# Can cross-border financial markets create good collateral in a crisis?

Makoto Saito, Shiba Suzuki, and Tomoaki Yamada

Future of Central Banking under Globalization

## Questions raised here

- Theoretical question
  - Can cross-border markets create high-quality collateral when collateral is urgently needed?
  - Does collateral creation emerge endogenously in equilibrium?

#### Toward policy implications

- Is public collateral provision during financial crises justifiable, given a theoretical case of collateral creation as an equilibrium phenomenon?
- Which kinds of economic functions are carried out by public collateral provision?

# Public collateral provision during a financial crisis

- Public collateral provision during a financial crisis often consists of:
  - 1. Public institutions (including central banks) provide private agents with high-quality collateral (safe bonds).
  - 2. Private agents utilize safe bonds as collateral to issue risky bonds.
  - 3. Public institutions quite positively evaluate private risky bonds ('Reasonable' prices may be even above fundamental prices).
  - 4. Both public institutions and private agents expand financial balance sheets to maintain such financial operations.



#### Private risky bonds as financing instruments

## Two-country setup with country-specific catastrophic shocks and solvency constraints

### Country-specific catastrophic shocks:

- Level shocks (not growth shocks)
- Maybe persistent

### Cross-border financial markets:

- Complete markets
- To trade Lucas trees and contingent bonds between two countries

### Solvency (collateral) constraints:

In any financial portfolio, gross repayments on debts need to be up to gross receipts from investments for every possible future state.

# How to compute the constrained competitive equilibrium

- We first compute the constrained social optimal by solving a social planner's problem.
  - We do <u>not</u> solve directly market problems.
- Then, we translate the constrained social optimal to the constrained competitive equilibrium.
  - The corresponding market problem is <u>not</u> dynamically complete markets, but **time-0 complete markets**.
  - A difference between the two versions of complete markets is no longer trivial in the presence of solvency constraints.

### Market problem

1. Each country's optimization problem:

$$\max_{\{c^i\},\{\theta^i\},\{a^i\}} \sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t \pi(s^t | s_0) u\left[c^i(s^t)\right],$$

s.t. 
$$c^{i}(s^{t}) + p(z^{t})\theta^{i}(s^{t}) + \sum_{s' \in S} q(s^{t}, s')a^{i}(s^{t}, s') \le w^{i}(s^{t}),$$

$$\left[p(z^{t+1}) + d(z_{t+1})\right] \theta^i(s^t) \ge -a^i(s^t, s'), \ \forall s' \in S.$$

## 2. Market clearings:

$$\theta^{1}(s^{t}) + \theta^{2}(s^{t}) = 1,$$
  
$$a^{1}(s^{t}, s') + a^{2}(s^{t}, s') = 0, \text{ for all } s' \in S.$$

### 3. Resource constraints:

$$e(z_t) = e^1(y_t) + e^2(y_t) + d(z_t).$$

4. Availability of Lucas trees:

$$\alpha = \frac{d(z_t)}{e(z_t)}.$$

### Collateral (solvency) constraints

$$[p(z^{t+1}) + d(z_{t+1})] \theta^i(s^t) \ge -a^i(s^t, s'), \ \forall s' \in S.$$

- 1. Contingent claims as insurance: For state s',  $a^i(s^t, s') > 0$  (insuree), and  $a^{i'}(s^t, s') < 0$  (insurer).
- 2. Contingent claims as bonds: For all states s' ( $\forall s'$ ),  $a^i(s^t, s') > 0$  (creditor), and  $a^{i'}(s^t, s') < 0$  (debtor).
- 3. Without any physical delivery, it is possible to have  $\theta(s^t) < 0$ . A short position in Lucas trees without delivery can be regarded as **risky bonds**.

Computing social optimal by a representative agent

 $\max_{\{c^1, c^2\}} \sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t \pi(s^t | s_0) \left[ \zeta^1(s^t) u \left[ c^1(s^t) \right] + \zeta^2(s^t) u \left[ c^2(s^t) \right] \right].$ 

- 1. Negishi weights  $(\zeta^i(s^t))$  are time-varying!
- 2. A constrained state implies that a state where resources cannot be transferred from a constrained state to another state (or today).
- 3. Thus, in a constrained state, consumption becomes too much.
- 4. Consequently, Negishi weight is **revised upward** at a state where a solvency constraint is binding.

- 5. It is possible to compute **stochastic discount factors** from a representative agent framework.
- 6. With a solvency constraint binding,

$$\sum_{j \ge t} \sum_{s^j \succeq s^t} Q(s^t, s^j) c^i\left(s^j\right) = \sum_{j \ge t} \sum_{s^j \succeq s^t} Q(s^t, s^j) e^i\left(y_j\right)$$

still holds from a constrained state onward.

7. That is, it is assumed that a consumer can finance current consumption against far future endowment in **time-0 complete markets**, much more flexible than **dynamically complete markets**.

## Calibration setup: A **purely transitory** case

- A country-specific catastrophic shock reduces labor endowment by 20% with probability 1.8% per year.
  - The labor endowment share of the damaged country declines from 50% to 44.4% (by 5.6%)
- The availability of Lucas trees is extremely limited
  - $\bullet \quad \alpha = 0.1\%$
  - The solvency of an insurer country, which is backed by investments in Lucas trees, is lowered substantially.

#### • A calibrated case:

• Country I faces a catastrophic event in time 0. But, there is not any more catastrophic event in either country.





D

2010/5/26

Almost perfect insurance as the social optimal: Country 2 (damaged country)

The loss borne by Country 2 reduces from 5.6% to 0.2% in time 0.

| Direct loss                      | -5.6% |
|----------------------------------|-------|
| Insurance benefit from Country I | +0.7% |
| Gross return from Lucas trees    | +0.7% |
| Ex-post borrowing must be        | 4.0%  |

Country 2 bears 0.1% long-run losses (from time 2 onward).

Almost perfect insurance as the social optimal: Country 1 (nondamaged country)

The gain obtained by Country I reduces from 5.6% to 0.2% in time 0.

| Direct gain    |                   | +5.6% |
|----------------|-------------------|-------|
| Insurance pay  | ment to Country 2 | -0.7% |
| Gross return   | from Lucas trees  | +0.7% |
| Ex post lendin | g must be         | 5.4%  |

Country I receives 0.1% long-run benefits (from time 2 onward).

How is the almost perfect insurance outcome (social optimal) achieved by market transactions?

- It is impossible to support the social optimal by financial transactions even when markets are dynamically complete.
  - A big difference emerges between economies with and without solvency constraints!
- It requires <u>time-0 complete markets</u>.
  - To achieve the social optimal, not only one-period contingent bonds, but also multi-period contingent bonds are necessary.
    - Given severe solvency constraints, one-period installment is too short for the damaged country to cover catastrophic losses.
  - However, time-0 complete markets may not be realistic.
    - They require a fairly wide variety of financial instruments, and involve extremely complicated financial transactions.

Can the social optimal be sustained by dynamically complete markets with minor interventions? (1/2)

- > Yes, if asset pricing *slightly* deviates from arbitrage pricing.
  - In particular, the price of Lucas trees is slightly above fundamentals:

$$p(z^{0}) = \sum_{s^{1} \succeq s^{0}} q(s^{0}, s^{1}) \left[ p(z^{1}) + d(z_{1}) \right] + \epsilon$$

- Deviation from arbitrage pricing may be justifiable in an economy with solvency constraints.
- Richness in Lucas trees would give Country 2 (damaged) an opportunity to finance by making short in Lucas trees.

Can the social optimal be sustained by dynamically complete markets with minor interventions? (2/2)

- Richness in Lucas trees and Cheapness in contingent bonds result in:
  - Country 2 can finance resources by making long in contingent bonds and short in Lucas trees.
  - Country I can construct long-run investment opportunities by making long in Lucas trees and short in contingent bonds.

## Large-scale bilateral financial transactions in time 0

### Country 2 (damaged):

- Long positions in contingent bonds: 3.6%
- Short positions in risky bonds (Lucas trees): -7.5%
- Ex-post borrowing: **4.0**%

### Country I (nondamaged):

- Long positions in risky bonds (Lucas trees): 8.8%
- Short positions in contingent bonds: -3.6%
- Ex-post lending:

5.4%

## Payoff structure of contingent bonds

Country 2's receipts and repayments in time 1:

| Cat. shocks on  | Receipts from<br>safe bonds | Repayments on<br>risky bonds<br>(Lucas trees) | Solvency<br>constraints                                     |
|-----------------|-----------------------------|-----------------------------------------------|-------------------------------------------------------------|
| Neither country | 11.8%                       | 11.8%                                         | Binding                                                     |
| Country 2 only  | 9.5%                        | 8.0%                                          | <u>Not</u> binding thanks<br>to insurance from<br>Country I |
| Country I only  | 8.0%                        | 8.0%                                          | Binding                                                     |
| Both countries  | 5.1%                        | 5.1%                                          | Binding                                                     |

 Utilizing safe bonds issued by Country I as good collateral, Country 2 can finance effectively uncovered losses.

## Large-scale bilateral transactions emerges only in the aftermath.

Table 1: Portfolio transaction behavior with one-time shock (shock size: 20%, persistence: i.i.d.,  $\alpha$ =0.1%)

| 8       | labor endow-<br>ment share | realized<br>tree value<br>$(p(z) + \alpha)\theta^{4}(s^{-1})$ | insurance<br>receipt<br>$a^{i}(s^{-1}, s)$ | consump-<br>tion share | invested<br>trees<br>$\theta^{i}(s)$ | invested<br>trees value<br>$p(z)\theta^{t}(s)$ | invested<br>contingent claims<br>$\sum q(s, s')a^i(s, s')$ |
|---------|----------------------------|---------------------------------------------------------------|--------------------------------------------|------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------|
|         | 50000 2500                 | 272081                                                        | nondagma                                   | ged country            |                                      | STREET, ST. C.                                 | 1.00 Mary Carls                                            |
| time -1 | 0.500                      | 0.011                                                         | 0.000                                      | 0.500                  | 0.500                                | 0.010                                          | 0.000                                                      |
| time 0  | 0.556                      | 0.007                                                         | -0.007                                     | 0.502                  | 6.540                                | 0.088                                          | -0.036                                                     |
| time 1  | 0.500                      | 0.139                                                         | -0.118                                     | 0.502                  | 0.920                                | 0.019                                          | 0.000                                                      |
| time 2  | 0.500                      | 0.020                                                         | 0.002                                      | 0.501                  | 0.940                                | 0.019                                          | 0.000                                                      |
| time 3  | 0.500                      | 0.020                                                         | 0.001                                      | 0.501                  | 0.950                                | 0.019                                          | 0.000                                                      |
|         |                            |                                                               | damaged                                    | l country              |                                      |                                                |                                                            |
| time -1 | 0.500                      | 0.011                                                         | 0.000                                      | 0.500                  | 0.500                                | 0.010                                          | 0.000                                                      |
| time 0  | 0.444                      | 0.007                                                         | 0.007                                      | 0.498                  | -5.540                               | -0.075                                         | 0.036                                                      |
| time 1  | 0.500                      | -0.118                                                        | 0.118                                      | 0.498                  | 0.080                                | 0.002                                          | 0.000                                                      |
| time 2  | 0.500                      | 0.002                                                         | -0.002                                     | 0.499                  | 0.060                                | 0.001                                          | 0.000                                                      |
| time 3  | 0.500                      | 0.001                                                         | -0.001                                     | 0.499                  | 0.050                                | 0.001                                          | 0.000                                                      |

## Summary of calibration exercises

- Even when markets are only dynamically complete (a set of contingent claims is fairly limited), <u>slight richness in Lucas trees</u> allows for restoring the social optimal as follows.
  - Country I issues **safe bonds** on large scale.
  - Country 2 exploits such safe bonds as collateral, and issues risky bonds (short positions in Lucas trees without delivery).
  - Both countries close such large-scale bilateral transactions immediately after a catastrophic shock goes away.
- The above implications survive with high degree persistence and consecutive occurrence.

# Policy implications from the calibration exercises

- How we should interpret central banks' behavior during a financial crisis, including:
  - aggressively positive evaluation of private risky bonds (even above fundamental prices),
  - large-scale public collateral provision, and
  - expanding hugely financial balance sheets.

#### It is justifiable.

- With slight richness in private risky bonds initiated by public interventions, financially-damaged agents can finance effectively uncovered losses in a situation where the availability of financial instruments is rather limited.
- Large-scale interventions need to be closed immediately after a financial crisis goes away.