IMES DISCUSSION PAPER SERIES

The Monthly Measurement of Core Inflation in Japan

Michael F. Bryan Stephen G. Cecchetti

Discussion Paper No. 99-E-4

IMES

INSTITUTE FOR MONETARY AND ECONOMIC STUDIES

BANK OF JAPAN

C.P.O BOX 203 TOKYO 100-8630 JAPAN

NOTE: IMES Discussion Paper Series is circulated in order to stimulate discussion and comments. Views expressed in Discussion Paper Series are those of authors and do not necessarily reflect those of the Bank of Japan or the Institute for Monetary and Economic Studies.

The Monthly Measurement of Core Inflation in Japan

Michael F. Bryan*
Stephen G. Cecchetti**

Abstract

This paper considers the use of trimmed means as monthly indicators of Japanese core inflation. As in Bryan, Cecchetti, and Wiggins (1997) for the United States, and Roger (1997) for New Zealand, we find that trimming the tails of the price-change distribution substantially improves high-frequency estimates of Japanese core inflation. These estimators yield efficiency gains of roughly two-thirds over the Japanese CPI.

While we find that trimming approximately 35% from each tail of the price change distribution produces the most efficient monthly estimator over the full 27-year period, a range of trimmed-mean estimators (between 21% and the median price change) provide nearly the same signal. Moreover, we find that these estimators are superior to the standard monthly core inflation estimator in Japan, the CPI less fresh food. At lower frequencies (12-month percent changes and beyond), the differences between the candidate estimators were found to be small, and the trimmed estimators were nearly the same as the CPI less fresh food and energy along many dimensions.

Key words: Inflation Measurement, Core Inflation, Trimmed Means, Median

JEL classification: E 31

*Research Department Federal Reserve Bank of Cleveland (michael.f.bryan@clev.frb.org)

** Federal Reserve Bank of New York and NBER (stephen.cecchetti@ny.frb.org)

We acknowledge the generous support of the Institute for Monetary and Economic Studies at the Bank of Japan. Masahiro Higo and Hitoshi Mio gave valuable suggestions and analytical support. Seth Hosmer, Federal Reserve Bank of Cleveland, provided research assistance. The views stated herein are those of the authors and not necessarily those of the Bank of Japan, the Institute for Monetary and Economic Studies, the Federal Reserve Bank of Cleveland, the Federal Reserve Bank of New York, the Board of Governors of the Federal Reserve System, or the National Bureau of Economic Research.

1. Introduction

The term "core" inflation is commonly found in the business press as well as the economics

literature.¹ Surprisingly, precise definitions of this idea are rarely provided. Few nations *officially* construct such a statistic, although reference to a core inflation measure is commonly made. In many countries, the idea of a core inflation measure has merely evolved from common practice. In the United States, for example, a variety of price statistics have, from time to time, been characterized as the basis for "core" inflation, although recent applies the term nearly exclusively to the Consumer Price Index excluding food and energy items, a measure the Federal Reserve also appears to have adopted in its various policy reports. Indeed, the notion of a core inflation often appears to be the product of a central bank's making, and not that of the statistical agency responsible for producing aggregate price statistics.

In most cases, what has become understood as core inflation is an aggregate measure of retail prices, less items or groups of items presumed to be not representative of the price-change distribution.² Often, what is excluded from these inflation measures are ex-post, high-variance components. In most cases, such as in Japan, food items are removed from the retail price index in the construction of core inflation. Commonly excluded components also include certain energy items like gasoline and home heating fuel. Other measures exclude goods with a substantial interest rate component, and still others separate from the price statistics regulated prices, changes in taxes, and subsidies.³

In a few cases, central banks have chosen to keep the specific measurement of core inflation somewhat vague, allowing more flexibility in the interpretation of the term. One interpretation of core inflation, by the Reserve Bank of New Zealand, is the CPI adjusted for changes in taxes, government charges, the direct effect of interest rates, and *a significant natural disaster*, a definition that presumably allows the monetary authority to make adjustments to the measured rate if it judges conditions warrant them. In Sweden, the Riksbank reports three alternative definitions of underlying inflation, the CPI less mortgage interest, taxes, and subsidies (UND1), UND1 excluding petroleum (UND2), and UND1 less

.

¹ Also commonly heard is the term "underlying" inflation. We believe these two terms are, in almost every case, used interchangeably, as in this article. One exception is noted, however. Archer (1995) suggests that in New Zealand, underlying inflation has two meanings that may not always be identical: "the essential or core or trend rate of inflation, and the rate of inflation after adjustment for items covered by PTA [Policy Targets Agreement] caveats."

² Two exceptions to this are the Bank of India and the Bank of the Philippines, both of which have reported an underlying inflation statistic based on a statistically derived trend line.

³ A survey of the issues confronting the construction of a "core" inflation statistic can be found in Roger (1997) or Taillon (1997).

mainly imported goods (UNDINH).

In some instances, these ad hoc measures of core inflation have become short-run policy gauges for the central bank, and in a growing number of countries, like Australia, Canada, Finland, France, New Zealand, and the U.K., a core inflation statistic has become a target for the central bank. Table 1 reports a variety of inflation targets by country.

A few authors have tried to formalize the concept of core inflation, notably Eckstein (1981), who defines core inflation as the trend rate of increase of the price of aggregate supply. He constructs his core inflation estimate from a weighted average of the trend growth rates of unit labor costs and capital costs. In a similar spirit, Quah and Vahey (1995) define core inflation as "that component of measured inflation that has no medium- to long-run impact on real output." Their approach estimates core inflation from a system of VAR equations using monthly retail price and industrial production data. In both cases, the authors have particular, albeit very different, economic concepts in mind which lead them to produce their core inflation estimates.

In this paper, we impose no theory about what the appropriate inflation statistic should be. We take as given that, over time, the retail price aggregate commonly reported is the appropriate measure, thus, we avoid the more difficult challenges undertaken by others. As in Bryan, Cecchetti, and Wiggins (1997) and Roger (1997), we merely ask if there is a more accurate measure of the population parameter than the commonly reported weighted mean. We think this approach more closely corresponds with the more common use of the term "core" inflation. Moreover, we restrict ourselves to high-frequency statistics (in this case, monthly). This also corresponds more closely with the common definition of the term and it allows us to retain the timeliness of the inflation measure so as to maximize its usefulness in a monetary policy setting. We briefly consider the more problematic issues at the conclusion of the paper.

We divide our remaining discussion into five sections. Section 2 outlines the problem of high-frequency inflation estimation. In section 3, we introduce trimmed-mean estimators as a potential solution to the measurement problem. Section 4 investigates the properties of the alternative inflation estimators, and section 5 follows with checks on the robustness of the results. We conclude in section 6 by summarizing the results and suggesting areas for future research.

2. The Problem

Monthly inflation reports are certainly among the most influential statistics in directing the conduct of central-bank policies around the world. Unfortunately, monthly estimates of aggregate retail price changes are extremely volatile, which limit their usefulness as a basis for monetary policy decisions.

How much can we tell about inflation from a single monthly retail price report? Probably not very much. Figure 1 shows the monthly changes in the Japanese CPI since 1970, around its long-term growth trend.

2.1 The Data

To investigate high-frequency inflation estimation, we use monthly data on 88 components of the Japanese CPI, beginning with January 1970. The data are available only on a non-seasonally adjusted basis.⁴ All data were seasonally adjusted using a simple X-11 algorithm. The weights were computed from semi-decennial household expenditure surveys for the years 1970, 1975, 1980, 1985, 1990, and 1995. A list of the 88 components and their average weights is reported in table 1a of the appendix.

2.2 Characteristics of the Data

We begin our analysis by examining the cross-sectional and time-series properties of Japanese retail prices. Specifically, we calculate the percentage change in the component price data, over varying overlapping horizons k, or

(1)
$$\pi_{it}^{k} = \frac{1}{k} \ln(p_{it} / p_{it-k})$$

and an aggregate consumer price increase,

$$\Pi_t^k = \sum_i w_i \pi_{it}^k ,$$

which is the weighted average of the components. The cross-sectional moments of the data are computed in the standard way,

(3)
$$m_{rt}^{k} = \sum_{i} w_{i} (\pi_{it}^{k} - \Pi_{t}^{k})^{r},$$

⁴ Unlike the U.S. CPI, the Japanese retail price aggregate is seasonally adjusted after aggregation.

where m is the rth cross-sectional moment at time t, for price changes calculated over a kth horizon. The skewness and kurtosis of the distribution are simply the scaled third and fourth moments of the data, as reflected in equations (4) and (5), respectively.

$$S_t^k = \frac{m_{3t}^k}{(m_{2t}^k)^{3/2}}$$

(5)
$$K_t^k = \frac{m_{4t}^k}{(m_{2t}^k)^2}.$$

The distributional characteristics of the price change distribution over k horizons of 1, 3, 6, 12, 24, and 36 months are reported in table 2. The average standard deviation of the monthly data is approximately 22, or more than 500% greater than the mean inflation. That cross-section variation diminishes rapidly as k increases from a monthly to a 12-month horizon. Further, while the data are nearly symmetric over the full sample ($S_t = 0.45$), the standard deviation on the skewness coefficient is quite large, suggesting that for k horizons of 12 months or less, the Japanese retail price data are often highly skewed. Moreover, the data are extremely leptokurtic, or "fat-tailed." As a point of reference, a standard normal distribution has a kurtosis of 3. The kurtosis of the Japanese consumer price data average 31.25.

These distributional characteristics have been reported for many other nations. For monthly U.S. CPI data over the 1970-97 period, the average cross-sectional standard deviation is 170% the inflation rate, with a very slight positive average skewness (0.25), and a kurtosis of 11.44. Using quarterly data for New Zealand, Roger (1997) reports an average cross-sectional standard deviation of 125% the inflation rate, with an average skewness of 0.7 and a kurtosis of 7.2. Similar results are reported for the U.K. [Bakhshi and Yates (1997)] and a variety of other nations.

The common observation from these and other investigations is that at high frequencies (periods of 12 months or less), retail price-change distributions tend to be volatile, showing large average variation around trend and very large but often transitory skewness. Moreover, the price-change distributions tend to be extremely "fat-tailed," a characteristic that is especially pronounced in Japanese data. These distributional characteristics of the Japanese consumer price data were first noted by Shiratsuka (1997) for 12-month percent changes.

Figure 2 and 3 show the price-change distribution for Japanese consumer prices. Figure 2 is a representative monthly distribution, with a very large proportion of the price changes concentrated at the middle of the distribution, and widely scattered, uneven changes on the extreme tails. In this particular case, the distribution is highly negatively skewed ($S_t = -3.1$). This is a typical consumer price report.

Figure 3 shows the average monthly price-change distribution for Japanese consumer prices over the past 27 years expressed in terms of standardized deviations from the mean. Relative to a standard normal distribution, Japanese consumer prices have extremely high concentrations on the interior of the distribution, with exceedingly elongated tails. The figure shows price "spikes" at >3 and < -3 standard deviations.⁵ This is an unavoidably misleading representation, as these spikes reflect the accumulation of very small price changes that extend outward to approximately +/- 25 standard deviations from the mean!

Furthermore, these monthly distributional characteristics are not particularly sensitive to the sample period (table 2). If we divide the sample nearly in half (into 1970-82, and 1983-97, corresponding to Japan's high- and low-inflation periods), the low-inflation period exhibits relatively greater cross-sectional variation, nearly the same symmetry, and marginally higher kurtosis.

A number of authors have attempted to interpret the unusual distributional characteristics of price data by appealing to a particular economic model of pricing behavior. Noteworthy examples include the costly price adjustment models of Caballero and Engel (1991) or Caplin and Leahy (1991). An alternative view is presented by Balke and Wynne (1996), who show that such characteristics could be derived from a flexible price model in an environment of asymmetric supply shocks.

Bryan, Cecchetti, and Wiggins (1997) suggest a statistical interpretation. Random draws from normal distributions with different variances will produce highly leptokurtic aggregate price-change distributions. That is, random draws from the tails of the distribution become more likely. Under these conditions, a simple weighted mean of the data is unlikely to produce an efficient estimator of the population parameter. This insight leads us to calculate estimators that are robust to the presence of fat

_

⁵ A description of the distribution characteristics of Japanese CPI data can also be found in Shiratsuka (1997).

tails.

3. The Trimmed-Mean Solution

In this section we ask whether, given the distributional characteristics observed in Japanese consumer price data, there are more efficient estimators of the monthly inflation rate than the simple weighted average commonly employed.

To answer this, we consider the family of estimators represented by

(6)
$$\overline{x}_{\alpha} = \frac{1}{1 - 2(\frac{\alpha}{100})} \sum_{i \in I_{\alpha}} w_i \pi_{ii} .$$

The estimators, \overline{x}_{α} , are computed by ordering the component price-change data, the π_{ii} 's, and their associated weights, w_i . The set of observations to be averaged, I_{α} , is the set of price changes whoser cumulative weights, $W_i = \sum_{i=1}^j w_i x_i$, is centered between $\alpha/100$ and $1-\alpha/100$. We refer to these as the α -trimmed mean estimators, for which the weighted mean $(\alpha=0)$ and the weighted median $(\alpha=50)$ are special cases.

To find the efficient estimator within this family of estimators, we proceed along two related lines. First, we conduct Monte Carlo experiments using actual Japanese CPI data in order to gauge the a priori efficient estimator from the assumed underlying distributions. Then we examine the expost historically efficient estimator. The two experiments yield solutions that are nearly identical.

At this point, some judgment must be made concerning the actual, unknown population parameter in question—core inflation. We choose the 36-month centered moving average inflation trend, as in Cecchetti (1997). Sensitivity to this assumption is tested in a subsequent section of this paper.

3.1 Monte Carlo Simulations

We compute each of the 88 components' deviation from the centered inflation trend for all 326 months in the sample. We randomly draw one observation from each component, weighted according to the component's average weight corresponding to the Japanese CPI over the full sample. From each sample, we compute a family of 51 estimators that range from the sample mean to the sample median and compute two measures of efficiency for each—its root mean squared error (RMSE) and its mean absolute deviation (MAD). This experiment is then replicated 10,000 times.

The results of this experiment are shown in figures 4 and 5 and reported in table 3. We also show the results of two competing estimators, the CPI less fresh food, which is the standard benchmark of core inflation in Japan, and the CPI less fresh food and energy, a common alternative in the United States and elsewhere.

Not surprisingly, by both the RMSE and the MAD criteria, the weighted mean of the data produced the least efficient estimate of the Japanese inflation trend. Indeed, simply subtracting out fresh food prices every month resulted in an efficiency gain of nearly 40% on a RMSE basis, and 35% on a MAD basis. The most efficient estimator was found to occur at $\alpha = 39$ on a RMSE basis, and $\alpha = 34$ on a MAD basis. These resulted in efficiency gains of approximately 74% and 78%, respectively. In other words, the Monte Carlo experiments suggest that trimming between 34% and 39% from each tail of the price-change distribution monthly reduces the sampling noise of the core inflation estimator by a substantial margin.

Moreover, the results suggest that even small trims of the tails can produce dramatically improved high-frequency inflation estimators. Merely trimming 5% from each tail of the price change distribution improves the efficiency of the inflation estimator by 57% and 60%, respectively. Furthermore, the estimators within 5% of the optimal range from 24% to the median on a RMSE basis, and from 24% to 48% on a MAD basis.

3.2 Historical Experiments

Next, we examine the ex post outcomes from trimming the component CPI data over the past 27 years. Again, we use as our benchmark for the population parameter in question the 36-month centered moving average trend inflation. These experiments are shown in figures 6 and 7, and summarized in table 4.

The historical outcomes from trimming component price data are nearly identical to that suggested by the Monte Carlo simulations. The most efficient estimators trimmed 35% from each tail of the price change distribution monthly, on a RMSE basis, and 38% on a MAD basis. These produced efficiency gains of about 55% and 63%, respectively.

Also as suggested by the Monte Carlo experiments, trims of 21%-median on a RMSE basis and

16%-median on a MAD basis, resulted in estimators with nearly the same efficiency. And again, even small trims appear to produce substantial efficiency gains. While the more conventional approaches—CPI less fresh food and CPI less fresh food and energy—were substantial improvements over the standard CPI estimator, the trimmed estimators examined here were qualitatively superior monthly inflation statistics. A comparison of the monthly CPI, the 35% trimmed-mean estimator, and the more common CPI less fresh food core statistic are reproduced in figure 8.6

4. Money and Forecasting Properties

The next question we consider is the informational content of the alternative estimators. That is, we wish to know what information has been gained, or perhaps more accurately, what has been lost by discarding the tails of the price-change distribution. We consider this question two ways. First we check if the statistics we produce improve or worsen the information about inflation for monetary policymakers by examining contemporaneous correlations between money growth and inflation. Then we consider the alternative estimators' ability to forecast the future inflation rate as measured by the aggregate CPI.

4.1 Money Correlations

Among the properties generally attributed to an inflation estimate is its underlying association with the growth rate of the money stock. We therefore check the contemporaneous correlations between the growth rate of alternative measures of the money stock and the several candidate monthly inflation measures. The measures of money include currency, M1, M2, and M2 plus certificates of deposit. The candidate inflation statistics include the aggregate CPI, the CPI less fresh food, the CPI less fresh food and energy, and three trimmed estimators—the 35% trimmed mean, the 21% trimmed mean, and the median. These three trimmed estimators represent the optimal trim as suggested by the RMSE criteria from historical observations, and the range of trims within 5% of the optimal.

The correlations were computed for overlapping frequencies ranging from k=1 (monthly percent changes), to k=48 (48-month percent changes). The results are reported in table 5a. For each money measure and for all frequencies up to 48 months, the trimmed mean estimators yield larger

9

⁶ The April 1989 data spike in all of the estimators results from the implementation of a consumption tax.

contemporaneous correlations with money growth than either the CPI or the CPI excluding various items. At a monthly frequency, the difference between the 35% trimmed mean/money growth correlation was statistically superior to the CPI/money growth correlation at the 90% confidence level (using the currency measure) and at the 95% confidence level (using the M2 and M2 plus money measures). At 48 months, the CPI less fresh food and energy generally showed correlations that were marginally superior.

The improved money correlations were more significant at higher frequencies than at lower ones, reinforcing our belief that the signal-to-noise ratio of the standard inflation measures is especially low at these frequencies. For example, the contemporaneous correlation between the monthly growth rate of M2 plus CDs and the Japanese CPI is 0.259. That correlation rises to 0.326 for the CPI less fresh food and to 0.387 for the 35% trimmed mean. Similar results were found for other money measures, with the possible exception of the M1 aggregate, where the gains were smaller and only marginally better than the CPI less fresh food or the CPI less fresh food and energy.

Contemporaneous correlations between money growth and inflation, even over relatively long horizons, may be less than forward looking correlations, because monetary policy is sometimes presumed to affect the price level only after a substantial lag. To accommodate that view, we also considered the simple regression

(7)
$$\frac{1}{k}(\ln \pi_{t+k}^r - \ln \pi_t^r) = \alpha + \sum_{i=-1}^{-24} \beta_i (\ln M_i - \ln M_{i-1}) + \varepsilon_t,$$

where future inflation as measured by the various alternative estimators (π^r), over forward horizons k, are a linear function of monthly money growth (M) over the previous 24 months. These results are reported in table 5b.

The R2s for these experiments were less conclusive. At very high frequencies, monthly and quarterly, the trimmed estimators showed substantial gains relative to the standard CPI and the CPI less fresh foods estimators, and relative to the CPI less fresh food and energy for the monthly data. This result appears robust to the choice of money measure. However, for lower frequencies, k = 6 and above, the differences between the candidate estimators were very small, with a very small preference in favor of the CPI less fresh food and energy estimator for the case where k = 12.7

⁷ The relative standing of these results was also found to be robust to sample period, although the R2s are considerably lower in the post-1982 subperiod than during the pre-1983 subperiod.

4.2 The Forecasting Experiments

We also conduct two forecasting experiments, both designed to answer the question, Given a monthly inflation statistic, which is likely to be the more reliable measure of the Japanese CPI's future course?

The first experiment, specified by equation (8), forecasts average CPI growth measured over the next k-month horizon, using the growth rates of the trimmed estimators over the previous k-month period:

(8)
$$\frac{1}{k} \Pi_{t+k}^{k} = \beta_0 + \beta_1 \left[\frac{1}{k} \overline{x}_{\alpha,t}^{k} \right] + \varepsilon_t.$$

The R2s from this regression are reported in table 6, along with those obtained from similar forecasts made using the CPI less fresh food and the CPI less fresh food and energy. As in the money correlations reported earlier, there is an improvement in the forecasting strength of the trimmed estimators. That is, the trimmed estimators (in this case, the 35% trimmed mean and the median), provided superior forecasts of future CPI increases than the CPI provided for itself. Further, the forecasting record of the CPI less fresh food and the CPI less fresh food and energy measures were not as good, although both were generally superior to the CPI all items measure.

This result seems to be generally robust to the sample period. When we split the sample into high- and low-inflation subperiods, the trimmed estimators provide superior forecasts of the future CPI increase over all horizons k, although the differences diminish at the lower frequencies. For the low inflation (post-1982) subperiod, the results were largely the same, although the CPI less fresh food and energy provided the strongest forecasts over 12-month horizons. However, differences in forecast accuracy over this subperiod were generally quite small for all the candidate regressors.

A second, similar forecasting experiment was conducted using a Granger-style approach. Specifically, we estimate two equations. In the first (9a), the CPI over a k-month horizon is estimated from past k-horizon values of the CPI and past k-horizon values of the 35% trimmed mean estimator. An F-test is conducted on the hypothesis that the sum of the $\beta_{2,L}$ coefficients on the trimmed estimator are jointly zero. The same regressions are estimated using the 35% trimmed mean as the dependent

variable and testing the sum of the $\beta_{1,L}$ coefficients (9b). Simply, we are asking the question, Is it more likely that the 35% trimmed mean is "predicting" the future course of the CPI, or that the CPI is "predicting" the future course of the 35% trimmed mean? We conduct these Granger tests for monthly (k=1), three-month (k=3), and six-month (k=6) price changes, and for lag structures that run from 3 months to 12 months. The results are reported in table 7.

(9a)
$$\frac{1}{k} \Pi_t^k = \beta_0 + \sum_L \beta_{1,L} \left[\frac{1}{k} \Pi_{t-L}^k \right] + \sum_L \beta_{2,L} \left[\frac{1}{k} \overline{x}_{\alpha,t-L}^k \right] + \varepsilon_t$$

(9b)
$$\frac{1}{k}\overline{x}_{\alpha,t}^{k} = \beta_0 + \sum_{L} \beta_{1,L} \left[\frac{1}{k} \Pi_{t-L}^{k} \right] + \sum_{L} \beta_{2,L} \left[\frac{1}{k} \overline{x}_{\alpha,t-L}^{k} \right] + \eta_t$$

Over the full sample, we can reject the hypothesis that the 35% trimmed mean does not predict the CPI for all inflation horizons k, a result that is not sensitive to the lag structure we impose. In none of the tests could we reject the hypothesis that the CPI does not cause the 35% trimmed mean estimator at the 95% confidence level.

The results of the Granger tests in the subsample experiments were similar. In the pre-1983 subperiod, we accept the hypothesis that the 35% trimmed mean Granger causes the CPI at the 95% confidence level in all the monthly experiments except the 3-months-ahead forecast with 12 lags. In this case, the p-value is 0.051. In two cases, the experiments suggest the potential for causality running in both directions (k=6, with 6 and 12 lags.) In the post-1982 subperiod, causality from the 35% trimmed mean to the CPI was again found to run in only one direction at the 95% level of confidence, from the optimal trimmed estimator to the CPI.

5. Robustness and Other Considerations

In identifying the efficient trimmed estimators and the forecasting properties discussed earlier, we made several checks on the robustness of the results. In this section, we expand on that analysis, first by testing the sensitivity of the analysis to alternative definitions of the assumed population parameter (the 36-month, centered-inflation benchmark) and then by calculating optimal trim percentages over moving sample periods. Finally, we consider the frequency of component exclusion from the trimmed estimators.

5.1 Benchmark Sensitivity

The choice of a 36-month, centered-average CPI inflation rate as the benchmark for this study was somewhat arbitrary. In this section, we consider alternative centered-average benchmarks, from 12 months to 60 months. We recomputed both the Monte Carlo simulations and the historical experiments outlined in sections 3.1 and 3.2, respectively. The results of these experiments are summarized in table 8.

We find that the results reported earlier are not sensitive to the choice of benchmark. In the Monte Carlo experiments, the optimal trim ranges from a low of 0.36 to a high of 0.39 on a RMSE basis, and from 0.31 to 0.35 on a MAD basis. The range of estimators within 5% of the optimal is similar and quite large, generally extending from about 0.25 to the median.

The historical results are also essentially identical to the Monte Carlo results and to the historical calculations presented earlier, although the range of estimators within 5% of the optimal values was found to be a bit larger for the higher-frequency benchmarks. In the case of a 12-month centered average inflation benchmark, trims of between 11% and the median were found to be largely the same.

5.2 Sample Period Sensitivity

Next, we compute the historically efficient trimmed estimator for rolling 10-year periods, beginning with 1971-81 and ending with 1985-95. Figure 9 shows the optimal trimmed estimator on a RMSE basis for each subperiod, along with the range of estimators found to be within 5% of the optimal. The same results are shown in figure 10 using the MAD criteria.

Judged on a MAD-deviation basis, the efficient trimmed estimators appear to be generally stable over time. While the optimal trim falls from around 40% to 45% for 10-year periods up to 1988, the efficient trims drops to roughly 25% to 30% beginning in 1989. Still, the optimal trim of 38% identified for the full sample remains in the range that is very close to the period-specific optimums.

On a RMSE basis, however, the drop in the efficient estimate is more pronounced, occurring discretely within the period ending in 1986. Moreover, the optimal trim for the full sample, 35%, is just outside the range of estimators found to be within 5% of the optimal trim for the 10-year horizons that end in 1989 and beyond. In other words, these results suggest some potential instability in the

computation of the efficient estimator, at least between the pre-1986 and the post-1989 subperiods.

5.3 Trim Frequencies by Component

Finally, we consider the nature of the items excluded from the calculation of the efficient inflation estimator. Table 9 reports the frequency with which each component is trimmed out of the calculation of the 35% trimmed mean, its expected trim frequency computed from Monte Carlo simulations by drawing from a uniform distribution (n=10,000) and given the same distribution of weights found in the Japanese CPI. We also record the proportion of times each good is trimmed from the upper tail of the price-change distribution and the lower tail of the distribution.

Five goods are found to be trimmed from the calculation of the 35% trimmed estimator at more than twice their expected frequency: fresh vegetables, fresh fruits, eggs, cut flowers, and fresh fish and shellfish. With the exception of eggs and cut flowers, these are the goods excluded from the calculation of the more traditional measure of core inflation in Japan, the CPI less fresh foods. We also note that these five components are nearly as likely to be found in the upper tail of the price-change distribution as in the lower tail, an indication of their highly transitory influence on the aggregate inflation measure. At the very least, then, we would suggest that these latter two goods also be considered for inclusion in that measure.

Moreover, five components are less than half as likely to be trimmed in producing the efficient monthly inflation estimate than their unconditional probability: clothing services, eating out, cakes and candies, footwear, and medicines. These commodities are likely to fall in the center of the price-change distribution an unusually high proportion of the time.

As a final observation, we merely report the goods that, while not necessarily trimmed an unusually large number of times, are nevertheless likely to be found on one of the tails of the price-change distribution an unusually large share of the time. Three components were found to be 10 times more likely to be trimmed from the upper tail of the price change distribution than from the lower tail: personal care services, repair and maintenance services, and lesson fees. Conversely, three

components were more than 10 times more likely to be trimmed from the lower tail than the upper tail of the price-change distribution: domestic durables, recreational services, and TV sets and audio devices.

6. Conclusions

In this paper, we consider the use of trimmed means as monthly estimators of Japanese core inflation. We are motivated by the apparent low signal-to-noise ratio common to monthly retail price statistics and by what we believe to be a related observation—that the inflation estimators are derived from extremely kurtotic price changes, such as we would find from random draws from prices with heteroskedastic variances. We build upon earlier work done in the United States by Bryan and Cecchetti (1994, 1996) and Bryan, Cecchetti, and Wiggins (1997), and for 12-month price changes in Japan by Shiratsuka (1997).

We find that small trims to the monthly Japanese CPI data provide substantially improved estimates of the CPI trend than either the all-items CPI or the more common monthly core inflation estimator, the CPI less fresh foods. Our results are generally supportive of these measures over the CPI less fresh food and energy estimator, but are largely indistinguishable from this estimator at frequencies of 12 months or greater. Further, we find that the range of symmetric trims between 25% and 50% of the tails of the price change distribution resulted in very similar estimators and that this range appears to be stable over time, although it may have declined and narrowed a bit in the post-1982 period.

While we believe that such indicators can give Japanese monetary policymakers more timely information than the standard estimators, the noise inherent in these statistics is still considerable. That is, while we can substantially improve the signal-to-noise ratio for the inflation statistic, in this case by as much as two-thirds relative to the standard CPI, a great deal of high-frequency volatility remains to be addressed. This suggests the need to consider additional noise-reduction techniques, including longer-run averages of the price data and other statistical signal-extraction techniques, to provide policymakers with sufficient information to accurately gauge the inflationary environment in which they operate.

References

- 1. Annual Report on the Consumer Price Index, 1996, Statistics Bureau, Management and Coordination Agency, Government of Japan.
- 2. Archer, David, "Some Reflections on Inflation Targets," in <u>Targeting Inflation: A Conference of Central Banks on the Use of Inflation Targets Organised by the Bank of England</u>, Andrew G. Haldane, ed., Bank of England, 1995.
- 3. Bakhshi, Hasan, and Tony Yates, "To Trim or Not to Trim? A Discussion of Bryan and Cecchetti's Trimmed Mean Inflation Estimator, and an Application to the United Kingdom," memeo (October 1997).
- 4. Balke, Nathan S., and Mark A. Wynne, "An Equilibrium Analysis of Relative Price Changes and Aggregate Inflation," Research Department Working Paper 96-09, Federal Reserve Bank of Dallas, 1996.
- 5. Bryan, Michael F., and Stephen G. Cecchetti, "Measuring Core Inflation," in <u>Monetary Policy</u>, N. Gregory Mankiw, ed., National Bureau of Economic Research Studies in Business Cycles, Volume 29, Chicago: University of Chicago Press for NBER, 1994.
- 6. ______, "Inflation and the Distribution of Price Changes," NBER Working Paper Series, no. 5793 (October 1996).
- 7. Bryan, Michael F., Stephen G. Cecchetti, and Rodney L. Wiggins II, "Efficient Inflation Estimation," NBER Working Papers Series, no. 6183 (September 1997).
- 8. Caballero, Ricardo J., and Eduardo Engel, "Dynamic (S,s) Economies," Econometrica 59 (November 1991).
- 9. Caplin, Andrew and John Leahy, "State-Dependent Price and the Dynamics of Money and Output," Quarterly Journal of Economics 106 (August 1991).
- 10. Cecchetti, Stephen G., "Measuring Short-Term Inflation for Central Bankers," NBER Working Paper No. 5786 (1997).

- 11. Eckstein, Otto, Core Inflation, Prentice-Hall, 1981.
- 12. Haldane, Andrew G., ed., <u>Targeting Inflation</u>: A Conference of Central Banks on the Use of Inflation <u>Targets Organised by the Bank of England 9-10 March 1995</u>, Bank of England, 1995.
- 13. Leiderman, Leonardo, and Lars E. O. Svensson, eds., <u>Inflation Targets</u>, Centre for Economic Policy Research, 1995.
- 14. Newey, Whitney K. and Kenneth D. West, "A Simple, Positive Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica 55 (May 1987).
- 15. Quah, Danny and Shaun P. Vahey, "Measuring Core Inflation," The Economic Journal, Vol. 105, no. 432 (September 1995).
- 16. Roger, Scott, "A Robust Measure of Core Inflation in New Zealand, 1949-96," Reserve Bank of New Zealand Discussion Paper Series, G97/7 (November 1997).
- 17. Shiratsuka, Shigenori, "Inflation Measures for Monetary Policy: Measuring Underlying Inflation Trend and Its Implication for Monetary Policy Implementation," Institute for Monetary and Economic Studies Discussion Paper Series, no. 97-E-7 (August 1997).
- 18. Taillon, Jacques, "Review of the Literature on Core Inflation," Analytical Series, Number 4, Prices Division, Statistics Canada, April 1997.

TABLE 1: CORE INFLATION STATISTICS USED BY SELECTED CENTRAL					
BANKS					
(* Inflation targeting countries	es ** Core statistic used as a target or objective)				
Country	Core Inflation Statistic				
Australia**	CPI less mortgage interest payments, government				
	controlled prices, and energy items.				
Belgium	CPI less energy, potatoes, and fruit and vegetables.				
Canada**	CPI less indirect taxes, food and energy items.				
Finland**	CPI less housing capital costs, indirect taxes, and				
	government subsidies.				
France**	CPI excluding changes in taxes, energy prices, food				
	prices, and regulated prices.				
Greece	CPI excluding food and fuels.				
Israel*	CPI less government goods, housing, fruit and vegetables.				
Japan	CPI less fresh foods.				
Netherlands	CPI less vegetables, fruit, and energy.				
New Zealand**	CPI less commodity prices, government controlled prices,				
	interest and credit charges.				
Philippines	A statistical trend line.				
Portugal	10% trimmed mean of the CPI.				
Spain*	CPI less mortgage interest payments.				
Sweden*	CPI excluding housing mortgage interest and effects of				
	taxes and subsidies (UND1), UND1 excluding petroleum				
	goods (UND2), and UND1 less mainly imported goods				
	(UNDINH).				
United Kingdom**	Retail Price Index less mortgage interest payments.				
United States	CPI less food and energy items.				

SOURCE: Various Central Bank Annual Reports, 1996.

TABLE 2: DISTRIBUTIONAL CHARACTERISTICS OF JAPANESE CPI DATA, SEASONALLY ADJUSTED, 1970 TO 1997								
	(standard deviations in parenthesis)							
		STANDARD						
K	MEAN	DEVIATION	SKEWNESS	KURTOSIS				
1	4.12	21.90	0.45	31.25				
	(6.65)	(12.72)	(4.17)	(28.90)				
3	4.13	11.62	0.34	22.06				
	(5.24)	(5.24) (6.12) (3.30) (17.61)						
6	4.16 7.56 0.28 16.10							
	(4.77) (3.78) (2.57) (10.41)							
12	4.19 5.31 0.02 12.21							
	(4.55)	(2.51)	(2.03)	(7.81)				
24	4.25	3.70	-0.24	7.83				
	(4.28)	(1.53)	(1.37)	(4.51)				
36	4.34	3.02	-0.40	5.78				
	(4.06)	(1.11)	(0.93)	(2.82)				
K		Full Sample	, 1970 to 1997	•				
1	4.12	21.90	0.45	31.25				
	(6.65)	(12.72)	(4.17)	(28.90)				
		High Inflation Po	eriod, 1970 to 1982					
1	7.27	27.65	0.50	27.04				
	(7.85)	(14.25)	(3.73)	(26.04)				
		Low Inflation Pe	eriod, 1983 to 1997	•				
1	1.28	16.71	0.41	34.81				
	(3.41)	(8.26)	(4.56)	(31.01)				

TABLE 3: MONTE CARLO SIMULATION RESULTS (10,000 REPLICATIONS) (Numbers in parenthesis are the range of trims within 5% of the minimum)						
Seasonally Adjusted Data RMSE MAD						
CPI all items	3.67	2.84				
CPI less fresh food	2.22	1.55				
CPI less fresh food and energy	2.04	1.47				
Minimum: 39% Trimmed Mean (24% to 50%)	0.94					
Minimum: 34% Trimmed Mean (24% to 48%)		0.62				

TABLE 4: HISTORICAL RESULTS (1970 TO 1997) (Numbers in parenthesis are the range of trims within 5% of the minimum)					
Seasonally Adjusted Data RMSE MAD					
CPI all items	5.29	3.72			
CPI less fresh food	3.71	2.06			
CPI less fresh food and energy	3.66	2.01			
Minimum: 35% Trimmed Mean (21% to 50%)	2.37				
Minimum: 38% Trimmed Mean (16% to 50%)		1.39			

Table 5a: Contemporaneous Money Growth Correlations
Seasonally adjusted data (1970 to 1997)
(maximum correlations in bold-type)

	CURRENCY								
K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median			
1	0.193	0.257	0.253	0.304*	0.298	0.299			
3	0.389	0.419	0.429	0.467	0.464	0.469			
12	0.566	0.575	0.603	0.619	0.622	0.620			
24	0.658	0.663	0.690	0.698	0.703	0.697			
36	0.737	0.74	0.763	0.761	0.766	0.759			
48	0.796	0.795	0.816	0.807	0.812	0.805			

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.140	0.175	0.172	0.183	0.183	0.181
3	0.219	0.245	0.259	0.276	0.273	0.276
12	0.365	0.378	0.411	0.437	0.434	0.440
24	0.527	0.540	0.569	0.588	0.589	0.588
36	0.690	0.698	0.722	0.728	0.732	0.726
48	0.806	0.809	0.828	0.823	0.828	0.820

M1

M2

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.256	0.315	0.325	0.380**	0.371	0.373
3	0.355	0.379	0.396	0.436	0.425	0.436
12	0.450	0.458	0.480	0.516	0.507	0.521
24	0.572	0.579	0.598	0.624	0.620	0.628
36	0.707	0.708	0.725	0.733	0.734	0.735
48	0.789	0.787	0.800	0.796	0.798	0.796

M2 Plus CDs

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median		
1	0.259	0.326	0.335	0.387**	0.379	0.379		
3	0.360	0.385	0.399	0.438	0.428	0.438		
12	0.450	0.458	0.478	0.515	0.505	0.520		
24	0.572	0.578	0.596	0.623	0.618	0.626		
36	0.706	0.708	0.723	0.732	0.732	0.734		
48	0.787	0.786	0.798	0.794	0.796	0.794		
Statis	Statistically significantly different from the CPI correlation at (*) 10% (**) 5%							

Table 5b: Money Forecast Equations Seasonally adjusted data (1970 to 1997) R2's From Equation 7 (maximums in bold-type)

CURRENCY

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.394	0.490	0.483	0.564	0.556	0.545
3	0.584	0.608	0.625	0.637	0.622	0.624
6	0.661	0.658	0.678	0.675	0.663	0.673
12	0.720	0.708	0.723	0.719	0.710	0.719

M1

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.527	0.570	0.574	0.591	0.585	0.582
3	0.556	0.600	0.617	0.622	0.614	0.613
6	0.659	0.675	0.697	0.700	0.693	0.698
12	0.762	0.764	0.783	0.782	0.778	0.779

M2

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.422	0.564	0.562	0.634	0.636	0.625
3	0.628	0.675	0.702	0.702	0.702	0.699
6	0.710	0.728	0.757	0.745	0.744	0.748
12	0.758	0.766	0.790	0.780	0.780	0.784

M2 Plus CDs

K	СРІ	CPI less fresh food	CPI less fresh food and energy	35 percent trimmed mean	21 percent trimmed mean	Median
1	0.426	0.568	0.568	0.636	0.639	0.625
3	0.633	0.682	0.709	0.709	0.708	0.705
6	0.713	0.731	0.763	0.750	0.748	0.752
12	0.754	0.762	0.788	0.777	0.777	0.781

		UNIVARIATE FOREC		LATION						
	R2's from Equation 8, Seasonally adjusted data (maximums in bold-type)									
,	Full Sample, 1970 to 1997									
	CPI less fresh CPI less fresh 35% Trimmed									
K	CPI	food	food and energy	Mean	Median					
1	0.184	0.375	0.333	0.430	0.449					
3	0.423	0.535	0.514	0.586	0.578					
12	0.468	0.460	0.472	0.502	0.506					
24	0.260	0.275	0.287	0.310	0.309					
			1970 to 1982							
		CPI less fresh	CPI less fresh	35% Trimmed						
K	CPI	food	food and energy	Mean	Median					
1	0.133	0.315	0.269	0.378	0.420					
3	0.278	0.368	0.353	0.433	0.426					
12	0.179	0.173	0.196	0.221	0.227					
24	0.020	0.028	0.038	0.058	0.062					
			1983 to 1997							
		CPI less fresh	CPI less fresh	35% Trimmed						
K	CPI	food	food and energy	Mean	Median					
1	0.012	0.000	0.001	0.018	0.021					
3	0.003	0.113	0.069	0.116	0.116					
12	0.255	0.263	0.273	0.256	0.258					
24	0.057	0.044	0.042	0.068	0.074					

	TABLE 7: GRANGER-STYLE CAUSALITY TESTS, SEASONALLY ADJUSTED DATA							
F-statistic P-values from Equations 9a and 9b, overlapping observations* Full Sample, 1970 to 1997								
	K=	=1	K=	<u> </u>	K	K=6		
	CPI does not	35% Trim	CPI does not	35% Trim	CPI does not	35% Trim		
L	cause 35% Trim	does not cause CPI	cause 35% Trim	does not cause CPI	cause 35% Trim	does not cause CPI		
3	0.342	0.000	0.867	0.001	0.465	0.005		
6	0.703	0.000	0.914	0.012	0.458	0.021		
12	0.817	0.000	0.405	0.006	0.634	0.000		
			1970	to 1982				
	K=	=1	K=	=3	K	X=6		
	CPI does not	35% Trim	CPI does not	35% Trim	CPI does not	35% Trim		
L	cause	does not	cause	does not	cause	does not cause		
	35% Trim	cause CPI	35% Trim	cause CPI	35% Trim	CPI		
3	0.071	0.000	0.279	0.007	0.283	0.001		
6	0.179	0.000	0.307	0.031	0.047	0.001		
12	0.452	0.000	0.137	0.051	0.003	0.000		
			1983	to 1997				
	K=	=1	K=	=3	K	=6		
	CPI does not	35% Trim	CPI does not	35% Trim	CPI does not	35% Trim		
L	cause	does not	cause	does not	cause	does not cause		
	35% Trim	cause CPI	35% Trim	cause CPI	35% Trim	CPI		
3	0.822	0.000	0.065	0.023	0.058	0.020		
6	0.374	0.000	0.073	0.005	0.083	0.007		
12	0.067	0.000	0.420	0.002	0.419	0.000		
* The 1 4K	sample p-value	is computed us	sing the Newey-W	est procedure v	with bandwidth pa	arameter equal to		

^{1.4}K.

TABLE 8: OPTIMAL TRIMS FOR ALTERNATIVE BENCHMARKS (Numbers in parenthesis are the range of trims within 5% of the minimum)							
Seasonally Adjusted Data	Monte Carlo Ex (10,000 replicati	periments	Historical Experiments (1970 to 1997)				
Benchmark	RMSE	MAD	RMSE	MAD			
(Centered Moving Average)							
12 months	0.36	0.31	0.30	0.33			
	(0.25 to. 0.50)	(0.22 to 0.44)	(0.11 to 0.47)	(0.11 to 0.50)			
24 months	0.37	0.33	0.33	0.36			
	(0.26 to 0.50)	(0.23 to 0.46)	(0.17 to 0.49)	(0.14 to 0.50)			
36 months	0.39	0.34	0.35	0.38			
	(0.24 to 0.50)	(0.24 to 0.48)	(0.21 to 0.50)	(0.17 to 0.50)			
48 months	0.39	0.35	0.36	0.40			
	(0.26 to 0.50)	(0.24 to 0.47)	(0.23 to 0.50)	(0.20 to 0.50)			
60 months	0.39	0.34	0.36	0.41			
	(0.26 to 0.50)	(0.23 to 0.47)	(0.24 to 0.50)	(0.20 to 0.50)			

	TABLE 9: TRIM FREQUENCIES BY COMPONENT seasonally adjusted data, optimal trim = 35%.*							
scason	Trim	Expected		Left Tail Trim	Right Tail Trim		Average	
Item	Frequency	Frequency	Ratio	Frequency	Frequency	Ratio	Weight	
54	0.068	0.376	0.180	0.006	0.061	10.000	0.007	
28	0.114	0.401	0.283	0.025	0.089	3.625	0.069	
22	0.147	0.381	0.386	0.068	0.080	1.182	0.026	
49	0.156	0.369	0.424	0.052	0.104	2.000	0.009	
55	0.175	0.383	0.456	0.071	0.104	1.478	0.007	
67	0.209	0.372	0.561	0.086	0.123	1.429	0.004	
68	0.209	0.373	0.559	0.086	0.123	1.429	0.007	
48	0.212	0.389	0.544	0.080	0.132	1.654	0.008	
29	0.218	0.396	0.550	0.028	0.190	6.889	0.113	
52	0.221	0.390	0.567	0.129	0.092	0.714	0.003	
40	0.221	0.375	0.589	0.123	0.098	0.800	0.004	
80	0.230	0.377	0.610	0.000	0.230	n.a.	0.013	
65	0.233	0.375	0.621	0.172	0.061	0.357	0.003	
39	0.233	0.375	0.621	0.129	0.104	0.810	0.003	
2	0.236	0.373	0.633	0.132	0.104	0.791	0.007	
86	0.242	0.371	0.654	0.117	0.126	1.079	0.001	
59	0.245	0.380	0.645	0.190	0.055	0.290	0.015	
26	0.249	0.372	0.668	0.166	0.083	0.500	0.009	
57	0.249	0.368	0.676	0.153	0.095	0.620	0.018	
24	0.249	0.377	0.660	0.101	0.147	1.455	0.003	
27	0.255	0.377	0.675	0.184	0.071	0.383	0.017	
82	0.258	0.370	0.696	0.218	0.040	0.183	0.002	
51	0.261	0.379	0.688	0.101	0.160	1.576	0.001	
10	0.267	0.378	0.706	0.190	0.077	0.403	0.006	
31	0.267	0.380	0.703	0.015	0.252	16.400	0.018	
23	0.267	0.376	0.710	0.117	0.150	1.290	0.016	
44	0.276	0.385	0.717	0.034	0.242	7.182	0.003	
3	0.282	0.372	0.758	0.144	0.138	0.957	0.006	
60	0.285	0.373	0.765	0.224	0.061	0.274	0.001	
56	0.288	0.381	0.758	0.184	0.104	0.567	0.004	
69	0.295	0.382	0.770	0.172	0.123	0.714	0.004	
38	0.295	0.369	0.799	0.043	0.252	5.857	0.003	
83	0.298	0.371	0.803	0.215	0.083	0.386	0.009	
78	0.298	0.384	0.775	0.083	0.215	2.593	0.016	
84	0.304	0.374	0.812	0.117	0.187	1.605	0.005	
7	0.310	0.369	0.841	0.114	0.196	1.730	0.004	
36	0.313	0.383	0.818	0.209	0.104	0.500	0.005	
58	0.313	0.393	0.796	0.123	0.190	1.550	0.031	
17	0.322	0.377	0.854	0.064	0.258	4.000	0.005	
81	0.322	0.361	0.891	0.224	0.098	0.438	0.001	
11	0.322	0.374	0.861	0.252	0.071	0.281	0.009	
37	0.322	0.389	0.828	0.252	0.071	0.281	0.006	
35	0.334	0.375	0.891	0.175	0.160	0.912	0.005	
76	0.337	0.383	0.881	0.025	0.313	12.750	0.015	
9	0.337	0.385	0.876	0.224	0.114	0.507	0.026	

20	T 0 241	0.271	0.010	0.170	0.160	0.002	0.004	
30	0.341	0.371	0.919	0.172	0.169	0.982	0.004	
1	0.350	0.390	0.898	0.199	0.150	0.754	0.027	
15	0.350	0.373	0.938	0.147	0.203	1.375	0.005	
50	0.359	0.374	0.960	0.196	0.163	0.828	0.005	
87	0.359	0.374	0.960	0.301	0.058	0.194	0.013	
53	0.359	0.380	0.946	0.135	0.224	1.659	0.003	
71	0.362	0.369	0.981	0.258	0.104	0.405	0.005	
21	0.371	0.383	0.969	0.221	0.150	0.681	0.012	
43	0.377	0.369	1.021	0.276	0.101	0.367	0.002	
45	0.377	0.387	0.974	0.110	0.267	2.417	0.008	
16	0.390	0.384	1.015	0.163	0.227	1.396	0.004	
42	0.393	0.375	1.046	0.331	0.061	0.185	0.003	
62	0.411	0.384	1.070	0.334	0.077	0.229	0.020	
32	0.429	0.392	1.096	0.273	0.156	0.573	0.054	
74	0.436	0.368	1.184	0.227	0.209	0.919	0.006	
77	0.442	0.371	1.191	0.331	0.110	0.333	0.004	
85	0.448	0.378	1.185	0.313	0.135	0.431	0.004	
8	0.472	0.376	1.257	0.184	0.288	1.567	0.004	
19	0.476	0.363	1.308	0.291	0.184	0.632	0.001	
33	0.500	0.381	1.312	0.479	0.022	0.045	0.009	
72	0.500	0.386	1.296	0.276	0.224	0.811	0.011	
20	0.525	0.381	1.378	0.390	0.135	0.347	0.002	
12	0.525	0.380	1.380	0.313	0.212	0.677	0.003	
79	0.534	0.380	1.406	0.515	0.018	0.036	0.003	
6	0.543	0.380	1.429	0.255	0.288	1.133	0.009	
4	0.549	0.375	1.463	0.282	0.267	0.946	0.002	
61	0.552	0.401	1.378	0.383	0.169	0.440	0.034	
41	0.564	0.366	1.543	0.396	0.169	0.426	0.003	
88	0.574	0.360	1.594	0.279	0.295	1.055	0.001	
66	0.577	0.371	1.553	0.509	0.068	0.133	0.003	
25	0.583	0.375	1.556	0.365	0.218	0.597	0.002	
47	0.586	0.379	1.547	0.255	0.331	1.301	0.013	
63	0.592	0.393	1.505	0.061	0.531	8.650	0.039	
73	0.656	0.369	1.777	0.291	0.365	1.253	0.003	
75	0.663	0.380	1.745	0.331	0.331	1.000	0.015	
46	0.663	0.389	1.702	0.282	0.380	1.348	0.033	
34	0.669	0.368	1.819	0.457	0.212	0.463	0.005	
64	0.709	0.372	1.903	0.696	0.012	0.018	0.009	
5	0.801	0.380	2.109	0.365	0.436	1.193	0.025	
70	0.933	0.371	2.515	0.442	0.491	1.111	0.004	
13	0.933	0.385	2.422	0.509	0.423	0.831	0.006	
18	0.951	0.378	2.517	0.497	0.454	0.914	0.018	
14	0.954	0.378	2.522	0.472	0.482	1.020	0.024	
	*The expected trim frequencies approximated from a Monte Carlo simulation of 5,000 replications.							

Figure 1: Monthly Japanese CPI Patterns

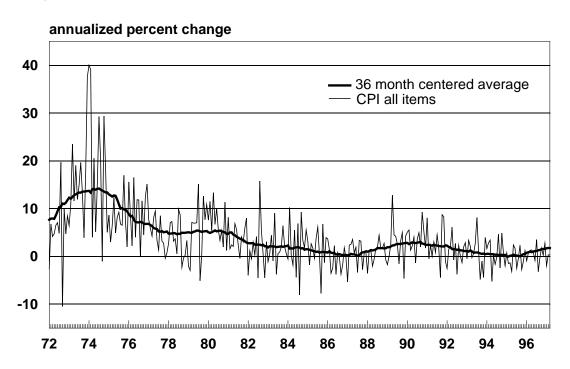


Figure 2: The Distribution of Japanese CPI (March, 1997)

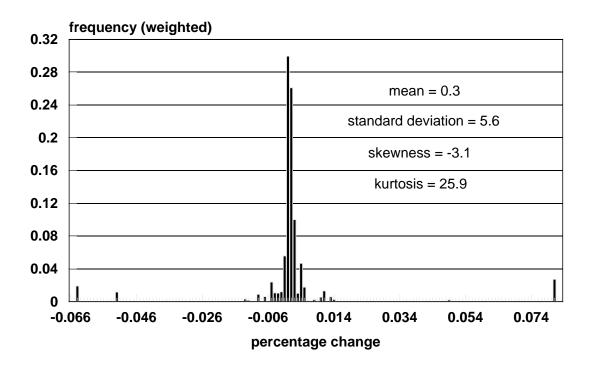


Figure 3: Distribution of Japanese CPI (monthly average, 1970-1997)

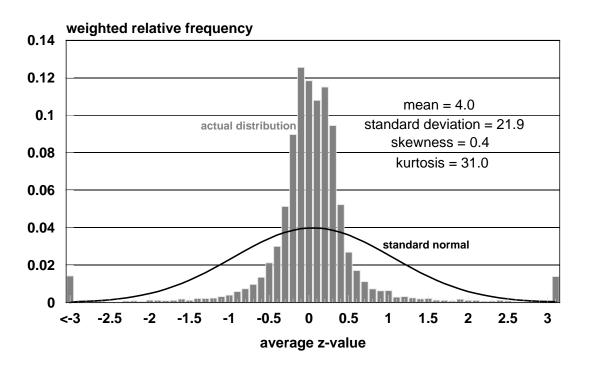
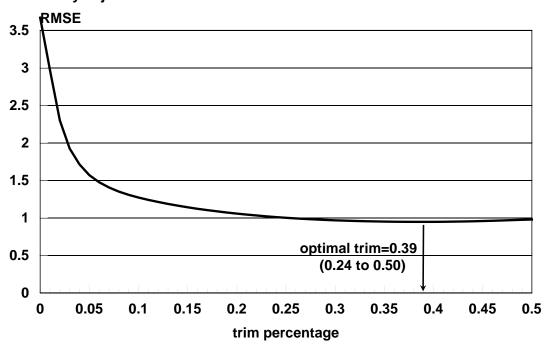



Figure 4: Efficiency of Trimmed Estimators Monte Carlo Results (10,000 Replications) Seasonally adjusted data

Figure 5: Efficiency of Trimmed Estimators

Monte Carlo Results (10,000 Replications) Seasonally adjusted data

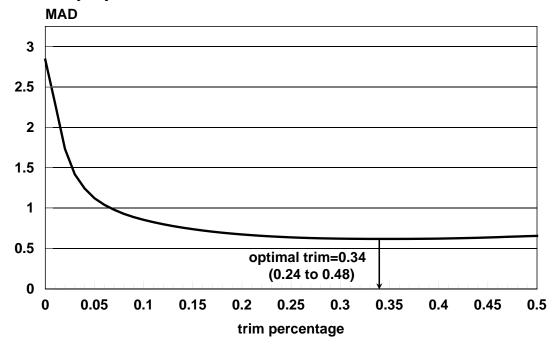
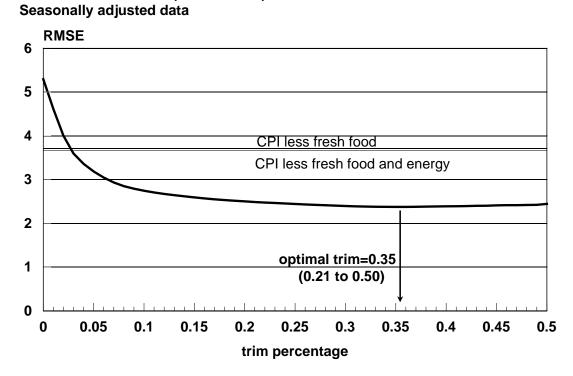
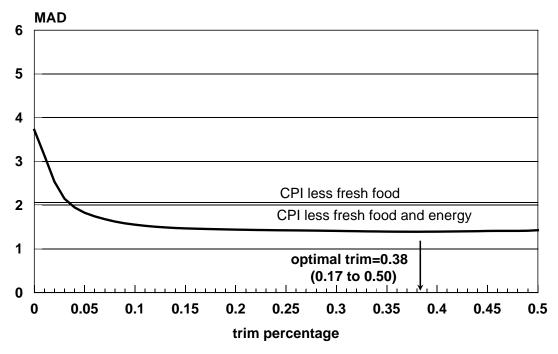




Figure 6: Efficiency of Trimmed Estimators Historical Simulations (1970 to 1997)

Figure 7: Efficiency of Trimmed Estimators

Historical Simulations (1970 to 1997) Seasonally adjusted data

Figure 8: Monthly Japanese CPI Patterns

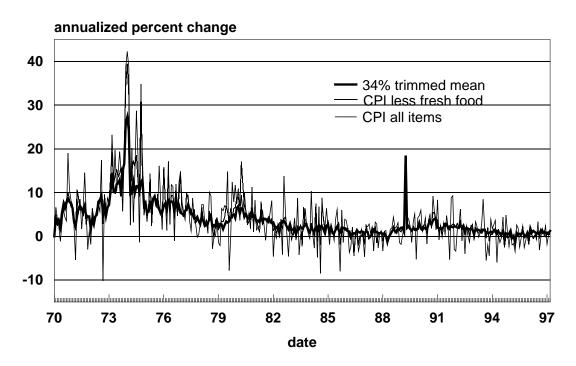


Figure 9: Efficient Estimators at 10 year Intervals: RMSE

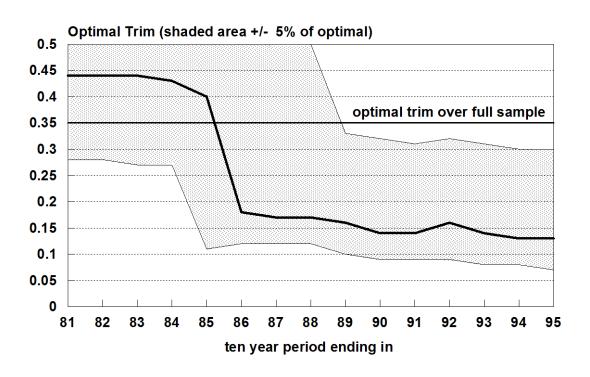
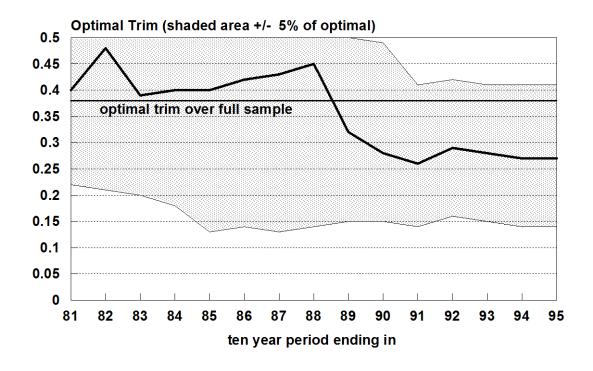



Figure 10: Efficient Estimators at 10 year Intervals: MAD

Appendix

TABLE 1A: JAPANESE CPI COMPONENT DESCRIPTIONS								
Item	Component Description	Average Weight	Item	Component Description	Average Weight			
1	Rice	0.0267	45	Japanese Clothing	0.0078			
2	Bread	0.0072	46	Clothing	0.0328			
3	Noodles	0.0056	47	Shirts and Sweaters	0.0126			
4	Flour and Other Cereals	0.0015	48	Underwear	0.0078			
5	Fresh Fish and Shell Fish	0.0249	49	Footwear	0.0087			
6	Salted and Dried Fish	0.009	50	Cloth	0.005			
7	Fish-paste Products	0.0044	51	Thread	0.0009			
8	Other Processed Fish	0.0043	52	Socks and Stockings	0.0032			
9	Fresh Meat	0.0256	53	Other Clothing	0.0026			
10	Meat Products	0.0063	54	Services Related to Clothing	0.0072			
11	Fresh Milk	0.0088	55	Medicines	0.0074			
12	Dairy Products	0.0027	56	Medical Supplies and Appliances	0.0044			
13	Eggs	0.0058	57	Medical Services	0.0177			
14	Fresh Vegetables	0.0244	58	Public Transportation	0.0311			
15	Dried Vegetables and Seaweeds	0.0048	59	Automobiles	0.0153			
16	Soybean Products	0.0042	60	Bicycles	0.0012			
17	Other Processed Vegetables and Seaweeds	0.0054	61	Automotive Maintenance	0.0336			
18	Fresh Fruits	0.0182	62	Communication	0.0198			
19	Preserved Fruits	0.0007	63	Education	0.039			
20	Oils and Fats	0.0022	64	TV Sets and Audio Devices	0.0091			
21	Seasonings	0.0115	65	Musical Instruments	0.0025			
22	Cakes and Candies	0.0262	66	Other Recreational Durables	0.0032			
23	Cooked Food	0.0162	67	Stationary	0.0037			
24	Tea	0.0033	68	Sporting Goods	0.007			
25	Coffee and Cocoa	0.0022	69	Toys	0.0043			
26	Other Beverages	0.0085	70	Cut Flowers	0.0039			
27	Alcoholic Beverages	0.0169	71	Other Recreational Goods	0.0046			
28	Eating Out	0.0685	72	Newspapers	0.0108			
29	Rent	0.113	73	Magazines	0.0028			
30	Materials for Repairs and Maintenance	0.0042	74	Books	0.0055			
31	Service Charges for Repairs and Maintenance	0.018	75	Hotel Charges	0.0147			
32	Fuel, Light, and Water Charges	0.0539	76	Lesson Fees	0.0154			
33	Domestic Durables	0.0091	77	TV License Fees	0.0036			
34	Heating and Cooling Appliances	0.0049	78	Admission and Game Fees	0.0162			
35	General Furniture	0.0045	79	Other Recreational Services	0.0029			
36	Interior Furnishings	0.0048	80	Personal Care Services	0.0127			
37	Bedding	0.0056	81	Toilet Utensils	0.0006			

38	Tableware	0.0026	82	Soap and Others	0.0023
39	Kitchen Utensils	0.0027	83	Cosmetics	0.0086
40	Other Domestic Utensils	0.0035	84	Bags	0.0047
41	Facial Tissue and Rolled Toilet Paper	0.0026	85	Watches and Rings	0.0038
42	Detergent	0.0033	86	Other Personal Effects	0.0012
43	Other nondurables	0.002	87	Cigarettes	0.0133
44	Domestic Services	0.0028	88	Other	0.0006