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Abstract
Empirical studies on the information content of option prices have focused on
exploring whether implied volatility contains useful information regarding the
future fluctuation of underlying asset prices.  If expectation formation in the
option markets reflects all the currently available information regarding future
price movements, option prices will be useful in forecasting the price fluctuation
of underlying assets.  This paper extends such an analytical framework to implied
probability distribution as a whole and examines its information content by using
Japanese stock price index option data (on a daily basis) from mid-1989 to mid-
1996.  To this end, the following questions are examined: (1) whether the implied
probability distribution is a good forecast for the subsequently realized
distribution of stock price fluctuations, and (2) whether a leads and lags
relationship exists between stock price changes and changes in the shape of the
implied probability distribution.  The estimation results show that (1) the implied
probability distribution contains some information regarding future price
movements, but its forecasting ability is not superior to that of the historical
distribution, and that (2) the shape of the implied probability distribution contains
some information on forecasting stock price changes as well as responding to
stock price fluctuations.  However, it should be noted that such results are highly
sensitive to the choice of sample period, suggesting that the information content
depends on macroeconomic and financial market conditions.  Therefore, the
information contained in an implied probability distribution is difficult to interpret
automatically as an information variable for monetary policy, and further studies
are needed on how to make use of information contained in implied probability
distributions.
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I. Introduction

In this paper, I will examine the information content of an implied probability

distribution derived from a set of option prices, by applying formal econometric

procedures.

Empirical studies of the information content of option prices have focused on

whether implied volatility contains useful information regarding the future fluctuation

of underlying asset prices, i.e., whether or not, if expectation formation in the option

markets reflects all the currently available information on future price movements,

option prices will be useful in forecasting the price fluctuation of underlying assets.

For example, Lamoureux and Christopher (1993) found that the implied volatility

estimated from individual stock price options was a biased forecast, but provided useful

information on forecasting stock price fluctuations for three to six months ahead.  Day

and Lewis (1992) compared implied volatility with various GARCH models, and

pointed out that these forecasts were unbiased, although their study was inconclusive on

which predictor was better.  By contrast, Canina and Figlewski (1993) concluded that

implied volatility from stock price index options (S&P100) was not a superior indicator

to historical volatility.

In the meantime, various methods have been developed to estimate the entire

implied probability distribution of future values of underlying assets from a set of

option prices with the same time-to-maturity, but with different exercise prices.1  These

methods enable us to obtain information on the dispersion of market expectations

concerning asset price fluctuations, as well as on market participants’ beliefs about the

direction of market price changes and the probability of an extreme outcome in the

market.

Looking at empirical studies in Japan, our previous study, by Nakamura and

Shiratsuka (1999), estimated the implied probability distribution from mid-1989 to mid-

1996 on a daily basis, using Nikkei 225 stock price index options and JGB futures

options.  In this study, we found typical patterns in the relationship between changes in

stock prices and the shape of the implied probability distribution.  That is, (1) the

standard deviation rises when stock prices move substantially, (2) skewness moves in an

opposite direction in accordance with the rise and fall of stock prices, and (3) excess

kurtosis becomes highly volatile in a period of market turbulence.  In addition, by

examining such a typical pattern, we succeeded in revealing the impact of external

                                                
1 See Oda and Yoshiba (1998) and Söderlind and Svensson (1997) for details on how to estimate implied

probability distribution from option prices.
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shocks on financial markets and the speed at which they adjust.

This paper examines empirically the information content of an implied probability

distribution by using the data employed in our previous study, Nakamura and Shiratsuka

(1999).  In other words, this study applies the analytical framework used in the previous

studies of the information content of implied volatility to implied probability

distribution as a whole, and examines its information content.

The rest of the paper is constructed as follows.  Section II summarizes the

theoretical foundation of the estimation of an implied probability distribution from

option prices.  I also describe the trading framework of the Nikkei 225 stock price index

options, and examine the time-series properties of summary statistics for implied

probability distribution that are used in empirical analysis in the following sections.

Then Section III examines whether implied probability distribution contains useful

information for forecasting the subsequently realized distribution of stock price changes,

compared with the historical distribution of stock price changes (for the preceding 30

business days).  Section IV explores whether the shape of the implied probability

distribution provides useful information for forecasting future stock price changes by

estimating VAR (vector autoregression) models to check Granger causality among stock

price fluctuations and summary statistics of implied probability distribution.  Finally,

Section V summarizes the main empirical results of this paper and discusses topics for

future research.

II. The Basic Framework for Estimating Implied Probability Distribution

In this section, I explain the basic framework for estimating implied probability

distributions from option prices.  In addition, I describe Japanese stock price index

options data, and examine the time-series properties of summary statistics of estimated

implied distributions obtained on a daily basis.

A. The Estimation of Implied Probability Distributions

1. The basic framework for estimating an implied probability distribution

First, I will explain the basic framework for estimating a probability density function

from option prices.  Supposing a risk-neutral market player, the price of a European-

type call option (C) is given by
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where Ft, K, r, and w(Ft) denote the price of an underlying asset on the expiration date (t

= T) of an option, the strike price of the option, a risk-free interest rate, and a risk-

neutral probability density function for the value Ft, respectively.  Since net cash

settlement is executed on the expiration date, the pricing formula for a call option in

equation (1) can be simplified as follows:

ò
+¥

¥-
-= TTT dFKFFwC ),0max()( . (2)

In addition, if one lets Ck, and Ckk be the first and second derivatives of the call

option price, then the call option price satisfies the following conditions:

C w F dFK T TK
= -

+¥

ò ( ) , (3)

C w KKK = ( ) . (4)

These equations indicate that the first and second order derivatives of option

prices respectively correspond to the probability density and cumulative distribution

functions of risk neutral probability on the underlying assets.

Similarly, if one lets P, Pk, and Pkk be the European-type put option price, and the

first and second derivatives of the put option price, respectively, then the following

equations are derived:

ò
+¥

¥-
-= TTT dFFKFwP ),0max()( , (5)

ò ¥-
=

K

TTK dFFwP )( , (6)

)(KwPKK = , (7)

In the practical application of this approach, however, a problem arises: there is

only a finite number of strike prices.  This implies that equations (3), (4), (6), and (7) do

not hold strictly true with respect to the observed market prices because they assume

that the variable C is continuous in K.  Therefore, as Breeden and Litzenberger (1978)

and Neuhaus (1995) have proposed, the first-order finite difference method is applied to

equation (3) to obtain the p(Ft ³ Ki) payoff probability that an underlying asset price on
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the expiration date (t = T) Ft exceeds a strike price Ki as follows:
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Analogously, from equation (6), the probabilities from the put option prices are

given as
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Considering the problem that in-the-money options tend to be priced incorrectly,

our previous study, Nakamura and Shiratsuka (1999), employs the following procedure

to estimate a complete probability distribution: we first calculate two different

probability distributions from the option premium for out-of-the-money call and put

options separately, then combine these probability distributions to the complete

probability distribution.2  In other words, we use the probability distribution derived

from out-of-the-money put options in the lower range from the at-the-money strike

price, and that derived from out-of-the-money call options in the upper range.

2. Summary statistics

I employ a time-series of summary statistics, such as mean, standard deviation (Stdv),

skewness (Skew), and excess kurtosis (Ex-Kurt), for the estimated implied probability

distribution to investigate its information content.

Since stock prices are positive values, the expectation distribution of future assets

will approximately follow a lognormal distribution.  In other words, the distribution can

                                                
2  Needless to say, even though they are out-of-the-money options, deep-out-of-the-money options tend to

be priced incorrectly.  Therefore, we excluded the observation in estimating the complete probability

distribution, if the calculated relative frequency fell negative.
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be expected to be skewed to the right.  However, it is not convenient to use a lognormal

distribution as a benchmark for evaluating the size of the above summary statistics.

Therefore, we calculate these summary statistics by using the strike price converted into

a logarithm, and employ a normal distribution as the benchmark for evaluating the four

summary statistics.

Since I employ the both put and call options data to estimate the entire implied

probability distribution, by applying equations (9) and (10), the aforementioned four

summary statistics can be shown as follows:
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While the mean of the estimated risk-neutral implied probability shifts in parallel

with the size of the risk premium compared with the true probability distribution, the

risk premium itself is difficult to estimate.3  Thus, in the following, we focus on changes

of moments higher than the first, i.e. the mean, and examine their movements over

time.4

                                                
3 The model used in this paper assumes a risk-neutral world, while market participants in the actual

market are not necessarily risk-neutral.  In addition, it is likely that the risk preferences of market

participants change over time.  In that case, the (risk-neutral) implied probability distribution, estimated

under the assumption of risk-neutral valuation, will differ from the true probability distribution.

However, Cox and Ross (1976) have claimed that, compared with the true probability distribution, the

risk-neutral implied probability distribution shifts in parallel with the size of the risk premium, and thus

will not affect moments higher than the second.

4  As Bates (1991) and others have pointed out, it is generally known that standard deviation decreases as

the maturity date of the contract is approached.  Therefore, we try to control the impact of changes in

time-to-maturity on the estimated time-series of standard deviation by multiplying the square root of

(360/time-to-maturity) to obtain the annual rate.
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B. Data and Some Reservations

The Nikkei 225 option (a European-type option) is listed on the Osaka Stock Exchange

(OSE) and began trading in June 1989.  The contract months are four consecutive near-

term expiration months.  Five strike prices are set: 1,000 yen and 500 yen above and

below the strike price closest to the central price, which is initially set as the closing

price of the Nikkei 225 on the business day before the first day of trading.  The last

trading day is the business day before the second Friday of each expiration month, and

the option can be exercised on the business day following the last trading day.

Taking into consideration data limitations, our previous study, Nakamura and

Shiratsuka (1999), applied the aforementioned simple discrete approximation method to

carefully sorted data.  First, since there is only a very thin trading volume for in-the-

money (ITM) strike prices, the reliability of price information is not entirely satisfactory.

Therefore, we used price data regarding both put and call options that are at-the-money

(ATM) and out-of-the-money (OTM),5 although most of the empirical studies

estimating implied probability distribution from option prices use either a put or a call

option.

Second, we have excluded mispriced observations, such as those that result in a

negative probability density, in estimating the complete probability distribution.  This is

because using closing price data does not guarantee that the option premiums of

different strike prices were traded at the same time, and arbitrage may not function

thoroughly.

C. Time-Series Movements of an Implied Probability Distribution

Next, I examine the time-series properties of computed summary statistics for implied

probability distributions.  Summary statistics are presented in Table 1.

In this table, the standard deviation of Stdv is very small, but large for Skew and

Ex-Kurt, suggesting that these summary statistics of implied probability distributions

show very volatile movements.  In particular, Ex-Kurt easily takes an extreme value,

                                                
5  More precisely, we first calculate two probability distributions from the option premium for call and

put options separately, then combine two probability distributions at the ATM strike price to form the

complete probability distribution.  In this sense, our methodology has the merit of effectively utilizing

trading price information by making the ATM strike price the boundary and using both put and call

options on the OTM side.  Therefore, in estimating implied probability distribution, there is an

advantage in using limited quotations of option premiums across different strike prices, such as in

Japanese option markets.
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considering that its maximum value diverges from the median and mean, and excess

kurtosis is also very large.

Looking at the autocorrelation, large autocorrelation coefficients for Stdv persist

even for the higher order of lag length, while Skew and Ex-Kurt converge to zero after

the ten- and five-period lags, respectively.  This indicates that the fluctuation of Stdv is

sticky or persistent but that fluctuations in Skew and Ex-Kurt are not.

Moreover, regarding the cross-correlation between summary statistics of the

implied probability distribution and stock price fluctuations (both for simple and

absolute changes), Stdv shows a positive correlation with absolute changes in stock

prices and Skew a negative correlation with changes in stock prices.

III. The Predictability of Realized Fluctuations

In this section, I examine empirically whether the shape of the implied distribution (ID)

contains information useful in predicting the subsequently realized distribution of stock

price fluctuations (realized distribution, RD) compared with the historical distribution of

stock price fluctuations during a certain past period (historical distribution, HD).

A. Fluctuation of Realized, Implied, and Historical Distributions

I first describe the data that is used in the empirical investigation of forecasting

performance.

ID (implied distribution) is the implied probability distribution that is computed

from a set of option prices (closing price) with the same time-to-maturity, but with

different exercise prices.  RD (realized distribution) is the subsequently realized

distribution of stock price changes during the period from the option trading day to

maturity day while HD (historical distribution) represents the distribution of stock price

changes during the preceding 30 business days.  By using summary statistics for these

three distributions, I will examine the forecasting power of ID on RD, compared with

HD.6

1. Time-series movements

Figure 1 plots the daily movement of stock price changes and summary statistics for ID,

RD, and HD.  In general, since RD and HD are computed from actual changes in stock

prices, both move up and down substantially when stock prices fluctuate greatly, as RD

                                                
6 Among summary statistics, standard deviation is annualized by multiplying the square root of 250.
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leads to HD, according to the given definitions.  By contrast, ID exhibits a relatively

stable movement.

Looking at each summary statistic in turn, standard deviations of ID and RD show

a similar tendency, suggesting that ID responds quickly to changes in RD, which is

computed from the subsequently realized changes in stock prices.  However, it should

be noted that when the market level moves substantially, RD fluctuates greatly, while ID

moves within a relatively narrow range.  On the other hand, the skewness and excess

kurtosis of ID and RD move very differently, indicating that they could provide us with

different kinds of information.

2. The stability of cross-correlation over time

Next, I examine how the cross-correlation of RD with ID and HD changes over time.

Figure 2 plots time-series movements of the coefficients of this cross-correlation, as

well as the acceptance region of the null hypothesis for no cross-correlation at 10-

percent significance in two-sided hypothesis testing, shown as a shaded area in the

figure.7

With respect to the standard deviation, the coefficients of the cross-correlation of

RD with ID and HD show a very similar tendency over time.  Such correlation is

generally positive: among 1,523 subsamples, positive correlation is observed in 56.6

percent for RD and ID and 67.9 percent for RD and HD, while negative correlation is

10.9 and 14.8 percent, respectively.

However, looking at this figure in detail, the correlation between RD and ID

declines from end-1989 to mid-1990 by comparison with that between RD and HD.  In

addition, both the correlation between RD and ID and that between RD and HD turn

significantly negative during the periods between end-1991 and early 1992, and in early

1995, which correspond to periods of market turbulence in the aftermath of a sharp

decline in stock prices.  The low correlation observed between RD and ID during these

periods is consistent with a casual observation of Figure 1, where ID shows relatively

stable movement and its response to market fluctuation is limited compared with RD

and HD.

                                                
7 The critical level of the coefficients of cross-correlation (ra) is 0.123 at ten-percent significance in two-

sided test with 180 samples, based on the equation as follows:

)2(/ 2 -+= nttra aa ,

where ta, n denote two-sided a percentile of the Student’s t distribution, and number of sample,

respectively.
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Meanwhile, regarding the skewness and excess kurtosis, the coefficients of the

cross-correlation of RD with ID and HD exhibit a very different tendency over time,

and such correlation is relatively weak.  In particular, correlation between RD and HD

for both skewness and excess kurtosis exhibit negative in more than half of the

subsamples: 69.1 percent for skewness and 59.4 percent for excess kurtosis.

B. Estimation Equations and the Tested Hypothesis

Next, I conduct regression analysis to examine how well ID forecasts RD, compared

with HD.  The following three equations are estimated to examine whether ID or HD

forecasts RD better.8

ttt IDRD eba ++= , (15)

ttt HDRD eba ++= , (16)

tttt HDIDRD ebba +++= 21 , (17)

where RDt, IDt, and HDt indicate summary statistics (standard deviation, skewness, or

excess-kurtosis) for the realized distribution (stock price fluctuation between trading

date to expiration date), the implied distribution (computed from a set of options with

the same time-to-maturity, but with different strike prices), and the historical

distribution (stock price fluctuation during the preceding 30 business days) for at the

time period of t, respectively.

Regarding equations (15) and (16), if ID and HD are unbiased forecasts of RD,

the estimates of a and b will respectively be close to 0 and 1.  However, even if the null

hypothesis of b =1 is rejected, rejection of the null hypothesis of b =0 in each equation

suggests that ID and HD respectively have some predictive power for the RD.  In

equation (17), if the null hypothesis of either b1 =0 or b2 =0 is rejected, either ID or HD

contains some useful information for forecasting the future fluctuation of RD.  In this

case, if both ID and HD independently contain useful information, b1 and b2 are

simultaneously significantly different from zero.  By contrast, either ID or HD reflects

                                                
8 Predictability tests are conducted with the following two-step procedure: first, ID and HD are estimated,

and, then, parameters for equations (15) to (17) are estimated.  In this case, one should be careful for the

errors-in-variables problem: that is, if the estimates in the first step are not consistent, estimates in the

second step will be biased.  However, Jorion (1995) shows that impact of the errors-in-variable

problems is not so serious by simulation exercises.  Therefore, I do not make any particular adjustment

on these problems.
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all the information contained in the other, in which case the estimated parameter for the

encompassed indicator will be insignificantly different from zero.9

In addition, I conduct a J-test to compare the performance of non-nested models

of equations (16) and (15).10  To this end, I estimate the following equations and test the

significance of the null hypothesis assuming that g and d in equations (18) and (19) are

equal to zero.

tttt HDRDIDRD egba +++=
Ù

)( , (18)

tttt HDIDRDRD ebda +++=
Ù

)( , (19)

where )(HDRDt

Ù
 and )(IDRDt

Ù
 denote estimated summary statistics for RDs in

equations (15) and (16), respectively.  Possible results of the above hypothesis testing

fall into one of the following four cases shown in Table 2, according to the combination

of test results on the pair of non-nested null hypotheses for equations (18) and (19).

C. Full-sample Estimation Results

In the following, I first check the forecasting performance of each summary statistic in

turn by estimating single equation models.  Then, I examine the forecasting

performance of the three summary statistics simultaneously by estimating an SUR

(seemingly unrelated regression) model that takes account of the correlation among

error terms.  This is important because the three summary statistics, ID, RD, and HD,

are jointly distributed.

In doing so, it should be noted that least-square estimates might be biased and

inconsistent since error terms are serially correlated.  Such serial correlation is provoked

because the expiration date is fixed for each trading month and the data frequency is

shorter than the life of the options, thus implying that forecast horizons inevitably

                                                
9 Procedure to test the forecasting performance of implied probability distribution is the same as in Fair

and Shiller (1990), which compared the forecasting performance of different macro econometric models.

10 The J-test is one of the non-nested hypothesis testing procedures proposed by Davidson and

MacKinnon (1981).  See, for example, Davidson and MacKinnon (1993), for details of the J-test.  In

nested hypothesis testing, the null hypothesis is a special case of alternative hypothesis, while, in non-

nested hypothesis testing, the null hypothesis is not a special case of alternative hypothesis, and they do

not encompass each other.
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overlap.11  In addition, such overlapped forecast horizons vary as time-to-maturity

changes.  Therefore, for both the single equation estimation and the SUR estimation I

apply Newey and West’s (1987, 1994) procedure to adjust serial correlation in

computing standard errors for estimated coefficients by automatically deciding the

bandwidth of serial correlation adjustment.12

1. Single equation estimation

Table 3 summarizes estimation results on the forecasting power of each summary

statistic separately in a single equation model.

With respect to the standard deviation, estimation results using ID or RD alone

(equations (15) and (16)) strongly reject the null hypotheses of b =0, suggesting that

both ID and RD contain some useful information for predicting the future realized

distribution of stock price fluctuations.  However, at the same time, those results also

strongly reject the null hypotheses of b =1, indicating that such forecasts are biased.

The estimation result of equation (17) indicates that HD has superior forecasting power

to ID, since b1 shows a negative sign and is insignificantly different from zero, while b2 
is significantly different from zero.

The above results are consistent with those in Canina and Figlewski (1993) that

analyze US stock price index options, although they contradict the results of the Bank of

Japan (1995) that studied Japanese stock price index options and concluded that both

historical and implied volatilities jointly possess explanatory power.  Here, in

comparing these results, the following points should be noted.  First, as I will show later,

the information content of option prices is highly sensitive to sample periods.  Second,

the Bank of Japan (1995) employs OLS standard errors in hypothesis testing, even

though there exists a significant autocorrelation among residuals.

Next, turning to the estimation results of skewness and excess kurtosis, both ID

and HD are deemed to have poor forecasting power.  The estimation results of equation

(15) using ID as an explanatory variable for both skewness and excess kurtosis show

that the null hypotheses of b =0 are not rejected at the 5-percent significance level, but

that the null hypotheses of b =1 are rejected.  In addition, regarding HD in equation (16),

                                                
11 Regarding the overlapping observation problems, Hansen and Hodrick (1980) examine them in detail

by studying the predictability of forward rates on future spot rates in foreign exchange markets.

Analogously, Canina and Figlewski (1993) and Lamoureux and Christopher (1993) examined such

problems in testing the predictability of implied volatilities in stock markets.  For the analysis in foreign

exchange markets see also Jorion (1995), West and Cho (1995), and Hara and Kamada (1999).

12 All the estimations in this section were made by using GAUSS for Windows NT/95 Version 3.2.38.
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coefficients are estimated to be negative and inconsistent with the expected positive sign.

In estimation results for equation (17), both b1  and b2 are negative for excess kurtosis,

and b1  is positive but insignificant for skewness.  Therefore, regarding skewness and

excess kurtosis, it is confirmed that neither ID nor HD contains useful information for

predicting RD.

Table 4 shows the results of the J-test in single equation estimation for each set of

summary statistic.  On the one hand, the null hypotheses of g=0 are generally rejected:

for standard deviation and excess kurtosis at the 1-percent significance level, and for

skewness at the ten-percent significance level.  On the other hand, the null hypotheses

of d=0 are not rejected.   Therefore, HDs are deemed to be better forecasts for RDs than

IDs in all the summary statistics.

2. SUR estimation

Next, I simultaneously estimate equations for three summary statistics (standard errors,

skewness, and excess kurtosis) by applying an SUR (seemingly unrelated regression)

model that takes into account the correlation among residuals in estimation equations

for them.  Estimation results are reported in Table 5.

Looking at the standard deviation, estimated values are almost same as those in

the single equation estimation.  Moreover, their statistical significance is unchanged,

while their standard errors slightly decline.  Concerning the estimates for skewness and

excess kurtosis, although some estimated values differ from those in the single equation

estimation shown in Table 3, estimated coefficients are negative and are inconsistent

with the expected positive sign.  Thus, the basic conclusion that neither ID nor RD

contains useful information in predicting RD holds true.

Table 6 reports the results for the J-test that examines the non-nested hypothesis

of the predictive power of ID and HD.  Only the result for standard deviation is

comparable to that for the single equation estimation shown in Table 3.  That is, the

estimated coefficient is statistically significant only in standard deviation of HD, and the

remaining coefficients are all insignificant.  Therefore, ID and HD are deemed to be

poor forecasts of the subsequently realized distribution of stock price fluctuations,

except for the standard deviation of HD.

D. Rolling Estimation Results

Estimation results so far might be sensitive to sample periods since the information

content of option prices seems to depend highly on macroeconomic and financial

market conditions.  In the following, I conduct rolling regressions using a subsample of

180 business days’ data, to check the stability of estimation results with the SUR model.
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First, Table 7 summarizes the results of hypothesis testing for estimated equations

(15) - (17).13  On standard deviation, the basic conclusion with respect to the full sample

estimations, that is, HD is a better predictor for RD, holds.  HD is superior to ID in

terms of forecasting power for RD in 35 percent of cases (14.5 percent [b(HD)>0 and

b2>0] + 20.3 percent [b(ID)>0 and b(HD)>0, and b2>0] + 0.0 percent [b(HD)>0, and

b1>0 and b2>0]), while ID is superior to HD in 21 percent of cases (15.8

percent [b(ID)>0 and b1>0] + 4.8 percent [b(ID)>0 and b(HD)>0, and b1>0] + 0.1

percent [b(ID)>0, and b1>0 and b2>0]).  Both ID and HD have predictive power, but are

difficult to be ranked in 17 percent of cases (b(ID)>0 and b(HD)>0 as well as b1>0 and

b2>0).

With respect to skewness, a significant predictive power for ID is detected in 9.0

percent of sample periods, and 0.5 percent in the case of RD, suggesting that ID might

have better forecasting power than HD.  However, it should be noted that effective

predictive power is observed in very limited time periods, considering that significant

predictive power is detected in just 10 percent of sample periods.  Meanwhile, for

excess kurtosis, predictive power is observed for HD in only 1.7 percent of cases.

Second, Table 8 reports the results of J-test, based on the rolling estimation results

for equations (18) and (19).14   Results are generally contrasting to those for the full

sample estimation in Table 6, suggesting that information content of IPDs are highly

sensitive to the changes in sample periods.  Looking at standard deviation, the table

shows that ID is better forecasts of RD in 21 percent of cases, HD in 17 percent, and

both are informative but inconclusive in 56 percent, suggesting that ID is slightly better

forecasts for RD than HD.  Regarding skewness and excess-kurtosis, the table indicates

that both ID and RD contain useful information but are hard to compare in most cases,

though such results are not so reliable as that for standard deviation due to high standard

errors for estimated coefficients of g and d.

Application of rolling regression technique reveals that predictive powers of HD

and ID on RD are at best highly sensitive to the changes in sample period.   Regarding

skewness and excess kurtosis, predictive power is relatively low in the sense that

significant and reliable predictability is detected only in very short periods.  Standard

                                                
13 By applying Newey and West’s (1994) procedure, bandwidths are automatically chosen as 8 or 9

business days in most of the subsample periods: mean of the bandwidths are 8.542, 8.656, and 8.480 for

equations (15) - (17), respectively.

14 By applying Newey and West’s (1994) procedure, bandwidths are also automatically chosen 8 or 9

business days in most of the subsample periods: mean of the bandwidths are 8.556 and 8.601 for

equations (18) and (19), respectively.
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deviation is much better predictor for the subsequently realized distribution, though

such information is highly instable over time and relative superiority between HD and

ID is inconclusive.  Figure 3 shows the subsample periods that superior predictive

power is detected in standard deviations for either HD or ID, in the sense that one of the

two is proven to be better forecast in both tests in Table 7 and Table 8.  In this figure,

dark and light shadows indicate that HD and ID respectively have superior predictive

power than the other.  In fact, it is hard to tell a general regularity of their information

content  in relation to stock market developments.

IV. The Relationship with Stock Price Fluctuations

In this section, I explore whether the shape of the implied probability distribution could

forecast future stock price fluctuations.

A. Correlation between Market Fluctuation and Implied Distribution

As we have already seen in Section II, there exist typical patterns between stock price

fluctuations and summary statistics for an implied probability distribution.  That is, (1)

the standard deviation rises when stock prices move substantially, (2) skewness moves

in the opposite direction in accordance with the rise and fall of stock prices, and (3)

excess kurtosis becomes highly volatile in a period of market turbulence.15  Let me

begin my statistical analysis of these relationships by checking the stability of cross-

correlation over time, and examining dynamic cross-correlation.

1. The cross-correlation with market fluctuations

In order to check the stability of the relationship between changes in market level and

changes in the shape of an implied probability distribution, Figure 4 plots the

coefficients of cross-correlation between stock price fluctuations and summary statistics

for an implied probability distribution over time.  In this figure, the upper and lower

panels show the coefficients of correlation of summary statistics with proportional

changes and absolute changes in stock prices, respectively.  The acceptance region for

                                                
15 See Nakamura and Shiratsuka (1999) for details of the relationship between stock price fluctuations

and changes in the shape of an implied probability distribution.  They examine various episodes in

Japanese financial markets from 1989 to 1995 to examine the changes in market sentiment and their

impact on financial markets.
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the null hypothesis of no correlation is also shown as a shaded area in the figure.16

Estimation periods are subsamples of 180 business days that begin each day on the

horizontal axis in the figure.

First, with respect to the correlation with changes in stock prices, the coefficients

of correlation with skewness constantly show large and negative values, and are

statistically significant in all the subsample periods.  However, although the coefficient

stays at large negative values of around –0.6 during the period from mid-1989 to the

beginning of 1991, weakening thereafter.  During the period from 1991 to early 1993,

the coefficient was around –0.4 and it has since declined further.

Second, regarding the coefficients of cross-correlation with absolute changes in

stock prices in the lower panel, the positive relationship between standard deviation and

excess-kurtosis, which is confirmed with the entire data sample shown in Table 1, is

highly unstable over time.

2. Dynamic cross-correlation with market fluctuations

Next, I check the dynamic cross-correlation between market fluctuations and summary

statistics for the implied probability distribution with the entire data sample.  Figure 5

plots the coefficients of dynamic cross-correlation, and indicates their lead/lag

relationship as follows.  By locating zero in the middle of the horizontal axis as a

boundary, the summary statistics of implied probability distribution lead market changes

on the left side, while summary statistics lag market changes on the right side.

First, with regard to the dynamic cross-correlation with changes in stock prices

(upper panel in the figure), skewness shows a maximum negative correlation at the

point of simultaneity, and its negativity gradually declines in the same direction as stock

prices with a definite time lag.  This suggests that skewness responds to changes in

stock prices and moves in the opposite direction.  However, skewness shows almost no

correlation on the right side of the figure, implying that it does not seem to be a leading

indicator for market fluctuations.

Second, looking at the dynamic cross-correlation with absolute changes (lower

panel in the figure), the standard deviation shows a positive correlation on both the left

and right sides of the figure.  However, a stronger correlation is observed on the left side

lagging absolute changes in stock prices, suggesting the existence of the ARCH effect:

that is, a large fluctuation in stock prices leads to an increase in the standard deviation.

Meanwhile, although excess kurtosis indicates a positive but weak correlation at the

point of simultaneity, its correlation is generally insignificant.  Skewness shows a

                                                
16 See footnote 7 for the detail.
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positive but weak correlation on the right side, which seems to be caused by the

declining trend of stock prices in the sample period.

B. Granger Causality Test

Next, I estimate four-variable VAR models that consist of three summary statistics

(standard deviation, skewness, and excess kurtosis) of implied probability distribution

and stock price changes (simple change or absolute change). 17, 18  Then, I test Granger

causality to examine their lead/lag relationship.

Table 9 reports the Granger causality test with the entire sample data set.  In the

estimation of VAR models, six- period and seven-period lags are chosen for the VAR

model with simple changes and with absolute changes in stock prices, respectively,

according to minimizing AIC (Akaike’s information criterion).  This result supports the

basic observation of a dynamic cross-correlation between stock price changes and the

summary statistics of implied probability distribution.  For example, absolute changes in

stock prices Granger causes both standard deviation and excess kurtosis at the 1-percent

statistically significance.  Changes in stock prices also Granger causes skewness at the

1-percent statistical significance level.

Moreover, the multivariate model detects another lead/lag relationship as follows.

In the VAR model with changes in stock prices, standard deviation and skewness

Granger cause changes in stock prices at the 1- and 5-percent statistical significance

levels, respectively.  In the VAR model with absolute changes in stock prices, standard

deviation and skewness Granger cause absolute changes in stock prices at the 5- and 1-

percent statistically significance levels, respectively.  Yet, a lead/lag relationship

between excess kurtosis and market fluctuations is not detected in either VAR models.

The above results indicate that the shape of the implied probability distribution

not only responds to changes in market level, but also, at least as far as standard

deviation and skewness are concerned, contains some information that is useful for

forecasting market fluctuations.19

                                                
17 I used RATS for Windows (version 4.30) for the estimation in this section.

18 Results of unit root test indicate that five variables used in the VAR estimation (simple and absolute

changes in stock prices, standard deviation, skewness, and excess kurtosis of implied probability

distribution) are stationary at least 5 percent statistical significance.  Data for changes in stock prices is

adjusted for the trading-day effects by the web-based program of DECOMP.

19 It should be noted that the lead/lag relationship from skewness to changes and absolute changes in

stock prices may possibly be detected because the data sample mainly covers the period after the
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I also estimate VAR models using summary statistics for historical distribution

(the preceding 30 business days).  Table 10 summarizes the results.  According to the

test results, both changes and absolute changes in stock prices Granger cause standard

deviation at the 1--percent statistically significance level.  In the reverse direction,

standard deviation and excess kurtosis Granger cause absolute changes in stock prices.

C. Granger Causality in Rolling Regressions

Above Granger causality relationship might be sensitive to sample periods since the

information content of option prices seems to depend highly on macroeconomic and

financial market conditions.  In the following, I conduct rolling regressions on the

aforementioned four-variable VAR models with subsamples of 180 business days’ data

in order to check the robustness of Granger causality among stock price fluctuations and

the shape of the implied probability distribution over time.

Figure 6 reports F-values for Granger causality tests for a relationship between the

standard deviation and absolute changes in stock prices (upper panel), between

skewness and changes in stock prices (middle panel), and between excess kurtosis and

absolute changes in stock prices (lower panel), respectively.  According to these figures,

although Granger causality from absolute changes to standard deviation is fairly stable,

other relationships are highly sensitive to the choice of sample period.

However, Granger causality from absolute changes to standard deviation becomes

temporarily insignificant during the subsample periods ending at the second half of

1992, mid-1993, and the periods after end-1994.  Indeed, F-values for Granger causality

tests fall below the 10-percent statistically significant level during these periods.  These

periods correspond to periods when stock prices plunged and stock markets were

turbulent.  During market stress, since market participants tend to overstate risk of price

fluctuations, the standard deviation stays high, thus making the lead/lag relationship

between stock price fluctuation and standard deviation unstable.

The above estimation results suggest that the relationship between the shape of the

implied probability distribution and stock price fluctuations depends closely on the

developments of the economy and financial markets.  In our previous study, Nakamura

and Shiratsuka (1999), we point out the relationship between implied probability

distribution and market changes as follows.  On the one hand, we find typical patterns

of change in the shape of the implied probability distribution in response to stock price

fluctuations.  On the other hand, by comparing such typical patterns to examine the size

                                                                                                                                              
collapse of asset price bubbles and contains more observations for the period of stock price decline.
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and persistence of response of summary statistics to market fluctuations, we succeed in

evaluating the impacts of external shocks and their adjustment speeds.  Therefore,

because of such a time-varying relationship between implied probability distribution

and stock price changes, empirical evidence is likely to be unstable over time, reflecting

the magnitude of stress in the stock market.

V. Conclusions

In this paper, I empirically analyzed the information content of implied probability

distribution estimated from a set of option prices for stock price indices in the following

two ways.

First, I examined whether implied probability distribution contains useful

information for forecasting the subsequently realized distribution of stock price changes,

compared with the historical distribution of stock price changes.  The estimation results

suggest that the implied probability distribution contains some information regarding

future price movements, but that it is not superior to the historical distribution.

Second, I explored whether the shape of the implied probability distribution

produces useful information for forecasting future stock price changes.  To this end, I

estimated VAR models to check Granger causality among stock price fluctuations and

summary statistics of implied probability distribution.  The results of Granger causality

tests confirmed that absolute changes in stock prices Granger causes standard deviation

and excess kurtosis, and that changes in stock prices Granger causes skewness.  In

addition, the results indicate that the shape of the implied probability distribution

contains some information for forecasting stock price changes, at least concerning

standard deviation and skewness.

However, it should be noted that empirical evidence concerning the information

content of implied probability distribution is highly sensitive to the choice of sample

period, as I confirmed by applying rolling regression techniques.  This is because this

relationship varies according to the development of the economy and the state of

financial markets.  In particular, when stock prices decline substantially and markets

become turbulent, such information content is likely to become unstable.  The empirical

results in this paper suggest that it is difficult to extract useful information automatically

from the shape of an implied probability distribution to be used for the conduct of

monetary policy.  Thus, it seems very important to accumulate know-how on how to

extract such information through such case studies as conducted by Nakamura and

Shiratsuka (1999).
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Moreover, one should be careful in treating the tails of the implied probability

distribution since the range of strike prices that are actually traded is very limited and

the tails of the estimated implied probability distribution vary depending on the

procedure employed.  Therefore, it might not be an appropriate strategy to employ

summary statistics that utilize information regarding an entire distribution.  In this sense,

it seems important to devise new and more stable indicators that exclude outlier

information in the very tails of implied probability distribution.

Appendix: Heteroskedasticity and Autocorrelation Robust Standard

Errors in SUR Estimation

This appendix explains procedures to compute the heteroskedasticity and

autocorrelation robust standard errors in SUR estimation.

The SUR model in general can be written as follows:

eb += XY ,

where Y, X, and e denote the vector of independent variables, the matrix of dependent

variables, the vector of estimated coefficients, and the vector of error terms, respectively.

In the case of M-order simultaneous equations, the above equation can be rewritten as
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The estimated coefficients and the variance-covariance matrix for this SUR model

can be obtained by applying the GLS estimation procedure as follows:

YVXXVX 111 ][ --- ¢¢=b ,

YVXXVX 111 ][][ --- ¢¢=bVar ,

where
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In addition, sij is computed by using the residual vector ei as follows:

T
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However, if there is a significant autocorrelation among the error terms, the above

estimates will not produce an unbiased estimator for the variance-covariance matrix.

Therefore, in this paper, I extend the procedure proposed in Newey and West (1987) to

simultaneous equations, and adjust the effects of heteroskedasticity and autocorrelation

as follows:
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where w(l) is the Bartlett kernel that is defined by )1/(1)( +-= rllw .  The bandwidth r

is determined by following the guideline in den Haan and Levin (1996).
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Table 1: Summary Statistics

(1) Time-series properties

Summary statistics for IPDs Market fluctuation

Stdv Skew Ex-kurt Change Abs-change

Mean 0.169 -0.277 -0.591 -0.000 0.011

Median 0.163 -0.277 -0.761 -0.000 0.008

Max 0.397 1.859 6.869 0.124 0.124

Min 0.018 -2.542 -1.918 -0.068 0.000

Standard deviation 0.061 0.606 0.912 0.015 0.010

Skewness 0.375 0.150 1.956 0.420 2.514

Excess kurtosis 0.324 0.581 6.962 5.172 12.806

Autocorrelation

lag = 1 0.898 0.828 0.678 0.031 0.203

lag = 2 0.844 0.750 0.600 -0.069 0.231

lag = 3 0.792 0.700 0.545 -0.002 0.183

lag = 4 0.756 0.653 0.493 0.023 0.237

lag = 5 0.727 0.606 0.428 -0.019 0.234

lag = 10 0.651 0.472 0.293 0.016 0.157

lag = 25 0.547 0.181 0.182 0.070 0.130

lag = 50 0.421 0.025 0.120 -0.041 0.023

lag = 100 0.189 0.072 0.172 -0.007 0.007

(2) Cross-correlation

Stdv Skew Ex-kurt Change Abs-change

Stdv 1.000 0.077 0.131 0.047 0.205

Skew 0.077 1.000 -0.392 -0.357 0.170

Ex-kurt 0.131 -0.392 1.000 0.091 0.086

Change 0.047 -0.357 0.091 1.000 0.043

Abs-change 0.205 0.170 0.086 0.043 1.000

Notes: 1. Sample period is from June 21, 1989 to May 31, 1996, and number of samples is
1674.

2. Stdv, Skew, and Ex-kurt indicate standard deviation, skewness, and excess kurtosis of
implied probability distribution, respectively.  Change, and Abs-change indicate daily
changes and daily absolute changes in stock prices, respectively.
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Table 2: Interpretation of Results of J-Test

Null hypothesis: g = 0Null hypothesis:
d = 0 Not rejected Rejected

Not rejected

Both ID and RD contain
useful information
independently, and cannot be
compared with each other.

RD contains all information
contained in ID, as well as
additional information on
RD.

Rejected

ID contains all information
contained in RD, as well as
additional information on
RD.

Neither ID nor RD contains
useful information.
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Table 3:  Single Equation Estimation

Summary statistics for IPDs

Stdv Skew Ex-kurt

Equation (15): Implied probability distribution (ID)

a 0.119 (0.024) 0.210 (0.065) 0.639 (0.194)

b 0.555 (0.124) -0.041 (0.090) 0.042 (0.133)

t-val (b=0) 4.458 [0.000] -0.455 [0.324] 0.316 [0.376]

t-val (b=1) -3.580 [0.000] -11.610 [0.000] -7.219 [0.000]

Adj. R2 0.102 0.000 0.000

B-P Test 0.197 [0.657] 3.077 [0.079] 17.904 [0.000]

L-B Q(25) 13,345.8 [0.000] 6,231.9 [0.000] 7,303.2 [0.000]

Bandwidth 28 25 24

Equation (16): Historical distribution (past 30 business days, HD)

a 0.092 (0.019) 0.244 (0.063) 0.680 (0.175)

b 0.557 (0.096) -0.143 (0.066) -0.069 (0.056)

t-val (b=0) 5.800 [0.000] -2.175 [0.015] -1.242 [0.107]

t-val (b=1) -4.612 [0.000] -17.431 [0.000] -19.195 [0.000]

Adj. R2 0.260 0.018 0.005

B-P Test 288.473 [0.000] 1.562 [0.211] 0.056 [0.813]

L-B Q(25) 9,126.5 [0.000] 6,880.1 [0.000] 7,610.4 [0.000]

Bandwidth 27 26 24

Equation (17): ID + HD

a 0.088 (0.020) 0.221 (0.067) 0.719 (0.210)

b1 0.044 (0.179) -0.096 (0.094) 0.060 (0.135)

b2 0.541 (0.140) -0.166 (0.066) -0.072 (0.057)

t-val (b1=0) 0.243 [0.404] -1.026 [0.153] 0.447 [0.327]

t-val (b2=0) 3.855 [0.000] -2.501 [0.006] -1.257 [0.104]

Adj. R2 0.260 0.023 0.005

B-P Test 367.577 [0.000] 2.615 [0.271] 17.467 [0.000]

L-B Q(25) 9,145.0 [0.000] 6,821.6 [0.000] 7,566.6 [0.000]

Bandwidth 27 26 23

Notes:1. Sample period is from June 21, 1989 to May 31, 1996.  Number of samples is 1,670,
since the period with time-to-maturity less than 3-business days are excluded.

2. Figures in parentheses and brackets are standard errors and p-values, respectively.
Standard errors are adjusted for heteroskedasticity and autocorrelation by Newey and
West’s (1987) procedure.  Bandwidths are decided by following the procedure in Newy
and West (1994).

3. B-P Test indicates Breusch and Pagan’s (1979) diagnostic test on heteroskedasticity,
and test statistics that follows c2-distribution (degree of freedom is equal to the number
of explanatory variables).  L-B Q(25) indicates Ljung and Box’s (1978) diagnostic test
on autocorrelation (until 25-period lags), and test statistics that follows c2-distribution
(degree of freedom is equal to 25).
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Table 4: Results of J-Test: Single Equation Estimation

Summary statistics for IPDs

Stdv Skew Ex-kurt

g 0.971 (0.252) 1.161 (0.463) 1.041 (0.829)

t-val 3.855 [0.000] 2.506 [0.006] 1.255 [0.105]

Bandwidth 27 25 25

d 0.079 (0.323) 2.352 (2.292) 1.436 (3.221)

t-val 0.243 [0.404] 1.026 [0.153] 0.446 [0.328]

Bandwidth 27 26 25

Notes: 1. Sample period is from June 21, 1989 to May 31, 1996.  Number of samples is 1,670,
since the period with time-to-maturity less than 3-business days are excluded.

2. Figures in the parentheses and brackets are standard errors and p-values, respectively.
Standard errors are heteroskedasticity and autocorrelation robust estimators applying
Newey and West’s (1987) procedure.  Bandwidths are decided by following the
procedure in Newy and West (1994).
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Table 5:  SUR Estimation (Full Sample)

Summary statistics for IPDs

Stdv Skew Ex-kurt

Equation (15): Implied probability distribution (ID)

a 0.120 (0.016) 0.208 (0.174) 0.602 (0.802)

b 0.552 (0.056) -0.048 (0.079) -0.021 (0.554)

t-val (b=0) 9.876 [0.000] -0.609 [0.271] -0.039 [0.485]

t-val (b=1) -8.020 [0.000] -13.197 [0.000] -1.845 [0.033]

Adj. R2 0.102 0.000 -0.001

Bandwidth 28

Equation (16): Historical distribution (past 30 business days, HD)

a 0.089 (0.013) 0.240 (0.169) 0.640 (0.683)

b 0.570 (0.027) -0.116 (0.046) -0.027 (0.198)

t-val (b=0) 21.084 [0.000] -2.510 [0.006] -0.138 [0.445]

t-val (b=1) -15.878 [0.000] -24.124 [0.000] -5.184 [0.000]

Adj. R2 0.260 0.017 0.003

Bandwidth 27

Equation (17): ID + HD

a 0.087 (0.015) 0.218 (0.173) 0.624 (0.946)

b1 0.025 (0.030) -0.088 (0.076) -0.022 (0.573)

b2 0.558 (0.020) -0.135 (0.038) -0.023 (0.216)

t-val (b1=0) 0.821 [0.206] -1.161 [0.123] -0.037 [0.485]

t-val (b2=0) 28.012 [0.000] -3.547 [0.000] -0.108 [0.457]

Adj. R2 0.260 0.022 0.002

Bandwidth 27

Notes: 1. Sample period is from June 21, 1989 to May 31, 1996.  Number of samples is 1,670,
since the period with time-to-maturity less than 3-business days are excluded.

2. Figures in parentheses and brackets are standard errors and p-values, respectively.
Standard errors are adjusted for heteroskedasticity and autocorrelation by Newey and
West’s (1987) procedure.  Bandwidths are decided by following the procedure in Newy
and West (1994).



28

Table 6: Results of J-Test: SUR estimation

Summary statistics for IPDs

Stdv Skew Ex-kurt

g 0.979 (0.166) 1.159 (3.660) 0.853 (106.922)

t-val 5.888 [0.000] 0.317 [0.376] 0.008 [0.497]

Bandwidth 27

d 0.045 (0.752) 1.826 (34.405) 1.001 (965.145)

t-val 0.060 [0.476] 0.053 [0.479] 0.001 [0.500]

Bandwidth 27

Notes: 1. Sample period is from June 21, 1989 to May 31, 1996.  Number of samples is 1,670,
since the period with time-to-maturity less than 3-business days are excluded.

2. Figures in parentheses and brackets are standard errors and p-values, respectively.
Standard errors are heteroskedasticity and autocorrelation robust estimators applying
Newey and West’s (1987).  Bandwidths are decided by following the procedure in
Newy and West (1994).

Table 7: Results of Hypothesis Testing: Rolling Regressions
( % )

Equation (17)

Standard deviation Skewness Excess kurtosis
b1>0 &

b2>0
b1>0 b2>0

b1>0 &
b2>0

b1>0 b2>0
b1>0 &

b2>0
b1>0 b2>0

b(ID)>0 &
b(HD)>0 17.4 4.8 20.3 0.0 0.0 0.0 0.0 0.0 0.0

b(ID)>0 0.1 15.8 0.1 0.7 9.0 0.0 0.0 0.0 0.0

E
q

ua
tio

n 
(1

5
)(

1
6)

b(HD)>0 0.0 0.0 14.5 0.0 0.0 0.5 0.0 0.0 1.7

Notes: 1. Subsample periods are all 180 business days.  Estimations are repeatedly conducted 1,491
times for full sample period from June 21, 1989 to May 31, 1996.

2. t-values for hypothesis testing are computed with standard errors that  are heteroskedasticity
and autocorrelation robust estimators applying Newey and West’s (1987) procedure.
Bandwidths are decided by following the procedure in Newy and West (1994), and 8 or 9
business days are chosen in most of the subsample periods.
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Table 8: Results of J-Test: Rolling Regressions

( % )

Null hypothesis

g=0 d=0

Standard

deviation Skewness Excess kurtosis

Not rejected Not rejected 55.8 86.2 98.3

Not rejected Rejected 21.0 3.5 0.0

Rejected Not rejected 17.3 9.7 1.7

Rejected Rejected 5.9 0.7 0.0

Notes: 1. Subsample periods are all 180 business days.  Estimations are repeatedly conducted 1,491
times for full sample period from June 21, 1989 to May 31, 1996.

2. t-values for hypothesis testing are computed with standard errors that  are
heteroskedasticity and autocorrelation robust estimators applying Newey and West’s (1987)
procedure.  Bandwidths are decided by following the procedure in Newy and West (1994),
and 8 or 9 business days are chosen in most of the subsample periods.
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Table 9: Granger Causality Tests: Implied Distributions

Independent variablesDependent
variable Stdv Skew Ex-Kurt Mkt

(Illustration)

Daily market change (lag = 6)

Stdv 1,134.1 2.2 6.2 0.6

(0.000) (0.037) (0.000) (0.695)

Skew 0.6 371.9 1.4 3.2

(0.699) (0.000) (0.197) (0.004)

Ex-Kurt 0.8 1.6 206.7 2.3

(0.589) (0.154) (0.000) (0.033)

Mkt 3.1 2.5 1.1 2.7

(0.005) (0.019) (0.346) (0.014)

Stdv Skew

MktEx-Kurt

Daily absolute market change (lag = 7)

Stdv 734.6 3.0 4.2 11.0

(0.000) (0.004) (0.000) (0.000)

Skew 0.4 437.3 1.8 1.9

(0.887) (0.000) (0.076) (0.066)

Ex-Kurt 1.2 1.8 184.1 5.9

(0.292) (0.092) (0.000) (0.000)

Mkt 2.4 4.9 0.8 19.9

(0.019) (0.000) (0.589) (0.000)

Stdv Skew

MktEx-Kurt

Notes: 1. Data for changes in stock prices is adjusted for the trading-day effects by the web-based

program of DECOMP.

2. Lag length is decided by AIC criteria.

3. Figures in the table indicate F-test statistics for the null hypothesis that the estimated

coefficients for each dependent variable is equal to zero.  Figures in parentheses are p-values.

4. Arrows in the illustration of the result of the Granger causality tests:

1% significant level: leads lags

5% significant level: leads lags

10% significant level: leads lags

20% significant level: leads lags



31

Table 10: Granger Causality Tests: Historical Distributions

Independent variablesDependent
variable Stdv Skew Ex-Kurt Mkt

(Illustration)

Daily market change (lag = 4)

Stdv 26,534.3 0.2 3.1 13.2

(0.000) (0.921) (0.014) (0.000)

Skew 1.7 3,326.0 2.2 0.4

(0.149) (0.000) (0.070) (0.802)

Ex-Kurt 0.3 2.2 3,075.5 0.9

(0.857) (0.066) (0.000) (0.451)

Mkt 1.4 0.6 1.2 2.2

(0.222) (0.657) (0.328) (0.071)

Stdv Skew

MktEx-Kurt

Daily absolute market change (lag = 6)

Stdv 7,807.0 1.1 1.5 3.4

(0.000) (0.350) (0.189) (0.002)

Skew 0.8 2,311.9 4.5 1.3

(0.538) (0.000) (0.000) (0.276)

Ex-Kurt 1.5 3.1 1,922.8 1.1

(0.187) (0.005) (0.000) (0.354)

Mkt 5.1 1.4 1.5 7.0

(0.000) (0.210) (0.192) (0.000)

Stdv Skew

MktEx-Kurt

Notes: 1. Data for changes in stock prices is adjusted for the trading-day effects by the web-

based program of DECOMP.

2. Lag length is decided by AIC criteria.

3. Figures in the table indicate F-test statistics for the null hypothesis that the estimated

coefficients for each dependent variable is equal to zero.  Figures in parentheses are p-

values.

4. Arrows in the illustration of the result of the Granger causality tests:

1% significant level: leads lags

5% significant level: leads lags

10% significant level: leads lags

20% significant level: leads lags
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Figure 1: Time-series Movement of Summary Statistics
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Figure 2: Stability of Cross-correlation over Time

(1) Standard deviation
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Notes: 1. Sample period for computing cross-correlation is 180 business days ending at each date
on the horizontal axis.

2. Shaded area indicates a rejection interval for 10-percent significance in two-side
hypothesis testing.  Probability that coefficients of cross-correlation are significantly
different from zero is as follows.

Unit: percent

Stdv Skew Ex-KurtCorrelation

between positive negative positive negative positive negative

RD-ID 56.6 10.9 25.0 9.4 18.3 19.4

RD-HD 67.9 14.8 6.2 69.1 3.4 59.4
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Figure 3: Predictive Power of Standard Deviation in Rolling Regression
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power than the other.
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Figure 4: Stability of Cross-Correlation over Time

(1) Cross-correlation with market changes
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(2) Cross-correlation with absolute market changes
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Notes: 1. Cross-correlation is computed with data for 180 business days ending at the each
date on the horizontal axis.

2. Shaded area indicates a rejection interval for 10-percent significance in two-side
hypothesis testing.  Probability that coefficients of cross-correlation are significantly
different from zero is as follows.

Unit: percent

Stdv Skew Ex-KurtCorrelation

with positive negative positive negative positive negative

Mkt 21.8 11.9 0.0 100.0 39.2 11.6

Abs-Mkt 53.0 0.0 81.8 11.0 69.1 0.0
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Figure 5: Dynamic cross-correlation

(1) Dynamic cross-correlation with market changes
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Figure 6: Granger Causality over Time
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Notes: 1. The VAR model for Granger causality testing is the same as that for full sample
estimation.  Sample period is 180 business days ending at the each date on the vertical axis.

2. Data for changes in stock prices is adjusted for the trading-day effects by the web-based
program of DECOMP.

3. Vertical lines in the figure are F-values for the 1%, 5%, and 10% significance from top to
bottom, respectively.


