IMES DISCUSSION PAPER SERIES

一般化状態空間モデルによる分散変動時系列の解析

北川源四郎・佐藤整尚

Discussion Paper No. 98-J-22

IMES

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

日本銀行金融研究所

〒103-8660 東京中央郵便局私書箱 30 号

備考: 日本銀行金融研究所ディスカッション・ペーパー・シ リーズは、金融研究所スタッフおよび外部研究者による研 究成果をとりまとめたもので、学界、研究機関等、関連す る方々から幅広くコメントを頂戴することを意図してい る。ただし、論文の内容や意見は、執筆者個人に属し、日 本銀行あるいは金融研究所の公式見解を示すものではな い。

IMES Discussion Paper Series 98-J-22 1998 年 10 月

ー般化状態空間モデルによる 分散変動時系列の解析

北川源四郎/佐藤整尚1

10/4/98

要旨

確率的ボラティリティ・モデルを非線形状態空間モデルで表現する方法を拡張する とトレンド,定常変動と分散変動(ボラティリティ)を同時に考慮し,これらの成分に 分解することができる.このようなボラティリティの変動を考慮したモデルの AIC は 通常のトレンドモデル等よりも著しく小さく,変動するボラティリティを明示的に表 現することによってよいモデルが得られる事を示している.このモデルに基づく日経 225 データの解析結果では,トレンドの階差と局所的な分散との間に明らかな関連がみ られる.そこで,本稿ではさらにトレンドと分散の関係を仮定したモデル化を行った. 日経 225 データに関しては,このモデル化によってさらに AIC が減少し,両成分間の 関係が確認できた.一方,為替データに関してはトレンドとボラティリティ間の明らか な関係は検出できなかった.

キーワード: ボラティリティ,金融時系列,非定常,日経 225 データ,モンテカルロ・フィルタ, AIC

JEL Classification: C13, C22, G12

¹ 北川源四郎 統計数理研究所 (E-Mail: kitagawa@ism.ac.jp) 佐藤整尚 統計数理研究所 (E-Mail: sato@ism.ac.jp)

目 次

1	はじめに	3
2	モデル	4
	2.1 トレンド + 確率的ボラティリティ型のモデル	4
	2.2 トレンド+AR+確率的ボラティリティ型のモデル	4
3	状態空間モデル	5
	3.1 分散変動時系列モデルの状態空間表現	5
4	モデルの推定と各成分への分解	6
	4.1 状態の推定	6
	4.2 モンテカルロ・フィルタによる各成分の推定	6
	4.3 パラメータの推定	8
5	解析例	10
	5.1 日経 225 データ	10
6	トレンドモデルの拡張	11
	6.1 レベルシフトのモデル化	11
	6.2 非ガウス型分布による傾きの急激な変化とレベルシフトのモデル化	12
	6.3 例	13
7	トレンドとボラティリティ変化の関係を考慮したモデル	14
	7.1 トレンドの変化から分散への影響	14
	7.2 分散のシステムノイズへの 影響	15
8	為替データの解析例	15
9	まとめ	16

1 はじめに

ボラティリティに関する多くの文献では,株価などの金融時系列 r_n の対数値の1階 階差系列 $y_n = \Delta \log r_n = \log r_n - \log r_{n-1}$ を考え,それに対してモデルを想定している.代表的なものとしては,ARCHモデル(Engle (1982))

$$y_n = \sigma_n w_n$$

$$\log \sigma_n^2 = \alpha + \beta w_{n-1}^2$$
(1)

や確率的ボラティリティ・モデル

$$y_n = \sigma_n w_n$$

$$\log \sigma_n^2 = \alpha + \beta \log \sigma_{n-1}^2 + v_n$$
(2)

などがある.通常, w_n は平均0, 分散1の標準正規分布と仮定する.

これらのモデルの背景には,時系列がランダムウォークをしていることと,トレン ドとボラティリティの間の無相関性の仮定がある.しかしながら,金融時系列に関し て必ずしもこれらの仮定が妥当なわけではなく,積極的に時系列的構造やトレンドと ボラティリティの関係をモデル化することによって,より良いモデルが得られる可能 性がある.

確率的ボラティリティ・モデルのパラメータ推定に関しては最近,非ガウス型のフィ ルタを用いて最尤推定値を求める方法が提案されている.従来は,確率的ボラティリ ティ・モデルの推定のためには r_n を以下のように非線形変換し,線形・ガウス型の状 態空間モデルで近似し,カルマンフィルターによって計算を行うことが多かった.

$$\log r_n^2 = \alpha \log \sigma_n^2 + \log w_n^2$$

$$\log \sigma_n^2 = \beta \log \sigma_{n-1}^2 + v_n$$
(3)

しかしながら,以下のように観測モデルに関して非線形な,非線形状態空間モデルを 用いると確率的ボラティリティ・モデルを何等近似することなく表現することができ る.さらに,本稿で示すようにこの方法を拡張すると,比較的簡単にトレンドとボラ ティリティを同時にモデル化するとともに,それらの間の影響を明示的にモデル化す ることができる.

2 モデル

2.1 トレンド + 確率的ボラティリティ型のモデル

本稿では分散変動を伴う時系列を,以下のように,直接トレンドとそのまわりを変 動する系列に分解するモデルを考える.

$$y_n = T_n + \sigma_n \varepsilon_n, \qquad \varepsilon_n \sim N(0, 1)$$
 (4)

ただし, T_n は時刻 n におけるトレンド成分, ε_n は平均0, 分散1の正規白色雑音, σ_n は時間とともに変動するものとする.このモデルでは,時系列 y_n の分散変動は σ_n の 時間変化によって説明される.したがって,本稿では σ_n を一種のボラティリティとみ なし, σ_n^2 を時変分散と呼ぶことにする.

季節調整 (Kitagawa and Gersch (1984)) の場合と同様, トレンド成分 T_n は次数 k の確率的階差モデル

$$\Delta^k T_n = e_{1n}, \qquad e_{1n} \sim N(0, \tau_1^2) \tag{5}$$

に従うと仮定する.また,時変分散 σ_n^2 も同様に $\log \sigma_n^2$ に関する ℓ 階の確率階差モデル

$$\Delta^{\ell} \log \sigma_n^2 = e_{2n}, \qquad e_{2n} \sim N(0, \tau_2^2) \tag{6}$$

に従うものと仮定する.ただし, $e_{1n} \ge e_{2n}$ はそれぞれ分散 τ_1^2 および τ_2^2 の正規白色 雑音である.次数 k および分散 τ_1^2 はトレンドの滑らかさを,また ℓ および τ_2^2 は分散 の変化の滑らかさを制御するパラメータである.トレンド成分と時変分散のモデルの 次数 $k \ge \ell$ としては通常 1 または 2 が用いられる.

2.2 トレンド + AR +確率的ボラティリティ型のモデル

一般に経済時系列はさまざまな周波数成分から構成されている.したがって、この ような時系列を長周期成分を中心とするトレンドと,すべての周波数成分を同じ割合 で含む白色雑音だけの和で表現するモデルでは不十分なことが多い.そこで,(4)式の モデルをさらに拡張して,トレンド,定常変動成分および白色雑音から構成される以 下のようなモデルを考えることにする.

$$y_n = T_n + p_n + \sigma_n \varepsilon_n, \qquad \varepsilon_n \sim N(0, 1) \tag{7}$$

ただし, T_n , σ_n および ε_n は (4) の場合と同様のモデル, p_n は定常時系列成分で AR モデル

$$p_n = \sum_{j=1}^m a_j p_{n-j} + e_{3n}, \qquad e_{3n} \sim N(0, \tau_3^2)$$
(8)

に従うと仮定する. *e*_{3n} は平均0,分散 τ_3^2 の正規白色雑音とする. (7) 式のモデルにより,長周期成分と白色雑音の二つだけでなく中間的な周期成分からなる変動をも表現できるものと期待できる.

3 状態空間モデル

3.1 分散変動時系列モデルの状態空間表現

2.2 節で導入した確率的ボラティリティ・モデルは状態空間モデルの形で表現できる. $(k + m + \ell)$ 次元状態ベクトルを

$$x_n = (T_n, \dots, T_{n-k+1} | p_n, \dots, p_{n-m+1} | \log \sigma_n^2, \dots, \log \sigma_{n-\ell+1}^2)^T$$
(9)

と定義する. さらに, T_n , p_n および $\log \sigma_n^2$ はそれぞれ (4), (5), (7) に従うとするとき, $(k+m+\ell) \times (k+m+\ell)$ 行列 F および $(k+m+\ell) \times 3$ 行列 G を

と定義すると,各成分の変動は

$$x_n = F x_{n-1} + G v_n \tag{11}$$

と表現できる.ただし, v_n は

$$v_n = (e_{1n}, e_{2n}, e_{3n})^T (12)$$

によって定義される 3 次元白色雑音で、その分散共分散行列は $Q = diag\{\tau_1^2, \tau_2^2, \tau_3^2\}$ である.

一方, (9) 式より T_n , p_n および $\log \sigma_n^2$ は状態ベクトル x_n の成分の一部なので、モデル (6) から時系列 y_n は, 適当な非線形関数 f を用いて

$$y_n = T_n + p_n + \sigma_n \varepsilon_n = f(x_n, \varepsilon_n) \tag{13}$$

の形で表現でき,非線形の観測モデルが得られる.

上記の (11) 式と (13) 式により, x_n を状態ベクトルとする状態空間モデルが得られる. (11) 式がシステムモデル, v_n がシステムノイズとなる. 一方, (13) 式が観測モデル, ε_n が観測ノイズとなる. σ_n は状態ベクトル x_n の一成分である $\log \sigma_n^2$ の非線形変換で得られ, さらに σ_n と観測ノイズ ε_n の積が観測値 y_n に含まれているので, この状態空間モデルは非線形状態空間モデルの一例となる.

4 モデルの推定と各成分への分解

4.1 状態の推定

一般に,時刻 j までの観測値 $Y_j = \{y_1, \dots, y_j\}$ が得られたとき,時刻 n の状態 x_n を推定することを状態推定の問題という.とくに,j < n,j = n - 1,j = n および j > n のとき状態推定の問題を予測,一期先予測,フィルタ,平滑化と呼んで区別する.

状態空間モデルの方法では,観測値 Y_j から状態 x_n が推定されると (9) 式の定義から直ちにトレンド成分 T_n ,定常変動成分 p_n および時変分散 σ_n^2 あるいは"ボラティリティ" σ_n の推定値が得られる.すなわち,状態ベクトル x_n の第1成分 $x_n(1)$,第k+1成分 $x_n(k+1)$ および第k+m+1成分 $x_n(k+m+1)$ がそれぞれトレンド,定常変動成分および時変分散の対数値となる.すなわち状態推定により,時系列の分解とボラティリティの推定が同時に実現されることになる.

ただし,状態空間モデルが線形・ガウス型の場合にはカルマンフィルタ(片山(1983), 尾崎・北川(1998))により簡単に状態推定が実現できるが,(13)式のような非線形モデ ルの場合には非線形フィルタの利用が必要となる.

4.2 モンテカルロ・フィルタによる各成分の推定

3節で示したように,トレンドを考慮した確率的ボラティリティ・モデルを考える場合には,非線形の状態空間モデルを用いる必要がある.状態ベクトルが3次元以下程

度の場合には,数値積分を利用する非ガウス型フィルタを用いれば一般の状態空間の モデルに対しても正確に計算を行うことができる(Kitagawa (1987),北川・佐藤・永 原 (1998)).しかし,より高次元の状態ベクトルを持つ非線形の状態空間モデルに対し ては数値計算の直接的適用は非現実的である.モンテカルロ・フィルタはこのような 状況を想定して開発されたものである(Kitagawa (1996),北川 (1996)).

モンテカルロ・フィルタでは状態の一期先予測分布 $p(x_n|Y_{n-1})$,フィルタ分布 $p(x_n|Y_n)$ および システムノイズの分布 $p(v_n)$ を多数の"粒子"で近似する.これらの"粒子"は実際には x_n や v_n の次元に対応する高次元空間上の点である. $p(v_n)$ に関しては,その密度関数がモデルの仮定より決まっているので, $p(v_n)$ に従う乱数を m 個, $V_n^{(1)},\ldots,V_n^{(m)}$,発生させる.このとき, $V_n^{(1)},\ldots,V_n^{(m)}$ で定まる経験分布関数

$$P_n(x) = \frac{1}{m} \sum_{j=1}^m I(x; V_n^{(j)})$$
(14)

は真の分布関数

$$P(x) = \int_{-\infty}^{x} p(t)dt$$
(15)

の近似とみなせる.ただし,I(x;a)は

$$I(x;a) = \begin{cases} 0 & x < a \\ 1 & x \ge a \end{cases}$$
(16)

をみたす定義関数である.

一方,予測分布 $p(x_n|Y_{n-1})$ を近似する粒子 $P_n^{(j)}$ およびフィルタ分布 $p(x_n|Y_n)$ を近 似する粒子 $F_n^{(j)}$ の生成は V_n のようには簡単ではない.しかしながら,以下の手続き に従って計算を行うとこれらの分布に従って独立に得られたとみなせる粒子を必要な 個数生成することができる (Kitagawa 1996).

- 1. 初期分布の近似: $F_0^{(j)} \sim p(x_0|Y_0)$ を生成する.
- 2. システムノイズの近似: $V_n^{(j)} \sim p(v)$ を生成する.
- 3. 予測分布の近似: $P_n^{(j)} = f(F_{n-1}^{(j)}, V_n^{(j)})$ を計算する

4. ベイズ係数の計算: $\alpha_n^{(j)} = p(y_n | x_n = P_n^{(j)})$ を計算する

5. リサンプリングによるフィルタ分布の近似: $\{P_n^{(j)}\}$ から $\{F_n^{(j)}\}$ を生成する.

ステップ1では, 乱数を用いて与えられた初期分布 $p(x_0|Y_0)$ に従う m 個の粒子を生成すればよい.ステップ2-5 はデータの個数に従って N 回繰り返す.ステップ2 では乱数を用いてシステムノイズに従う粒子を生成し,ステップ3 ではその粒子と1サイクル前のステップ5 (n=1の場合はステップ1) で求めた粒子を右辺に代入して, $P_n^{(j)}$ を求める.ステップ4 では3 で求めた各粒子のベイズ係数を求める.このベイズ係数はそれぞれの粒子の重要さを表わしていると解釈できる.ステップ5 では,このベイズ係数をそれぞれの粒子の確率として復元抽出して粒子を m 個発生させる.この粒子はフィルタの分布から独立に発生させたとみなすことができる.実際の状態推定においては,このモンテカルロ・フィルタの方法は平滑化にも拡張でき,さらに精度のよい推定値, $S_n^{(j)}$,が得られる (Kitagawa 1996).

前節でも述べたように状態の推定結果を用いてトレンドや確率的ボラティリティな どを求めることができる.上記のアルゴリズムで得られる粒子, $P_n^{(j)}$, $F_n^{(j)}$ および $S_n^{(j)}$ は $k + m + \ell$ 次元のベクトルであり,その第1番め,第 k + 1番め,第 k + m + 1番め の成分はそれぞれ, $T_{n|L}^{(j)}$, $p_{n|L}^{(j)}$, $\log \sigma_{n|L}^{2(j)}$ となる.

このとき, m 個の1次元粒子 { $T_{n|L}^{(1)}, \ldots, T_{n|L}^{(m)}$ }, { $p_{n|L}^{(1)}, \ldots, p_{n|L}^{(m)}$ } および { $\log \sigma_{n|L}^{2(1)}, \ldots, \log \sigma_{n|L}^{2(m)}$ } はそれぞれトレンド, 定常変動成分およびボラティリティの対数値となる. ただし,例えば $T_{n|L}^{(j)}$ は j 番目の粒子の第1成分を表わし, L = n - 1, n および N に対応して,それぞれ一期先予測,フィルタおよび平滑値を表わすものとする.

このとき,

$$\frac{1}{m}\sum_{j=1}^{m}I(x;T_{n|L}^{(j)}), \quad \frac{1}{m}\sum_{j=1}^{m}I(x;p_{n|L}^{(j)}), \quad \frac{1}{m}\sum_{j=1}^{m}I(x;\sigma_{n|L}^{(j)})$$
(17)

はそれぞれの成分の周辺分布関数の近似値となる.とくに,その平均値は

$$\frac{1}{m}\sum_{j=1}^{m}T_{n|L}^{(j)}, \quad \frac{1}{m}\sum_{j=1}^{m}p_{n|L}^{(j)}, \quad \frac{1}{m}\sum_{j=1}^{m}\sigma_{n|L}^{(j)}$$
(18)

で与えられる.

4.3 パラメータの推定

状態空間モデルの状態 x_n の一期先予測分布 $p(x_n|Y_{n-1})$ が得られると,観測値 y_n の一期先予測分布は

$$p(y_n|Y_{n-1}) = \int p(y_n|x_n) p(x_n|Y_{n-1}) dx_n$$
(19)

で与えられる.モンテカルロ・フィルタでは一期先予測分布 $p(x_n|Y_{n-1})$ を m 個の粒 子 $P_n^{(1)}, \ldots, P_n^{(m)}$ で近似しているので, (14) 式より

$$p(y_n|Y_{n-1}) \approx \int p(y_n|x_n) \frac{1}{m} \sum_{j=1}^m I(x_n; P_n^{(j)}) dx_n$$
$$= \frac{1}{m} \sum_{j=1}^m p(P_n^{(j)}|Y_{n-1})$$
(20)

と近似される.一方,一般に N 個の観測値 $Y_N = \{y_1, \ldots, y_N\}$ が与えられると時系列 モデルの尤度は

$$L(\theta) = p(Y_N) = p(Y_{N-1})p(y_N|Y_{N-1}) = \dots = \prod_{n=1}^N p(y_n|Y_{n-1})$$
(21)

$$\ell(\theta) = \sum_{n=1}^{N} \log p(y_n | Y_{n-1}) \approx \frac{1}{m} \sum_{n=1}^{N} \sum_{j=1}^{m} \log p(y_n | P_n^{(j)})$$
(22)

と計算できる.

擬似ニュートン法(DFP 公式や BFGS 公式)などの数値的最適化のアルゴリズムを 使えば、この対数尤度関数をパラメータ θ に関して最大化することにより最尤推定値 $\hat{\theta}$ を求めることができる(北川(1993)).実際には、(22)のようにモンテカルロ・フィ ルタによる計算ではモンテカルロ近似にもとづく誤差が混入するので、厳密に最尤推 定値を求めることは困難である.ただし、成分モデルの分散パラメータ τ_1^2 , τ_2^2 , τ_3^2 に対する対数尤度の感度はあまり高くないので、格子点上の探索を行う等の方法によ り実用上十分な精度で対数尤度の最大化を行うことができることが多い.

また,上記の問題を解決するために自己組織型のモデリングの方法も開発されている(Kitagawa (1998)).この方法では,本来の状態ベクトルに未知のパラメータを付加して拡大された状態ベクトル

$$z_n = \begin{bmatrix} x_n \\ \theta \end{bmatrix}$$
(23)

を考える.このとき,この拡大した状態ベクトルを用いた時系列の状態空間モデルが 簡単に導出できる.このモデルに対してモンテカルロ・フィルタを適用することによっ て状態の推定を行えるが,状態には本来の状態ベクトルと未知パラメータが含まれる ので,状態推定とパラメータ推定が同時に行えることになる.

5 解析例

5.1 日経 225 データ

図1は日経 225 Index (1987年1月–1990年8月31日)に対して通常の季節調整ソ フトを用いてトレンドとノイズに分解した結果を示す.ただし,推定には季節調整プ ログラム DECOMP において2次のトレンドモデル

$$y_n = t_n + w_n$$

$$t_n = 2t_{n-1} - t_{n-2} + v_n$$
(24)

を用い,ノイズ項 w_n と v_n はそれぞれ一定の分散 σ^2 および τ^2 の正規白色雑音と仮定している. これらの分散の最尤推定値は $\hat{\sigma}^2 = 4.70 \times 10^4$, $\hat{\tau}^2 = 1.93 \times 10^4$ で AIC の値は 14190 であった.

図 1 の (a)–(c) はそれぞれ,原系列 y_n ,トレンド成分 t_n およびノイズ項 w_n を示す. Black Monday とバブル崩壊後の株価急落時にノイズの変動幅が平常時と比較して数倍 増加し,ボラティリティが著しく増大していることを示している.

また,図2は,情報量規準 AIC を最小とする次数 30の AR モデルにより得られた ノイズ系列 w_n のパワースペクトルを示す. f = 0.23 付近 (周期 3.5 日程度) に顕著な ピークが見られ,(24)のモデルは分散一定という点だけでなく,白色性の仮定にも問 題があることが明らかとなる.

そこで,まず DECOMP において $M_2 = 2$ として,定常 AR 成分を含むモデル

$$y_n = t_n + p_n + w_n \tag{25}$$

による分解を行った結果を図 3 に示す.ただし,ここでも各成分の分散は一定と仮定 している.表1に示すように,このモデルのAICは13882となり,(24)の場合と比較 して 308減少しており,モデルの当てはまりが著しく改善されたことを示している.実 際,原データに含まれる循環的な変動は定常AR成分 p_n として分離されている.こ の結果,トレンドの推定値は図1の場合と比較してかなり滑らかで変動が少ないもの となり,ノイズ項 w_n は白色的な変動になっている.ただし,このモデルによる分解で もボラティリティの変動に対応して p_n および w_n の振幅はいづれも時間とともに大き く変化している.

そこで次に,第3節で取り上げた分散変動を考慮したモデルの推定を行った.(4)式のトレンド+分散変動のモデルにおいて $k = \ell = 2$ とした場合には,パラメータの近似的最尤推定値は $\hat{\tau}_1^2 = 9000$, $\hat{\tau}_2^2 = 0.0026$ で AIC=13580 となった.分散変動を考慮しな

モデル	AIC
Constant Variance Model	
$\operatorname{Trend}+\operatorname{Noise}$	14190
Trend+AR+Noise	13882
Stochastic Volatility Model	
$\operatorname{Trend}+\operatorname{Noise}$	
Gauss 分布	13580
Cauchy 分布	13648
(30) 式のモデル+ 混合分布	13553
Trend+AR+Noise	
混合分布	13412
(36) 式のモデル	13352
(37) 式のモデル	13339

表1 さまざまな確率的ボラティリティ・モデルと AIC

い通常のトレンドモデルの AIC=14190 と比較すると 610 も減少しており, 著しくモ デルが改善されている.

図4はこのモデルによって推定されたトレンドとノイズの各成分と,同時に推定された"ボラティリティ" σ_n を示す.ブラックマンデー後およびバブル崩壊後のボラティリティの増加が明確に捉えられている.本例からわかるように,本稿で導入した確率的ボラティリティ・モデルは,このように最も簡単な場合でも,変動するボラティリティを自動的に捉えることができる.

6 トレンドモデルの拡張

本節では図4で推定されたトレンドに見られる傾きの急激な変化や,レベルシフト に対応するためにトレンドモデルの一般化とシステムノイズの非ガウス化を行う.

6.1 レベルシフトのモデル化

まず,2階のトレンドモデル

$$T_n = 2T_{n-1} - T_{n-2} + e_{n1} \tag{26}$$

において T_n の一階階差を $\Delta T_n = T_n - T_{n-1}$ と定義すると

 $T_n = T_{n-1} + (T_{n-1} - T_{n-2}) + e_{n1} = T_{n-1} + \Delta T_{n-1} + e_{n1}$

$$\Delta T_n = T_n - T_{n-1} = (T_{n-1} + \Delta T_{n-1} + e_{n1}) - T_{n-1} = \Delta T_{n-1} + e_{n1}$$
(27)

となる.したがって,(26)のトレンドモデルは

$$T_n = T_{n-1} + \Delta T_{n-1} + e_{n1}$$

$$\Delta T_n = \Delta T_{n-1} + e_{n1}$$
(28)

と同等である (Harvey (1989)). このモデルに対応する状態空間モデルは

$$x_n = \begin{bmatrix} T_n \\ \Delta T_n \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(29)

で与えられる.通常のトレンドモデルでは、トレンドの変化は傾きの変化だけによって引き起こされ、レベルの変化と傾きの変化が同じという仮定がおかれていることになる.

そこで,新たにノイズ項 e_{n4} を導入し,

$$T_{n} = T_{n-1} + \delta T_{n-1} + e_{n1} + e_{n2}$$

$$\delta T_{n} = \delta T_{n-1} + e_{n1}$$
(30)

という拡張したモデルを考えることにする.ただし, e_{n1} はトレンドの傾斜の変化, e_{n2} はレベルシフトだけに相当するノイズとなる.ここで, δT_n は時刻 n における T_n の 傾きに相当するものであるが, ΔT_n と異なり T_n の差分と厳密に対応するわけではない.このモデルによって,トレンドの傾きの変化を伴わないレベルシフトと傾きの変化を区別し,自由に表現できるようになる(図5).

6.2 非ガウス型分布による傾きの急激な変化とレベルシフトのモデル化

(29) 式のような拡張によって,トレンドの傾きとレベルがそれぞれ別個に変化する モデルが得られる.しかしながら,このモデルでもブラックマンデー後のような急激 な変化は想定していないので,この拡張したモデルでも十分には対応できない.これ は,システムノイズ e_{n1} および e_{n2} の両方に正規分布 (ガウス分布)を使うモデルでは, その分散 (τ_1^2 や τ_2^2)によってノイズの出現の割合が完全に規定され,まれに起こる暴 落などの現象を十分表現できないからである.そこで,本小節ではシステムノイズの 分布に非ガウス型の分布を導入する.そのような分布としては,以下の密度関数をも つコーシー分布がよく使われる.

$$p(v|\tau^2) = \frac{\tau}{\pi} \frac{1}{v^2 + \tau^2}$$
(31)

コーシー分布は正規分布と比較して,原点付近に密度が集中する反面,裾が厚く vの 絶対値が大きくなるときの0への収束が遅いという性質をもつ.したがってこの分布 は,ほとんどの場合は0に近い値をとるが,ごく低い確率では絶対値が大きなノイズ を表現できることになる(北川(1995),Kitagawa and Matsumoto(1996)).本稿の金 融データの場合に照らして考えれば,これはごく低い確率で暴落か暴騰もありうるこ とをモデルの中に取り込むことができることを示している.

さらに一般的な分布としては以下の Pearson VII 型の分布族がある.

$$p(v|\tau^2, b) = \frac{\tau^{2b-1}, (b)}{, (b-1)/2, (1/2)} \frac{1}{(v^2 + \tau^2)^b}$$
(32)

この分布では b の値を適当に設定することによって分布の形を調整することができる (Kitagawa 1987).

また,以下のような混合分布を用いると,マイナス側(暴落)とプラス側(暴騰)とで その発生確率が異なるような分布を考えることもできる.

$$p(v) = (1 - \alpha)\phi_1(v) + \alpha\phi_2(v) \tag{33}$$

ここで, α は異常な事態が発生する確率, φ₁ は正常時の分布, φ₂ は異常時の分布であ る.φ₁ としては適当な(未知の)分散をもつ正規分布を考えることが多い. 一方, φ₂ と しては分散の大きな正規分布や平均が0でない正規分布などを用いることもある.た だし,暴騰や暴落時には一定範囲であればどのような値も取りうるとして一様分布を 使うことも考えられる. 本稿の以下の分析では,レベルシフトの急激な変化に対応す るノイズとしてはマイナス側だけを考え,原点より左側だけに密度を持つ一様分布

$$\phi_2(v) \sim U(-d,0) \tag{34}$$

を用いることにした. もちろん,以上の分布をさらに拡張して3つ以上の分布を考え ることも可能である. また,このような非対称な分布を Pearson IV 型の分布族を用い てモデル化しようとする試みもある(Nagahara 1996).

6.3 例

表1に示すように,図4の場合と同様にトレンドと確率的ボラティリティからなる モデルにおいて,システムモデルをコーシー分布に代えた場合にはAIC=13648となっ て,かえって当てはまりが悪くなった.これは,大きな変化についてはその変化の仕 方が非対称であることを示唆している.一方,モデルをレベルシフトを含む(30)式に 代え, さらにシステムノイズを正規分布と一様分布の混合分布とすると AIC=13553 と なって, AIC の値が約 50 減少した.

さらに (7) 式のトレンド,定常変動成分およびノイズ成分からなるモデルでノイズに 混合分布を用いた場合には AIC=13412 となってさらに 140 以上減少し,あてはまりは さらに改善されたことを示している.図6はこのモデルによって推定されたトレンド, 定常 AR 成分,ノイズ項およびボラティリティの推定値を示す.ボラティリティの時間 変化が大きく,Black Monday とバブル崩壊後には通常時の 10 倍余りに達しているこ とがわかる.

一方,図7は図6のトレンドの一階階差 Δt_n ,トレンドモデルの残差系列の平方 w_n^2 およびそれを適当に平滑化して得られた分散の局所的推定値を示す.この局所的分散 をトレンドの階差系列と比較すると,これらのふたつの系列に逆相関が見られる.図 8はトレンドの階差を横軸,分散の対数を縦軸にとって,散布図を描いたものである. この図からも分散とトレンドの階差には負の相関があることが明らかである.

以上のことから,この日経225系列の解析にあたってはトレンドのまわりの変動分 散が時間変化することと,その分散がトレンドの変化と関係があることを考慮しモデ ル化することによって,より良いモデルが得られる可能性があることが明らかとなる.

7 トレンドとボラティリティ変化の関係を考慮したモデル

状態空間モデルは極めて多様なモデルを統一的に表現できるモデルであり,様々な 拡張を容易に行うことができる.本節では,トレンド成分のレベルシフトと傾きの変 化を考慮してトレンドモデルの一般化,システムノイズの非ガウス化,トレンドの変 化量と分散の関係を表現するモデルの導入を行う.

7.1 トレンドの変化から分散への影響

図7や図8に見られるように,トレンドの変化量が分散の変化に影響を及ぼすこと を考慮すると以下のようなモデルが考えられる.

$$\log \sigma_n^2 = \log \sigma_{n-1}^2 + \beta(\Delta_{n-1}) + u_n \tag{35}$$

ここで, $\beta(x)$ は一般にはxの非線形関数である.図9(a)のように $\beta(x) = cx$ の場合には,分散の対数値の変化への影響はトレンドの変化量に比例することになる.とくにc=0の場合はトレンドと分散の変化が独立であると仮定したモデルとなる.一方,

(b)のような非線形関数の場合には,トレンドが減少する場合のみ,その絶対値に比例して分散の対数が増加することになる.

このとき,全体としては以下のようなモデルが得られる.

$$y_{n} = T_{n} + p_{n} + \sigma_{n}w_{n}$$

$$T_{n} = T_{n-1} + \delta T_{n-1} + v_{sn} + v_{\ell n}$$

$$\delta T_{n} = \delta T_{n-1} + v_{sn} \qquad (36)$$

$$\log \sigma_{n}^{2} = \log \sigma_{n-1}^{2} + \beta(\delta_{n-1}) + e_{2n}$$

$$p_{n} = \sum_{j=1}^{m} a_{j}p_{n-j} + e_{n}$$

日経 225 データに対し,このモデルの AIC は 13352 となり,トレンドの変化と分散の変化を独立と仮定したモデルより,さらに 60 減少した.図 10 はこのモデルによって 推定した,トレンド,ノイズ成分およびボラティリティを示す.

7.2 分散のシステムノイズへの影響

前小節では,トレンドの変化が分散の対数の変化量の平均値に影響を及ぼすものと してモデル化を行った.たとえば,トレンドの急激な減少が分散の増加を招くような 傾向が見られる場合にはこのようなモデリングが有効である.しかしながら,トレン ドの変化がシステムノイズの分布形に直接影響を及ぼす以下のようなモデルを用いる ことによってさまざまな影響を表現できる.

$$\log \sigma_n^2 = \log \sigma_{n-1}^2 + u_n$$

$$u_n \sim (1 - \beta(\delta T_{n-1}))\phi_0(u) + \beta(\delta T_{n-1})\phi_1(u)$$
(37)

このモデルにおいては,二つの分布の混合比 $\beta(x)$ が δT_n の値によって変化する.した がって, $\beta(x)$ を $0 \le \beta(x) \le 1$ を満たすように定義しておくと, δT_n に依存して $\log \sigma_n^2$ の変化の仕方が変わるようにできる.このモデルの AIC は 13339 となり,前小節のモ デルより少し AIC の値が減少した.

8 為替データの解析例

これまで,日経225データの解析を行ってきたが,同様の分析を日米為替レート(1987年1月1日-1991年8月31日)の系列にも適用してみた.図11にその結果の一例を示す.少なくとも解析した区間に関しては,株価と比較するとボラティリティの変化は

小さいことがわかる.また,図12は為替データについて,図8と同様にトレンドの階 差とボラティリティの関係をプロットしたものである.この場合には,図8のような負 の相関は見られずこのような相関関係は常に見られるものではないことを示している.

9 まとめ

金融時系列のボラティリティは収益率のように原系列の対数の階差系列の変動に関 して考えていることが多い. それに対して本稿では,原系列を直接トレンドと定常変 動成分と分散変動する白色雑音に分解するモデルを提案した.このモデルは非線形状 態空間モデルを用いて表現でき,その状態はモンテカルロ・フィルタ/平滑化のアルゴ リズムを用いて推定できる.このモデルの状態ベクトルにはトレンド,定常成分および ボラティリティが含まれているので,モンテカルロ平滑化によってボラティリティの 推定が自動的に行われることになる.

1980年代後半の日経 225 データの解析結果によると,推定されたボラティリティの 変化はトレンドの変化と負の相関がみられる.そこで,トレンドの変化が分散の変化 に影響を与えるものとしてモデル化を行った.これらのモデルの改良によって情報量規 準の値は徐々に減少し,最終的に得られたモデルは標準的なトレンドのモデルと比較し て著しくよいあてはまりが得られた.

為替データについても同様の解析をおこなったが,この場合にはトレンドの変化量 とボラティリティにはほとんど関係は見い出せなかった.

参考文献

尾崎 統,北川源四郎編(1998),時系列解析の方法,朝倉書店,東京.

片山 徹 (1983),応用カルマンフィルター,朝倉書店,東京.

北川源四郎 (1995) 「欠測値と異常値の処理」,時系列解析の実際 II,赤池弘次,北川 源四郎編,朝倉書店,181-195.

北川源四郎 (1996) 「モンテカルロ・フィルタおよび平滑化について」, 統計数理, 特 集「計算統計学の発展」, 第44巻, 第1号, 31-48.

北川源四郎 (1998),「季節調整プログラム DECOMP とその後の展開」,統計数理, 特集「季節調整法の新展開」,第46巻,第2号,217-232.

北川源四郎,佐藤整尚,永原裕一 (1998)「非ガウス型状態空間モデルによる確率的ボ ラティリティ・モデルの推定」,日本銀行金融研究所 Discussion Paper No. 98-J-12. Akaike, H. et al. (1985), "TIMSAC-78", Computer Science Monographs, No. 11.

- Harvey, A. C. (1989), Forcasting, structural Time Series Models and the Kalman Filter, Cambridge University Press.
- Harvey , A. and Shephard , N. (1996) , "Estimation of an Asymmetric Stochastic Volatility Model of Asset Returns" , Journal of Business & Economic Statistics, Vol. 14 , No. 4 , 429–434.
- Jacquier, E. and Polson, N and Rossi, P.E., (1994), "Bayesian Analysis of Stochastic Volatility Models" (with discussion), Journal of Business & Economic Statistics, Vol. 12, No. 4, 371–417.
- Kitagawa, G. (1987), "Non-Gaussian State-Space Modeling of Nonstationary Time Series" (with discussion), Journal of the American Statistical Mathematics, Vol.82, No. 400, 1032–1063.
- Kitagawa, G. (1996), "Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models", Journal of Computational and Graphical Statistics, Vol. 5, No.1, 1-25.
- Kitagawa, G. (1998), "Self-organizing State Space Model," Journal of the American Statistical Association, Vol. 93, No. 444, 1203–1215.
- Kitagwa, G. and Gersch, W. (1984), "A Smoothness Priors-State Space Modeling of Time Series With Trend and Seasonality," *Journal of the American Statistical Association*, Vol. 79, 378–389.
- Kitagawa, G. and Matsumoto, N. (1996), "Detection of Coseismic Effect from Underground Water Level," Journal of the American Statistical Association, Vol. 91, No. 434, 521–528.
- Nagahara , Y. (1996) , "Non-Gaussian Distribution for Stock Returns and Related Stochastic Differential Equation," *Financial Engineering and the Japanese Markets*, Vol. 3 , No. 2 , 121–149.
- Nagahara, Y. and Kitagawa, G. (1999), "Non-Gaussian Stochastic Volatility Model," Journal of Computational Finance, (to appear).

図1.トレンドモデル

Noise

図 2. パワースペクトル

周波数

図 3. トレンドモデル(AR成分を含む)

AR

Noise

Nikkei 225 Stock Price Data

 $y_n = t_n + \sigma_n w_n$

Nikkei 225 Stock Price Data

 $y_n = t_n + p_n + \sigma_n w_n$

トレンドの1階階差

図8 トレンドとVolatilityの関係

トレンドの階差

図9. トレンドから分散への影響関数 (a)線形関数(b)非線形関数の例

図10 トレンドとVolatilityの相関を考慮したモデル - Nikkei225

図10(続) Nikkei225

difference of Trend

図11 トレンドとVolatilityの相関を考慮したモデル - Yen-Dollar

Trend

Noise (Original-Trend)

Volatility (log-transformed)

図11(続) Yen-Dollar

difference of Trend