaR is consistent with expected utility

maximization and free of tail risk if portfolios are ranked by first order

stochastic dominance or if the underlying distributions are elliptical.  This

condition for VaR is more strict than the condition for expected shortfall

since portfolios that are ranked by second order stochastic dominance

includes portfolios that are ranked by first order stochastic dominance and

portfolios whose underlying distributions are elliptical with equal mean.

The condition for expected shortfall, however, is not general.

Expected shortfall is neither consistent with expected utility maximization

nor free of tail risk, if portfolios are not ranked by second order stochastic

dominance.  Thus, one may need a risk measure that is consistent with

third or higher order stochastic dominance to deal with such portfolios.

C. An alternative: n -th lower partial moment
When portfolios are not ranked by second order stochastic dominance,

expected shortfall is no longer consistent with expected utility
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maximization or free of tail risk.

An alternative to expected shortfall in this case is the lower partial

moment with second or higher order.  The n -th lower partial moment is

defined below.

� ∞−

+ −=−=
K nn

Kn duufuKXKEXLPM )()(]})[{()(, ,

where K  is a constant.

From the definition of stochastic dominance, the n -th lower partial

moment is consistent with ( 1+n )-th order stochastic dominance.  Thus, it

is consistent with expected utility maximization and free of tail risk, as long

as portfolios are ranked by ( 1+n )-th order stochastic dominance.

The n -th lower partial moment, however, has several

disadvantages compared to expected shortfall.  The n -th lower partial

moment may not be comparable across various classes of portfolios since

one has to set the same level of constant K  across all classes of portfolios16.

Furthermore, the n -th lower partial moment is not sub-additive while

expected shortfall is.  This means that the n -th lower partial moment does

not consider risk reduction by portfolio diversification effects while expected

shortfall does.

IV. Problems with Expected Shortfall

Chapter III shows that, when portfolios are not ranked by second order

stochastic dominance, expected shortfall is no longer consistent with

expected utility maximization or free of tail risk.  This chapter shows a

simple example of this kind of situation.

Table 1 shows the payoff of two sample portfolios A and B.  The

                                                
16  One way to make the n -th lower partial moment comparable across portfolios is to set

K  at some “target” or “benchmark” return.  However, this may be difficult since K
becomes stochastic in this case.
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expected payoffs of those portfolios are equal at 97.05.  We assume that the

initial investment amount in portfolios A and B are equal at 97.05.

Table 1  Payoff of the sample portfolio17

Portfolio A Portfolio B

payoff loss Probability payoff Loss probability

100.00 – 2.95 50.000% 98 – 0.95 50.000%

95.00 2.05 49.000% 97 0.05 49.000%

50.00 47.05 1.000% 90 7.05 0.457%

20 77.05 0.543%

Most of the time, both portfolios A and B do not incur large losses.

The probability that the loss is less than 10 is about 99% for both portfolios.

However, there is a very small probability that they may incur extreme loss.

The magnitude of extreme loss is higher for portfolio B since portfolio B may

lose three quarters of its value while portfolio A never loses more than half

of its value.  Thus, portfolio B is considered risky when one is worried

about extreme loss.

We calculate the expected utility, VaR, expected shortfall, and the

second lower partial moment of portfolios A and B.  We use a log function

( Wln ) and a polynomial function with degree three ( WW 000,1033 +− ) as

utility functions18, and take 99% as the confidence level of VaR and expected

shortfall.  We set a constant K  for the second lower partial moment at –1.

Table 2 shows the result.

                                                
17  The numbers for probability are rounded off to the third decimal place.
18  Both utility functions satisfy 0)( ≥′ WU  and 0)( ≤′′ WU  in the range of 1000 ≤≤W .

Thus, they represent unsatiated and risk-averse utility, and have consistency with second
order stochastic dominance in the sense of Theorem 2.  On the other hand, as for )(WU ′′′ ,

the log utility is positive while the polynomial utility is negative.  This means that the log
utility is consistent with third order stochastic dominance in the sense of Theorem 5 while
the polynomial utility is not.
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Table 2  Risk profiles of portfolio A and B
Portfolio A Portfolio B Note

Expected Payoff 97.050 97.050 the same

Expected Utility
(log function)

4.573 4.571 larger for portfolio A

Expected Utility
(polynomial with degree 3)

663,379 663,439 larger for portfolio B

VaR
(99% confidence level)

47.050 7.050 larger for portfolio A

Expected Shortfall
(99% confidence level)

47.050 45.050 larger for portfolio A

Second Lower Partial Moment
( 1−=K )

21.746 31.564 larger for portfolio B

First of all, portfolios A and B are not ranked by second order

stochastic dominance.  The two types of utility functions, both of which are

increasing and concave, provide conflicting preferences for portfolios A and

B.

Second, expected shortfall fails to eliminate tail risk.  As we

explained above, the magnitude of extreme loss is much higher for portfolio

B than for portfolio A.  Thus, if a risk measure is free of tail risk, the risk

measure should choose portfolio A since its extreme loss is smaller than

portfolio B’s.  However, according to the result in Table 2, expected

shortfall chooses portfolio B.  This shows that expected shortfall fails to

take into account extreme loss.

Third, expected shortfall is not consistent with expected utility

maximization.  Based on the log utility function, portfolio A is better since

the expected utility is higher for portfolio A.  On the other hand, based on

expected shortfall, portfolio B is better since expected shortfall is lower for

portfolio B.

Fourth, the second lower partial moment, which is consistent with

third order stochastic dominance, chooses portfolio A, whose extreme loss is

smaller than portfolio B’s.  This means that the lower partial moment with

higher order is more effective in eliminating tail risk than expected

shortfall.

The example in this chapter shows that expected shortfall is neither
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consistent with expected utility maximization nor free of tail risk, when

portfolios are not ranked by second order stochastic dominance.  The

example also shows that the second lower partial moment is more effective

in eliminating tail risk than expected shortfall.

V. Concluding Remarks
We compare two aspects of expected shortfall and Value-at-Risk (VaR):

consistency with expected utility maximization and elimination of tail risk.

We use the concept of stochastic dominance in studying the two aspects of

risk measures.

We conclude that expected shortfall is more applicable than VaR in

regard to both aspects.  Expected shortfall is consistent with expected

utility maximization and free of tail risk, under more lenient conditions

than VaR is.

We show that the condition for expected shortfall is not general.

Thus, expected shortfall has problems in certain circumstances.
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