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Endogenous sampling with matching (also called “mixed sampling”) occurs
when the statistician samples from the non-right-censored subset at a prede-
termined proportion and matches on one or more exogenous variables when
sampling from the right-censored subset. This is widely applied in the 
duration analysis of firm failures, loan defaults, insurer insolvencies, and 
so on, due to the low frequency of observing non-right-censored samples
(bankrupt, default, and insolvent observations in respective examples).
However, the common practice of using estimation procedures intended 
for random sampling or for the qualitative response model will yield either
an inconsistent or inefficient estimator. This paper proposes a consistent and
efficient estimator and investigates its asymptotic properties. In addition,
this paper evaluates the magnitude of asymptotic bias when the model is 
estimated as if it were a random sample or an endogenous sample without
matching. This paper also compares the relative efficiency of other commonly
used estimators and provides a general guideline for optimally choosing 
sample designs. The Monte Carlo study with a simple example shows that
random sampling yields an estimator of poor finite sample properties 
when the population is extremely unbalanced in terms of default and 
non-default cases while endogenous sampling and mixed sampling are robust
in this situation.
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I. Introduction

Endogenous sampling is a sample design in which the statistician stratifies the popu-
lation based on endogenous variables, such as choices or alternatives in discrete 
choice probability models, and then selects samples at different rates from the different
strata. In financial and labor economic research, one frequently must analyze data 
that measure the time until the occurrence of certain event, such as default and 
unemployment. Due to the restriction of the observation window, the event may not
occur to some observations during the study period. Such observations are called
“right-censored.” In duration analysis, endogenous sampling refers to the design in
which the population is divided into two subsets (non-right-censored and right-
censored) and the statistician samples only from one subset or from both subsets at 
a predetermined ratio. 

Endogenous sampling is widely used in the duration analysis of such phenomena
as firm failures, loan defaults, and insurer insolvencies, because in these areas default
cases are rarely observed, relative to non-default cases, while they are the most 
interesting to the researchers. In addition, many studies augment the endogenous
sampling by exogenous sampling, which is referred to as “matching.” First, a random
sample is drawn from the default subsets; a second sample is then drawn from the
non-default subsets in such a way that the distributions of some exogenous variables
are matched for the two samples; and finally, the combined sample is used for 
estimation. Unfortunately, these empirical applications have either used standard 
estimation procedures intended for random sampling or used ad hoc modified 
estimation procedures without investigating their statistical properties. Thus, they
have failed to consider the full implications of endogenous sampling, as well as 
those of the matching procedure. Since the sample is no longer representative 
of the population, without proper adjustment, any statistical inference about the
population is biased. The seriousness of this problem calls for a rigorous treatment
for non-random sampling in duration analysis.

The importance and necessity of such treatment is best illustrated by a series 
of examples:

(1) Lane, Looney, and Wansley (1986) analyze bank failures in the United States
from 1979 to 1983 to identify the factors that increase the default risk of
commercial banks and to construct a model to predict the default probability,
based on the banks’ characteristics. They match each failed bank with one 
or more non-failed banks, based on geographic location and four other criteria.
A Cox proportional hazards model is estimated using the PHGLM procedure
provided by SAS software.

(2) Luoma and Laitinen (1991) study Finnish company failures using empirical
data, consisting of “36 Finnish failed limited companies and their non-failed
mates.” They do not describe how the non-failed “mates” were chosen. A Cox
proportional hazards model is estimated using the BMDP statistical software.

(3) Kim et al. (1995) investigate property-liability and life insurer insolvencies 
in the United States. They select the default and non-default samples in an
equal proportion in the framework of proportional hazard models. In their
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duration analysis, they use the weighted maximum likelihood estimation
method originally proposed by Manski and Lerman (1977) in the qualitative
response model.

(4) Lee and Urrutia (1996) study the insolvency problem in the U.S. property-
liability insurance industry in the 1980s. They choose insolvent insurers based
on data availability. An equal number of matching solvent insurers are then
selected, based on state domicile and total admitted assets. Lee and Urrutia
(1996) find that their procedure creates a choice-based sample and claim to
have “appropriately” corrected the over-sampling problem by making the
adjustments following Palepu (1986) and BarNiv (1990), who address the
problem in the context of a discrete choice probability models.

The common feature of the above examples is that all of these papers apply 
duration models with non-random sampling schemes, although they differ in sample
design details, estimation methods, and, as will be clarified later, in the appropriateness
of their estimation methods.

The properties of endogenous sampling have been investigated in various models,
most notably in qualitative response models, as summarized in Amemiya (1985, 
section 9.5). However, the first paper that considered this problem in duration 
models, at least as far as we know, is Amemiya (2001), who derives the asymptotic
properties of the endogenous sampling maximum likelihood estimator (ESMLE) in 
a duration model, in which defaults and non-defaults are sampled in a certain pro-
portion. A counterintuitive finding for the case of a scalar parameter is that the 
optimal sampling proportion for the duration model is always zero or one, never in
between. In other words, depending on the functional assumptions, it is optimal 
to use only the default sample or the non-default sample. Amemiya (2001) proves 
that the random sampling maximum likelihood estimator (RSMLE) is inconsistent
under an endogenous sampling scheme. Furthermore, Amemiya (2001) compares 
the two estimators with regard to their respectively favorable conditions, showing 
that in certain cases the ESMLE can be more efficient than the RSMLE. One 
weakness of the ESMLE is the necessity of estimating the starting-time distribution 
of the spells. With regard to this problem, Amemiya (2001) proposes a conditional
ESMLE and investigates the effects of estimating the starting-time distribution from 
a separate sample.

However, Amemiya (2001) deals only with the case of endogenous sampling
without matching and does not address the frequently used method of mixing
endogenous sampling with the matching procedure in duration analysis. The wide
application of such sample designs in many empirical studies has heightened the need
to provide a consistent estimator with its statistical properties fully characterized.
Furthermore, it would be interesting to directly compare Amemiya’s (2001) ESMLE
with the Manski-Lerman weighted maximum likelihood estimator (WMLE) in the
context of duration analysis, which was applied in Kim et al. (1995) as a solution to
the over-sampling problem generated by their sample design.

In this paper, we focus on the maximum likelihood estimator under the mixed
sampling scheme described above (see Section III for a rigorous definition). We 
aim to answer two questions: first, how to properly estimate a duration model with
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non-random samples; second, whether it is advantageous to apply non-random 
sampling to duration models. The next section compares the statistical properties 
of the Manski-Lerman WMLE with those of the ESMLE within the context of 
the duration model. Section III derives the asymptotic distribution of the mixed 
sampling maximum likelihood estimator (MSMLE). Section IV investigates the 
relative efficiencies of the RSMLE, ESMLE, and MSMLE. Using a simple example,
we show that none of the estimators unambiguously dominates the others. However,
the ESMLE and MSMLE could outperform the RSMLE when the population is
extremely unbalanced in terms of the frequency of defaults and non-defaults. A
Monte Carlo study confirms this statement for small sample sizes. Finally, Section V
summarizes the findings and offers a general guideline for sampling in empirical
duration analysis.

II. The Manski-Lerman WMLE in Duration Models

A. Asymptotic Properties of the WMLE
The references cited above used the WMLE, originally proposed by Manski and
Lerman (1977) for the qualitative response model, without questioning its validity.
Although the estimator can be shown to be consistent for the duration model as well,
it cannot be recommended for the duration analysis for two reasons. First, the
Manski-Lerman estimator has the intrinsic assumption that the true probability of
choice (for the qualitative response model) or of default (for the duration model) is
known. This assumption may be justified for the qualitative response model where,
for example, the true proportion of people riding a train in the entire region can be
estimated reasonably well. However, for most duration model applications, this
assumption is inappropriate. For example, the true proportion of firms that default
cannot be accurately estimated, given the small sample size that one could possibly
obtain. Furthermore, even if the true probability of default is known, it is equally
easy and more efficient to maximize the true likelihood function than the weighted
log likelihood, as will be demonstrated below.

Following Amemiya’s (2001) notation, we assume that the duration data are
obtained from the following data generating process. A spell, defined as individual
duration of stay in one state, starts in an interval (a, b ), and the starting time X is 
distributed according to the density h (x). The duration T is distributed according to
the density f (t�) and the distribution function F (t�), where � is a parameter 
vector. For simplicity, we assume that X and T are independent. Let D represent 
the indicator function of whether a spell is a default (t < b − x ) or a non-default 
(t ≥ b − x ), and P1(P0) be the probability of default (non-default), which the WMLE
assumes to be known to the statistician. Prior knowledge of the causal structure is
assumed to allow the statistician to specify  f (t•) up to a parameter vector �, con-
tained in a subset B of a finite-dimensional Euclidean space. The goal is to estimate �
from a sample generated by the following design: default samples are selected with
probability �1 and non-defaults with probability �0(= 1 − �1). The WMLE defines
weights as Wj = Pj/�j for j = 0, 1 and maximizes the following weighted likelihood:
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S =�W1 ln f (x, tD = 1) +�W0 ln f (xD = 0)
1 0

h (x)f (t ) h (x)[1 −F (b − x )]=�W1 ln ––––––– +�W0 ln –––––––––––––– , (1)
1  P1  0  P0 

subject to

P (D = 1) = ∫a

bh (x)F (b − x )dx = P1, (2)

or equivalently

P (D = 0) = ∫a

bh (x)[1 − F (b − x )]dx = P0, (3)

where �
1

and �
0

mean summarizing over the default and non-default samples, respectively.
One can show the consistency of the WMLE in the same way as to prove consis-

tency of the WMLE in the qualitative response model (see Amemiya [1985, section
9.5.2]). To derive the asymptotic distribution, it is convenient to rewrite the constraint
in the form of

� = g (�), (4)

where � is a (k − 1) vector and k is the dimension of �.
By Amemiya’s (1985) Theorem 4.1.3, we have

√N
–––

(�̂WMLE − �) → N (0, AV (�̂WMLE)), (5)

P1 P0 AV (�̂WMLE) = (A +B )−1 ––A + ––B (A +B )−1, (6)
 �1 �0 

where

h (x) �f (t ) �f (t )                            A = ∫a

b∫0

b−x –––– ––––– –––––dt dx, (7)
f (t )  �� ��′

h (x) �(1 − F (b − x )) �(1 − F (b − x ))                       B = ∫a

b –––––––––– ––––––––––––– –––––––––––––dx. (8)
1 − F (b − x )            �� ��′

Therefore, using a Taylor series approximation

�̂WMLE − � � G (�̂WMLE − �), (9)

where G = ��/��′, we can derive the asymptotic distribution of the WMLE as
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√N
–––

(�̂WMLE − �) → N (0, AV (�̂WMLE)), (10)

P1 P0 AV (�̂WMLE) = G (A +B )−1 ––A + ––B  (A +B )−1G ′. (11)
 �1 �0 

B. Comparing the WMLE with the ESMLE, Assuming That P1 (P0) Is Known
To compare the WMLE with the ESMLE, we have to make the very restrictive
assumption that the probabilities of default and non-default are known, which is
associated with the WMLE.

Imposing this assumption on the derivation in Amemiya (2001), we have

√N
–––

(�̂ESMLE − �) → N (0, AV (�̂ESMLE)), (12)

�1 �0 AV (�̂ESMLE) = G ––A + ––B
−1

G ′. (13)
P1 P0 

We can show through simple algebra1 that

AV (�̂ESMLE) ≤ AV (�̂WMLE). (14)

When � is a scalar, it is also possible to compare the two estimators under their
respective optimal (in terms of asymptotic efficiency) sampling designs, which are

1�1
*(WMLE ) = –––––––––

1 + P0B  , (15)––––
√ P1 A

�1
*(ESMLE ) = 1{ A––

P1
> B––

P0
}. (16)

Then, the asymptotic variances under the two sample designs are, respectively:

 AV *(�̂WMLE) = G (A +B )−1 √P1A
––––

+ √P0B
––––


2

(A +B )−1 G ′, (17)

P1 P0 AV *(�̂ESMLE) = G –– 1{ A––
P1

> B––
P0

} + –– 1{ A––
P1

≤ B––
P0

} G ′. (18)A B 

It can be easily shown that under their respective optimal sampling designs, the
ESMLE dominates the WMLE in terms of asymptotic efficiency.2
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1. AV (�̂ESMLE ) ≤ AV (�̂WMLE ) ⇔ [A + (P0�1/P1�0)B ]–1 ≤ [(P0�1/P1�0)B ]–1, which is true since both A and B are non-
negative definite. See Appendix 1 for details.

2. If A/P1 >B/P0, then AV *(�̂ESMLE) ≤ AV *(�̂WMLE)⇔√P1A
––––

+ √P0B
––––

≥ (A +B )√P1/A
––––

⇔A/P1 ≥ B/P0; if A/P1 ≤ B/P0, then
AV *(�̂ESMLE) ≤ AV *(�̂WMLE)⇔ √P1A

––––
+ √P0B

––––
≥ (A +B )√P0/B

––––
⇔ A/P1 ≤ B/P0.



III. Matching in Duration Models

As we mentioned above, researchers usually use samples that are not only based on
endogenous variables, but are also matched on one or more exogenous variables. For
this purpose, we introduce a new variable. Assume that matching is based on covariate
Z, which is distributed according to density g (z ). Conditional on covariate Z, the
durationT is distributed according to the density f (tz ) and the distribution function
F (tz ). We further assume that X and T are independent conditional on Z.3

We assume that the matching sampling scheme is designed as follows: for fixed 
N1 and N0, we first randomly sample N1 defaults; then we compute the empirical 
distribution of Z among the default samples, denoted by ĝ 1(z ). N0 non-defaults are
then drawn, such that the empirical distribution of Z among these non-default 
samples are the same as ĝ 1(z ). Let N = N1 + N0 be the total number of observations
under such a matching sampling scheme, �1 = N1/N and �0 = 1 − �1 = N0/N, all of
which are predetermined by the statistician.

A. Likelihood Function
The likelihood of a single observation in the subsample of defaults (ti < b − xi ) is
given by

h (xi)f (tizi)g (zi)f (xi, ti, ziDi = 1) = ––––––––––––––, (19)
P (Di = 1)            

where

P (D = 1) = P (T < b −X ) = ∫Z ∫a

bh (x)F (b − xz)g (z )dx dz. (20)

The likelihood of a single observation in the subsample of non-defaults with
attribute z (ti < b − xi, zi = z ) is given by

h (xi)[1 − F (b − xiz)]g (z )
f (xiz, Di = 0) = ––––––––––––––––––––

P (Di = 0)g (zDi = 0)         

h (xi)[1 − F (b − xiz)]= –––––––––––––––––, (21)
P (Di = 0z)

where

P (D = 0z ) = P (T ≥ b −Xz ) = ∫a

bh (x)[1 − F (b − xz)]dx. (22)

Let ĝ 1(z ) = ĝ (zD = 1) be the empirical conditional distribution of z among the
subsample of defaults. The endogenous sampling process with matching implies that
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we will sample with probability �1 from the stratum of defaults, and with probability
[�0 ĝ 1(z )] from the stratum of non-defaults with attribute z. Therefore, assuming the
parameter of interest, �, only characterizes f , but not h or g, the likelihood for such a
generated sample is

LM(�; x, t, z, D ) = ��1f (xi, ti, ziDi = 1)��0 ĝ 1(z )[ f (xiz, Di = 0)],
1 0

(23)

where �
1

and �
0

mean taking the product over the default and non-default samples,
respectively.

Ignoring the terms that do not depend on �, we have the log likelihood of the
sample as follows:

lnLM =�ln f (tizi) −N1 lnP (D = 1) +�ln[1 −F (b −xizi)] 
1 0

−�lnP (D = 0zi). (24)
0

B. Consistency of the MSMLE �̂
The consistency of MSMLE �̂ follows from Theorem 2.2.1 (the generalized Amemiya
conditions) of Goto (1993) under certain regularity conditions (see Appendix 2). Here,
we only verify that (1/N )(� ln LM/��) → 0 in probability.

1  � lnLM 1               1 �f (tizi)–– –––––– = ––�Di –––––– –––––––
N �� N f (tizi) ��

1      �P (D = 1)− �1–––––––– –––––––––
P (D = 1)      ��

1                            1          �[1 − F (b −xizi)]+ ––�(1 − Di )–––––––––––– ––––––––––––––
N 1 − F (b −xizi) ��

1                         1         �P (D = 0zi)− ––�(1 − Di )––––––––– –––––––––––, (25)
N P (D = 0zi)       ��

1              1 �f (tizi)plim––�Di –––––– –––––––
N f (tizi)     ��

 1 �f (tz ) = �1E ––––– –––––– D = 1
 f (tz )    ��  
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1                     1 �f (tz )= �1––––––––∫Z ∫a

b∫0

b−x ––––– ––––––h (x)f (tz )g (z )dt dx dz
P (D = 1)           f (tz )    ��

1       �P (D = 1)= �1–––––––– –––––––––, (26)
P (D = 1)      ��

1                             1           �[1 − F (b −xizi)]plim––�(1 − Di )–––––––––––– ––––––––––––––
N 1 − F (b −xizi)            ��

 1          �[1 − F (b − xz)] = �0E ––––––––––– ––––––––––––––  D = 0
1 − F (b − xz)          ��  

1         �[1 − F (b − xz)]∫a

b ––––––––––– ––––––––––––––h (x)[1 − F (b − xz)]dx
1 − F (b − xz) ��= �0∫Z

––––––––––––––––––––––––––––––––––––––––––––– g 1(z )dz
P (D = 0z )

1         �P (D = 0z)= �0∫Z
–––––––––– ––––––––––– g 1(z )dz, (27)
P (D = 0z) ��

where

g 1(z ) = g (zD = 1) = plimĝ 1(z ),4 (28)

1                          1         �P (D = 0zi)plim––�(1 − Di )–––––––––– –––––––––––
N P (D = 0zi)        ��

1         �P (D = 0zi)= �0∫Z
–––––––––– ––––––––––– g 1(z )dz. (29)
P (D = 0zi) ��

Thus, the consistency of the MSMLE �̂ follows from equations (26), (27), and (29).

C. Asymptotic Variance of the MSMLE �̂
We derive the asymptotic variance using the following formula:

   1 � lnL � lnL AV √N
––

(�̂ − �)
−1

= lim E –– ––––– ––––– . (30)
N �� ��′ 

Rearranging the terms on the right-hand side of equation (25) and multiplying them
by √N

––
, we have
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1   � lnLM–––– ––––––
√N
–– ��

1           1 �f (tizi)         1 �P (D = 1) = ––––�Di –––––– ––––––– − –––––––– –––––––––√N
––  f (tizi)     �� P (D = 1)      �� 

1                    1          �[1 − F (b −xizi)]+ ––––�(1 − Di ) –––––––––––– –––––––––––––– 
√N
–– 1 − F (b −xizi)          ��

1         �P (D = 0zi) − –––––––––– ––––––––––– . (31)
P (D = 0zi)          �� 

Since

  1     �f (tz ) 1      �P (D = 1)  
 ––––– –––––– − –––––––– –––––––––  
  f (tz )   �� P (D = 1) ��   

E   D = 1
  1     �f (tz )           1  �P (D = 1)  × ––––– –––––– − –––––––– –––––––––  
  f (tz )   ��′ P (D = 1) ��′   

  1   �f (tz ) 1      �P (D = 1) 
 ––––– –––––– − –––––––– ––––––––– 
  f (tz ) �� P (D = 1)       ��  

∫Z ∫a

b∫0

b−x   h (x)f (tz )g (z )dt dx dz
  1    �f (tz ) 1      �P (D = 1) × ––––– –––––– − –––––––– ––––––––– 
  f (tz ) ��′ P (D = 1)      ��′  = ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

P (D = 1)

h (x)g (z ) �f (tz ) �f (tz )                      1       �P (D = 1) �P (D = 1)
∫Z ∫a

b∫0

b−x ––––––– –––––– ––––––dt dx dz − –––––––– ––––––––– –––––––––     
f (tz ) �� ��′ P (D = 1)       �� ��′= –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––,

P (D = 1)

(32)

and

  1 �[1 − F (b − xz)] 1         �P (D = 0z)   ––––––––––– –––––––––––––– − ––––––––– –––––––––––  
 1 − F (b − xz) �� P (D = 0z) ��   

lim E  D = 0 
  1          �[1 − F (b − xz)] 1         �P (D = 0z)  × ––––––––––– –––––––––––––– − ––––––––– –––––––––––  
 1 − F (b − xz) ��′ P (D = 0z) ��′   
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  1 �[1 − F (b − xz)] 1         �P (D = 0z)  ––––––––––– –––––––––––––– − ––––––––– ––––––––––– 
 1 − F (b − xz) �� P (D = 0z) ��  

∫a

b   h (x)[1 − F (b − xz)]dx
  1          �[1 − F (b − xz)] 1         �P (D = 0z) × ––––––––––– –––––––––––––– − ––––––––– ––––––––––– 
 1 − F (b − xz) ��′ P (D = 0z) ��′  = ∫Z

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– g 1(z )dz
P (D = 0z)

h (x) �[1 − F (b − xz)] �[1 − F (b − xz)] 1       �P (D = 0z) �P (D = 0z)∫a

b –––––––––––– –––––––––––––– ––––––––––––––dx − ––––––––– –––––––––– –––––––––––
1 − F (b − xz) �� ��′ P (D = 0z) �� ��′= ∫Z

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– g 1(z )dz,
P (D = 0z)

(33)

the asymptotic variance of the MSMLE �̂ is given by

 1 � lnLM � lnLM AV (MSMLE )−1 = lim E  –– –––––– ––––––N �� ��′ 

h (x)g (z ) �f (tz ) �f (tz ) 1       �P (D = 1) �P (D = 1)∫Z ∫a

b∫0

b−x ––––––– –––––– ––––––dt dx dz − –––––––– ––––––––– –––––––––
f (tz ) �� ��′ P (D = 1) �� ��′= �1 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

P (D = 1)

h (x) �[1 − F (b − xz)] �[1 − F (b − xz)] 1        �P (D = 0z) �P (D = 0z)∫a

b ––––––––––– –––––––––––––– ––––––––––––––dx − ––––––––– –––––––––– ––––––––––
1 − F (b − xz)            �� ��′ P (D = 0z)       �� ��′+ �0∫Z

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– g 1(z )dz.
P (D = 0z)

(34)

D. Estimation of Mixed Sample When g (z) Is Unknown
The above discussion is based on the assumption that the marginal distribution g (z ) is
known to the statistician. However, in many empirical contexts such prior knowledge
is not likely to be available. This section covers the case when g (z ) is estimated from 
a separate random sample.

Kiefer and Wolfowitz (1956) show that the empirical distribution is the maximum
likelihood estimator of an unknown distribution function. Therefore, suppose the
sample from which g (z ) is estimated is of size K, the log likelihood function of �
will be modified as

lnL
∼

M =�ln f (tizi) − N1 ln P̂ (D = 1) +�ln[1 − F (b −xizi)] 
1 0

−�lnP (D = 0zi), (35)
0
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where

1 K

P̂ (D = 1) = ––�∫a

bh (x)F (b − xzk)dx. (36)
K k =1

Note that

1   � lnL
∼

M–––– –––––
√N
––

��

1  � lnLM  1       �P̂ (D = 1)           1      �P (D = 1) = –––– ––––– − �1√N
––

–––––––– ––––––––– − –––––––– –––––––––
√N
––

�� P̂ (D = 1)       �� P (D = 1)      �� 

 �P̂ (D = 1)    �P (D = 1)    �P (D = 1)     ––––––––– − –––––––––     –––––––––(P̂ (D = 1) − P (D = 1)) 
1   � lnLM  �� �� �� =LD –––– ––––– − �1√N

––
 –––––––––––––––––––– − ––––––––––––––––––––––––––– ,

√N
––

��  P (D = 1)                                P (D = 1)2 

where ==LD denotes equivalency in the limit distribution.
The consistency follows from Theorem 2.3.1 in Goto (1993) under certain regu-

larity conditions (see Appendix 2). Since this is a two-step estimator, the asymptotic
efficiency might be affected by the fact that g (z ) is estimated. In fact, if we define 

 1  � lnLM � lnLM � = lim E –– –––––– –––––– ,
N �� ��′ 

W1(z ) = ∫a

bh (x)F (b − xz )dx ,

�F (b − xz )W2(z ) = ∫a

bh (x) ––––––––––dx,
��

then the asymptotic variance of �
∼

can be defined as

AV √N
––

(�
∼ − �) 

 N Var (W2(z ))     N Var (W1(z )) �P (D = 1) �P (D = 1)= �−1 � + –– ––––––––– + –– ––––––––– ––––––––– –––––––––
 K P (D = 1)2 K P (D = 1)4 �� ��′

N 1        �P (D = 1) −2–– –––––––– –––––––––Cov (W1(z ),W2(z )′ ) �−1. (37)
K P (D = 1)3 �� 

Equation (37) shows that for the two-step estimator �
∼

to have the proper asymptotic
property, K must increase to infinity at least as fast as N.
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IV. Comparison of the Maximum Likelihood Estimators under
Different Sample Designs

A. Relative Asymptotic Efficiency
The question of the relative efficiency of different sample designs is natural to raise in
an investigation such as ours. However, the nonlinear structure precluded much
progress in solving this problem. As shown below, the relative efficiency depends on the
choice of �’s and functional forms of the densities, as well as prior knowledge of the
parameters to be estimated. An explicitly Bayesian approach to the design problem
might be a possible solution. This paper, however, will not undertake that task. Instead,
we limit ourselves to a general discussion of the optimal design problem and illustrate
the result with a simple example.

To compare the asymptotic efficiency of the MSMLE with that of endogenous
sampling without matching, we introduce covariate z into Amemiya’s (2001) endoge-
nous sampling model and derive the log likelihood and the asymptotic distribution
of ESMLE without matching as5,6

ln LE =�ln f (tizi) −N1 ln P (D = 1) +�ln[1 − F (b −xizi)]
1 0

−N0 ln P (D = 0), (38)

√N
––

(�̂ESMLE − �) → N (0, AV (�̂ESMLE)), (39)

AV (ESMLE )−1

�1  hg �f �f 1  �P1 �P1 = –– ∫Z ∫a

b∫0

b−x ––– ––– –––dt dx dz − –– ––– –––
P1  f �� ��′ P1 �� ��′ 

�0  hg �(1 − F ) �(1 − F )            1 �P0 �P0 + –– ∫Z ∫a

b ––––– ––––––– –––––––dx dz − –– ––– ––– , (40)
P0  1 − F �� ��′ P0 �� ��′ 

where

P0 = P (D = 0) = ∫Z ∫a

bh (x)[1 − F (b − xz)]g (z )dx dz. (41)

Similarly, by introducing covariate z into the derivation of equation (21) in Amemiya
(2001), we have

lnLR =�ln f (tizi) +�ln[1 −F (b −xizi)], (42)
1 0
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5. We use the following simplified notation from now on: P1 = P (D = 1), P0 = P (D = 0), which are defined in equations
(20) and (41), respectively. We also suppress the arguments of density and distribution functions.

6. Please refer to Amemiya (2001) for the derivation.



√N
––

(�̂RSMLE − �) → N (0, AV (�̂RSMLE)), (43)

AV (RSMLE )−1

hg �f �f hg �(1 − F ) �(1 − F )   = ∫Z ∫a

b∫0

b−x ––– ––– –––dt dx dz + ∫Z ∫a

b ––––– ––––––– –––––––dx dz. (44)
f �� ��′ 1 − F �� ��′

Comparing equations (34), (40), and (44), we see that the relative efficiency
depends on the choice of �’s and the functional form of the densities, as well as �,
the parameters to be estimated. Notice that when covariate z has no prediction power
in terms of default probability, that is, if P (D = 0z) = P (D = 0), matching on z will
not add additional efficiency to what an endogenous sample can achieve, in other
words, in that special case AV (MSMLE ) = AV (ESMLE ). In general, however, none
of the estimators unambiguously dominates the others. To illustrate this point, we
consider a very simple example:

Example 1: Assume

h (x) = 1,     0 ≤ x ≤ 1, (45)

f (tz ) = e �ze −e �zt,     t ≥ 0, (46)

1     with probability p
z = 

0     with probability (1 − p ). (47)

Substituting the above assumptions into equations (34), (40), and (44) yields

AV (ESMLE )−1

�1p �1p 2

= –––[1 − 3e −� + 3e −�−e � + e �−e � + 2e −e �] − –––– [e −� − e −�−e � − e −e �]2

P1 P1
2

�0p �0p 2

+ –––[−e �−e � − 2e −e � − 2e −�−e � + 2e −�] − –––– [e −� − e −�−e � − e −e �]2

P0 P0
2

�1p= –––[1 − 3e −� + 3e −�−e � + e �−e � + 2e −e �]
P1

�0p+ –––[−e �−e � − 2e −e � − 2e −�−e � + 2e −�]
P0

14 MONETARY AND ECONOMIC STUDIES/NOVEMBER 2006



�1p 2 �0p 2 − –––– + ––––[e −� − e −�−e � − e −e �]2, (48)
 P1

2 P0
2 

AV (RSMLE )−1

= p [1 − 3e −� + 3e −�−e � + e �−e � + 2e −e �]

+ p [−e �−e � − 2e −e � − 2e −�−e � + 2e −�]

= p [1 − e −� + e −�−e �], (49)

AV (MSMLE )−1

�1p �1p 2

= –––[1 − 3e −� + 3e −�−e � + e �−e � + 2e −e �] − –––– [e −� − e −�−e � − e −e �]2

P1 P1
2

�0p (1 − e −� + e −�−e �) −e �−e � − 2e −e � − 2e −�−e � + 2e −�

+ –––––––––––––––– ––––––––––––––––––––––
P1 −e −�−e � + e −�

�0p (1 − e −� + e −�−e �) e −�−e � + e −e � − e −� − –––––––––––––––– –––––––––––––
2

.
P1  −e −�−e � + e −�  (50)

P1 and P0 in the above equations can be calculated as

P1 = p ∫0

1∫0

1−xe �e −e �tdt dx + (1 − p )∫0

1∫0

1−xe −tdt dx

= p (1 − e −� + e −�−e �) + (1 − p )e −1, (51)

P0 = p (e −� − e −�−e �) + (1 − p ) (1 − e −1). (52)

Table 1 illustrates the relative efficiency of the three classes of estimators under
different assumptions of the true values of � and p. The examples are listed in ascen-
dant order of the true probability of default P (D = 1), which is a function of � and p.
For a sample of size N, the asymptotic variance for any estimator �̂ can be calculated
as 1/N divided by the corresponding value displayed in the table. As can be seen,
none of the estimators unambiguously dominates the others. For each pair of � and
p, we observe a rather large variation of the asymptotic variances of different esti-
mators, which indicates that the sample design plays an important role in duration
analysis. Despite the inconclusiveness of relative efficiency, the table seems to reveal a
very intuitive pattern: when the population is extremely unbalanced in terms of the
ratio of defaults and non-defaults, that is, when P (D = 1) takes extremely small or
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large values, over-sampling from the less frequent subsample would usually result in a
significant efficiency gain, while random sampling is preferable when the population
is relatively balanced.

This phenomenon is further illustrated in Figure 1, which was obtained by fixing 
p = 0.9 and varying � from −10 to 10. The horizontal axis displays the variation of
P (D = 1) as a result of changes in the value of �. The upper panel shows inverted
asymptotic variances (scaled by 1/N ) for all six estimators, while the lower panel 
displays those of the most efficient estimators within each class. As can be seen, the
curves for endogenous sampling, with or without matching, reach their local maxima
at the two tails of P (D = 1). The same pattern persists when we change the value of p,
except that as p becomes smaller, the middle range in which the RSMLE dominates
the ESMLE and the MSMLE shrinks dramatically, and the range on the right tail, 
in which the MSMLE outperforms the ESMLE, increases considerably. Both Table 1
and Figure 1 suggest a general guideline for sampling in empirical duration analysis: 
it might be optimal to consider endogenous sampling, with or without matching,
when the population is extremely unbalanced, whereas the random sampling design is
usually a better choice when there is no significant difference in the observed frequency
of defaults and non-defaults.

The above discussion, based on Example 1, only applies to the case when � is a
scalar parameter. It is noted in Amemiya (2001) that the optimal choice of �1 in the
endogenous sampling design is either one or zero. However, this conclusion is true
only for the case of the scalar parameter and cannot be generalized to the vector para-
meters case. One of the possible criteria in terms of relative efficiency in the vector
case can be defined over a linear combination of the parameter vector, that is

min AV √N
––

(c ′(�̂ − �)) , (53)
�1

 

where c ′c = 1. Notice that the asymptotic variances of both √N
––

(�̂ESMLE − �) and
√N
––

(�̂MSMLE − �) take the form of [�1A + (1 − �1)B ]−1, for appropriate A ’s and B ’s (see
equations [40] and [34]). Therefore, we can apply the following discussion to both
sample designs:
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Table 1  Inverse of Asymptotic Variance (Scaled by 1/N ): Selected Examples

Inverse of asymptotic variance

� p P (D = 1)
RSMLE

ESMLE MSMLE

�1 = 0 �1 = 1 �1 = 0.3 �1 = 0.5 �1 = 0.7

–3.0 0.8 0.0932 0.0196 0.0003 0.1607* 0.0482 0.0804 0.1125

–2.0 0.7 0.1557 0.0453 0.0019 0.1888* 0.0570 0.0946 0.1323

0.5 0.4 0.4248 0.2040* 0.1506 0.1399 0.1088 0.1177 0.1266

1.0 0.3 0.4544 0.1969* 0.1834 0.1516 0.1793 0.1714 0.1635

2.3 0.9 0.8466 0.8098 0.8273 0.7326 0.8863* 0.8424 0.7985

2.7 0.95 0.9046 0.8862 0.8903 0.8335 0.9358* 0.9066 0.8773

Note: Asterisks denote the most asymptotically efficient estimator for each pair of � and p.



AV √N
––

(c ′(�̂ − �)) = c ′[�1A + (1 − �1)B ]−1c 

= c ′B −1/2[I + �1B −1/2(A −B )B −1/2]−1B −1/2c

= g ′[I + �1D ]−1g

K gk
2

= �–––––––, (54)
k =1 1 + �1dk
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Figure 1  Inverse of Asymptotic Variance (Scaled by 1/N )
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where K is the dimension of the vector �; {dk }K
k =1 are the eigenvalues of the matrix 

[B −1/2(A −B )B −1/2]; D = diag [d1, . . . , dk] = H ′[B −1/2(A −B )B −1/2]H ; g =H ′B −1/2c.
Equation (54) shows that optimal choice of �1 depends on the characteristics of the

variance-covariance matrix, which in turn depends on the distributions and the true
parameters. We can easily offer examples where the optimal �1 is an interior value.

B. Asymptotic Bias
Amemiya (2001) demonstrates that the RSMLE is inconsistent under the endogenous
sampling scheme without matching. This statement is also valid for the case of the
mixed sampling scheme. When the data are collected through a mixed sampling
scheme, the first-order condition of ln LR does not have zero mean. Instead,

 1 � ln LR  1      �P (D = 1)EM –– –––––– = �1–––––––– –––––––––
N ��  P (D = 1)      ��

1       �P (D = 0z )+ �0∫Z
––––––––– –––––––––– g 1(z )dz, (55)
P (D = 0z )       ��

which is not zero, in general.7

Not surprisingly, the ESMLE is also inconsistent under the mixed sampling scheme.
Its inconsistency can be illustrated by investigating the expectation of the first-order
condition of ln LE with respect to the true likelihood under the mixed sampling:

 1 � ln LE  1       �P (D = 0z )EM –– –––––– = �0∫Z
––––––––– –––––––––– g 1(z )dz

N ��  P (D = 0z )       ��

1      �P (D = 0)− �0 –––––––– –––––––––, (56)
P (D = 0)      ��

which, in general, is not zero either.
Since some of the examples cited at the beginning of the paper ignored the prob-

lem of the mixed sampling scheme and estimated the model either by conventional
means (as if the data were from a random sample), or by a modified method for the
qualitative response model (as if the data were from an endogenous sample without
matching), it is interesting to study the magnitude of the bias when using the wrong
estimators. For this purpose, we again consider the simple exponential example given
in the above section.

Tables 2 and 3 present the results of asymptotic bias when the data obtained by mixed
sampling are estimated as if they were obtained by random or endogenous sampling
without matching, using the maximum likelihood estimator. Let 	 be the probability
limit of the biased estimator, and � be the probability limit of the MSMLE (which is
equal to the true value of the parameter, denoted as �*). For any given case, the value
in each cell is calculated as 	 − �. Given the true value �*, 	 is defined by solving 
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7. E M means that the expectation is taken with respect to the true likelihood under mixed sampling.



 1 � ln L(	)E *  –– ––––––– = 0.
N �	 

When the mixed sample is estimated as if it were random, we obtain an explicit
function of 	 as

 �(1 − e e �*

)(1 − e e �* + e e �*+�*) 	 = �* + ln  –––––––––––––––––––––––––––––––––––––––– . (57)
 (1 + �)(1 − 2e e �* + e 2e �*

) + (1 − �)e e �*+2�* + e �* − e 2e �*+2�* 

In the case when the mixed sample is estimated as if it were endogenous without
matching, we have to resort to numerical approximation. The direction of the bias is
not certain. However, based on the examples displayed in the table, the bias is gener-
ally upward when defaults are rarely observed in the population and downward when
the population is relatively balanced or concentrated over the non-defaults. Such bias
exists when the mixing nature of the sample is either ignored or partially treated.

C. Finite Sample Properties
We have explored the asymptotic properties of the three estimators in the previous
two subsections. In this subsection, we will focus on how sample size affects the 
performance of different estimators using the Monte Carlo method.

The data generating process (DGP) is as follows: for the RSMLE, we assume 
that the data are generated randomly as in Example 1; for the ESMLE, we specify a
probability �1, and sample defaults and non-defaults according to this pre-specified
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Table 2  Asymptotic Bias for Mixed Sample Estimated as a Random Sample

� p P (D = 1)
Asymptotic bias

�1 = 0.3 �1 = 0.5 �1 = 0.7

–3.0 0.8 0.0932 2.6029 3.1906 3.6105

–2.0 0.7 0.1557 1.6173 2.2051 2.6249

0.5 0.4 0.4248 –0.6065 –0.0238 0.3902

1.0 0.3 0.4544 –0.9011 –0.3257 0.0798

2.3 0.9 0.8466 –1.1697 –0.6356 –0.2754

2.7 0.95 0.9046 –1.1821 –0.6565 –0.3049

Table 3  Asymptotic Bias for Mixed Sample Estimated as an Endogenous Sample
without Matching

� p P (D = 1)
Asymptotic bias

�1 = 0.3 �1 = 0.5 �1 = 0.7

–3.0 0.8 0.0932 0.2886 0.1081 0.0442

–2.0 0.7 0.1557 0.7473 0.1997 0.0774

0.5 0.4 0.4248 –0.3702 –0.2600 –0.1603

1.0 0.3 0.4544 –0.6614 –0.4890 –0.3182

2.3 0.9 0.8466 –0.2793 –0.2138 –0.1373

2.7 0.95 0.9046 –0.2214 –0.6139 –0.5374



probability; for the MSMLE, we first specify the number of defaults N1 and 
randomly sample N1 default cases, then we calculate the empirical distribution of 
the matched variable z among the defaults; using this empirical distribution, we
finally sample non-defaults. The DGP is repeated for different sample sizes. The 
likelihood functions and the first-order conditions of each estimator are presented 
in Appendix 3.

To illustrate the finite sample properties of the three estimators, we consider both
a case of an extremely unbalanced population in terms of the frequency of defaults
and non-defaults and a case where the population distribution is relatively balanced.

Case 1: First of all, we consider a case in which the dataset is extremely unbalanced. 
In particular, we assume �* = −3 and p = 0.8 in Example 1, which implies that the
probability of default in the population P (D = 1) is as low as 0.09. When applying
endogenous sampling and mixed sampling, we assume the probability of sample default
case �1 to be 0.7.

Figure 2 shows the three estimators with a sample size varying from 50 to 1,550.
For each fixed sample size, we simulate 100 times and report the mean of the estimators.
We experiment with a larger number of replications and the shape of the convergence
is the same. As can be seen, the RSMLE converges much more slowly when the 
sample size is small, while both the ESMLE and MSMLE are very robust to changes 
in sample size. Figure 3 reports the empirical variance of the estimators based on the
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Figure 2  Comparison of Three Estimators with Varying Sample Sizes 
(Unbalanced Population)
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Monte Carlo simulations {V (�k)}; the mean of the estimated asymptotic variances
{mean (AV (�k))}; and the asymptotic variances {AV (�k)} for the three different esti-
mators {k = RSMLE, ESMLE, MSMLE }. The same pattern appears: when the sample
size is small, the RSMLE’s estimated variance is much larger than its asymptotic 
variance. In contrast, both the ESMLE and MSMLE’s finite sample variances are good
proximates of their asymptotic variances even with a very small sample size. Notice that
to cover the full range of estimated asymptotic variance for the RSMLE, the upper
panel is drawn on a much larger scale than the other panels. If we used a much finer
scale as with the other panels, we would also observe a large gap between the average
empirical variance for the RSMLE and its asymptotic variance for small sample sizes.
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Figure 3  Monte Carlo Variance and Asymptotic Variance (Unbalanced Population)
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The gap disappears as the sample size grows. For both the ESMLE and MSMLE, the
empirical variances approximate the asymptotic variances very well, even for small 
sample sizes.

Case 2: Next, we consider the case in which the default probability in the population is
relatively balanced. In particular, we simulate the case of �* = 1 and p = 0.3, which
implies that the probability of default in the population P (D = 1) is about 0.45. Again,
we assume that �1 = 0.7 when applying endogenous sampling and mixed sampling.

Figure 4 reports the mean of estimated �RSMLE , �ESMLE , and �MSMLE from 100 sim-
ulations for each given sample size. Figure 5 presents the empirical variance of the 
estimators based on the Monte Carlo simulations {V (�k)}; the mean of the estimated
asymptotic variances {mean (AV (�k))}; and the asymptotic variances {AV (�k)} for the
three different estimators {k = RSMLE, ESMLE, MSMLE }. The two figures show 
that all three estimators are quite robust to the variation of sample size, although 
the RSMLE slightly outperforms the MSMLE and ESMLE in terms of small sample
properties when the population is relatively balanced.

However, the above Monte Carlo study is based on an extremely simple example
with only one coefficient to estimate. For a model with more coefficients to estimate,
it is reasonable to believe that a non-random sampling scheme has an advantage 
over random sampling, given that most empirical studies deal with datasets that are
extremely unbalanced.
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Figure 4  Comparison of Three Estimators with Varying Sample Sizes 
(Balanced Population)
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In this Monte Carlo study, we fix �1 at 0.7. Using the same DGP, Appendix 4
illustrates the effect of varying �1 on the performance of the ESMLE and MSMLE.

V. Conclusion

Due to the low frequency of observing a right-censored (default) sample, many empirical
duration analyses apply a mixed sampling procedure to collect data, that is, to over-
sample from the right-censored (default) subset and match on one or more exogenous
variables when sampling from the non-right-censored (non-default) subset. However,
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Figure 5  Monte Carlo Variance and Asymptotic Variance (Balanced Population)
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the common practice of using estimation procedures intended for random sampling 
or for the qualitative response model under choice-based sampling will yield either
inconsistent or inefficient estimators. This paper has established the fact that the 
parameters of a duration model can be estimated consistently under a mixed sampling
procedure using the MSMLE and derived its asymptotic properties. In addition, this
paper studies the relative efficiency of the RSMLE, ESMLE, and MSMLE through a
simple example, which suggests a general guideline for sampling design in duration
analyses: to over-sample default cases will usually gain efficiency when such cases are
rarely observed; on the other hand, random sampling is generally better when the 
population is relatively balanced in terms of the frequency of default and non-default
cases. In the case of vector parameters, the optimal choice of sampling proportions can
have an interior solution. Since many empirical studies cited in the references tend to
ignore the mixed sampling property, this paper also evaluates the asymptotic bias when
the model is estimated as if it were a random sample or an endogenous sample without
matching. We observe a large bias in certain examples, which indicates the importance
of taking the sample designs into consideration when estimating duration models.

Despite the wide usage of mixed sampling in duration studies, we are not aware of
any rigorous theoretical treatment of the problem yet. It is hoped that the present
paper has bridged this gap in the literature and will improve the quality of empirical
studies using duration models.

This paper, however, has several restrictive assumptions, and therefore, raises some
future topics for research. For example, we are not yet in a position to treat cases where
the matching procedure is based on more than one exogenous variable, although our
conclusion can be directly applied to the case in which the matching procedure is based
on linear combinations or other functions of multiple exogenous variables. In addition,
we completely ignore the problem of heterogeneity. In future research, we will relax
these restrictions and generalize the results to a more realistic level.
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APPENDIX 1: PROOF OF EQUATION (14)
We copy equations (11) and (13) here for convenience:

 P1 P0 AV (�̂WMLE ) =G (A +B )–1 ––A + ––B (A +B )–1G ′, (A.1)
 �1 �0 

�1 �0 AV (�̂ESMLE ) =G ––A + ––B
–1

G ′. (A.2)
P1 P0 

To show AV (�̂ESMLE ) ≤ AV (�̂WMLE ) is equivalent to showing

�1 �0 P1 P0 ––A + ––B ≥ (A +B )––A + ––B
–1

(A +B ). (A.3)
P1 P0  �1 �0 

Let h = �1P0 /�0P1, we can rewrite the above inequality as

1A + ––B ≥ (A +B )[A +hB ]−1(A +B )
h

= A + (2 − h)B + (1 − h)2B [A +hB ]−1B. (A.4)

Rearranging the above inequality yields

1––B ≥ B [A +hB ]−1B
h

⇔ (hB )−1 ≥ [A +hB ]−1. (A.5)

Equation (14) follows from the fact that both A and B are non-negative definite.

APPENDIX 2: CONSISTENCY OF THE MSMLE
The consistency of the MSMLE when g (z ) is known and unknown follows from the
two theorems in Goto (1993).

THEOREM 2.2.1 (The generalized Amemiya conditions) The maximum likelihood 
estimator of 	 is consistent if the density f (x	) of i.i.d. random variables {xi} 
satisfies the following four assumptions:

ASSUMPTION 1 (Parameter space): The closure 

–

of the parameter space 
 is a compact
metric space.

ASSUMPTION 2 (Continuity): f (x	) is a measurable function of x in a Euclidean space
for all 	 ∈


–
and continuous in 	 for almost all x.
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ASSUMPTION 3 (Identifiability): If 	 ≠ 	0 (the true value), then there exists some set 
A such that ∫A f (x	)dx ≠ ∫A f (x	0)dx.

ASSUMPTION 4 (Integrability): E sup	 ∈

–ln f (x	) < �, where the expectation is taken

under the true value 	0.

THEOREM 2.3.1 The maximum likelihood estimator of 	 is consistent if the density
f (x	) of i.i.d. random variables {xi} satisfies the following four assumptions:

ASSUMPTION 1 (Parameter space): The parameter space is 
 = � × M (i.e., the product
of a subset � of RK and a subset M of H S, the product space of S identical H’s, where
H denotes the space of uniformly bounded nondecreasing measurable functions) with
the metric defined as d (	1, 	2) =�

K

i =1

1

i − 
2
i+�

S

i −1∫Z
H1

i(z ) − H2
i(z )dz.

ASSUMPTION 2 (Continuity): f (x	) is a measurable function of x in a Euclidean space
for all 	 ∈


–
and continuous in 	 for almost all x, where 


–
= �

–
× M

––
is the comple-

tion of 
 = � × M. In addition, if � is not bounded, lim
→� f (x
, H ) = 0 for
almost all x’s and all H’s.

ASSUMPTION 3 (Identifiability): If 	 ≠ 	0 (the true value), then there exists some set A,
such that ∫A f (x	)dx ≠ ∫A f (x	0)dx.

ASSUMPTION 4 (Integrability): For the true value 	0, Eln f (x	0) < �. For any
	 ∈


–
, there exist � > 0, such that E [supd (	′,	)≤� ln f (x	′)]+ < �. In addition, if � is 

not bounded, there exists � > 0, such that E [supd (	′,0)≤� ln f (x	′)]+ < �, where all the 
expectations above are taken under the true value 	0.

APPENDIX 3: LIKELIHOOD FUNCTIONS FOR THE MONTE
CARLO STUDY

A. RSMLE
Log-likelihood function:

l (�; D, X,T, Z, p ) =�[D (�z −e �zt ) − (1 − D)e �z(1 − x )] + constant.
i (A.6)

First-order condition:

�[D (z −e �ztz ) − (1 − D)ze �z(1 − x )] = 0. (A.7)
i
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B. ESMLE
Log-likelihood function:

l (�; D, X,T, Z, p ) =�[D (�z −e �zt − lnP1) − (1 − D)(e �z(1 − x ) + lnP0)]
i

+ constant. (A.8)

First-order condition:

 N1 N0 �P1�[D (z −e �ztz ) − (1 − D)ze �z(1 − x )] − ––– − ––– ––– = 0. (A.9)
i  P1 P0

 ��

C. MSMLE
Log-likelihood function:

l (�; D, X,T, Z, p ) =�[D (�z −e �zt − lnP1) + (1 − D)(�z −e �z(1 − x ) 
i

− ln(1 − e −e �z ))] + constant. (A.10)

First-order condition:

   e −e �z   N1 �P1� z −e �zz Dt + (1 − D) 1 − x + ––––––     − ––– ––– = 0. (A.11)
i    1 − e −e �z  P1 ��

APPENDIX 4: EFFECTS OF VARYING �1 ON THE ESMLE AND
MSMLE

CASE 1. Unbalance Population: � = −3, p = 0.8, P (D = 1) = 0.09.

CASE 2. Balance Population: � = 1, p = 0.3, P (D = 1) = 0.45.

In both of the cases, we fix the sample size at 500 and estimate �ESMLE and �MSMLE from
100 simulations. Appendix Figures 1 and 2 report the mean of estimated �ESMLE and
�MSMLE as �1 varies, for the unbalanced and balanced cases, respectively. Appendix 
Figures 3 and 4 present the empirical variance of the estimators based on the Monte
Carlo simulations {V (�k)} and the asymptotic variances {AV (�k)} for the two 
estimators {k = ESMLE, MSMLE }. The values of �RSMLE and AV (�RSMLE ) are circled 
on the vertical axes for comparison. Appendix Figures 1 and 3 show that when
P (D = 1) is extremely small, performance of �ESMLE and �MSMLE improves as �1

increases, both in terms of small sample properties and in terms of asymptotic 
efficiency. Appendix Figures 2 and 4 shows that the opposite is true when the 
population is relatively balanced.
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Appendix Figure 1  �ESMLE and �MSMLE with Varying �1 (Unbalanced Population)
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Note: Sample size is fixed at 500. For each value of �1, 100 simulations are carried
out to estimate �ESMLE and �MSMLE.

Appendix Figure 2  �ESMLE and �MSMLE with Varying �1 (Balanced Population)
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Note: Sample size is fixed at 500. For each value of �1, 100 simulations are carried
out to estimate �ESMLE and �MSMLE.
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Appendix Figure 3  Monte Carlo Variance and Asymptotic Variance 
(Unbalanced Population)
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Note: Sample size is fixed at 500. For each value of �1, 100 simulations are carried out
to estimate �ESMLE and �MSMLE.
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Appendix Figure 4  Monte Carlo Variance and Asymptotic Variance 
(Balanced Population)
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Note: Sample size is fixed at 500. For each value of �1, 100 simulations are carried
out to estimate �ESMLE and �MSMLE.
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