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1 Introduction

This paper introduces heterogeneous �rms and empirically plausible �rm-level productiv-

ity trends into an otherwise standard sticky-price economy. It shows that some of the

fundamental implications of canonical sticky-price models with homogeneous �rms fail to

survive within such a generalized setup. The optimal steady-state in�ation rate generically

di¤ers from zero and in�ation optimally responds to productivity disturbances, unlike in

settings with homogeneous �rms. Moreover, the paper documents that the predictions of

the homogeneous �rm model turn out to be non-robust in the sense that they are discon-

tinously a¤ected by the presence of �rm heterogeneity. We thus present an example in

which microeconomic heterogeneity matters for macroeconomic policy prescriptions, an

issue that has attracted renewed interest (Ahn et al. (2017), Kaplan and Violante (2014)).

Due to the technical di¢ culties associated with aggregating heterogeneous-�rm mod-

els, it is standard in the sticky-price literature to abstract from all �rm-level heterogeneity

beyond that generated by price adjustment frictions themselves. As is well known, price

adjustment frictions then tightly anchor the optimal steady-state in�ation rate at zero,

see Woodford (2003).1 As we show, this rather robust but somewhat puzzling implica-

tion of standard sticky-price models arises precisely because of the homogeneity assump-

tion. Homogeneity implies that the productivity of price-adjusting �rms equals that of

non-adjusting �rms. With economic e¢ ciency requiring relative prices to re�ect relative

productivities, it calls for price-adjusting �rms to charge the same price as charged on

average by non-adjusting �rms, i.e., it calls for zero in�ation.2

The present paper extends the basic sticky-price setup by introducing �rm hetero-

geneity and systematic �rm-level productivity trends. Such �rm-level trends are clearly

present in micro data, but are routinely abstracted from in the sticky-price literature.

New �rms, for example, tend to be initially small, i.e., tend to be initially unproductive

when compared to existing �rms.3 Some of the young �rms become more productive over

time and grow, others become unproductive and exit the economy. We show how such

life-cycle related productivity dynamics cause the average productivity of price-adjusting

�rms to generally di¤er from the average productive of non-adjusting �rms. Economic

e¢ ciency then requires that adjusting �rms set on average di¤erent prices than existing

�rms, which causes in�ation or de�ation to be optimal in steady state. We show this by

aggregating the non-linear sticky price model with heterogeneous �rms in closed form and

by deriving analytical expressions for the optimal in�ation rate.

1Section 2 discusses a range of extensions of the basic framework considered in the literature and their

implications for the optimal in�ation rate.
2Yun (2005) shows, using a setting with homogeneous �rms, that if initial prices do not re�ect initial

productivities, the optimal in�ation rate can display deterministic transitory deviations from zero.
3This does not rule out that new �rms are in age-adjusted terms more productive than old �rms. Our

setup will allow for this possibility.
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The heterogeneous �rm model that we present is formulated in abstract terms and

allows for a variety of economic interpretations through which �rm heterogeneity arises.

One interpretation is - as alluded to above - that heterogeneity arises from �rm entry

and exit and the associated life-cycle dynamics of �rm productivity. This is also the

interpretation that we shall consider in our empirical analysis. Yet, as explained in the

main text, the model can equally be interpreted as one in which heterogeneity arises from

product substitution or product quality improvements.

To �x ideas, consider a sticky-price model with Calvo type or menu-cost type price

adjustment frictions in which a measure � � 0 of randomly chosen �rms becomes unpro-
ductive and exits the economy each period. Exiting �rms are replaced by a measure � of

young new �rms. Our setup then features three systematic productivity trends, each of

which has di¤erent implications for the optimal in�ation rate. First, there is a common

trend in total factor productivity (TFP), which a¤ects all �rms equally. The common

TFP trend captures general-purpose innovations that are adopted by all �rms simultane-

ously. As in a standard homogeneous-�rm model, it does not a¤ect the optimal in�ation

rate. Second, there is an experience trend in �rm-level TFP, which determines how �rms

accumulate experience with age. The experience trend may capture productivity gains

from learning-by-doing or other forms of experience accumulation. As we show, this pro-

ductivity trend generates a force towards positive in�ation rates. Third, there is a cohort

productivity trend, which determines the productivity level of newly entering �rms. This

trend captures the fact that new �rms tend to bring new technologies into the economy

that are not (yet) used by other �rms.4 The cohort trend will be a force towards making

de�ation optimal.

Taken together, the optimal steady-state in�ation rate in our setting depends on the

strength of the experience trend relative to the strength of the cohort trend, whenever

there is some positive �rm turnover (� > 0). The optimal steady-state in�ation rate is

itself independent of the �rm turnover rate, as long as � > 0. Yet, in the absence of

�rm turnover (� = 0), the optimal steady-state in�ation rate collapses to zero, i.e., to the

optimal in�ation rate of a homogeneous �rm model. It is in this sense, that the in�ation

predictions of the homogeneous �rm model turn out to be non-robust.

To obtain economic intuition for these �ndings, consider two polar settings. The �rst

setting abstracts from the presence of a cohort trend and considers a setting where the only

trend is that �rms accumulate experience over time.5 If an old �rm becomes unproductive

and exits the economy, the new �rm that replaces it will not have accumulated any

experience yet. The new �rm will thus be less productive than the remaining set of

4Newly entering �rms are endowed with the cohort productivity level, in addition to the common TFP

component, and then gradually accumulate experience over time.
5As mentioned before, we can abstract from the common TFP trend, as it does not a¤ect the optimal

in�ation rate.
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old �rms.6 From a welfare standpoint, the optimal price of new �rms should therefore

exceed the average price of existing �rms, so as to accurately re�ect relative productivities.

Achieving this requires either that new �rms choose higher prices or that old �rms reduce

prices, or a combination thereof.

In the presence of sticky prices, price reductions by old �rms are costly in welfare terms.

In time-dependent price adjustment models, they lead to ine¢ cient price dispersion due

to asynchronous price adjustment; in state-dependent pricing models, they require �rms

to pay adjustment costs. Therefore, it is optimal to implement the e¢ cient relative price

exclusively by having new �rms charge higher prices, while all other �rms hold their

prices steady. Clearly, this implies that the aggregate in�ation rate must be positive in

the steady state.

Now consider the second polar setting, in which there is no experience e¤ect and

the only trend is a positive cohort trend. New �rms are then more productive than the

existing set of old �rms, thus optimally charge lower prices than existing �rms. This

makes negative rates of in�ation optimal.7

We also determine in closed form the optimal dynamic response of the in�ation rate

following shocks to experience and cohort productivity. We show that such shocks have

fairly persistent e¤ects on the optimal in�ation rate, especially in settings in which � is

positive but close to zero.

To estimate the optimal in�ation rate for the United States, we devise a model-

consistent estimation approach, which is based on �rm-level information from the Business

Dynamics Statistics (BDS) of the U.S. Census Bureau. The BDS is based on the Longitu-

dinal Business Database (LBD) and covers all private sector establishments in the United

States from the year 1977 onwards. We rely on �rm-level information because aggregate

information fails to identify the in�ation-relevant cohort and experience trends. This is

so because in�ation-neutral TFP trends mask the underlying in�ation-relevant �rm-level

trends at the aggregate level. The �rm-level information allows us to estimate the his-

torically optimal in�ation path for the U.S. economy in a model-consistent way and for

a setting where the actual in�ation rates implemented by the Federal Reserve may have

been suboptimal. Our estimation shows that the optimal U.S. in�ation rate was strictly

positive throughout the years 1977-2015. In our benchmark estimation, it ranges between

1.5% in 1977 and a temporary low of around 0.85% during the Great Recession; the most

recent estimate for the year 2015 is 1%.

In�ation rates up to twice these numbers can be rationalized if one is willing to assume

lower demand elasticities, in line with estimates in the trade and industrial organization

literatures, or if one consider settings in which sticky-price �rms index partially prices to

6The new �rm will be in age-adjusted terms more productive than all old �rms, once one allows for a

positive cohort trend.
7Due to price-setting frictions, it is again not optimal that old �rms adjust prices.
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past in�ation rates. Optimal in�ation rates above 1% are large by the standards of the

sticky-price literature, e.g., Diercks (2017).

The remainder of the paper is structured as follows. Section 2 discusses the related

literature. Section 3 presents our heterogeneous-�rm model with sticky prices and section

4 presents a special case that illustrates our main result in rigorous but simple terms.

Section 5 analytically aggregates the general model, and section 6 shows that the �exible-

price equilibrium in this model is �rst best when a Pigouvian output subsidy corrects

�rms�monopoly power. The main optimal in�ation result is presented in closed-form in

section 7. Section 8 discusses the optimal steady-state in�ation rate. It shows how the

optimal in�ation rate jumps discontinuously when moving from a standard sticky-price

economy (� = 0) to one including �rm turnover (� > 0). Section 9 determines the utility

costs of implementing suboptimal in�ation. Section 10 presents our estimation approach

and our empirical results. Section 11 discusses the robustness of our �ndings towards

various extensions. A conclusion brie�y summarizes. Proofs and technical material are

relegated to a series of appendices.

2 Related Literature

Few papers discuss the relationship between the optimal in�ation rate and productiv-

ity trends. All of them focus on aggregate or sectoral productivity trends and �nd that

the optimal in�ation rate is (slightly) negative. Amano et al. (2009) consider an econ-

omy with aggregate productivity growth and sticky wages and prices. They show how

monetary policy a¤ects wage and price mark-ups and that this can make it optimal to im-

plement de�ation, so as to reduce wage mark-ups. Wolman (2011) considers a two-sector

sticky-price economy with sectoral productivity trends. Despite the absence of monetary

frictions, the optimal in�ation rate is either negative or close to zero in his setting.

Golosov and Lucas (2007) and Nakamura and Steinsson (2010) consider sticky-price

setups with heterogeneous �rms and study monetary non-neutrality within these setups.

They do not consider the issue of the optimal in�ation rate. Firms in their settings are

subject to random idiosyncratic productivity shocks. This di¤ers from the present setup

which features idiosyncratic shocks that give rise to systematic productivity adjustments

(as implied by the cohort and experience trends). The idiosyncratic nature of productivity

shocks in Golosov and Lucas (2007) and Nakamura and Steinsson (2010) causes �rms

with very positive or very negative idiosyncratic productivity shocks to adjust prices.

The productivity of price-adjusting �rms is thus on average similar to the productivity of

non-adjusting �rms, suggesting zero in�ation to be optimal.

The present paper is also related to a large literature studying the determinants of

optimal in�ation, most of which �nds that the optimal in�ation rate is either negative or
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close to zero. None of these papers makes a connection between the optimal in�ation rate

and �rm-level productivity dynamics.

In classic work, Kahn, King and Wolman (2003) consider a homogeneous-�rm model

and explore the trade-o¤ between price adjustment frictions, which call for price stability,

and monetary frictions, which call for a Friedman-type de�ation. They demonstrate how a

slight rate of de�ation is optimal in such frameworks. In a comprehensive survey, Schmitt-

Grohé and Uribe (2010) document the robustness of these �ndings to a large number of

natural extensions. They show that taxation motives, including the presence of untaxed

income, foreign demand for domestic currency (Schmitt-Grohé and Uribe (2012a)), as well

as a potential quality bias in measured in�ation rates (Schmitt-Grohé and Uribe (2012b)),

are all unable to rationalize signi�cantly positive rates of in�ation.

Adam and Billi (2006, 2007) and Coibion, Gorodnichenko and Wieland (2012) ex-

plicitly incorporate a lower bound on nominal interest rates into sticky-price economies.

They �nd that fully optimal monetary policy is consistent with close to zero average

rates of in�ation. While zero lower bound episodes make it optimal to promise in�ation

in the future, these promises should only be made conditionally on being at the lower

bound, which happens rather infrequently; see Eggertsson and Woodford (2003) for an

early exposition.

A number of papers �nd positive average rates of in�ation to be optimal in the pres-

ence of downward nominal wage rigidities. Kim and Ruge-Murcia (2009) argue that such

rigidities generate optimal in�ation rates of approximately 0.35% in a model featuring

aggregate shocks only. Looking at a setting with idiosyncratic shocks, Benigno and Ricci

(2011) also �nd a positive steady-state in�ation rate to be optimal.8 Carlsson and West-

ermark (2016) consider a setting with nominal wage rigidities and search and matching

frictions in the labor market. They show how a standard U.S. calibration of the model

implies failure of the Hosios condition and justi�es an annual in�ation rate of about 1.2%.

Schmitt-Grohé and Uribe (2013) analyze the case for temporarily elevated in�ation in the

Euro Area due to the presence of downward rigidity of nominal wages.

Brunnermeier and Sannikov (2016) show that the optimal in�ation rate can also be

positive in a model without nominal rigidities. They present a model with undiversi�able

idiosyncratic capital income risk in which the optimal in�ation rate increases with the

amount of idiosyncratic risk.

There is also a literature studying endogenous �rm entry decisions in homogeneous �rm

economies, focusing on the e¤ect of in�ation on �rm entry (Bergin and Corsetti (2008),

Bilbiie et al. (2008)). Bilbiie et al. (2014) document that the welfare optimal in�ation

rate is positive whenever the bene�t of additional varieties to consumers falls short of

8Since positive in�ation has no welfare costs in their setup, they do not quantify the optimal in�ation

rate.
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the market incentives for creating these varieties. In�ation then reduces the value of

creating varieties and brings �rm entry closer to its e¢ cient (lower) level. The present

paper abstracts from endogenous �rm entry decisions and thus from the implication of

monetary policy for the entry margin. Instead, it considers a setting with heterogeneous

�rms in which entry and exit is driven by exogenous productivity dynamics.

Part of the sticky price literature incorporates trend in�ation via exogenous in�ation

trends (Ascari and Sbordone (2014), Cogley and Sbordone (2008)). Trend in�ation in

these setups results from a central bank pursuing an exogenous and potentially time-

varying in�ation target. The present paper is concerned with determining the optimal

in�ation rate and how it relates to microeconomic fundamentals.

3 Economic Model

We consider a cashless economy with nominal rigidities and monopolistically competitive

�rms. The model is entirely standard, except for the more detailed modeling of �rm-

level productivity and price adjustment dynamics. Speci�cally, we augment the standard

sticky-price setup by idiosyncratic �rm-level productivity adjustments that arrive in con-

junction with a price adjustment opportunity. This gives rise to a setting with hetero-

geneous �rm-level productivities in which the productivity of price-adjusting �rms is not

necessarily equal to that of non-adjusting �rms.

For simplicity, we derive our results within a time-dependent price adjustment model

à la Calvo (1983). As we argue in section 11.1, our main result in proposition 2 below

remains unaltered if we look instead at a setting where price adjustment frictions take the

form of menu costs. The next section introduces our generalized �rm setup in abstract

terms. Section 3.2 provides alternative economic interpretations of the setup.

3.1 Technology, Prices and Price Adjustment Opportunities

Each period t = 0; 1; : : : there is a unit mass of monopolistically competitive �rms indexed

by j 2 [0; 1]. Each �rm j produces output Yjt, which enters as an input into the production

of an aggregate consumption and investment good Yt according to

Yt =
�R 1

0
Y

��1
�

jt dj
� �
��1

; (1)

where 1 < � <1 denotes the price elasticity of product demand. Let Pjt denote the price

charged by �rm j in period t. Firms can adjust prices with probability 1�� each period
(0 � � < 1). The arrival of a Calvo price adjustment opportunity is thereby idiosyncratic

and independent of all other exogenous random variables in the economy.

We augment this standard setting by a second price adjustment opportunity that

arrives with probability � � 0 each period. This second adjustment opportunity is idio-
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syncratic across �rms, but arrives in conjunction with a �rm-level productivity change,

as described in detail below. In particular, let �jt 2 f0; 1g denote the idiosyncratic i.i.d.
random variable governing this second price and productivity adjustment and let �jt = 1

indicate the arrival of such an adjustment event for �rm j in period t (Pr(�jt = 1) = �).

We shall informally refer to the event �jt = 1 as the occurrence of a �-shock. We introduce

such �-shocks in abstract form below and discuss alternative economic interpretations in

section 3.2.

LettingKjt and Ljt denote the amount of capital and labor used by �rm j, respectively,

�rm output Yjt is given by

Yjt = AtZjt

�
K
1� 1

�

jt L
1
�

jt � Ft

�
; (2)

where At captures common productivity, Zjt �rm-speci�c productivity, and Ft � 0 the

potential presence of �xed costs for operating the �rm. We have � � 1 and to be consistent
with balanced growth, we assume

Ft = f � (�et)
1� 1

� (3)

for some f � 0, where �et captures the growth trend in the balanced growth path, as

de�ned in equation (27) below.9 Common productivity evolves according to

At = atAt�1;

�rm-speci�c productivity according to

Zjt =

(
gtZjt�1 if �jt = 0

Qt if �jt = 1;
(4)

where Qt is given by

Qt = qtQt�1: (5)

We also assume that at = a�at , qt = q�qt , and gt = g�gt with �
a
t ; �

q
t ; �

g
t > 0 being stationary

shocks with an arbitrary contemporaneous and intertemporal covariance structure, satis-

fying E[�at ] = E[�qt ] = E[�gt ] = 1. To obtain a well-de�ned steady state and to insure that

relative prices in the �exible-price economy remain bounded, we assume throughout the

paper

(1� �) (g=q)��1 < 1: (6)

Productivity dynamics in the previous setting feature three trends: (1) the common

growth trend at; (2) the experience growth trend gt, which applies in the absence of �-

shocks; and (3) the productivity growth trend qt, which determines the e¤ects of �-shocks

9In the absence of aggregate technology growth, the formulation of �xed costs in equation (3) corre-

sponds to that used in Melitz (2003).
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on technology. Each of these three growth trends has a di¤erent implication for the

optimal in�ation rate.

To understand the productivity dynamics implied by the previous setup, consider �rst

the special case with � = 0. In the absence of idiosyncratic �-shocks to �rm technology, all

�rms experience the same productivity growth rate atgt. Such a setting with homogeneous

productivity growth across all �rms is the one routinely considered in the sticky-price

literature.10

Next, consider the case � > 0 and let sjt denote the number of periods that have

elapsed since �rm j last experienced a �-shock (i.e., �j;t�sjt = 1 and �j;et = 0 for et =
t� sjt + 1; :::; t). Firm-speci�c productivity Zjt in equation (4) can then be written as

Zjt = GjtQt�sjt ;

where

Gjt =

(
1 for sjt = 0

gtGjt�1 otherwise,

and where Qt follows equation (5). This alternative formulation illustrates that all �rms

hit by a �-shock in t upgrade idiosyncratic productivity to Zjt = Qt, so that Qt can

be interpreted as capturing a "cohort e¤ect" of productivity dynamics, where cohorts

are determined by the arrival time of the last �-shock. Following a �-shock, the �rm

experiences productivity gains, as described by the process Gjt, as long as no further

�-shocks arrive. Since the productivity gains Gjt are lost with the arrival of the next �-

shock, one can interpret the process Gjt as capturing "experience" or "learning-by-doing

e¤ects" associated with the cohort production technology Qt�sjt. Following a �-shock in

period t, our speci�cation thereby implies that �rm productivity increases (temporarily

decreases) if Qt has been growing faster (slower) than Gjt since the time of arrival of

the last �-shock prior to period t. Note, however, that as long as Qt displays a positive

growth trend (qt > 0), �rms always become more productive over time in experience-

adjusted terms, even if Qt grows slower than Gjt. Indeed, in a setting with � > 0, the

long-term growth rate of �rms�productivity is determined by the process atqt, as the

experience growth rate gt generates - due to the occasional reset - only temporary level

e¤ects for �rm productivity.

As usual, we de�ne the aggregate price level as

Pt �
�Z 1

0

P 1��jt dj
� 1

1��

: (7)

10For the case � = 0, our setting still allows for a non-degenerate initial distribution of �rm productivi-

ties. Typically, this initial distribution is also assumed to be degenerate in the sticky-price literature. As

we show below, the additional assumption of a degenerate initial distribution is not key for the conclusion

that zero in�ation is optimal, as long as initial prices re�ect initial productivities, see Yun (2005) for a

discussion of this and related issues in a homogeneous �rm setting.
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Cost minimization in the production of �nal output Yt implies

Yjt = (Pjt=Pt)
�� Yt: (8)

which shows that the price level can be expressed as an expenditure-weighted average of

the prices in the di¤erent expenditure categories, in line with the practice at statistical

agencies:

Pt =

Z 1

0

�
Yjt
Yt

�
Pjt dj, (9)

Note that the price index contains in any period t all the goods available during this

period. This is clearly an idealized notion of how price indices are actually computed

by statistical agencies. We discuss in section 11.3 how results are altered if the product

basket underlying the price index is biased towards �older�products.

Using the price index in equation (9), we de�ne the gross in�ation rate as

�t � Pt=Pt�1:

To the extent that � -shocks capture product substitutions, this assumes that products

that become unavailable are replaced by a new products in the subsequent product basket,

so that the in�ation rate is computed using the price level associated with the old product

basket in the earlier period and the price level associated with the new basket in the

subsequent period. This assumption is in line with the sampling procedures typically

pursued by the BLS and other statistical o¢ ces. The section "Item replacement and

quality adjustment" in chapter 17 of the BLS Handbook of Methods (BLS (2015)), for

instance, describes how the changeover of discontinued product versions is handled. If a

data collector cannot �nd anymore a product version that was previously contained in the

basket, the collector replaces it with a new version. The price of the old version enters

the previous price index and the price of the new version enters the current price index.11

3.2 Alternative Interpretations of the Firm Setup

The previous section de�ned �-shocks (�jt = 1) as an idiosyncratic change in �rm-level

productivity that is associated with a price adjustment opportunity. This section presents

three alternative economic interpretations of �-shocks that highlight alternative economic

sources of �rm heterogeneity and that explain why productivity changes may plausibly

be associated with price �exibility at the �rm level.

11The BLS also seeks to adjust for quality di¤erences across versions. Armknecht et al. (1996) shows

that about 3% of products are discontinued each month. Their table 9.2 shows that more than 50% of

the replacement versions fall into the category "direct comparisons", for which no quality adjustment is

made; for the remaining replacements there is either a direct quality adjustment or quality adjustment is

imputed via di¤erent methods. As will become clear in section 3.2, our setup is consistent with statistical

agencies making such quality adjustments.
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Figure 1: Productivity dynamics in a setting with �rm entry and exit

Firm entry and exit. It is possible to interpret �-shocks as a �rm exit and entry

event. Indeed, this is the interpretation that we adopt in our empirical application of

the model in section 10. Speci�cally, the event �jt = 1 can be interpreted as an event

in which �rm j becomes permanently unproductive and thus exits the economy. Each

exiting �rm is then replaced by a newly entering �rm to which we assign for simplicity

the same �rm index j. The variable Qt then captures the productivity level of the cohort

of �rms that enters in period t, and Gjt captures the experience accumulated over the

lifetime of �rm j. The assumption that �rms�prices are �exible following a �-shock should

then be interpreted as newly entering �rms being able to freely choose the price of their

product. It is worth noting that �rm entry and exit rates are high in the United States,

see �gure 3 in Decker et al. (2014).

Figure 1 illustrates the �rm-level productivity dynamics for the empirically plausible

setting in which the cohort trend is positive (q > 0), but less strong than the experience

trend (g > q). To simplify the exposition, the �gure depicts the deterministic dynamics

and abstracts from the common TFP trend a, which does not a¤ect the distribution

of relative productivities across �rms. The line labeled log(Qt) in the �gure indicates

the cohort trend and captures the productivity of newly entering �rms at each point in

time. The lines starting at the cohort trend line capture the productivity dynamics of the
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entering cohorts over time. Since g > q, the productivity of existing �rms grows faster

than the productivity of new entrants, so that existing �rms are initially more productive

and thus larger than newly entering �rms. In experience-adjusted terms, however, newly

entering �rms are the most productive �rms in the economy. The downward-pointing

dashed arrows indicate the productivity losses of exiting �rms that have been hit by a

�-shock. For simplicity, the �gure assumes that their productivity permanently drops to

zero. As should be clear from the �gure, the entry and exit dynamics imply an exponential

distribution for �rm age. Coad (2010) shows that such an age distribution is empirically

plausible and how it generates, together with (productivity) growth shocks, a Pareto

distribution for �rm size, in line with the observed �rm size distribution.

Product substitution. The event �jt = 1 can also be interpreted as an event in

which the product previously produced by �rm j is no longer demanded by consumers.

Firm j reacts to this by introducing a new product, which - for simplicity - is assigned the

same product index j. The variable Qt then captures the productivity level associated

with products that are newly introduced in t and Gjt captures experience accumulation

in producing the new product. Product substitutions, e.g., in the form of new product

versions or models, take place rather frequently in the data and are also prevalent in the

CPI baskets of statistical agencies (see section III.C in Nakamura and Steinsson (2008)

for evidence on the rate of product substitution in the U.S. CPI). Evidence provided in

Moulton and Moses (1997), Bils (2009) and Melser and Syed (2016) furthermore shows

that the prices of new products are typically higher than those that they replace, even

after accounting for quality improvements.12 It thus appears reasonable to assume price

�exibility for new products (see also Nakamura and Steinsson (2012)).

Quality improvements. Let Qjt denote the quality of the product produced by �rm
j in period t. De�ning Qjt = Qt�sjt , the event �jt = 1 captures the situation in which

�rm j upgrades the quality of its product from level Qt�1�sj;t�1 to level Qt. Let aggregate

output produced with intermediate inputs of di¤erent quality be given by

Yt =

�Z 1

0

�
QjteYjt� ��1

�
dj
� �

��1

;

and let �rm j�s output of quality level Qjt be given by

eYjt = AtGjt

�
K
1� 1

�

jt L
1
�

jt � Ft

�
;

where Gjt now captures experience e¤ects associated with producing quality Qjt. Finally,

let ePjt denote the price of a unit of good j of quality level Qjt. Assuming that statistical
12Evidence provided in Bils (2009) shows that in�ation for durables ex computers over the period

1988-2006 averaged 2.5% per year, but when including only matched items, the in�ation rate was -3.7%

per year.
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agencies perfectly adjust the price level for quality changes over time, we have

Pt =

0@Z 1

0

 ePjt
Qjt

!1��
dj

1A 1
1��

:

As is easily veri�ed, this setup with quality improvements is mathematically identical to

the one with productivity changes spelled out in the previous section.13 Again, it appears

natural to assume that �rms can �exibly price goods with improved quality features.

3.3 Optimal Price Setting

Firms choose prices, capital and hours worked to maximize pro�ts. While price adjust-

ment is subject to adjustment frictions, factor inputs can be chosen �exibly. Letting Wt

denote the nominal wage and rt the real rental rate of capital, �rm j chooses the factor

input mix so as to minimize production costs KjtPtrt + LjtWt subject to the constraints

imposed by the production function (2). Let

Ijt � Ft + Yjt=(AtQt�sjtGjt)

denote the units of factor inputs (K
1� 1

�

jt L
1
�

jt) required to produce Yjt units of output. As

appendix A.1 shows, cost minimization implies that the marginal costs of Ijt are given by

MCt =

�
Wt

1=�

� 1
�
�

Ptrt
1� 1=�

�1� 1
�

: (10)

Now consider a �rm that either experienced a �-shock or a Calvo shock in period t and

that can freely choose its price. Let � denote the Calvo probability that the �rm has to

keep its previous price (0 � � < 1), the �rm will not be able to reoptimize its price with

probability �(1� �) at any future date, i.e., whenever it undergoes neither a �- shock nor
a Calvo shock.14 The price-setting problem of a �rm that can optimize its price in period

t is thus given by

max
Pjt

Et

1X
i=0

(�(1� �))i

t;t+i
Pt+i

[(1 + �)Pjt+iYjt+i �MCt+iIjt+i] (11)

s:t: Ijt+i = Ft+i + Yjt+i=At+iQt�sjtGjt+i;

Yjt+i = (Pjt+i=Pt+i)
�� Yt+i;

Pjt+i+1 = �t+i;t+i+1Pjt+i:

13The quality-adjusted price ePjt=Qjt and the quality-adjusted quantity eYjtQjt then correspond to the
price Pjt and quantity Yjt, respectively, in the previous section.
14In any period, the �rm can adjust its price with probability � due to the occurrence of a �-shock and

with probability (1� �)(1� �) due to the occurrence of a Calvo price adjustment shock.
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where � denotes a sales tax/subsidy and 
t;t+i denotes the representative household�s

discount factor between periods t and t + i. The �rst constraint captures the �rm�s

technology, the second constraint captures the demand function faced by the �rm, as

implied by equation (1), and the last constraint captures how the �rm�s price is indexed

over time (if at all) in periods in which prices are not reset optimally. We consider general

price indexation schemes and allow �t+i;t+i+1 to be a function of aggregate variables up

to period t+ i.15 In the absence of indexation, we have �t+i;t+i+1 = 1 for all i � 0.
Appendix A.2 shows that the optimal price P ?jt can be expressed as

P ?jt
Pt

�
Qt�sjtGjt

Qt

�
=

�
�

� � 1
1

1 + �

�
Nt
Dt

; (12)

where the variables Nt and Dt are independent of the �rm index j and evolve recursively

according to

Nt =
MCt
PtAtQt

+ �(1� �)Et

"

t;t+1

Yt+1
Yt

(�t;t+1)
��
�
Pt+1
Pt

�� �
qt+1
gt+1

�
Nt+1

#
(13)

Dt = 1 + �(1� �)Et

"

t;t+1

Yt+1
Yt

(�t;t+1)
1��
�
Pt+1
Pt

���1
Dt+1

#
: (14)

Equation (12) shows that the optimal reset price of a �rm depends only on how its own

productivity (AtQt�sjtGjt) relates to the productivity of a �rm hit by a �-shock in period

t (AtQt), as well as on the aggregate variables (Nt; Dt). It is precisely this feature which

permits aggregation of the model in closed form. Equation (12) furthermore shows that

more productive �rms optimally choose lower prices. With homogeneous �rms, relative

productivity is always equal to one (Qt�sjtGjt=Qt = 1) and equations (12)-(14) then

reduce to the ones capturing the optimal price in a standard homogeneous-�rm model

with sticky prices.

3.4 Household Problem

There is a representative household with balanced growth consistent preferences given by

E0

1X
t=0

�t�t

 
[CtV (Lt)]

1�� � 1
1� �

!
; (15)

where Ct denotes private consumption of the aggregate good, Lt labor supply, �t a prefer-

ence shock with E[�t] = 1 and � 2 (0; 1) the discount factor. We assume � > 0 and that
15We only require that price indexation is such that the price-setting problem remains well de�ned,

that price indexation does not give rise to multiplicities of the optimal in�ation rate and that �t;t+1 = 1

in a steady state without in�ation. For instance, when indexing occurs with respect to lagged in�ation

according to �t;t+1 = (�t)
� with � � 0, we rule out � > 1 to avoid non-existence of optimal plans and

rule out � = 1 to avoid multiplicities of the steady-state in�ation rate.
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V (�) is such that period utility is strictly concave in (Ct; Lt) and that Inada conditions
are satis�ed. The household faces the �ow budget constraint

Ct +Kt+1 +
Bt
Pt
= (rt + 1� d)Kt +

Wt

Pt
Lt +

Z 1

0

�jt
Pt

dj+
Bt�1
Pt

(1 + it�1)� Tt;

where Kt+1 denotes the capital stock, Bt nominal government bond holdings, it�1 the

nominal interest rate, Wt the nominal wage rate, rt the real rental rate of capital, d the

depreciation rate of capital, �jt nominal pro�ts from ownership of �rm j, and Tt lump

sum taxes. Household borrowing is subject to a no-Ponzi scheme constraint. The �rst-

order conditions characterizing optimal household behavior are entirely standard and are

derived in appendix A.3. To insure existence of a well-de�ned balanced growth path, we

assume throughout the paper that

� < (aq)��:

3.5 Government

To close the model, we consider a government which faces the budget constraint

Bt
Pt
=
Bt�1
Pt

(1 + it�1) + �

Z 1

0

�
Pjt
Pt

�
Yjt dj� Tt;

where � denotes a sales subsidy, which will be used to correct for the monopolistic distor-

tions in product markets. The government levies lump sum taxes Tt, so as to implement a

bounded state-contingent path for government debt Bt=Pt.16 Since we consider a cashless

limit economy, there are no seigniorage revenues, even though the central bank controls the

nominal interest rate. We furthermore assume that monetary policy is not constrained by

a lower bound on nominal interest rates. The equilibrium concept is standard and de�ned

in appendix A.5.

4 The Optimal In�ation Rate for a Special Case

We now illustrate the paper�s main result using a special setting without economic distur-

bances, without capital in production (� = 1), and without price-indexation (�t;t+1 = 1

for all t). Additionally, we consider the special household preferences17

E0

1X
t=0

�t (logCt � Lt)

16The household�s transversality condition will then automatically be satis�ed in equilibrium.
17These are obtained from equation (15) for V (L) = e�L and for the limiting case � ! 1.
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and a strictly positive rate of �-shocks (� > 0). The household�s �rst order conditions for

consumption and hours worked imply

Wt = CtPt for all t: (16)

In a balanced growth path with constant hours worked, aggregate consumption grows at

rate18
Ct+1
Ct

= aq for all t; (17)

where a is the productivity growth rate common to all �rms and q the cohort productivity

growth rate. The experience growth rate (g) does not contribute to long-run growth

because accumulated experience is lost once �rms are hit by a �-shock.

Next, consider the �rm side of the economy. A necessary condition for optimality

in the �rm sector is - as in any standard sticky-price model without �rm level trends -

that �rms do not want to change prices over time.19 For each cohort of �rms, production

technology progresses at the common TFP growth rate (a) and at the experience trend

growth rate (g). For constant prices to be optimal at the �rm level, nominal wages must

grow at the rate ag, so as to o¤set the e¢ ciency gains on the real side. This fact together

with equation (16) implies

Ct+1Pt+1
CtPt

= ag for all t;

which together with equation (17) shows that the optimal in�ation rate must satisfy

Pt+1
Pt

=
g

q
: (18)

For this in�ation rate to be su¢ cient for achieving optimality, one only has to insure that

the level of prices that �rms charge in the �rst period following a �-shock is the correct

one, in the sense that they do not involve a mark-up over production costs. Wages are

then equal to the marginal product of labor. As in the standard New Keynesian model

with homogeneous �rms, this can be achieved with the help of a Pigouvian output subsidy

that corrects �rms�monopoly power. The optimal in�ation rate (18) then achieves full

e¢ ciency for the economy: product prices are equal to marginal production costs and the

wage equals the marginal product of labor.20

The special case presented above highlights a number of aspects that will generalize

to the fully �edged model: (1) The Calvo assumption does not drive the optimal in�ation

18All �rms experience the TFP growth rate a. In addition, all �rms will eventually be hit by a �-shock

and thus experience the latest cohort productivity level Qt, where Qt latter grows at the rate q. Aggregate

labor productivity thus grows at the rate aq.
19Otherwise, the presence of asynchronous price adjustment opportunities leads to price di¤erences

between �rms that - on technological grounds - should charge identical prices.
20In the absence of the optimal output subsidy, the in�ation rate in equation (18) still achieves pro-

ductive e¢ ciency.
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result: since �rm-level prices never need to change under the optimal in�ation rate, the

same in�ation rate would be optimal in a setting with menu cost frictions. (2) The

experience growth rate (g) and the cohort growth rate (q) have opposite e¤ects on the

optimal in�ation rate because g a¤ects the growth rate of technology in a cohort of �rms,

but not the aggregate growth rate, while the reverse is true for q. (3) The �exibility of

prices following a �-shock is key for achieving e¢ ciency.

The remaining part of the paper shows that once one appropriately adjusts for the

presence of price indexing, the steady state result (18) survives in more general environ-

ments. We furthermore characterize the optimal in�ation policy outside of the steady

state, where the relationship between marginal costs and consumption is considerably

more complex. Achieving e¢ ciency then requires that the optimal in�ation rate �uctu-

ates around its steady state value.

5 Analytical Aggregation with Heterogeneous Firms

This section outlines the main steps that allow us to aggregate the model in closed form. In

a �rst step, we derive a recursive representation describing the evolution of the aggregate

price level Pt over time. In a second step, we derive a closed-form expression for the

aggregate production function. In a last step, we show how to appropriately detrend

aggregate variables, so as to render them stationary.

Evolution of the aggregate price level. Let P ?t�s;t�k denote the optimal price of a

�rm that last experienced a �-shock in t � s and that has last reset its price in t � k

(s � k � 0). In period t, this �rm�s price is equal to �t�k;tP ?t�s;t�k, where �t�k;t =Qk
j=1 �t�k+j�1;t�k+j captures the cumulative e¤ect of price indexation (with �t�k;t � 1 in

the absence of price indexation). Let �t(s) denote the weighted average price in period t

of the cohort of �rms that last experienced a �-shock in period t� s, where all prices are
raised to the power of 1� �, i.e.,

�t(s) = (1� �)
s�1X
k=0

�k(�t�k;tP
?
t�s;t�k)

1�� + �s(�t�s;tP
?
t�s;t�s)

1��: (19)

There are �s �rms that have not had a chance to optimally reset prices since receiving

the �-shock and (1��)�k �rms that have last adjusted k < s periods ago. From equation

(7) it follows that one can use the cohort average prices �t(s) to express the aggregate

price level as

P 1��t =
1X
s=0

(1� �)s��t(s); (20)

where � is the mass of �rms that experience a �-shock each period and (1 � �)s is the

share of those �rms that have not undergone another �-shock for s periods.
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To express the evolution of Pt in a recursive form, consider the optimal price P ?t�s;t of

a �rm that sustained a �-shock s > 0 periods ago, but can adjust the price in t due to

the occurrence of a Calvo shock. Also, consider the price P ?t;t of a �rm where a �-shock

occurs in period t. The optimal price setting equation (12) then implies

P ?t;t = P ?t�s;t

�
gt � � � � � gt�s+1
qt � � � � � qt�s+1

�
: (21)

The previous equation shows that a stronger cohort productivity trend (higher values for

q) causes the �rm that experiences a �-shock in period t to choose lower prices relative to

�rms that experienced �-shocks further in the past, as a stronger cohort trend makes this

�rm relatively more productive. Conversely, a stronger experience e¤ect (higher values

for g) increases the optimal relative price of the �rm that underwent a �-shock in t. The

net e¤ect depends on the relative strength of the cohort versus the experience e¤ect.

Appendix A.4 shows how to combine equations (19), (20), and (21) to obtain a recur-

sive representation for the evolution of the aggregate price level given by

P 1��t = �(P ?t;t)
1�� + (1� �)(1� �)

(pet)
��1 � �

1� �
(P ?t;t)

1�� + �(1� �)(�t�1;tPt�1)
1��; (22)

where pet summarizes the history of shocks to cohort and experience productivity and

evolves recursively according to

(pet )
��1 = � + (1� �)

�
pet�1gt=qt

���1
: (23)

The last term on the r.h.s. of equation (22) captures the price-level e¤ects from the share

�(1 � �) of �rms that experienced neither a Calvo shock nor a �-shock. These �rms

keep their old price (Pt�1 on average), adjusted for possible e¤ects of price indexation,

as captured by the indexation term �t�1;t. The �rst term on the r.h.s. of equation (22)

captures the price e¤ects of the mass � of �rms that experienced a �-shock in period t;

these �rms optimally charge price P ?t;t. The second term captures the average price of

�rms that experienced a Calvo shock in period t; their share is (1��)(1� �) and they set
a price that on average di¤ers from the price charged by �rms hit by a �-shock, depending

on the value of pet . This latter aspect in equation (22) is the key di¤erence relative to the

standard model without �rm heterogeneity in productivity. A stronger experience trend

(a higher value for gt), for instance, increases (pet )
��1, and - ceteris paribus - causes �rms

hit by a Calvo shock to choose a lower value for the optimal reset price. A stronger cohort

trend (a higher value for qt) has the opposite e¤ect. Overall, the interesting new feature

is that price dynamics now depend on the productivity trends.

In a setting where all �rms have identical productivity trends, e.g., where the cohort

e¤ect is as strong as the experience e¤ect (qt = gt for all t), equation (23) implies that pet
converges to one, causing the price level to eventually evolve according to

P 1��t = [� + (1� �)(1� �)] (P ?t;t)
1�� + �(1� �)(�t�1;tPt�1)

1��;
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which is independent of productivity developments at the �rm level. If in addition there

are no �-shocks (� = 0), the previous equation simpli�es further to

P 1��t = (1� �)(P ?t;t)
1�� + �(�t�1;tPt�1)

1��;

which describes the evolution of the aggregate price level in the standard Calvo model

with homogeneous �rms.

Aggregate production function. In appendix A.6 we show that aggregate output Yt
can be written as

Yt =
AtQt
�t

�
K
1� 1

�

t L
1
�

t � Ft

�
; (24)

where Kt denotes the aggregate capital stock, Lt aggregate hours worked and

�t =

Z 1

0

�
Qt

GjtQt�sjt

��
Pjt
Pt

���
dj (25)

evolves recursively according to

�t =

�
� + (1� �)(1� �)

(pet)
��1 � �

1� �

��
P ?t;t
Pt

���
+ �(1� �)

�
qt
gt

��
�t
�t�1;t

��
�t�1: (26)

TFP in the aggregate production function (24) is a function of the TFP of the latest

cohort hit by the �-shock, AtQt, and of the adjustment factor �t. The latter is de�ned

in equation (25) and captures a �rm�s productivity relative to that of the latest cohort,

Qt=
�
Qt�sjtGjt

�
, and weights this relative productivity with the �rm�s production share

(Pjt=Pt)
��. Equations (24) and (25) thus show how relative price distortions may lead to

aggregate output losses by negatively a¤ecting aggregate technology, e.g., by allocating

more demand to relatively ine¢ cient �rms. The evolution of the adjustment factor over

time is described by equation (26) and depends on �rm-level productivity trends - amongst

other ways - through the variable pet . In the limit with homogeneous �rm trends (i.e.,

qt = gt), pet converges to one and the evolution of �t becomes independent of productivity

realizations. If - in addition - there are no �-shocks (� = 0), then equation (26) simpli�es

further to

�t = (1� �)

�
P ?t;t
Pt

���
+ �

�
�t
�t�1;t

��
�t�1;

which is the equation capturing the distortions from price dispersion within a standard

homogeneous-�rm model.

Balanced Growth Path. One can obtain stationary aggregate variables by rescaling

them by the aggregate growth trend

�et = (AtQt=�
e
t )
�; (27)
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where�e
t denotes the e¢ cient adjustment factor chosen by the planner, de�ned in equation

(31) below. Speci�cally, the rescaled output yt = Yt=�
e
t and the rescaled capital stock

kt = Kt=�
e
t are now stationary and the aggregate production function (24) can be written

as

yt =

�
�e
t

�t

��
k
1� 1

�

t L
1
�

t � f

�
: (28)

In the deterministic balanced growth path, the (gross) trend growth rate et = �et=�
e
t�1

is constant and equal to (aq)� and hours worked are constant whenever monetary policy

implements a constant in�ation rate. Appendices A.7 and A.8 write all model equations

using stationary variables only and appendix A.9 determines the resulting deterministic

steady state.

6 E¢ ciency of the Flexible-Price Equilibrium

This section derives the e¢ cient allocation and the conditions under which the �exible-

price equilibrium is e¢ cient. Appendix B shows that the e¢ cient consumption, hours and

capital allocation fCt; Lt; Kt+1g1t=0 solves

max
fCt;Lt;Kt+1g1t=0

E0

1X
t=0

�t�t

 
[CtV (Lt)]

1�� � 1
1� �

!
(29)

s:t: Ct +Kt+1 = (1� d)Kt +
AtQt
�e
t

�
(Kt)

1� 1
� (Lt)

1
� � Ft

�
; (30)

where

�e
t �

 Z 1

0

�
Qt

GjtQt�sjt

�1��
dj

! 1
1��

; (31)

which evolves according to

(�e
t )
1�� = � + (1� �)

�
�e
t�1qt=gt

�1��
: (32)

Constraint (30) is the economy�s resource constraint, when expressing aggregate out-

put using the aggregate production function (24). The e¢ cient productivity adjustment

factor �e
t showing up in the planner�s production function is de�ned in equation (31); its

recursive evolution is described by equation (32). The �rst-order conditions of problem

(29)-(30) shown in appendix B are necessary and su¢ cient conditions characterizing the

e¢ cient allocation.

Decentralizing the e¢ cient allocation requires that �rms�prices, which enter �t and

thus in the aggregate production function (24), satisfy certain conditions. In particular,

equations (25) and (31) imply that �t = �
e
t is achieved if prices satisfy

Pjt
Pt
=
1

�e
t

Qt
GjtQt�sjt

: (33)
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The previous equation requires relative prices to accurately re�ect relative productivi-

ties. Furthermore, as in models without �rm heterogeneity, one has to eliminate �rms�

monopoly power by a Pigouvian subsidy to obtain e¢ ciency of the market allocation. We

thus impose the following condition:

Condition 1 The sales subsidy corrects �rms�market power, i.e., �
��1

1
1+�

= 1.

Appendix C then proves the following result:

Proposition 1 The �exible-price equilibrium (� = 0) is e¢ cient if condition 1 holds.

The proof of the proposition shows that condition (33) holds under �exible prices,

so that one achieves �t = �e
t and thereby productive e¢ ciency. In the presence of the

assumed sales subsidy, consumer decisions are also undistorted, which means that the

values of consumption, hours worked and capital in the �exible-price equilibrium are

identical to the values that these variables assume in the e¢ cient allocation.

7 Optimal In�ation with Sticky Prices: Main Result

This section determines the optimal in�ation rate for an economy with sticky prices

(� > 0). It derives the optimal rate of in�ation for the nonlinear stochastic economy

with heterogeneous �rms in closed form and shows how in�ation optimally depends on

the productivity growth rates at; qt and gt. As it turns out, the optimal in�ation rate

implements the e¢ cient allocation (the �exible-price benchmark) and is independent of

at.

To establish our main result in the most straightforward manner, we impose an as-

sumption on initial conditions, in particular on how �rms�initial prices and initial pro-

ductivities are related. Similar conditions are imposed in sticky-price models with ho-

mogeneous �rms, where it is routinely assumed that there is either no or a su¢ ciently

small dispersion of initial prices, so that relative prices re�ect relative productivities. We

impose:

Condition 2 Initial prices in t = �1 re�ect �rms�relative productivities, i.e.,

Pj;�1 /
1

Q�1�sj;�1Gj;�1
for all j 2 [0; 1]:

We discuss the e¤ects of relaxing this condition below. The following proposition

states our main result:
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Proposition 2 Suppose conditions 1 and 2 hold. The equilibrium allocation in the sticky-
price economy is e¢ cient if monetary policy implements the gross in�ation rate

�?t = �
?
t�1;t

 
1� � (�e

t)
��1

1� �

! 1
��1

for all t � 0; (34)

where �?t�1;t captures price indexation between periods t�1 and t (�?t�1;t � 1 in the absence
of indexation) and �e

t is de�ned in equation (31) and evolves according to equation (32).

The proof of proposition 2, which is contained in appendix D, establishes that with

the optimal in�ation rate, �rms choose relative prices as in the �exible-price equilibrium.

This result is established by showing that (1) �rms hit by a �-shock choose the same

optimal relative price as in the �exible price economy, and that (2) �rms hit by a Calvo

shock optimally choose not to adjust their price, which avoids the emergence of price

dispersion between otherwise identical �rms. This, together with the fact that (3) initial

prices re�ect initial productivities, ensures that all relative prices are identical to those

in the �exible-price equilibrium. Under the assumed output subsidy, it then follows that

household allocations are also identical to the �exible-price equilibrium, which has been

shown to be e¢ cient (proposition 1).

It may be surprising that a single policy instrument, namely the aggregate in�ation

rate, can insure that the following two relative prices are optimal: the relative price

between �rms hit by �-shocks and sticky-price �rms, and the relative price between �rms

with a Calvo adjustment opportunity and sticky-price �rms. To understand this result,

note that the optimal price setting equation (12), which holds independently of the reason

for why �rms i and j can adjust prices, implies

P ?jt
P ?it

=
AtQt�sitGit
AtQt�sjtGjt

:

This shows that all price-adjusting �rms set prices such that relative prices amongst them-

selves re�ect inversely relative productivities. Moreover, this holds true independently of

the value of the in�ation rate.21 Therefore, the in�ation rate can be used to insure that

relative prices between the set of price-adjusting �rms and the set of non-adjusting �rms

are optimal, thereby achieving e¢ cient relative prices amongst all �rms.

In the absence of price indexation (�?t�1;t � 1), the optimal in�ation rate �?t is only a
function of the variable �e

t , which summarizes the distribution of relative productivities

across �rms, see equation (31). Since these relative productivities are independent of the

common TFP growth rate at, it follows that the optimal in�ation rate does not depend

21The fact that adjusting �rms choose optimal relative prices amongst themselves is also a feature of

homogeneous �rm models. What we show here is that this generalizes to our setting with heterogeneous

�rms.
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on the realizations of at. In contrast, the cohort productivity growth rate qt and the

experience growth rate gt do a¤ect �e
t , see equation (32), albeit in opposite directions: a

stronger cohort productivity growth rate qt decreases the optimal in�ation rate, while a

stronger experience growth rate gt increases the optimal in�ation rate.

For the special case in which all �rms have identical productivity trends (� = 0 or

gt = qt for all t) or even identical productivities (�e
t = 1), the optimal gross in�ation

rate is equal to one in the absence of price indexation, as in a standard homogeneous-�rm

model. Perfect price stability is then optimal at all times.

To understand the economic logic underlying equation (34), we use equation (32) to

obtain the following alternative expression for the optimal in�ation rate:

�?t = �
?
t�1;t

atgt
At�1Qt�1
�et�1

AtQt
�et

: (35)

The denominator in the previous expression (AtQt=�e
t) is the average productivity of

all �rms in the e¢ cient allocation, see equation (24). The numerator is the average

productivity of all �rms except those that received a �-shock in period t: their average

productivity was At�1Qt�1=�e
t�1 in period t � 1 and has grown since by the aggregate

TFP growth rate at and the experience growth rate gt. The productivity of all �rms is

in turn a weighted sum of the productivity of �rms with a �-shock and �rms without

�-shocks:

AtQt
�e
t

=

 
� (AtQt)

��1 + (1� �)

�
atgt

At�1Qt�1
�e
t�1

���1! 1
��1

;

where AtQt denotes the productivity of �rms with a �-shock. The optimal in�ation rate

can thus be expressed as

�?t = �
?
t�1;t

1�
� (rpt)

��1 + (1� �)
� 1
��1

; (36)

where rpt denotes the relative relative productivity between �rms with and without a

�-shock and is given by

rpt �
AtQt

atgt
At�1Qt�1
�et�1

:

In the absence of price indexation (�?t�1;t � 1), we thus have ��t = 1 whenever this measure
of relative productivity equals one, which is the case in a homogeneous �rm model. If

�-shock �rms are less productive (rpt < 1), we have ��t > 1. Conversely, if �-shock �rms

are more productive (rpt > 1), we have ��t < 1.

Price indexation by non-adjusting �rms (�?t�1;t 6= 1), say because of indexation to

the lagged in�ation rate, introduces additional components into the optimal aggregate

in�ation rate. In particular, it requires that price-adjusting �rms, i.e., �rms hit by either
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a �-shock or a Calvo shock, also adjust their price by the indexation component. This

way prices continue to accurately re�ect relative productivities at all times. This explains

why indexation a¤ects the optimal in�ation rate one-for-one in equations (34)-(36).

Although proposition 2 assumes that �rms�initial prices accurately re�ect the initial

relative productivities, the initial productivity distribution itself is unrestricted. We con-

jecture that for a setting where condition 2 fails to hold, one would obtain additional

transitory and deterministic components to the optimal in�ation rate, as in the homo-

geneous �rm setting studied by Yun (2005). The in�ation rate stated in proposition 2

would then become optimal only asymptotically.

Interestingly, it follows from the proof of proposition 2 that the in�ation rate (34)

continues to ensure productive e¢ ciency (but not full e¢ ciency) in settings where condi-

tion 1 fails to hold. From the theory of optimal taxation it then follows that it remains

optimal to implement the in�ation rate (34), as it is suboptimal to distort intermediate

production as long as (distortionary) taxes on �nal goods are available.

8 The Optimal Steady-State In�ation Rate

This section discusses the optimal steady-state in�ation rate implied by the model. To

simplify the discussion, we initially abstract from price indexation.

Proposition 2 makes it clear that in the case in which the productivity of all �rms grows

at the same rate (� = 0), which includes as a special case the setting with homogeneous

�rms, we obtain �?t = 1. For � = 0, the optimal (gross) steady-state in�ation rate is thus

trivially equal to one, independently of the values assumed by (a; g; q).

For the case � > 0, the optimal steady-state in�ation rate jumps discontinuously away

from �?t = 1, with the optimal steady-state in�ation rate being itself independent of the

value of � > 0.22 The following lemma summarizes this result:

Lemma 1 Suppose conditions 1 and 2 hold, there are no economic disturbances, there is
no price indexation (�?t�1;t � 1) and � > 0. The optimal in�ation rate then satis�es

lim
t!1

�?t = g=q: (37)

Proof. From equations (6) and (32) it follows that limt!1 (�
e
t)
��1 = [1�(1��) (g=q)��1]=�.

It then follows from proposition 2 that limt!1�
?
t = g=q.

Since we allow for arbitrary initial productivity distributions, the absence of shocks

does not necessarily imply that the optimal in�ation rate is constant from the beginning.
22Note that the e¢ cient allocation also discontinuously jumps when moving from � = 0 to � > 0, as in

the former case e¢ cient aggregate growth is equal to (ag)� and in the latter case it is equal to (aq)� in

steady state. Appendix E shows that the discontinuity of the optimal steady-state in�ation rate is not

due to the discontinuity of the associated aggregate allocation.
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This only happens asymptotically, once the productivity distribution converges to its

stationary distribution (in detrended terms).23 The lemma provides the in�ation rate

that is asymptotically optimal as this stationary distribution is reached.24

Surprisingly, the optimal long-run in�ation rate is completely independent of the in-

tensity of �-shocks. To understand the source of this invariance, consider a setting where

�-shocks capture �rm exit and entry events and where g > q, so that newly entering �rms

are less productive than the set of continuing old �rms. A higher value for � implies that

more young and relatively unproductive �rms are amongst the set of price-setting �rms.

This calls - ceteris paribus - for a higher in�ation rate. Yet, the productivity distribution

of continuing old �rms is not invariant to changes in �: a higher � also implies more �rm

turnover and thus less experience accumulation. Continuing old �rms thus tend to be less

productive relative to new entrants, which calls for lower in�ation rates. In net terms,

these two e¤ects exactly cancel each other.

On empirical grounds, it appears plausible to assume g > q so that the optimal steady-

state in�ation rate from lemma 1 is positive. For the case where �-shocks capture �rm

turnover, one obtains g > q from the fact that young �rms are small relative to old

�rms, see also section 10 below. Likewise, interpreting �-shocks as representing product

substitution shocks, g > q implies that new products are more expensive than the average

product and that their relative price is falling over the product life cycle. Both of these

facts are in line with evidence provided by Melser and Syed (2016). Thus, while the

theoretical setup allows the optimal steady-state in�ation rate to be potentially negative,

these empirical considerations suggest positive in�ation to be optimal in steady state.

Interestingly, aggregate productivity dynamics turn out not to be informative about

the optimal in�ation rate. The aggregate steady-state growth is equal to (aq)� and is

driven by a factor that a¤ects the optimal in�ation rate (q) and a factor that does not

a¤ect it (a). Moreover, the experience e¤ect (g) has no aggregate growth rate implications,

but a¤ects the optimal in�ation rate. Determining the optimal in�ation rate thus requires

either studying the �rm-level productivity trends g and q or the relative productivities of

old versus new �rms, see equations (35) and (36). We shall come back to this issue in the

empirical section 10.

Finally, we discuss the e¤ects of price indexation on the optimal steady state in�ation

rate. For � > 0 the optimal long-run in�ation rate is then given by �? (g=q). For the

case where prices are indexed to lagged in�ation according to �?t�1;t =
�
�?t�1

��
for some

� 2 [0; 1), we thus obtain
lim
t!1

�?t = (g=q)
1

1�� :

23When � = 0, the initial distribution remains unchanged (in detrended terms).
24The transitional dynamics can easily be derived from proposition 2 using the initial productivity

distribution and equation (32).
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Standard forms of price indexation thus amplify the divergence of the optimal gross in-

�ation rate from one.

9 The Welfare Costs of Strict Price Stability

This section shows that suboptimally implementing strict price stability, as suggested by

sticky-price models with homogeneous �rms, gives rise to strictly positive welfare costs

whenever g 6= q. We derive this fact �rst analytically for a special case, as this allows

considering the limit � ! 0. In a second step, we illustrate the source of the welfare losses

and their magnitude numerically.

The following proposition shows that - as long as g 6= q - there is a strictly positive

welfare loss that is bounded away from zero when implementing strict price stability; this

holds true even for the limit � ! 0. The proof of the proposition is contained in appendix

F.

Proposition 3 Suppose conditions 1 and 2 hold, there are no economic disturbances,
� > 0, �xed costs of production are zero (f = 0), there is no price indexation (�?t�1;t � 1),
and the disutility of work is given by

V (L) = 1�  L� ;

with � > 1 and  > 0. Assume g=q > �(1 � �), so that a well-de�ned steady state with

strict price stability exists.

Consider the limit �(e)1�� ! 1 and a policy implementing the optimal in�ation rate

�?t from proposition 2, which satis�es limt!1�
?
t = �

? = g=q. Let c(�?) and L(�?) denote

the limit outcomes for t!1 for consumption and hours worked, respectively, under this

policy. Similarly, let c(1) and L(1) denote the limit outcomes under the alternative policy

of implementing strict price stability. Then,

L(1) = L(�?)

and
c(1)

c(�?)
=

�
1� �(1� �)(g=q)��1

1� �(1� �)

� ��
��1
 
1� �(1� �) (g=q)�1

1� �(1� �)(g=q)��1

!�
� 1: (38)

For g 6= q the previous inequality is strict and lim�!0 c(1)=c(�
?) < 1:

We now illustrate the nature of the relative price distortions that are generated by a

suboptimal rate of in�ation and how they give rise to welfare losses. Panel A in �gure 2
reports the mean cohort price (relative to the price of all �rms), depicted on the y-axis,

as a function of the cohort age in quarters (x-axis). It does so once for a setting where

monetary policy implements the optimal in�ation rate, which for illustration is assumed
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Figure 2: Relative prices and in�ation

to be 2% per year (in net terms), and once where monetary policy pursues strict price

stability.25 Panel A shows that young cohorts charge a higher (relative) price and that this

price decreases over the lifetime of the cohort. Under the optimal in�ation rate, the decline

happens at a constant rate.26 Under strict price stability, however, �rms anticipate that

their relative prices will not necessarily fall, due to Calvo price stickiness. This causes

them to initially "front load" prices, i.e., in an environment with strict price stability

young cohorts charge initially lower prices than under the optimal in�ation rate. Over

time, some �rms in the cohort will get the opportunity to lower their prices in response to

Calvo shocks, but the average relative price of the cohort will eventually be slightly higher

than under the optimal in�ation rate. Beyond these distortions in average cohort prices,

the suboptimal in�ation rate also generates price distortions within a cohort of �rms.

This is illustrated in panel B of �gure 2. Panel B reports the mean cohort price and the

two standard deviation bands of the cross-sectional price distribution within the cohort,

assuming monetary policy pursues strict price stability. It shows that suboptimal in�ation

not only gives rise to distortions in the mean price but also to substantial amounts of price

dispersion within the cohort. In contrast, price dispersion at the cohort level is zero under

the optimal in�ation rate.

Figure 3 reports the steady-state value for the ratio �e
t=�t (y-axis) as a function

25Figure 2 is computed using g = 1:020:25; q = 1; � = 0:75; � = 0:035; � = 3:8 and assumes that the

initial productivity distribution is equal to the stationary distribution (in detrended terms).
26The �gure assumes that no shocks hit the economy.
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Figure 3: Aggregate productivity for di¤erent in�ation rates (optimal rate is 2%)

of the implemented steady-state in�ation rate (x-axis), when the optimal in�ation rate

is 2% per year.27 The aggregate production function (24) shows that one can interpret

�e
t=�t as a measure of the aggregate productivity distortion that is implied by the relative

price distortions associated with suboptimal in�ation rates.28 The �gure shows that a 10

percentage point shortfall of the in�ation rate below its optimal value of 2% is associated

with an aggregate productivity loss equal to about 1%. In the process, the productivity

losses arise rather nonlinearly: a shortfall of in�ation of 2 percentage points below its

optimal value is associated with an aggregate productivity loss of just 0.05%. Furthermore,

in�ation losses are asymmetric, with above-optimal in�ation leading to relatively larger

losses. For instance, increasing in�ation 8 percentage points above its optimal value

generates a productivity loss of 0.94%, while decreasing in�ation by the same amount

below its optimal value leads to a productivity losses of only 0.37%.

10 The Optimal In�ation Rate for the United States

Using the theory developed in the preceding sections, we now quantify the optimal in-

�ation rate for the United States. In doing so, we interpret �-shocks as events in which

production establishments are closed down and replaced by new establishments, in line

27The �gure is based on the same parameterization as �gure 2.
28Appendix F shows that c(1)=c(�?) = (�e=�)� :
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with the "�rm entry and exit" interpretation spelled out in section 3.2. This interpreta-

tion has the advantage that one can use readily available establishment-level information

to estimate the optimal in�ation rate.

An alternative approach for estimating the optimal in�ation rate could make use of

even more disaggregate product-level information, which amounts to interpreting �-shocks

as events in which old products (old quality levels) are replaced by new products (new

quality levels). Our interpretation of �-shocks as establishment entry and exit shocks

does not preclude that on top of the considered establishment dynamics, additional prod-

uct substitution dynamics are present at the establishment level. For instance, it would

be relatively straightforward to enrich our framework by adding a Poisson shock, which

causes establishments to occasionally replace their current product by a new product.

These additional product substitutions at the establishment level could also be associated

with additional idiosyncratic adjustments to establishment productivity (or product qual-

ity).29 Provided the establishment can again freely choose the prices of newly introduced

products, all our theoretical results about the optimal in�ation rate remain unchanged.

The empirical strategy for estimating the optimal in�ation rate presented below would

equally remain una¤ected. In light of this, we feel comfortable with our interpretation of

�-shocks as establishment entry and exit events.

Let Lt denote the average employment per establishment in period t and let L
c

t denote

the average employment of continuing establishments, i.e., all establishments except the

ones that newly entered in period t. The following proposition shows how the optimal

in�ation rate �?t can be inferred from these employment measures:

Proposition 4 Suppose conditions 1 and 2 hold and that there are no �xed costs in pro-
duction (f = 0). Suppose monetary policy implements the potentially suboptimal in�ation

rate �t and �rms�prices are indexed according to �t�1;t (�t�1;t � 1 in the absence of price
indexation). The optimal in�ation rate net of price indexation �?t=�

?
t�1;t (�

?
t�1;t � 1 in

the absence of price indexation) then satis�es

�
�t

�e
t

��1 
1� �(1� �) (�t=�t�1;t)

��1

1� �(1� �)
�
�?t=�

?
t�1;t

���1
! �

��1

=
1� (1� �)L

c

t=Lt
1� (1� �)(�?t=�

?
t�1;t)

��1 for t � 0;

(39)

29For example, equation (2) could be generalized to

Yjt = AtZjt eZjt�K1� 1
�

jt L
1
�

jt � Ft
�
;

where eZjt is the productivity component that is speci�c to the product currently produced by estab-
lishment j, with eZjt = eZjt�1 whenever the product is not substituted and eZjt being an iid draw from
some stationary distribution with E[1= eZjt] = 1, whenever there is a Poisson event indicating a product
substitution.
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where �t=�
e
t evolves recursively according to

�t

�e
t

=
h
1� �(1� �)

�
�?t=�

?
t�1;t

���1i 1� �(1� �) (�t=�t�1;t)
��1

1� �(1� �)
�
�?t=�

?
t�1;t

���1
! �

��1

+ �(1� �)

 
(�t=�t�1;t)

�

�?t=�
?
t�1;t

!
�t�1

�e
t�1

; (40)

with ��1=�
e
�1 = 1.

The proof of proposition 4 can be found in appendix G. Proposition 4 shows how one

can determine the optimal in�ation path �?t for a sticky-price economy that is subject to

stochastic disturbances and in which monetary policy implements potentially suboptimal

in�ation rates. In particular, equations (39) and (40) allow to infer �?t=�
?
t�1;t for all t � 0,

given values for the parameters (�; �; �), the price indexation rule �, the observed actual

in�ation rate �t and the employment ratio L
c

t=Lt.

An instructive special case of proposition 4 arises when monetary policy is optimal

(�t=�t�1;t = �?t=�
?
t�1;t for all t). We then have�t = �

e
t for all t and equation (39) directly

yields

�?t = �
?
t�1;t

 
L
c

t

Lt

! 1
��1

: (41)

For this special case, the optimal in�ation rate is then only a function of price index-

ation (�?t�1;t), the ratio of average employment of continuing establishments (L
c

t) over

the average employment of all establishments (Lt), and the demand elasticity parameter

�. This is closely related to our theoretical result in equation (35), which shows that

the optimal in�ation rate depends on price indexation (�?t�1;t) and the ratio of average

productivity of continuing �rms (atgtAt�1Qt�1=�e
t�1) over the average productivity of all

�rms (AtQt=�e
t). The special case with optimal monetary policy thus illustrates how our

estimation approach uses establishment employment information together with informa-

tion about the demand elasticity � to determine establishment productivity.30 In fact, the

employment ratio in equation (41) raised to the power 1=(� � 1) is equal to the produc-
tivity ratio showing up in equation (35). This holds true because productivity di¤erences

translate into price di¤erences, which in turn translate into employment di¤erences, as

determined by the elasticity of product demand �.
30It may seem desirable to directly estimate �rm-level productivities. It is, however, di¢ cult to measure

physical productivity at the �rm or establishment level because output prices are typically not observed

at this level of observation. As is explained in Foster, Haltiwanger and Syverson (2008), the productivity

literature usually measures revenue productivity instead of physical productivity at the �rm level, which

de�ates �rm-level output with some industry-level price index. In our setting, �rms�revenue productivity

is completely unrelated to their physical productivity in the absence of �xed costs of production. For the

few industries for which physical and revenue productivities can both be observed, the two productivity

measures can be rather di¤erent; see Foster, Haltiwanger and Syverson (2008).
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For the more general case with suboptimal monetary policy, the expression on the

left-hand side of equation (39) starts to generally di¤er from one. In fact, as a result of

ine¢ cient price dispersion, aggregate productivity (AtQt=�t) will fall short of the value

it assumes in the e¢ cient allocation (AtQt=�e
t), so that 1=�t � 1=�e

t . The evolution of

the productivity wedge �t=�
e
t under suboptimal policies is captured by equation (40).

10.1 Baseline Estimation

We estimate the optimal in�ation rate using the result derived in proposition 4 and the

baseline parameters reported in table 1. The parameters refer to a sticky-price model at

annual frequency because the employment ratio L
c

t=Lt is observed at annual frequency.

The price stickiness parameter satis�es � � (0:55)4, where 0:55 is the baseline value chosen
in the quarterly sticky-price model of Coibion, Gorodnichenko and Wieland (2012).31 The

probability for �-shocks is set to 11.5% per year, which is the midpoint between the average

establishment birth rate (12.4%) and the average establishment exit rate (10.7%) over

the period 1977 to 2015 reported in the Business Dynamics Statistics (BDS) of the U.S.

Census Bureau. We set the elasticity of product demand � equal to 7, which is the baseline

value considered in Coibion, Gorodnichenko and Wieland (2012) and Gorodnichenko and

Weber (2016). It implies a steady state mark-up of around 17% over production costs. In

general, we consider price indexation rules that index prices to lagged in�ation according

to

�t�1;t = (�t�1)
� ;

for some � 2 [0; 1). For our baseline estimation, we consider a setting without price

indexation.

Parameter Assigned value

Price stickiness � 0.0915

�-shock probability � 11.5%

Demand elasticity � 7

Price indexation � 0

Table 1: Baseline parameters (annual model)

We determine the employment ratio L
c

t=Lt using information from the BDS. The BDS

is based on the Longitudinal Business Database (LBD) and provides information on the

31The implied price duration is neverthesless larger than in the quarterly model of Coibion, Gorod-

nichenko and Wieland (2012). Section 10.2 shows that our quantitative results are robust to making

prices less sticky.
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Figure 4: Optimal U.S. in�ation �?t , baseline estimation

number of establishments and establishment employment by establishment age. The

database covers the universe of private establishments in the United States for the years

1977-2015. We compute Lt by dividing the reported "economy-wide employment" in any

year t by the "economy-wide number of establishments" of the year. Similarly, we compute

the average employment of continuing establishments L
c

t by �rst subtracting "jobs created

by establishment birth over the last 12 months" from "economy-wide employment" and

then dividing the result by the number of continuing establishments, which is equal to

the "economy-wide number of establishments" minus the number of "establishments born

during the last 12 month". We use the GDP de�ator provided by the U.S. Bureau of

Economic Analysis (GDPDEF_PC1) as our measure for the actual in�ation rate. Results

are virtually identical when using other measures of actual in�ation.

Figure 4 depicts the optimal in�ation rate implied by proposition 4 and our baseline

calibration. The estimated optimal in�ation rate is positive throughout the sample pe-

riod. This is in line with the empirical observation that older establishments employ (on

average) more workers, which means that they are more productive in our framework

(gt=qt > 1). The sample mean of the optimal in�ation rate is equal to 1.1% per year,

which is a relatively large number within the sticky-price literature.32 Coibion, Gorod-

32See �gure 1 in Diercks (2017), which depicts the optimal average in�ation rate found in 100 quanti-
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nichenko and Wieland (2012), for instance, �nd similarly high optimal average in�ation

rate (of around 1.5%) using a model featuring a zero lower bound on nominal interest

rates and a monetary authority that follows a Taylor rule.33

As is evident from Figure 4, the optimal in�ation rate displays a slight downward trend

over time. Especially from 1988 onwards, the optimal in�ation rate seems to have dropped.

While the average over the period 1977-1987 was 1:3%, the average over the remaining
sample period was 1:0%. According to the model, this drop in the estimated optimal
in�ation rate implies that either the experience growth rate gt has weakened and/or that

the cohort growth rate qt has accelerated. Both of these e¤ects cause older establishments

to become smaller relative to new establishments (L
c

t=Lt drops). Independent evidence

on �rm employment growth provided in �gure 11 in Pugsley, Sedlacek and Sterk (2017)

shows indeed that the employment growth rate of cohorts that entered after the year 1987

has slowed signi�cantly, which is consistent with the slight downward trend in the optimal

in�ation rate showing up in �gure 4.

10.2 Robustness of the Empirical Results

We now explore the robustness of our baseline estimation from the previous section. We

consider the e¤ects of choosing alternative parameter values for (�; �; �; �), as well as the

e¤ects of positive �xed costs in production (f � 0).
A �rst set of results is presented in �gure 5. Panel A in the �gure depicts the optimal

in�ation estimate when assuming �exible prices (� = 0) and shows that the benchmark

results remain virtually unchanged. Panel B depicts the e¤ects of assuming alternative

establishment turnover rates. As is well known, the turnover rate has signi�cantly dropped

over the considered sample period. The value of � = 0:15 corresponds to the average

establishment entry and exit rate at the beginning of the sample period, while the lower

value of � = 0:095 is the one observed at the end of the sample period. The �gure shows

that alternative turnover rates within this range do not generate quantitatively signi�cant

e¤ects.

Panel C in �gure 5 shows the e¤ects of assuming a lower value for the demand elasticity

�. While macroeconomists tend to use high demand elasticities based on the observation

that pure pro�ts tend to be low, see Basu and Fernald (1997), the trade and industrial

tative optimal monetary policy studies.
33The authors shows that for fully optimal monetary policy, as considered in the present paper, the

average optimal in�ation rate falls to 0.2% per year in their setting. The large drop in average in�ation

arises because Taylor rules are severely suboptimal in the vicinty of the strong non-linearities induced by

a lower bound constraint. The associated welfare costs can then be reduced by increasing the intercept

term of the Taylor rule. In our setup, Taylor rules with optimal intercepts are approximately optimal

and lead to a very similar average in�ation rate as in a setting with fully optimal monetary policy. This

is so because the welfare costs of in�ation are relatively symmetric around the optimum, see �gure 3.
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organization literature usually estimates lower demand elasticity values.34 The value of

� = 3:8 considered in �gure 5 is taken from Bilbiie et al. (2012) and Bernard et al. (2003)

and is based on a calibration that �ts U.S. plant and macro trade data. The �gure shows

that the optimal in�ation rate then approximately doubles. This increase is driven by

the fact that with a lower demand elasticity, any given employment ratio L
c

t=Lt observed

in the data must be associated with larger establishment-level productivity di¤erences (a

larger gap between gt and qt).

Panel D in �gure 5 considers a setting in which prices of non-optimizing �rms are in-

dexed to lagged in�ation. We choose � = 1=2, which Coibion, Gorodnichenko andWieland

(2012) consider to be an upper bound on the range of plausible values for this parameter.

Again, this causes the optimal in�ation rate to approximately double compared to the

baseline estimate.

Since proposition 4 assumes that there are no �xed costs in production (f = 0), we

also consider the e¤ects of allowing for positive �xed costs. Appendix H shows that the

presence of �xed costs tends to slightly increase the estimated optimal in�ation rates, but

the e¤ect is quantitatively small.

11 Robustness of the Theoretical Results

This section considers various extensions and alternative model setups. Section 11.1 shows

that our main �nding about the optimal in�ation rate (proposition 2) continues to apply

in a setting where price adjustment frictions take the form of menu costs. Section 11.2

discusses the e¤ects of a non-constant �-shock hazard rate, while section 11.3 analyzes

the case with a price index which oversamples old products.

11.1 Menu Cost Frictions

While our results are illustrated using time-dependent price-setting frictions, our theoreti-

cal �nding from proposition 2 extends to a setting in which �rms optimally decide to pay a

�xed cost to adjust their price. Since the optimal in�ation rate in proposition 2 replicates

the �exible-price allocation, �rms that do not experience a �-shock have - independently

of the nature of their price setting frictions - no incentives to adjust their prices. Since

the �exible price allocation is e¢ cient, see proposition 1, monetary policy also has no

incentive to deviate from the �exible-price allocation. Both observations together imply

that the optimal in�ation rate does not depend on whether price-setting frictions are state

or time dependent.35

34These lower elasticities are consistent with pure pro�ts being low if there are �xed costs of production.
35Obviously, this requires that, in a setting with menu cost frictions, �-shocks lead either to these menu

cost not having to be paid at all or always having to be paid.
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Figure 5: Optimal in�ation for the United States, alternative parameter assumptions
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11.2 Non-Constant �-Shock Probability

Throughout the paper we assume that �rms face a constant probability for receiving a

�-shock. While analytically convenient, it may on empirical grounds be attractive to

consider either increasing or decreasing hazard rate speci�cations. A decreasing hazard,

for instance, can capture the fact that young �rms might face higher exit rates. Conversely,

increasing hazards may capture the fact that products become increasingly likely to be

substituted as they age. To assess how our baseline results are a¤ected by non-constant

hazard rates, we consider a setting where �rms receive a �-shock with probability �1 in the

�rst period after having received a �-shock but with probability � subsequently. We allow

for increasing hazard rates (�1 < �) and decreasing hazard rates (�1 > �). The following

proposition states our main �nding:

Proposition 5 Suppose conditions 1 and 2 hold. Let �1 2 [0; 1) denote the probability of
receiving a �-shock for �rms that received a �-shock in the previous period and let � 2 (0; 1)
denote the probability of receiving a �-shock for all other �rms. The optimal in�ation rate

is then given by

�?t = �
?
t�1;t

atgt
At�1Qt�1
�et�1

AtQt
�et

; (42)

where �e
t evolves according to

(�e
t )
1�� = �0 � �0(�1 � �) (qt=gt)

1�� + (1� �)
�
�e
t�1qt=gt

�1��
; (43)

with �0 � �=(1 � �1 + �) denoting the total mass of �rms receiving �-shocks in a given

period. In the absence of economic disturbances and price indexation (�?t�1;t � 1), we

have

lim
t!1

�?t = g=q:

The proof of the proposition is contained in appendix I. Equation (42) shows that the

optimal in�ation rate is determined by the ratio of the average productivity of �rms with-

out a �-shock (atgtAt�1Qt�1=�e
t�1) over the average productivity of all �rms (AtQt=�

e
t),

adjusted for the possible presence of price indexation (�?t�1;t). This is identical to the

setting with a constant hazard rate, see the discussion following our main result in propo-

sition 2. The only di¤erence relative to the case with a constant hazard rate is that

the recursive equation describing the evolution of �e
t generalizes from equation (32) to

equation (43). The optimal steady state in�ation rate remains nevertheless una¤ected by

non-constant hazard rates.

11.3 Bias Towards Older Goods in the Measured Price Index

Throughout the paper, we consider a price index capturing all products available at any

given point in time. This idealized price index di¤ers from how statistical agencies tend
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to compute price indices in practice. In particular, once products become unavailable,

the statistical agencies tend to replace them by products that have been around for some

time. This generates a bias towards older goods in the basket underlying actual price

indices.36 Since in�ation/de�ation is optimal in the present setup because of the entry

of new products (or �rms or qualities), this raises the question whether oversampling of

older products drives a wedge between the optimal in�ation rate �?t based on the ideal

price index and the optimal in�ation rate for a price index biased in favor of older goods.

To assess this question, we consider an in�ation rate �Nt that is based on a price index

containing only products of "age" N � 1 or higher. The following proposition summarizes
our main result:

Proposition 6 Suppose conditions 1 and 2 hold and the measured price index features
an age bias in the sense that it includes only products that received their last �-shock

at least N � 1 periods ago. Let �Nt denote the in�ation rate associated with this price

index. The equilibrium allocation in the sticky-price economy is e¢ cient if monetary

policy implements the gross in�ation rate

�N?t =
�?t�1;t

�?t�N�1;t�N
�?t�N for all t � N;

where �?t denotes the optimal in�ation rate for the ideal price index, as stated in propo-

sition 2, and �? captures price indexation (�? = 1 in the absence of indexation).

The proof is contained in appendix J. The proposition shows that in the absence of

price indexation (�?t�1;t = 1 for all t), the optimal in�ation rate for an age-biased price

index equals the N -period lagged optimal in�ation rate for the ideal price index. This

is so because it takes N periods for products to enter the statistical agency�s product

basket.37 Naturally, the presence of price indexation adds some additional time shifters

(�?t�1;t=�
?
t�N�1;t�N). It follows from the proposition that the optimal steady-state in�ation

rate is not a¤ected by the presence of an age bias. In the absence of shocks and in the

absence of price indexation, we have limt!1�
N?
t = limt!1�

?
t = g=q.38

12 Conclusions

This paper shows how �rm-level productivity trends a¤ect the in�ation rate that is op-

timal for the aggregate economy and that the e¤ect of �rm-level trends on the optimal

36See the discussion on product substitutions in section III.C in Nakamura and Steinsson (2008).
37As a result, the optimal in�ation rate �N?t for the initial periods t = 0; :::; N � 1 is a function of the

initial distribution of prices prevailing at t = �1 under optimal monetary policy.
38More generally, for the case with price indexation we have limt!1�

N?
t =�?t�1;t =

limt!1�
?
t =�

?
t�N�1;t�N . If price indexation does not depend on the in�ation measure targeted by the

central bank, then we have again limt!1�
N?
t = limt!1�

?
t .
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in�ation rate is quantitatively large by the standards of the sticky price literature. In-

deed, a puzzling feature of this literature is the considerable gap between the in�ation

rates it suggests to be optimal, which are typically close to zero or even negative, and

the signi�cantly positive in�ation targets pursued by leading central banks around the

globe. The present paper thus contributes to bridging this gap by providing theoretical

underpinnings for current central bank practice.

The paper also opens a range of interesting avenues for further research. In light of

the present �nding, it appears of interest to understand �rm-level productivity trends,

including their changes over time, in greater detail and across a larger set of economies.

This would allow assessing to what extent the observed downward trend in global in�ation

rates is fundamentally justi�ed.

It also appears interesting to incorporate �rm-level trends into richer sticky-price se-

tups that feature characteristics that the present analysis abstracted from, for instance,

a set of di¤erent economic sectors and associated input-output linkages. Quantitatively

studying such richer frameworks would allow assessing whether or not these character-

istics amplify or dampen the e¤ects of �rm-level trends on the optimal in�ation rate.

Finally, it appears to be of interest to incorporate �rm-level trends into linear-quadratic

formulations of optimal monetary policy problems, so as to study how the optimal policy

response to cost-push disturbances is a¤ected by the presence of �rm-level trends.
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Appendix

A Derivation of the Sticky-Price Economy

A.1 Cost Minimization Problem of Firms

The cost minimization problem of �rm j,

min
Kjt;Ljt

Kjtrt + LjtWt=Pt s:t: Yjt = AtQt�sjtGjt

�
K
1� 1

�

jt L
1
�

jt � Ft

�
;

yields the �rst-order conditions

0 = rt +

�
1� 1

�

�
�tAtQt�sjtGjt

�
Ljt
Kjt

� 1
�

0 = Wt=Pt +
1

�
�tAtQt�sjtGjt

�
Ljt
Kjt

� 1
�
�1

;

where �t denotes the Lagrange multiplier. The �rst-order conditions imply that the

optimal capital labor ratio is the same for all j 2 [0; 1], i.e.,
Kjt

Ljt
=

Wt

Ptrt
(�� 1):

Plugging the optimal capital labor ratio into the technology of �rm j and solving for the

factor inputs yields the factor demand functions

Ljt =

�
Wt

Ptrt
(�� 1)

� 1
�
�1

Ijt (44)

Kjt =

�
Wt

Ptrt
(�� 1)

� 1
�

Ijt: (45)

Firm j demands these amounts of labor and capital, respectively, to combine them to Ijt,

which yields Yjt units of output. Accordingly, the �rm�s cost function to produce Ijt is

MCtIjt = Wt

�
Wt

Ptrt
(�� 1)

� 1
�
�1

Ijt + Ptrt

�
Wt

Ptrt
(�� 1)

� 1
�

Ijt; (46)

whereMCt denotes nominal marginal (or average) costs. This equation can be rearranged

to obtain equation (10) in the main text.

A.2 Price-Setting Problem of Firms

The price-setting problem of the �rm j, see equation (11), implies that the optimal product

price is given by

P ?jt =

�
�

� � 1
1

1 + �

� Et
P1

i=0(�(1� �))i
t;t+iYt+i (�t;t+i=Pt+i)
�� MCt+i=Pt+i

At+iQt�sjtGjt+i

Et
P1

i=0(�(1� �))i
t;t+iYt+i (�t;t+i=Pt+i)
1�� : (47)
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Rewriting this equation yields

P ?jt
Pt

�
Qt�sjtGjt

Qt

�

=

�
�

� � 1
1

1 + �

� Et
P1

i=0(�(1� �))i
t;t+i
Yt+i
Yt

�
�t;t+iPt
Pt+i

���
MCt+i

Pt+iAt+iQt+i

Qt+i=Qt
Gjt+i=Gjt

Et
P1

i=0(�(1� �))i
t;t+i
Yt+i
Yt

�
�t;t+iPt
Pt+i

�1�� : (48)

The multi-period growth rate of the cohort e¤ect relative to the experience e¤ect corre-

sponds to

Qt+i=Qt
Gjt+i=Gjt

=
qt+i � � � � � qt+1
gt+i � � � � � gt+1

;

for i > 0, and equals unity for i = 0. Hence, this growth rate is independent of the index

j, because when going forward in time, �rms are subject to the same experience e¤ect.

Thus, we can rewrite the equation (48) according to

P ?jt
Pt

�
Qt�sjtGjt

Qt

�
=

�
�

� � 1
1

1 + �

�
Nt
Dt

;

where the numerator Nt is given by

Nt = Et

1X
i=0

(�(1� �))i
t;t+i
Yt+i
Yt

�
�t;t+iPt
Pt+i

���
MCt+i

Pt+iAt+iQt+i

�
qt+i � � � � � qt+1
gt+i � � � � � gt+1

�
:

The numerator evolves recursively as shown by equation (13). The denominator Dt also

evolves recursively, and jointly this yields the recursive pricing equations (12)-(14).

A.3 First-Order Conditions to the Household Problem

The �rst-order conditions that belong to the household problem comprise the household�s

budget constraint, a no-Ponzi scheme condition, the transversality condition, and the

following equations:

Wt

Pt
= �ULt

UCt


t;t+1 = �
�t+1
�t

UCt+1
UCt

1 = Et

�

t;t+1

�
1 + it
�t+1

��
1 = Et [
t;t+1(rt+1 + 1� d)] :

Here, we denote by U(:) the period utility function. Our assumption that U(Ct; Lt) =

([CtV (Lt)]
1�� � 1)=(1� �) implies

UCt = C��t V (Lt)
1��

ULt = C1��t V (Lt)
��VLt;

where UCt = @U(Ct; Lt)=@Ct and VLt = @V (Lt)=@Lt.
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A.4 Recursive Evolution of the Price Level

Plugging the weighted average price of a cohort, equation (19), into the price level, equa-

tion (20), yields that

P 1��t = �(�t;tP
?
t;t)

1�� +

1X
s=1

(1� �)s�

"
(1� �)

s�1X
k=0

�k(�t�k;tP
?
t�s;t�k)

1�� + �s(�t�s;tP
?
t�s;t�s)

1��

#
:

Telescoping the sums yields:

P 1��t = �(�t;tP
?
t;t)

1��

+ �(1� �)1
�
(1� �)(�t;tP

?
t�1;t)

1�� + �(�t�1;tP
?
t�1;t�1)

1���
+ �(1� �)2

�
(1� �)(�t;tP

?
t�2;t)

1�� + (1� �)�(�t�1;tP
?
t�2;t�1)

1�� + �2(�t�2;tP
?
t�2;t�2)

1���
+ : : : :

Collecting optimal prices that were set at the same date in square brackets yields:

P 1��t =

��1��t;t

�
(P ?t;t)

1�� + (1� �)(1� �)

�
(P ?t�1;t)

1�� + (1� �)(P ?t�2;t)
1�� + (1� �)2(P ?t�3;t)

1�� + : : :

��
+ [�(1� �)]��1��t�1;t

�
(P ?t�1;t�1)

1�� + (1� �)(1� �)

�
(P ?t�2;t�1)

1�� + (1� �)(P ?t�3;t�1)
1�� + : : :

��
+ : : : :

Using equation (21) and the de�nition of pet in equation (23), we can replace the terms in

curly brackets in the previous equation by pet . This yields

P 1��t = �(�t;tP
?
t;t)

1��
�
1 + (1� �)

�
(pet )

��1

�
� 1
��

+ [�(1� �)]1�(�t�1;tP
?
t�1;t�1)

1��
�
1 + (1� �)

�
(pet�1)

��1

�
� 1
��

+ [�(1� �)]2�(�t�2;tP
?
t�2;t�2)

1��
�
1 + (1� �)

�
(pet�2)

��1

�
� 1
��
+ : : : :

Rearranging the previous equation yields

P 1��t = (�t;tP
?
t;t)

1�� ��� + (1� �)(pet)
��1�

+ �(1� �)(�t�1;t)
1��
�
(�t�1;t�1P

?
t�1;t�1)

1�� ��� + (1� �)(pet�1)
��1�

+ �(1� �)(�t�2;t�1P
?
t�2;t�2)

1�� ��� + (1� �)(pet�2)
��1�+ : : :

�
:

The term in curly brackets in the previous equation corresponds to P 1��t�1 , which yields

the price level equation (22) in the main text.
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A.5 Equilibrium De�nition

We are now in a position to de�ne the market equilibrium:

De�nition 1 An equilibrium is a state-contingent path for f(Pjt; Ljt; Kjt) for j 2 [0; 1],
Wt; rt; it; Ct; Kt+1; Lt; Bt; Ttg1t=0 such that

1. the �rms�choices fPjt; Ljt; Kjtg1t=0 maximize pro�ts for all j 2 [0; 1], given the price
adjustment frictions,

2. the household�s choices fCt; Kt+1; Lt; Btg1t=0 maximize expected household utility,

3. the government �ow budget constraint holds each period, and

4. the markets for capital, labor, �nal and intermediate goods and government bonds

clear,

given the initial values B�1(1 + i�1); K0; Pj;�1, and A�1Q�1�sj;�1Gj;�1, with j 2 [0; 1].

A.6 Aggregate Technology and Aggregate Productivity

To derive the aggregate technology, we combine �rms�technology to produce the di¤er-

entiated product in equation (2) with product demand Yjt=Yt = (Pjt=Pt)
�� to obtain

Yt
AtQt

�
Qt=Qt�sjt

Gjt

��
Pjt
Pt

���
=

�
Kjt

Ljt

�1� 1
�

Ljt � Ft:

Integrating over all �rms with j 2 [0; 1], using labor market clearing, Lt =
R 1
0
Ljt dj, and

the fact that optimizing �rms maintain the same (and hence the aggregate) capital labor

ratio yields
Yt
AtQt

Z 1

0

�
Qt=Qt�sjt

Gjt

��
Pjt
Pt

���
dj = K

1� 1
�

t L
1
�

t � Ft:

Rearranging this equation and de�ning the (inverse) endogenous component of aggregate

productivity as in equation (25) in the main text yields the aggregate technology (24).

To derive the recursive representation of �t shown in equation (26), we rewrite equa-

tion (25) according to

�t

P �t
=

Z 1

0

�
qt � � � � � qt�sjt+1

gt � � � � � gt�sjt+1

�
(Pjt)

�� dj;

using the processes describing the evolution of Qt and Gjt. As for the price level, we

proceed with the aggregation in two steps. First, we aggregate the optimal prices of

all �rms operating within a particular cohort. Second, we aggregate all cohorts in the

economy. To this end, we rewrite �t=P
�
t in the previous equation according to

�t

P �t
=

1X
s=0

(1� �)s�b�t(s); (49)
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using

b�t(s) =
8<:
�
qt�����qt�s+1
gt�����gt�s+1

� �
(1� �)

Ps�1
k=0 �

k(�t�k;tP
?
t�s;t�k)

�� + �s(�t�s;tP
?
t�s;t�s)

��� if s � 1 ;

(�t;tP
?
t;t)

�� if s = 0 :

Substituting out for b�t(s) in equation (49) yields
�t

P �t
= �(�t;tP

?
t;t)

��

+ �
1X
s=1

(1� �)s
�
qt � � � � � qt�s+1
gt � � � � � gt�s+1

�"
(1� �)

s�1X
k=0

�k(�t�k;tP
?
t�s;t�k)

�� + �s(�t�s;tP
?
t�s;t�s)

��

#
:

We rearrange the previous equation following corresponding steps to those in appendix

A.4. This yields

�t

P �t
= (�t;tP

?
t;t)

�� ��� + (1� �)(pet)
��1�

+ �(1� �)

�
qt
gt

�
(�t�1;tP

?
t�1;t�1)

�� ��� + (1� �)(pet�1)
��1�

+ [�(1� �)]2
�
qtqt�1
gtgt�1

�
(�t�2;tP

?
t�2;t�2)

�� ��� + (1� �)(pet�2)
��1�+ : : : :

We rearrange the previous equation further to obtain that

�t

P �t
= (�t;tP

?
t;t)

�� ��� + (1� �)(pet)
��1�

+ �(1� �)

�
qt
gt

�
(�t�1;t)

��
�
(P ?t�1;t�1)

�� ��� + (1� �)(pet�1)
��1�

+ �(1� �)

�
qt�1
gt�1

�
(�t�2;t�1P

?
t�2;t�2)

�� ��� + (1� �)(pet�2)
��1�+ : : :

�
:

The term in curly brackets in the previous equation is equal to �t�1=P
�
t�1, which yields

�t

P �t
=
�
�� + (1� �)(pet )

��1� (�t;tP ?t;t)�� + �(1� �)

�
qt
gt

�
(�t�1;t)

���t�1

P �t�1
:

Multiplying the previous equation by P �t yields equation (26) in the main text.

A.7 Consolidated Budget Constraint

Consolidating the household�s and the government�s budget constraints shown in the main

text yields

Ct +Kt+1 = (1� d)Kt + rtKt +
Wt

Pt
Lt +

R 1
0
�jt dj
Pt

� �

 R 1
0
PjtYjtdj
Pt

!
: (50)

To compute aggregate �rm pro�ts denoted by
R 1
0
�jt dj, we use marginal costs in equation

(46) and combine them with the factor demands for Ljt and Kjt, equations (44) and (45),
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which yields that MCtIjt = WtLjt + PtrtKjt. We use this equation and product demand

Yjt=Yt = (Pjt=Pt)
�� to rewrite aggregate �rm pro�ts according toZ 1

0

�jt dj = (1 + �)

Z 1

0

PjtYjt dj�
Z 1

0

MCtIjt dj

= (1 + �)

Z 1

0

PjtYjt dj�
Z 1

0

(WtLjt + PtrtKjt) dj

= (1 + �)PtYt �WtLt � PtrtKt;

with Lt =
R 1
0
Ljt dj and Kt =

R 1
0
Kjt dj. Thus, the consolidated budget constraint (50)

reduces to

Kt+1 = (1� d)Kt + Yt � Ct:

Dividing the previous equation by trend growth �et yields

et+1kt+1 = (1� d)kt + yt � ct;

where et = �
e
t=�

e
t�1 denotes the gross trend growth rate.

A.8 Transformed Sticky-Price Economy

We de�ne p?t = P ?t;t=Pt and mct = MCt=(Pt(�
e
t)
1=�) and wt = Wt=(Pt�

e
t ) and ct = Ct=�

e
t .

We also use that pet = 1=�
e
t , which follows from the equations (23) and (32). This yields
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the following equations that describe the transformed sticky-price economy.

1 =
�
�� + (1� �)(�e

t )
1��� (p?t )1�� + �(1� �)

�
�t
�t�1;t

���1
(51)

�t =
�
�� + (1� �)(�e

t )
1��� (p?t )�� + �(1� �)

�
qt
gt

��
�t
�t�1;t

��
�t�1 (52)

p?t =

�
�

� � 1
1

1 + �

�
Nt
Dt

(53)

Nt =
mct
�e
t

+ �(1� �)Et

"

t;t+1

e
t+1

�
yt+1
yt

��
�t+1
�t;t+1

�� �
qt+1
gt+1

�
Nt+1

#
(54)

Dt = 1 + �(1� �)Et

"

t;t+1

e
t+1

�
yt+1
yt

��
�t+1
�t;t+1

���1
Dt+1

#
(55)

mct =

�
wt
1=�

� 1
�
�

rt
1� 1=�

�1� 1
�

(56)

rtkt = (�� 1)wtLt (57)

yt =

�
�e
t

�t

��
k
1� 1

�

t L
1
�

t � f

�
(58)

et+1kt+1 = (1� d)kt + yt � ct (59)

et = (atqt�
e
t�1=�

e
t )
� (60)

(�e
t )
1�� = � + (1� �)

�
�e
t�1qt=gt

�1��
(61)

wt = �ct
�

VLt
V (Lt)

�
(62)

1 = Et

�

t;t+1

�
1 + it
�t+1

��
(63)

1 = Et [
t;t+1(rt+1 + 1� d)] (64)


t;t+1 = �

�
�t+1
�t

��
et+1ct+1

ct

��� �
V (Lt+1)

V (Lt)

�1��
(65)

After adding a description of monetary policy and a price indexation rule, these seventeen

equations determine the paths of the seventeen variables it;�t; yt; ct; kt; Lt; rt; wt;mct; et ;�t;

�e
t ; p

?
t ;�t�1;t; Nt; Dt;
t�1;t given the four exogenous shocks qt; gt; at; �t.

A.9 Steady State in the Transformed Sticky-Price Economy

We consider a steady state in the transformed sticky-price economy, in which g and q are

constant and the government maintains a constant in�ation rate �, which also implies a

constant rate of price indexation �.

To solve for the model variables in this steady state, we �rst solve for the ratio �=�e

as a function of model parameters and the in�ation rate � only. To this end, we derive

an expression for p? as a function of � using the equations (51) and (52). Both equations
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can be rearranged to obtain, respectively,

(1� �(1� �)(�=�)��1) =
�
�� + (1� �)(�e)1��

�
(p?)1�� (66)

�
�
1� �(1� �)(�=�)�(g=q)�1

�
=
�
�� + (1� �)(�e)1��

�
(p?)��: (67)

Dividing the equation (66) by the equation (67) yields

p? = ��1
�

1� �(1� �)(�=�)��1

1� �(1� �)(�=�)�(g=q)�1

�
: (68)

We substitute this expression for p? into the equation (67), which yields�
�

�e

�1��
=

��(�e)��1 + 1� �

1� �(1� �)(�=�)�(g=q)�1

�
1� �(1� �)(�=�)��1

1� �(1� �)(�=�)�(g=q)�1

���
:

We use equation (61) to substitute for (�e)��1 on the right hand side of the previous

equation and rearrange the result to obtain

�(�)

�e
=

�
1� �(1� �)(�=�)��1

1� �(1� �)(g=q)��1

� �
��1
 

1� �(1� �)(g=q)��1

1� �(1� �) (�=�)� (g=q)�1

!
; (69)

where we have indicated that �(�) depends on the steady-state in�ation rate �. For

later use, we de�ne the relative price distortion as

�(�) =
�e

�(�)
: (70)

Combining the pricing equations (53) to (55) yields

1

mc
=

�
�

� � 1
1

1 + �

��
1

p?�e

� 
1� �(1� �)[�(e)1��] (�=�)��1

1� �(1� �)[�(e)1��] (�=�)� (g=q)�1

!
:

Using the expression for p? in equation (68) to substitute for p? in the previous equation

and the solution for �(�)=�e in equation (69), we thus obtain a solution for 1=mc. Again

for later use, we denote the average markup by � = 1=mc and thus obtain the solution

�(�) =

�
�

� � 1
1

1 + �

��
1� �(1� �)(�=�)��1

1� �(1� �)(g=q)��1

� 1
��1
 

1� �(1� �)[�(e)1��] (�=�)��1

1� �(1� �)[�(e)1��] (�=�)� (g=q)�1

!
:

(71)

Again, we indicate here that �(�) depends on the steady-state in�ation rate.

Now, we rewrite marginal costs in equation (56) as

mc =
�w
r
(�� 1)

� 1
�

�
r

1� 1=�

�
;

and use equation (57) to obtain mc =
�
k
L

� 1
�

�
r

1�1=�

�
or

r = �(�)�1
�
1� 1

�

��
k

L

�� 1
�

; (72)
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after also using � = 1=mc. Analogous steps for the wage rate also imply

w = �(�)�1
�
1

�

��
k

L

�1� 1
�

: (73)

Furthermore, the aggregate technology (58), the aggregate resource constraint (59) and

the household�s optimality conditions (62) to (65) imply the following four equations:

y = �(�)

 �
k

L

�1� 1
�

L� f

!

w = c

�
� VL
V (L)

�
r =

1

�(e)��
� 1 + d

y = c+ (e � 1 + d)k;

where we have used �(�) = �e=�(�). To simplify these four equations further, we use the

equations (72) and (73) to substitute out for w and r. Then, we express all the remaining

variables relative to hours worked, which yields the following four equations:

y

L
= �(�)

�
k

L

�1� 1
�
�
1 + �(�)

f

y

��1
(74)

c

L
= �(�)�1

�
1

�

��
k

L

�1� 1
�
�
�V (L)
LVL

�
(75)

k

L
= �(�)�1

�
1� 1

�

��
k

L

�1� 1
�
�

1

�(e)��
� 1 + d

��1
(76)

y

L
=
c

L
+ (e � 1 + d) k

L
: (77)

We now show that these four equations determine the four variables y; c; L; k, given a

steady-state in�ation rate � and assuming that the ratio of �xed costs over output, f=y,

is a calibrated parameter.

First, we solve for hours worked as a function of � by substituting the equations (74)

to (76) into equation (77). This yields

�(�)�(�)

�
1 + �(�)

f

y

��1
=

�
1

�

��
�V (L)
LVL

�
+

 
e � 1 + d
1

�(e)�� � 1 + d

!�
1� 1

�

�
;

or �
�V (L)
LVL

�
= ��(�)�(�)

�
1 + �(�)

f

y

��1
� (�� 1)

 
e � 1 + d
1

�(e)�� � 1 + d

!
= L(�);
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where L(�) abbreviates the right-hand-side term, which is a function of the steady-state
in�ation rate. The previous equation provides an implicit solution for L. We obtain an

explicit solution for L, if we assume a functional form for V (L). Using that V (L) =

1�  L� , with � > 1 and  > 0 yields

�V (L)
LVL

=
1�  L�

 �L�

and hence

L(�) =

�
1

 +  �L(�)

�1=�
; (78)

where we have indicated that in general, steady-state hours worked L depend on the

steady-state in�ation rate � through L(�). Recall that in order to compute L(�), the
equations (69), (70) and (71) are required. The solutions for k; c, and y can be recursively

computed from the equations (74) to (76). These solutions are

k(�) = �(�)��
�
1� 1

�

���
1

�(e)��
� 1 + d

���
L (79)

c(�) = �(�)�1
�
1

�

��
k

L

�1� 1
�
�
�V (L)

VL

�
(80)

y(�) = c+ (e � 1 + d)k: (81)

Again, we indicate that these solutions depend on the steady-state in�ation rate.

B Planner Problem and Its Solution

The planner allocates resources across �rms and time by maximizing expected discounted

household utility subject to �rms�technologies and feasibility constraints. The planner

problem can be solved in two steps. The �rst step determines the allocation of given

amounts of capital and labor between heterogenous �rms at date t. The second step

determines the allocation of aggregate capital, consumption and labor over time. En-

dogenous variables in the planner solution are indicated by superscript e.

B.1 Intratemporal Planner Problem

The intratemporal problem corresponds to

max
Lejt;K

e
jt

�Z 1

0

(Y e
jt)

��1
� dj

� �
��1

s:t: Y e
jt = AtQt�sjtGjt

�
(Ke

jt)
1� 1

� (Lejt)
1
� � Ft

�
;

and given Let andK
e
t , with L

e
t =

R 1
0
Lejt dj andK

e
t =

R 1
0
Ke
jt dj. Optimality conditions yield

Ke
jt=L

e
jt = Ke

t =L
e
t and hence that all �rms maintain the same capital labor ratio. Thus, the
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problem can be recast in terms of the optimal mix of input factors, Iejt = (K
e
jt)

1�1=�(Lejt)
1=�:

max
Iejt

�Z 1

0

�
AtQt�sjtGjt

�
Iejt � Ft

�� ��1
� dj

� �
��1

s:t: Iet =

Z 1

0

Iejt dj;

with Iet = (K
e
t )
1�1=�(Let )

1=� being given. Equating the �rst-order conditions to this prob-

lem for two di¤erent �rms j and k to each other yields the condition

Zjt
�
Zjt
�
Iejt � Ft

��� 1
� = Zkt [Zkt (I

e
kt � Ft)]

� 1
� ;

where Zjt = Qt�sjtGjt denotes productivity of the �rm j at date t. Rearranging this

condition yields Iejt � Ft = (Zjt=Zkt)
��1 (Iekt � Ft), and aggregating this equation over all

j�s yields

Iekt � Ft =
(GktQt�skt=Qt)

��1R 1
0
(GjtQt�sjt=Qt)

��1 dj
(Iet � Ft): (82)

Thus, the optimal input mix of the �rm k net of �xed costs is proportional to the optimal

aggregate input mix net of �xed costs, and the factor of proportionality corresponds to

the (weighed) productivity of the �rm k relative to the (weighed) aggregate productivity

in the economy. Thus, equation (82) shows that the productivity distribution determines

the e¢ cient allocation of the optimal input mix across �rms.

To obtain the aggregate technology in the planner economy, we combine equation (82)

with equation (2) and the Dixit-Stiglitz aggregator (1). This yields

Y e
t =

0@Z 1

0

"
AtQt�sjtGjt

 
(Qt�sjtGjt)

��1R 1
0
(Qt�sjtGjt)

��1 dj
(Iet � Ft)

!# ��1
�

dj

1A
�

��1

:

Simplifying this equation yields the aggregate technology in the planner economy,

Y e
t =

AtQt
�e
t

�
(Ke

t )
1� 1

� (Let)
1
� � Ft

�
; (83)

where the e¢ cient productivity adjustment factor is de�ned as

1=�e
t =

�Z 1

0

�
GjtQt�sjt=Qt

���1
dj
� 1

��1

(84)

and evolves recursively. To see this, rewrite equation (84) as

Assuming that the initial productivity distribution at t = �1 is consistent with the
assumed productivity process we have

(1=�e
t)
��1 =

Z 1

0

�
qt � � � � � qt�sjt+1

gt � � � � � gt�sjt+1

�1��
dj

= �

(
1 +

1X
s=1

(1� �)s
�
qt � � � � � qt�s+1
gt � � � � � gt�s+1

�1��)

= �

(
1 + (1� �)

�
qt
gt

�1��
+ (1� �)2

�
qtqt�1
gtgt�1

�1��
+ : : :

)
= (pet)

��1 :
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The last step follows from backward-iterating equation (23) and implies that the e¢ cient

productivity adjustment factor equals the relative price of �rms hit by a �-shock in period

t in the economy with �exible prices,

1=�e
t = pet : (85)

It follows also from equation (23) that �e
t evolves recursively as shown in equation (32).

The intratemporal planner allocation then consists of equation (82), which determines

the e¢ cient allocation of the optimal input mix across �rms, and equations (83) and (32),

which describe the aggregate consequences of the e¢ cient allocation at the �rm level.

B.2 Intertemporal Planner Problem

The intertemporal allocation maximizes expected discounted household utility subject to

the intertemporal feasibility condition,

max
fCet ;Let ;Ke

t+1g1t=0
E0

1X
t=0

�t�tU(C
e
t ; L

e
t) s:t: (86)

Cet +Ke
t+1 = (1� d)Ke

t +
AtQt
�e
t

�
(Ke

t )
1� 1

� (Let)
1
� � Ft

�
; (87)

with U(:) denoting the period utility function and �e
t given by equation (32). The �rst

order conditions to this problem comprise the feasibility constraint and

Y e
Lt = �

U eLt
U eCt

; (88)

1 = �Et

�
�t+1
�t

U eCt+1
U eCt

�
Y e
Kt+1 + 1� d

��
; (89)

denoting by Y e
Kt the marginal product of capital and by Y

e
Lt the marginal product of labor.

Thus, the planner allocation for aggregate variables is characterized by the aggregate

technology, equation (83), the e¢ cient adjustment factor, equation (32), the feasibility

condition, equation (87), and the two �rst-order conditions (88) and (89).

C Proof of Proposition 1

To show that condition (33) holds under �exible prices, we divide equation (22) by P 1��t

and impose � = 0 to �nd out that the optimal relative price p?t of �rms experiencing a

�-shock in period t is equal to pet . This and the equations (53) to (55) determining the

optimal relative price of �rms experiencing a �-shock in t imply with � = 0 that

pet =

�
�

� � 1
1

1 + �

�
mct
�e
t

:
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Combining the previous equation with the equation (85) yields

1 =

�
�

� � 1
1

1 + �

�
mct; (90)

which shows that real detrended marginal costs are constant in the economy with �exible

prices. From equation (12) it follows that the optimal relative price of the �rm j in the

�exible-price model satis�es

P ?jt
Pt
(GjtQt�sjt=Qt) =

�
�

� � 1
1

1 + �

�
mct
�e
t

:

Combining the previous equation with equation (90), we obtain condition (33) in the main

text. Plugging this condition into equation (25) shows that the �exible-price equilibrium

implements �t = �e
t . Thus, the aggregate production function in equation (24) in the

�exible-price equilibrium is given by

Yt =
AtQt
�e
t

�
(Kt)

1� 1
� (Lt)

1
� � Ft

�
; (91)

with Ft = f � (�et)1�1=� and �et = (AtQt=�
e
t )
�, and the resource constraint (derived in

Appendix A.7) is given by

Kt+1 = (1� d)Kt + Yt � Ct: (92)

The two equations (91) and (92) are the same constraints faced by the planner under

e¢ cient allocation. Combined with the fact that the household decisions in the �exible

price economy are undistorted in the presence of the corrective sales subsidy, it follows that

the allocation of aggregate consumption, capital, labor, and output in the �exible-price

equilibrium is identical to e¢ cient allocation.

D Proof of Proposition 2

Establishing (1): First, we show that �rms hit by a �-shock in period t in the sticky-
price economy choose the same optimal relative price as in the �exible-price economy.

Let superscript e denote allocations and prices in the �exible-price economy, which we

have shown reproduces the e¢ cient allocation. Under �exible prices (� = 0) and given

condition 1, the optimal relative price implied by equation (12) for �rms with a �-shock

in period t is given by

pet =
(P ?t;t)

e

P et
=

MCet
P et AtQt

:

Under sticky prices (� > 0) and the e¢ cient allocation, combining this equation with

equation (13) implies

Nt
pet
= 1 + �(1� �)Et

"

et;t+1

Y e
t+1

Y e
t

�
�t+1
�t;t+1

�� �
qt+1
gt+1

��
pet+1
pet

��
Nt+1
pet+1

�#
: (93)
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Furthermore, equation (14) implies

Dt = 1 + �(1� �)Et

"

et;t+1

Y e
t+1

Y e
t

�
�t+1
�t;t+1

���1
Dt+1

#
: (94)

Firms hit by a �-shock in period t in the sticky-price economy choose the same optimal

relative price as �rms receiving a �-shock in period t in the �exible-price economy, i.e.,

P ?t;t=Pt = Nt=Dt = pet or equivalently Nt=p
e
t = Dt, if it holds that�

�t+1
�t;t+1

��
qt+1
gt+1

��
pet+1
pet

�
= 1; (95)

which follows from comparing the equations (93) and (94). To show that equation (95)

holds under the optimal in�ation rate stated in proposition 2, we lag this equation by one

period and rearrange it to obtain�
�t
�t�1;t

�
pet = pet�1

gt
qt
:

Combining this equation with equation (23) implies that the optimal in�ation rate as

de�ned in equation (34) satis�es equation (95).

Establishing (2): To show that, under the optimal in�ation rate, �rms that are

subject to a Calvo shock in period t and hence can adjust their price do not �nd it

optimal to change their price, we need to establish that

P ?t�k;t = �
?
t�k;tP

?
t�k;t�k; (96)

for all k > 0. Dividing this equation by the (optimal) aggregate price level P ?t�k and using

the result from step (1), i.e., P ?t;t=P
?
t = pet , we obtain

P ?t�k;t
P ?t�k

= �?t�k;t

�
P ?t�k;t�k
P ?t�k

�
= �?t�k;tp

e
t�k:

Using equation (21), we can rewrite the previous equation as

P ?t;t
P ?t

�
qt � � � � � qt�k+1
gt � � � � � gt�k+1

�
P ?t
P ?t�k

= �?t�k;tp
e
t�k:

Again using P ?t;t=P
?
t = pet and that �t�k;t =

Qk
j=1 �t�k+j�1;t�k+j further delivers�

pet
pet�k

��
qt � � � � � qt�k+1
gt � � � � � gt�k+1

� 
�?t
�?t�1;t

� � � � �
�?t+1�k
�?t�k;t+1�k

!
= 1:

Rewriting the previous equation as�
�?t
�?t�1;t

qt
gt

pet
pet�1

�
�
�
�?t�1
�?t�2;t�1

qt�1
gt�1

pet�1
pet�2

�
� � � � �

 
�?t+1�k
�?t�k;t+1�k

qt+1�k
gt+1�k

pet+1�k
pet�k

!
= 1
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shows that each term in parenthesis is equal to unity under the optimal in�ation rate,

which follows from equation (95). This establishes that �rms that can adjust their price

maintain the indexed price as given by equation (96).

Establishing (3): We can establish the fact that the condition 2 causes initial prices
to re�ect initial relative productivities as follows. The pricing equations (12)-(14) imply

under �exible prices and no markup distortion that

P ?jt
Pt

�
Qt�sjtGjt

Qt

�
=

MCt
PtAtQt

:

For a �rm hit by a �-shock in period t, this equation yields

pet =
MCt
PtAtQt

:

Combining both previous equations yields

P ?jt
Pt
=

�
Qt

Qt�sjtGjt

�
pet :

Plugging this equation into the aggregate price level, P 1��t =
R 1
0
P 1��jt dj, yields

1 =

Z 1

0

�
Qt

Qt�sjtGjt

�1��
(pet )

1��dj:

Rewriting this equation and using pet = 1=�
e
t yields equation (31) for t = �1.

E Discontinuity of the Optimal In�ation Rate

This appendix compares the optimal in�ation rate in an economy with �-shocks (� > 0)

to the economy in the absence of such shocks (� = 0). We refer to the �rst economy as

the �-economy and to the latter as the 0-economy. Comparing these two economies is

not as straightforward as it might initially appear: even if both economies are subject to

the same fundamental shocks (at; qt; gt; �t), the e¢ cient allocation displays a discontinuity

when considering the limit � ! 0. The discontinuity arises because aggregate productivity

growth in the �-economy is driven by atqt, while it is driven by atgt in the 0-economy.

To properly deal with this issue, we construct a � -economy whose e¢ cient aggregate

allocation (consumption, hours, capital) is identical to the e¢ cient aggregate allocation in

the 0-economy.39 We then compare the optimal in�ation rates in these two economies and

show that the optimal in�ation rate for the �-economy di¤ers from the optimal in�ation

rate for the 0-economy, even for the limit � ! 0.

39The two economies do of course di¤er in their underlying �rm-level dynamics.
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Let a�t , q
�
t , g

�
t denote the productivity disturbances in the �-economy and letA

�
�1G

�
j;�1Q

�
�1�sj;�1

for j 2 [0; 1] denote the initial distribution of �rm productivities. This, together with the
process f�jtg1t=0 for all j 2 [0; 1], determines the entire state-contingent values for A�t , Q�t ,
G�jt, and Q

�
t�sjt for all j 2 [0; 1] and all t � 0.

Next, consider the 0-economy and suppose it starts with the same initial capital stock

as the �-economy. For the 0-economy, we normalize Q0t�sjt � 1 for all j 2 [0; 1] and all t
and then set the initial �rm productivity distribution in the 0-economy equal to that in

the � -economy by choosing the initial conditions

A0�1 = A��1;

G0j;�1 = G�j;�1Q
�
�1�sj;�1 :

Finally, let the process for common TFP in the 0-economy be given by

A0t = A�t

�Z 1

0

�
Q�t�sjtG

�
jt

���1
dj
� 1

��1
�Z 1

0

�
G0jt
���1

dj
� �1

��1

;

where G0jt is generated by an arbitrary process g
0
t , e.g., g

0
t = g�t . In this setting, it is easily

veri�ed that aggregate productivity associated with the e¢ cient allocation, de�ned as

AtQt=�
e
t = AtQt

�Z 1

0

�
GjtQt�sjt=Qt

���1
dj
� 1

��1

;

is the same in the �-economy and the 0-economy.40 We then have the following result:

Proposition 7 Under the assumptions stated in this section, the e¢ cient allocations in
the two economies, the �-economy and the 0-economy, satisfy

C�t = C0t ; L
�
t = L0t ; K

�
t = K0

t

for all t � 0 and all possible realizations of the disturbances.

Proof. Since A�tQ
�
t=�

e;�
t = A0tQ

0
t=�

e;0
t for all t, it follows from the planner�s problem

(29)-(30) and the fact that the initial capital stock is identical that both economies share

the same e¢ cient allocation.

The following proposition shows that (generically) the optimal in�ation rate discontin-

uously jumps when moving from the 0-economy to the �-economy, even if both economies

are identical in terms of their e¢ cient aggregate dynamics:41

40The fact that AtQt=�et is equal to aggregate productivity in the e¢ cient allocation follows from

equations (30) and (31).
41Recall that the optimal in�ation rates implement the e¢ cient aggregate allocations in these

economies.
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Lemma 2 Under the assumptions stated in this section and provided conditions 1 and 2
hold, the optimal in�ation rate in the 0-economy is �?;0t = 1 for all t. The optimal in�ation

rate in the �-economy is given by equation (34); in particular, for g�t = g and q�t = q, and

in the absence of price indexation, the optimal rate of in�ation in the �-economy satis�es

limt!1�
?;�
t = g=q.

Proof. The results directly follow from proposition 2 and lemma 1.

The previous result illustrates the fragility of the optimality of strict price stability

in standard sticky-price models, once non-trivial �rm-level productivity trends are taken

into account. Moreover, in combination with proposition 7, the result shows that two

economies that can be identical in terms of their aggregate e¢ cient allocations may require

di¤erent in�ation rates for implementing these allocations.

F Proof of Proposition 3

Under the assumptions stated in the proposition, it is straightforward to show that the rel-

ative price distortion �(�) and the markup distortion �(�), which are de�ned in equations

(69), (70) and (71), are inversely proportional to each other,

�(�) = 1=�(�):

As a result, the solution of L determined in equation (78) in appendix A.9 simpli�es to

L =

�
1

 (1 + �)

�1=�
;

because L(�) = 1 and, therefore, L no longer depends on the steady-state in�ation rate
�. This result implies that L(1) = L(�?), as stated in proposition 3.

In this case, the solutions for capital and consumption, equations (79) and (80), imply

k(�) = �(�)�
�
1� 1

�

��
(e � 1 + d)�� L;

c(�) = �(�)�
�
1

�

��
1� 1

�

���1
(e � 1 + d)1��

�
�V (L)

VL

�
;

where we explicitly indicate that steady-state capital and consumption depend on �.

Comparing steady-state consumption for the policy implementing the optimal in�ation

rate �? and the alternative policy implementing strict price stability in economies without

price indexation yields

c(1)

c(�?)
=

�
�(1)

�(�?)

��
:
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Equations (69) and (70) imply that the relative price distortion �(�?) = 1. This yields

c(1)

c(�?)
= �(1)�;

=

�
�e

�(1)

��
=

�
1� �(1� �)(g=q)��1

1� �(1� �)

� ��
��1
 
1� �(1� �) (g=q)�1

1� �(1� �)(g=q)��1

!�
;

which is the expression in proposition 3.

To show that c(1)=c(�?) � 1, note that c(1)=c(�?) = 1, if g = q and hence �? = 1. To

show that the inequality holds strictly, c(1)=c(�?) < 1, for g 6= q, we take the derivative

of c(1)=c(�?) with respect to g=q. This yields

@

@(g=q)

�
c(1)

c(�?)

�
=

�
c(1)

c(�?)

� �
�(1� �)�

(g=q)2

�
1� (g=q)��

1� �(1� �) (g=q)�1
�
[1� �(1� �)(g=q)��1]

:

Terms in square brackets are positive, because we have assumed that (1� �)(g=q)��1 < 1
(see equation (6)), � < 1, and g=q > �(1��). Therefore, the derivative is strictly positive
if 1 � (g=q)� > 0 and thus g=q < 1. The derivative is strictly negative if 1 � (g=q)� < 0
and thus g=q > 1. The derivative is zero if g=q = 1.

G Proof of Proposition 4

We start by deriving equation (39) in the proposition. Average employment per �rm Lt

can be written as

Lt = �L
?

t + (1� �)L
c

t ; (97)

where L
?

t denotes average employment of the �rms that received a �-shock in period t

and L
c

t average employment of the remaining �rms. Equation (2) and equation (24),

respectively, imply

Yjt
AtQt�sjtGjt

+ Ft = (Kjt=Ljt)
1� 1

�Ljt

Yt�t

AtQt
+ Ft = (Kt=Lt)

1� 1
�Lt;

where we used the fact that due to there being a unit mass of �rms, we have Lt = Lt.

Taking the ratio of the two previous equations and using the fact that each �rm�s capital-

labor ratio is equal to the aggregate capital-labor ratio, we get

Ljt

Lt
=

 
1

1 + Ft
AtQt
Yt�t

!�
Yjt

AtQt�sjtGjt

AtQt
Yt�t

+ Ft
AtQt
Yt�t

�
:
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Using Ft = f � (�et)
1� 1

� from equation (3), the de�nition of detrended output yt = Yt=�
e
t ,

and �et = (AtQt=�
e
t)
� from equation (27), the previous equation can be expressed as

Ljt

Lt
=

�
1 +

f

yt�t=�e
t

��1�
Yjt
Yt�t

�
Qt

Qt�sjtGjt

�
+

f

yt�t=�e
t

�
:

Using the product demand function (8) to substitute Yjt=Yt, we get

Ljt

Lt
=

�
1 +

f�e
t

yt�t

��1 
f�e

t

yt�t

+
1

�t

�
Qt

Qt�sjtGjt

��
Pjt
Pt

���!
:

Firms that receive a �-shock at date t can charge the optimal price, i.e., Pjt=Pt = P ?t;t=Pt =

p?t . For these �rms, the previous equation implies

L
?

t

Lt
=

�
1 +

f�e
t

yt�t

��1 �
f�e

t

yt�t

+
1

�t

(p?t )
��
�
;

where we used the fact that �rms that receive a �-shock are identical, so that on the

left-hand side of the previous equation, we can write average employment of these �rms

in the numerator. Using equation (97) to substitute for L?t=Lt in the previous equation

yields �
1 +

f�e
t

yt�t

��
1� (1� �)L

c

t=Lt
�
� �

f�e
t

yt�t

=

�
�e
t

�t

�
[�(�e

t )
��1] (�e

tp
?
t )
�� :

Equation (34) implies � (�e
t)
��1 = 1� (1� �)(�?t=�?t�1;t)��1. This allows us to rewrite the

previous equation as

(�e
tp
?
t )
�� =

�
�t

�e
t

�0@1� (1� �)
h
L
c
t

Lt
+

f�et
yt�t

�
L
c
t

Lt
� 1
�i

1� (1� �)(�?t=�
?
t�1;t)

��1

1A : (98)

From equation (51) we obtain

1� �(1� �) (�t=�t�1;t)
��1 =

�
��(�e

t)
��1 + (1� �)

�
(�e

tp
?
t )
1��:

Using again � (�e
t )
��1 = 1�(1��)(�?t=�?t�1;t)��1 allows us to rewrite the previous equation

as

(p?t�
e
t)
�� =

 
1� �(1� �) (�t=�t�1;t)

��1

1� �(1� �)
�
�?t=�

?
t�1;t

���1
! �

��1

: (99)

Equating the right-hand sides of equation (98) and equation (99) delivers equation (39)

in the proposition for the special case with f = 0.

We next derive equation (40) in the proposition. From equation (52) we have

�t =
�
��(�e

t )
��1 + (1� �)

�
�e
t (p

?
t�

e
t )
�� + �(1� �)

�
qt
gt

��
�t
�t�1;t

��
�t�1:
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Equation (34) implies � (�e
t)
��1 = 1 � (1 � �)(�?t=�

?
t�1;t)

��1. Substituting this into the

previous equation and dividing by �e
t delivers

�t

�e
t

=
h
1� �(1� �)

�
�?t=�

?
t�1;t

���1i
(p?t�

e
t)
�� + �(1� �)

�
qt
gt

�e
t�1
�e
t

��
�t
�t�1;t

��
�t�1

�e
t�1

:

Using �?t
�?t�1;t

= gt
�et�1

�et
qt
from equation (35) delivers

�t

�e
t

=
h
1� �(1� �)

�
�?t=�

?
t�1;t

���1i
(p?t�

e
t )
�� + �(1� �)

 
(�t=�t�1;t)

�

�?t=�
?
t�1;t

!
�t�1

�e
t�1

:

Using equation (99) to substitute (p?t�
e
t)
�� in the previous equation delivers equation (40)

in the proposition.

H Robustness of Results to Positive Fixed Costs

From the proof of proposition 4 in appendix G, which covers the general case with non-

negative �xed costs f � 0, it follows that equation (40) continues to hold for f � 0. From
equations (98) and (99) it follows that equation (39) generalizes to

�
�t

�e
t

��1 
1� �(1� �) (�t=�t�1;t)

��1

1� �(1� �)
�
�?t=�

?
t�1;t

���1
! �

��1

=

0@1� (1� �)
h
L
c
t

Lt
+

f�et
yt�t

�
L
c
t

Lt
� 1
�i

1� (1� �)(�?t=�
?
t�1;t)

��1

1A :

(100)

Using equations (40) and (100), we then evaluate the sensitivity of the optimal in�ation

estimate in steady state (yt = y) for di¤erent �xed cost, using the baseline parameters

from table 1. We thereby set L
c

t=Lt = 1:0703, which is the sample mean of this ratio in

the data and �t=�t�1;t = 1:031, which is equal to the sample mean of GDP de�ator over

the considered sample period, i.e., we assume no price indexation (�t�1;t � 1). The steady
state value of �e

t=�t then follows from (100). We consider �xed costs in a range up to

10% of total (detrended) output, f=y 2 [0; 0:1], where f=y = 0 is the case considered in
the main text. Figure 6 shows that the estimated optimal in�ation rate is quite insensitive

to assuming alternative �xed costs values: over the considered range of �xed costs, the

optimal in�ation rate increases, but the maximal e¤ect on the optimal in�ation rate is

small and around 0.1%. This continues to be true for reasonably sized output �uctuations

(yt ? y).

I Proof to Proposition 5

We start by deriving the optimal in�ation rate (42) and the recursive equation (43). In

the absence of price rigidities, �rms choose at all times their price such that their relative
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Figure 6: Robustness of optimal in�ation estimates towards positive �xed costs.

price is inversely proportional to their relative productivity. This follows from the equation

(33), which determines the optimal relative price in the absence of price rigidities and is

reproduced here for convenience:

Pjt
Pt
=
1

�e
t

Qt
GjtQt�sjt

: (101)

Condition 2 implies that the previous equation holds also for t = �1.
We now show that the optimal relative price (101) can also be achieved by �rm j

in an economy with price setting frictions and non-constant �-shock intensities under

the optimal in�ation rate stated in the proposition. This is so because absent �-shocks,

the optimal in�ation rate insures that the �rm�s nominal price either remains constant

(when there is no price indexation) or evolves over time in line with the price indexation

rule, while equation (101) continues to hold. Taking growth rates of equation (101) and

imposing Pjt = �t�1;tPj;t�1, which holds in the absence of �-shocks, delivers42

�?t
�?t�1;t

=
�e
t

�e
t�1

gt
qt
:

The previous equation implies equation (42).

To derive equation (43), we can rewrite the de�nition of �e
t in equation (31) according

42In the presence of �-shocks, prices are �exible so that equation (101) can easily be achieved.
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to43

(�e
t )
1�� =

Z 1

0

�
qt � � � � � qt�sjt+1

gt � � � � � gt�sjt+1

�1��
dj

= �0 + �0(1� �1)

1X
s=1

(1� �)s�1
�
qt � � � � � qt�s+1
gt � � � � � gt�s+1

�1��
= �0 + �0(1� �1) (qt=gt)

1��

+ (1� �) (qt=gt)
1��

(
�0(1� �1)

1X
s=1

(1� �)s�1
�
qt�1 � � � � � qt�s
gt�1 � � � � � gt�s

�1��)
;

where the term in parenthesis is equal to (�e
t�1)

1�� � �0. This delivers equation (43) in

the proposition.

In the absence of economic disturbances, equation (43) implies that �e
t converges to

�e =

�
�

1� �1 + �

� 1
1��
�
1� (�1 � �)(g=q)��1

1� (1� �)(g=q)��1

� 1
1��

:

The steady state result in the proposition then follows from equation (42) and the as-

sumption of no price indexation
�
�?t�1;t � 1

�
.

J Proof to Proposition 6

For simplicity, we shall refer to PNt , which contains only products of age N or higher, as

the measured price level and to �Nt = PNt =P
N
t�1 as the measured in�ation rate. As before,

we let Pt denote the ideal price level (using all products) and �t the ideal in�ation rate.

The proof proceeds in two steps. In a �rst step, we derive the measured in�ation rate

�N?t in a setting where monetary policy implements �?t from proposition 2 for the ideal

in�ation rate. In a second step, we show that if monetary policy implements �N?t for the

measured in�ation rate, then this policy implements the same relative product prices as

in the case where monetary policy implements �?t for the ideal rate.

Step 1: In analogy to equation (20), which de�nes the ideal price level, the measured
price level is de�ned as

(PNt )
1�� = �

1X
s=0

(1� �)s�t(s+N); (102)

where the weighted average cohort price �t(�) is de�ned in equation (19). From proposition
2 it follows that under the optimal in�ation rate �?t , �rms with a Calvo shock do not �nd

it optimal to adjust their price, so that we have for s � k � 0

P ?t�s;t�k = �
?
t�s;t�kP

?
t�s;t�s:

43The following derivations assume that the initial productivity distribution at t = �1 is consistent
with the assumed productivity process.
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Using this result to rewrite equation (19) shows that the weighted average cohort price

under the optimal in�ation rate �?t is

�t(s) = (�
?
t�s;tP

?
t�s;t�s)

1��: (103)

The previous equation implies

�t(s+N) =

 
�?t�(N+s);t
�?t�(N+s);t�N

!1��
�t�N(s)

= (�?t�N;t)
1���t�N(s):

Substituting this into equation (102) yields

(PN?t )1�� = (�?t�N;t)
1��

"
�

1X
s=0

(1� �)s�t�N(s)

#
;

where the expression in brackets is the ideal price level de�ned in equation (20) shifted

N periods into the past. For a policy that implements the optimal in�ation rate from

proposition 2 for the ideal in�ation measure, we thus have

PN?t = �?t�N;tP
?
t�N : (104)

From the previous equation we get that measured in�ation is then given by

�N?t =
�?t�1;t

�?t�N�1;t�N
�?t�N ;

which is the in�ation rate stated in the proposition.

Step 2: Using equation (103) to rearrange equation (102) delivers

(PN?t )1�� = �
1X
s=0

(1� �)s(�?t�(s+N);tP
?
t�(s+N);t�(s+N))

1��

= �(�?t�N;tP
?
t�N;t�N)

1�� + (1� �)(�?t�1;tP
N?
t�1)

1��:

Dividing the previous equation by (PN?t )1�� and using equation (104) one obtains

�N?t =�?t�1;t =

 
1� �

�
P ?t�N;t�N=P

?
t�N
�1��

1� �

! 1
��1

: (105)

The previous equation shows how the relative price of �rms with a �-shock (P ?t�N;t�N=P
?
t�N)

is determined so as to be consistent with �N?t . When monetary policy targets �
N?
t =

�?t�1;t
�?t�N�1;t�N

�?t�N , as assumed, then equation (105) coincides with equation (34) shifted

back by N periods. Since equation (33) implies 1=�e
t = P ?t;t=P

?
t , this shows that mon-

etary policy implements the same relative prices as a policy that implements �?t from

proposition 2 for the ideal in�ation measure.
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