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in which monopolistically competitive firms set their prices while receiving private 
signals on cost shocks. In the model, an increase in the number of competing firms 
raises strategic complementarity among the firms in the same sector. Using the model, 
we analytically show that, under imperfect common knowledge, sectoral inflation 
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1 Introduction

In�ation persistence has received considerable attention in the macroeconomics literature.

A number of empirical studies indicate that in�ation dynamics are highly persistent and

argue that standard sticky price models tend to fail in replicating such highly persistent

in�ation dynamics.1 Prompted by the arguable shortfalls of the existing models, Mankiw

and Reis (2002) and Woodford (2002) ignited a stream of literature highlighting the role of

information rigidities to account for in�ation persistence. More recently, empirical studies

on price rigidities and in�ation persistence look into disaggregate data and report several

important �ndings. A seminal paper by Bils and Klenow (2004) articulates size and frequency

of price changes using micro-data provided by Bureau of Labor Statistics (BLS) and, based

on their �ndings, they conclude that popular time-dependent sticky price models cannot

replicate industry-level in�ation persistence observed in the data.2

Against this backdrop, we focus on industry-level in�ation persistence, measured by the

(�rst-order) autocorrelation of monthly changes in the US producer price index (PPI)�

hereafter, we denote this measure as sectoral in�ation persistence� and (i) recon�rm that

there is stark dispersion in sectoral in�ation persistence across sectors and (ii) examine what

factor(s) can account for such cross-sectoral dispersion.3 Relying on the NAICS (North

American Industry Classi�cation System) six-digit level disaggregate dataset provided by

Boivin, Giannoni, and Mihov (2009) and our own extended dataset, we report empirical ev-

idence that sectoral in�ation persistence of the US PPI is negatively correlated with market

concentration in the sector. Namely, if a few of the largest �rms in terms of sales share

donimate the market, sectoral in�ation persistence in the sector tends to be low. In this

regard, Figure 1 shows scatterplots of sectoral in�ation persistence and market concentra-

tion. Although the data are somewhat noisy, a cursory look reveals that sectoral in�ation

persistence tends to decline as market concentration increases. Motivated by this empirical

fact, we build a model with information rigidity that can explain why highly concentrated

1A number of early empirical studies report highly persistent dynamics of US aggregate in�ation dynamics.
See Fuhrer and Moore (1995), Gali and Gertler (1999) and Mankiw (2001), among others. More recently,
Cogley and Sargent (2002, 2005) and Levin and Piger (2003) focus on the role of time-varying mean in�ation
in creating highly persistent dynamics. In contrast, Pivetta and Reis (2007) argue that aggregate in�ation
persistence has remained high and broadly stable over time in the US.

2See Nakamura and Steinsson (2008) and Midrigan (2011) for similar arguments.
3The stark dispersion in sectoral in�ation persistence has been reported by many empirical studies, such

as Clark (2006), Boivin, Giannoni, and Mihov (2009) and Altissimo, Mojon, and Za¤aroni (2007).
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markets reduce in�ation persistence.

[Figure 1 here]

We develop a dynamic stochastic model in which monopolistically competitive �rms set

their prices after receiving private signals on cost shocks. In our model, the strategic comple-

mentarity among price-setting �rms increases as the market concentration decreases in the

sector (i.e., the number of �rms in the sector increases). As a result of endogenizing strategic

complementarity under heterogeneous beliefs, �rms in a less concentrated sector respond to

a cost shock more slowly, compared with those in a more concentrated sector, because each

�rm relies more on higher-order expectations in a Bayesian Nash equilibrium. Sectoral in�a-

tion in the model exhibits more persistence, typically with hump-shaped dynamic responses,

if the sector is less concentrated under imprecise private signals. This cross-industry rela-

tionship between market concentration and sectoral in�ation persistence is consistent with

the empirical facts illustrated by Figure 1 and more formal regression results presented in

this paper.

As a key ingredient in our model, we employ consumer preferences that explicitly include

a number of di¤erentiated goods (and �rms as their producers) in a sector, as proposed by

Melitz and Ottaviano (2008). In standard models of monopolistic competition, if other �rms

were to raise their prices incrementally more than one �rm, the �rm�s best response is to raise

its own price, but to a lesser extent, which means that strategic complementarity is playing

out in the market. A notable feature of Melitz and Ottaviano�s (2008) setup is that the degree

of strategic complementarity, which is re�ected in the cross-price elasticity of demand, is not

a constant parameter, but endogenously varies depending on market concentration (proxied

by the number of �rms in the sector). As the number of �rms increases in a sector/industry,

the �rms respond more to changes in prices set by others. The interpretation of the variable

strategic complementarity is straightforward. As argued by standard industrial organization

theories, coordination is easier among a small number of �rms. By contrast, each �rm

responds to the prices set by others more sensitively if there are many competitors because

coordination is more di¢ cult in a less concentrated market.

This property of variable strategic complementarity depending on market concentration

remains the same, even if �rms cannot observe cost shocks, and only receive private signals.

That is, each �rm�s price-setting strategy is a¤ected more strongly by the prices set by others

in less concentrated markets where cross-price elasticities are higher. A crucial di¤erence
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arising from private signals is that the information set held by each �rm is heterogeneous�

in other words, cost shocks are no longer common knowledge. Given private signals, each �rm

sets its own price, taking into consideration its expectations of the average price. Importantly,

these expectations vary across �rms as a result of their heterogeneous beliefs. Hence, each

�rm�s expectations of the average price are explicitly a¤ected by the expectations formed by

other �rms. Because this process of guessing other �rms�expectations of others�expectations

continues, which are also based on guessing others�expectations, each �rm�s pricing strategy

is a¤ected by higher-order expectations. Through the entire process, the interdependency

among higher-order expectations is strengthened if the cross-price elasticity is high. Hence,

higher-order expectations matter more in a less concentrated sector, where many �rms are

engaged in monopolistic competition with high cross-price elasticity.

As emphasized by Woodford (2002) and Angeletos and La�O (2009), higher-order expec-

tations respond to shocks more slowly because, intuitively, higher-order expectations re�ect

only a small fraction of newly available private signals via Bayesian updating. Recall that,

in less concentrated markets, monopolistically competitive �rms rely more on higher-order

expectations that are updated relatively slowly. Accordingly, the actual average prices set

by �rms in a less concentrated sector tend to react more slowly to cost shocks, typically with

some lags, in a symmetric Bayesian Nash equilibrium.

Similar attempts to build models that generate empirically plausible persistent in�ation

dynamics are made by a number of early studies in the literature on information rigidity.4

Mankiw and Reis (2002), Dupor, Kitamuta, and Tsuruga (2010), and Reis (2006), develop

sticky-information models, in which only a fraction of �rms update their information sets

in every period, because of �xed costs incurred in the acquisition of information. In the

meantime, noisy-information models have been developed by Woodford (2002), Sims (2003),

Adam (2007), Fukunaga (2007), Nimark (2008), Mackowiak and Wiederholt (2009), and

Angeletos and La�O (2009) among others. The common feature of these noisy-information

models is that, because �rms cannot observe the true state, they continuously update their

4Apart from the literature on information rigidity, models incorporating mechanical in�ation indexation
can create in�ation inertia, as demonstrated by Gali and Gertler (1999), Gali, Gertler, and Lopez-Salido
(2001, 2005), and Christiano, Eichenbaum, and Evans (2005). Some of these models present hybrid New
Keynesian Phillips Curves (NKPCs), which include a few lagged, �backward-looking�in�ation terms. In a
related vein, Levine and Piger (2003) argue that observed in�ation persistence is �inherited� rather than
�intrinsic�in the sense that persistent/inertial monetary policy generates the seemingly persistent dynamics
of in�ation. Blanchard and Gali (2007), among others, demonstrate that models with real wage rigidity can
generate in�ation inertia, in a similar manner to a hybrid NKPC.
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beliefs via signal extraction. The signal extraction process results in slow reactions by �rms

compared with the changes in the true state.5 Our study is classi�ed in the camp of noisy-

information models, and the most closely related works are Woodford (2002) and Angeletos

and La�O (2009).6

Both Woodford (2002), Angeletos and La�O (2009) and our model highlight the role

of imperfect common knowledge in generating slow adjustments in �rms�price-setting re-

sponses. The important di¤erence is that, because we employ Melitz and Ottaviano�s (2008)

consumer preferences, instead of the Dixit�Stiglitz preferences used in other similar mod-

els, strategic complementarity changes explicitly depending on market concentration in our

model. We acknowledge that Angeletos and La�O (2009) already argued that, using a gener-

alized Woodford (2002) model, greater strategic complementarity among �rms makes price

dynamics more sticky. We rea¢ rm their argument by comparing data and the prediction of

our model which translates the degree of strategic complementarity into an observable indi-

cator; i.e., market concentration in the sector. In addition, because of the linear-quadratic

nature of Melitz and Ottaviano�s (2008) setup, our model is fully tractable and does not re-

quire linear approximation to obtain the explicit solution form of the equilibrium. The linear

demand system in our model assures the uniqueness of the Bayesian Nash equilibrium, as

demonstrated by Morris and Shin (2002) in a broader context.

The paper is organized as follows. Section 2 provides empirical evidence on sectoral in-

�ation persistence and market concentration. Section 3 introduces the setup of the model

under perfect information. Section 4 allows heterogeneous beliefs because of private signals

in the model and shows some key results including comparative statics. Section 5 assesses

the dynamics of sectoral in�ation using numerical illustrations with various parameter as-

sumptions, including mark-up shocks. Section 6 discusses related issues, such as a robustness

check and relation to preceding studies. Section 7 concludes the paper.

5Empirical analyses by Coibion (2010), Coibion and Gorodnichenko (2012, 2015), Lahiri and Sheng
(2008), and Mankiw, Reis, and Wolfers (2004) broadly point to the importance and substantial impacts of
information rigidities.

6A number of extensions have been presented following Woodford (2002). Fukunaga (2007), Nimark
(2008) and Angeletos and La�O (2009) develop dynamic general equilibrium models in which �rms set
their prices subject to nominal rigities. Combined with sticky-pricing, the imperfect common knowledge
in their models successfully generates some empirical observations, including aggregate in�ation dynamics
and average price durations. Adam (2007) analyzes the optimal monetary policy in an economy where
some fundamentals are imperfect common knowledge. Sims (2003) and Mackowiak and Wiederholt (2009)
emphasize the role of the constrained and limited information processing capacity of �rms, rather than the
limited information availability focused on by Woodford (2002) and others.
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2 In�ation Persistence and Market Concentration

2.1 Data

We use two datasets to explore the empirical characteristics of sectoral in�ation persistence

and market concentration. The �rst dataset was created originally by Boivin, Giannoni, and

Mihov (2009) and was downloaded from the AEA website.7 We use US producer prices at

the six-digit level of the NAICS code. The dataset includes monthly prices of over 150 items,

and the sample period runs from February 1976 to June 2005. For clari�cation, we calculate

the �rst-order autocorrelation of the monthly changes of seasonally adjusted prices and

de�ne this measure as �sectoral in�ation persistence.�This measure of in�ation persistence

is exactly the same as that used in Bils and Klenow (2004).8 We focus on PPI rather

than CPI because our primary aim is to highlight the linkage between in�ation persistence

of a particular good/service and the degree of market concentration of that sector. For

this aim, matching the PPI item classi�cation and industry/sector classi�cation of market

concentration data is pivotal. In terms of item/industry, the PPI classi�cation and that

of the 2007 Economic Census can be fully matched, while if we use CPI, item/industry

matching with the census requires much more complicated and arbitrary data processing.

While Boivin, Giannoni, and Mihov�s (2009) dataset is quite accessible and ready for use,

we build a similar dataset that is more recent. Our second dataset contains the same PPI

but its sample period runs from January 2004 to February 2017. The �rst dataset has 272

manufacturing sectors while the second dataset includes 383 sectors, including nonmanufac-

turing sectors. We present descriptive statistics of the sectoral in�ation persistence of the

two datasets in Table 1.

With respect to the measurement of market concentration, two indicators are available.

The most popular indicator of market concentration is the share of the top four largest �rms

in the sector, which is often noted as the C4 ratio.9 As a robustness check, we employ another

indicator of market concentration, the classic Her�ndahl�Hirschman Index (HHI). Both are

7https://www.aeaweb.org/articles?id=10.1257/aer.99.1.350
8Fuhrer (2011) discusses a battery of measures of in�ation persistence, including �rst-order autocorrela-

tion. Among alternative measures, for instance, Boivin, Giannoni, and Mihov (2009) use the sum of all AR
coe¢ cients including 13 lags. As a robustness check, we also use this alternative measure and con�rm that
our main �nding, i.e., negative correlation with market concentration, remains unchanged.

9Carlton (1986), Bils and Klenow (2004), and Boivin, Giannoni, and Mihov (2009) use this C4 ratio as a
measure of market concentration.
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taken from the 2007 Economic Census. While the C4 ratio is available for all sectors, the

HHI is available only for the manufacturing sectors.

[Table 1 here]

2.2 Regression results

Before proceeding to regression analysis, we present scatterplots in Figures 2 using the four-

digit NAICS code data. Together with Figure 1 introduced in Section 1, both �gures indicate

a negative correlation between sectoral in�ation persistence and market concentration at a

moderately disaggregate level.10 With this casual observation in place, we move on to formal

regression analysis based on more disaggregated NAICS six-digit level data.11

[Figures 2 here]

We run weighted least squares (WLS) regressions using sectoral in�ation persistence as

the dependent variable. Our explanatory variables include indicators of market concentra-

tion (i.e., C4 ratio and HHI) but also several control variables in various speci�cations for

robustness checks. In Tables 2, 3 and 4, all the regression results, using both of the two

datasets, indicate that our measures of market concentration have statistically signi�cant

power with negative coe¢ cients in accounting for sectoral in�ation persistence. One pro-

viso may be that the correlation is even clearer if we focus on the manufacturing sector.

In fact, Boivin, Giannoni, and Mihov�s (2009) dataset does not cover nonmanufacturing

sectors. While both price measurement and industry classi�cation are done more simply

and accurately for manufacturing sectors, data collection, measurement, and aggregation for

nonmanufacturing sectors are likely to involve various more complex issues.

Now we turn to the model to account for the empirical �ndings in the next section. After

comparing the model�s predictions with the facts, we will address some remaining issues, in

relation to some early empirical studies in Section 6.

10Bils and Klenow (2004) examine sectoral in�ation persistence, de�ned in the same manner as in our
study, and report that sectoral in�ation persistence does not have statistically signi�cant correlation with
frequency of price changes, which implies inconsistent prediction with Calvo pricing. We will discuss these
issues related to the �ndings of previous studies later in Section 6.
11If idiosyncratic shocks are large, then in�ation persistence in highly concentrated sector can be lowered by

the e¤ects of the shocks on individual �rms�prices. However, we suppose that the e¤ects of the idiosyncratic
shocks on our empirical �nding can be disregarded because the regression result for sub-samples (using
NAICS four-digit level data) as C4 ratio � 50% exhibits the same level of negative correlation.
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[Tables 2, 3 and 4 here]

3 The Model Set-up

3.1 Shock Process, Preference and Firms as Price-Setters

There are two types of players, one representative consumer and a continuum of �rms,

indexed by i 2 [0; N ]. Every �rm operates under monopolistic competition, and the popu-

lation of �rms implies a mass of product varieties. The game has in�nite periods, indexed

by t 2 f0; 1; 2; :::g. The consumer maximizes his/her utility u by choosing the quantity of
consumption of the goods, qt(i) 2 R for i 2 [0; N ] and qA 2 R, given his/her endowment
qA 2 R++ in each period. The �rm i 2 [0; N ] maximizes its pro�t �(pt(i); ct) : R2+ ! R by
producing its good with variable cost ct 2 R+, for any t 2 f0; 1; 2; :::g,12 which follows the
stochastic process given by:

ct = ct�1 + �t; (1)

�t = ��t�1 + �t; (2)

where �t � N (0; �2) and 0 < � < 1. For the sake of simplicity, there is no time discount-
ing. This simpli�cation makes little di¤erence to our results because both �rms and the

consumer solve period-by-period optimization problems and, as a result, the equilibrium

is characterized as a unique Nash Equilibrium of a one-shot game, as shown later in this

section.

Following Melitz and Ottaviano (2008), the consumer enjoys consumption of many vari-

eties of products, qt(i) for i 2 [0; N ] and qA. Speci�cally, the consumer�s utility function u;
is given by:

u (qt (i) ; qA) � �t
Z
i2[0;N ]

qt(i)di�
�

2

Z
i2[0;N ]

(qt(i))
2di� 


2

�Z
i2[0;N ]

qt(i)di

�2
+ qA; (3)

for any t 2 f0; 1; 2; :::g: The parameter �t 2 R++ and 
 2 R++ govern the substitutability of

12In our model, we implicitly assume that c0 is su¢ ciently large. This assumption e¤ectively allows us to
ignore the possibility that ct < 0:
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product varieties with qA.13 A larger �t shifts out the demand for di¤erentiated varieties i.e.,

as �t increases, the consumer consumes qt(i) more for any i 2 [0; N ].14 As 
 increases, the
total demand for the di¤erentiated goods compared to the numeraire decreases, amplifying

the degree of competition across �rms. The parameter � 2 R+ indicates the degree of the
love of variety. If � = 0, the di¤erentiated varieties are perfect substitutes for each other

and, hence, the consumer is interested only in the total consumption of the di¤erentiated

goods (
R
i2[0;N ] qt(i)di). As � increases, the consumer cares more about the consumption

distribution across varieties. The budget constraint of the consumer for t 2 f0; 1; 2; :::g is
given by: Z

i2[0;N ]
qt(i)pt(i)di+ qA � qA;

where pt(i) is the price of each good and qA is the endowment of the numeraire, which is

exogenously provided with the same amount in each period. Note that this inequality always

binds because of the monotonicity of the utility function u: The consumer has no option to

save the endowment in this economy. Given the setting for the consumer, the consumer

makes his/her decisions on qt(i) for t 2 f0; 1; 2; :::g and i 2 [0; N ]. Then, the following linear
demand function is obtained:15

qt(i) =

�
1

� + 
N

�
�� 1

�
pt(i) +

�

N

� (� + 
N)

�
pt; (4)

where:

pt �
1

N

Z
i2[0;N ]

pt(i)di:

As 
N= [�(� + 
N)] in the third term on the right-hand side of (4) is positive, there are

strategic complementarities between a �rm�s own price pt(i) and the prices of others pt.

The degree of the complementarities increases as 
 and N increase. As only the combined

term 
N matters in our model, we de�ne ~N � 
N 2 R++ for brevity. Note that ~N is the

parameter indicating the degree of concentration in the market. A smaller ~N means that the

market is highly concentrated. Also, note that � is a shift parameter a¤ecting the demand

13The consumer problem has an interior solution only if 
 is strictly positive. If 
 is zero, then the consumer
consumes only qA or qt(i) (for i 2 [0; N ]). In this case, we cannot de�ne the price.
14For the moment, we assume the variable is constant (i.e., �t = �) for the sake of analytical simplicity.

However, in Section 5.3, the case in which �t follows a random walk process (�t = �t�1 + �t where �t �
N (0; �2)) is to be numerically examined.
15See Appendix 1 for the derivation of the demand function given by (4).
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independently from the prices pt(i) and pt. Hence, hereafter, we refer to � as the demand

parameter.

Now, the pro�t function of �rm i can be written as �(pt(i); ct) = (pt(i) � ct)qt(i). In
the following analysis, we examine the price-setting strategies of the �rms, given the linear

demand function shown in (4).

3.2 Perfect Information Equilibrium as a Benchmark Case

In this subsection, we analyze the benchmark case where the history of marginal costs fcsgts=0
is perfectly observable in period t 2 f0; 1; 2; :::g. In this case, every �rm solves for a unique

Nash equilibrium of the game, which is de�ned as follows.

De�nition 1 A Nash equilibrium in period t 2 f0; 1; 2; :::g is given by a set of the prices
of each �rm, p��t (i) for i 2 [0; N ], where each �rm maximizes �(pt(i); ct), by choosing pt(i),

given the exogenously determined marginal cost ct and the demand system qt(i) for i 2 [0; N ].

We denote �( ~N) � �=(2� + ~N). Then, given the maximization problem of �rm i:

max
fpt(i)g

(pt(i)� ct)qt(i); (5)

subject to (4), the individual price p��t (i) and the average price p
��
t in a Nash equilibrium are

written as:

p��t (i) = p
��
t = �( ~N)�+ [1� �( ~N)]ct: (6)

Note that �( ~N) 2 [0; 1=2] and �0( ~N) < 0. Therefore, the weight on the marginal cost of

unitary production ct is at least 1=2 and increases to one as ~N increases.

4 Imperfect Information Equilibrium

4.1 Information Structure and Equilibrium Characterization

We de�ne the information set of �rm i as Ht(i), which includes all of the parameters and

variables other than fcsgts=1. This section examines the case where �rm i observes private

9



information xt(i); instead of ct, given by:

xt(i) = ct + �t(i); (7)

where �t(i) � N (0; � 2): Therefore, c0 2 Ht(i) and fxs(i)gts=1 2 Ht(i), but fcsgts=1 =2 Ht(i):
16

Note that, because xt(i) varies across �rms, �rms are receiving private signals in this economy.

It could be interpreted that every �rm observes accounting information xs(i) on its own cost

cs for s 2 f1; :::; t� 1; tg, yet the �rm needs to guess the true cost based on the accounting

information. In this case, every �rm solves for a unique Bayesian Nash equilibrium of the

game, de�ned as follows.

De�nition 2 A Bayesian Nash equilibrium in period t 2 f0; 1; 2; :::g is given by a set of the
prices of each �rm, p�t (i) for i 2 [0; N ], where each �rm maximizes Ei[�(pt(i); ct)jHt(i)] by

choosing pt(i) given the beliefs regarding marginal cost ct and the demand system, qt(i) for

i 2 [0; N ].

In period t, the �rm�s problem with the information set Ht(i) for each i 2 [0; N ] is now
written as:

max
fpt(i)g

Ei[(pt(i)� ct)qi;tjHt(i)];

subject to (4). We denote r( ~N) � ~N=(2� + 2 ~N) 2 (0; 1=2) and let �t express the ratio of
variance of the prior belief held by individual �rms divided by the total variance, i.e., the

sum of variances of prior and private signals. That is:

�t �
V ar[ctjHt�1(i)]

V ar[ctjHt�1(i)] + � 2
; (8)

where V ar[ctjHt�1(i)] = V ar[ct�1 + ��t�1jHt�1(i)] + �
2 from (1).

De�nition 3 Given the (�rst-order) expectations Ei, let the average of the expectations

across all �rms be:

E � E1 � 1

N

Z
i2[0;N ]

Eidi:

16The marginal costs ct may e¤ectively be observable in period t+ s. For instance, �rms may try to infer
the true costs fcsgt�1s=1 based on the information about observable prices fpsgt�1s=1. In Section 6, we discuss
an alternative case with private and noisy public signals.
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We use EiE
j�1

to denote the j-th order expectations. Then, let the averages of the j-th order

expectations for j 2 f2; 3; 4; :::g be:

E
j � 1

N

Z
i2[0;N ]

EiE
j�1
di:

Now, we are ready to state the following results.

Proposition 1 The average price in a symmetric Bayesian Nash Equilibrium in period t,

p�t , is given by:

p�t = �(
~N)�+

�
1� �( ~N)

��
1� r( ~N)

� 1X
j=0

r( ~N)jE
j+1
[ctjHt(i)]; (9)

where:

E
j+1
[ctjHt(i)] = �

j+1
t ct + (1� �t)

j+1X
k=1

�t
j+1�kE

k
[ctjHt�1(i)]; (10)

and �t is given by (8).

Sketch of the Proof : For �rm i, the best-response function to choose pt(i) is given by:

pt(i) =
�� + ~NEi[ptjHt(i)]

2(� + ~N)
+
Ei[ctjHt(i)]

2
: (11)

By taking the average of (11) over i 2 [0; N ]; pt is expressed as:

pt =
�� + ~NE[ptjHt(i)]

2(� + ~N)
+
E[ctjHt(i)]

2
: (12)

By plugging (12) into (11) repeatedly, we obtain (9).

Next, we show the process by which the expectations are updated. The prior belief regard-

ing ct is denoted as �i;t�1(ctjHt�1(i)); which follows �i;t�1(ctjHt�1(i)) � N (Ei[ctjHt�1(i)]; V ar[ctjHt�1(i)]).

Accordingly, the posterior belief �i;t(ctjHt(i)) after observing the private signal xt(i), is writ-

ten as �i;t(ctjHt(i)) � N (Ei[ctjHt(i)]; V ar[ctjHt(i)]). By Bayes�rule, the updating processes

of Ei[ctjHt(i)] and V ar[ctjHt(i)] are given by:

Ei[ctjHt(i)] = �txt(i) + (1� �t)Ei[ctjHt�1(i)]; (13)
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and V ar[ctjHt(i)] = (1� �t)V ar[ctjHt�1(i)], respectively.

Thus far, we have derived the �rst-order expectations on ct for t 2 f1; 2; 3; :::g. Next,
we focus on the higher-order expectations in period t 2 f1; 2; 3; :::g. Bearing in mind

that
R
i2[0;N ] xt(i)=N = ct; from (13), the average expectations of ct with posterior beliefs,

Et[ctjHt(i)]; can be expressed as:

E[ctjHt(i)] = �tct + (1� �t)Et[ctjHt�1(i)]:

For expository purposes, we denote the information set of �rm {̂ 2 [0; N ] as Ht(̂{): Then, �rm

i�s expectations of the average expectations (i.e., the second order expectations), Ei[E[ctjHt(̂{)]jHt(i)];

is given by:

Ei[E[ctjHt(̂{)]jHt(i)] = �
2
txt(i) + (1� �t)

�
Ei[Et[ctjHt�1(̂{)]jHt(i)] + �tEi[ctjHt(i)]

	
:

Therefore, by the same calculation, the j-th order expectations can be calculated as:

Ei[E
j
[ctjHt(̂{)]jHt(i)] = �

j+1
t xt(i) + (1� �t)

j+1X
k=1

�j+1�kt Ei[E
k�1
t [ctjHt�1(̂{)]jHt(i)]: (14)

Taking the average of (14) over i 2 [0; N ]; we obtain (10).�
A formal proof is available upon request. Here, two remarks are in order. One notable

feature is the proximity of (6) and (9). In the imperfect information equilibrium, (9) indicates

that the price is set as the weighted sum of expectations of the parameter on demand (�)

and the marginal cost (ct), whereas, under perfect information, (6) is a weighted sum of

actual � and ct. In both cases, the weights on each factor, �( ~N) and 1� �( ~N), sum to one.

The other remark is that, in the second term on the right-hand side of (9), the weights on

higher-order expectations can be added up to one. These features con�rm the insight that

(6) is a special case of (9); namely, (6) arises when � 2 is zero, or equivalently, when �t is

unity.
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4.2 Comparative Statics

4.2.1 Equilibrium Prices at the Steady State

In the previous subsection, we derive the explicit solution form (9) by applying the �brute

force�solution method demonstrated by Morris and Shin (2002). While (9) is an intuitively

clear expression, working with the in�nite sum in (9) is intractable. In the meantime, be-

cause the �rms�optimization problem is linear-quadratic and the noises follow Gaussian, the

problem can be transformed into a Bayesian potential game and the objective function can

be expressed by a Bayesian potential function. In this section, we apply formula to solve

our model which is rede�ned as a Bayesian potential game and derive an alternative, more

tractable solution form of the equilibrium prices.17 Then, using the alternative expression

at the steady state, where t takes a su¢ ciently large number and �t converges to a con-

stant value �; we analytically show how sectoral in�ation persistence depends on market

concentration and information structure.

In parallel with (9), the alternative expression of the average equilibrium price in the

steady state (t!1) is summarized in the following proposition.

Proposition 2 The average price in a symmetric Bayesian Nash equilibrium in the steady

state is given as follows:

p�t = �(
~N)�+

�
1� �( ~N)

� 
c0 +

1X
s=0

�
1� �s+1
1� �

�h
1� (1� !( ~N))s+1

i
�t�s

!
; (15)

where

!( ~N) =
(1� r( ~N))�
1� r( ~N)�

; (16)

and � satis�es,

� =
(1 + � (1� �))�2

(1 + � (1� �))�2 + �(1� � (1� �))(1� �2 (1� �))� 2 : (17)

Proof : See Appendix B.1.�
To acquire intuition behind (15), suppose � = 0 for simplicity. Then, (15) is simpli�ed

as p�t = �( ~N)� +
�
1� �( ~N)

� 
c0 +

1X
s=0

h
1� (1� !( ~N))s+1

i
�t�s

!
: In period t, p�t re�ects

17To apply the formula, �interim prior�needs to be calculated. For details see Appendix B.1.
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information of the entire sequence of
�
�t�s

	1
s=0

and !( ~N) plays a critical role in determining

the weights on each �t�s. If !( ~N) is close to zero, price adjusts more slowly because a very

old shock (i.e., �t�s with a large s) is not fully re�ected in p
�
t even after long period of time

passed since period t� s. As can be con�rmed by (16), !( ~N) can take the maximum value

at �: That is, !( ~N) � �. Recall that � governs the speed of signal extraction where a single
agent is engaged in Bayesian updating. By contrast, because many �rms are collectively

updating their beliefs in this model, it is not optimal for each �rm to simply make the best

guess of the true state (at the speed of �), but all �rms share additional incentive in this

game to coordinate not to deviate from the average behavior. Because of this additional

incentive held by each �rm, the optimal speed of collective updating !( ~N) is always smaller

than �:

As discussed so far, the coordination motives make ! smaller than �. Angeletos and La�O

(2009) and other early studies point out that !0 (r) < 0, which implies that higher strategic

complementarity, represented by r, reduces the speed of price adjustment. Our value-added

here is that because ! (and r) explicitly depends on ~N; our model�s prediction can be taken

to observable data, namely, market concentration.

4.2.2 In�ation Persistence, Information Structure and Market Concentration

Using (15), now we analytically show how sectoral in�ation persistence is related to market

concentration. De�ne e�t � p�t�p�t�1 and e�t�1 � p�t�1�p�t�2. Accordingly, de�ne e�(e�t; e�t�1)
� Cov(e�t; e�t�1)=V ar(e�t�1) as the �rst-order quasi-autocorrelation function. We are ready
to state the set of main results as follows.

Lemma 1 e�t and e�t�1 are respectively given by,
e�t =

�
1� �( ~N)

�(
!( ~N)�t +

1X
s=1

�t�s( ~N)�t�s

)
;

e�t�1 =
�
1� �( ~N)

� 1X
s=1

�t�s+1( ~N)�t�s;
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where �t�s( ~N) is given by,

�t�s( ~N) �
"�
1� �s
1� �

�
(1� !( ~N))s + �s

 
1� (1� !( ~N))s+1

1� (1� !( ~N))

!#
!( ~N):

Proof : See Appendix B.2.�

Lemma 2 The following inequalities hold:

(i)
@!( ~N)

@ eN < 0;

(ii)
@!( ~N)

@� 2
< 0:

Proof : (i) From (16) and r( ~N) � ~N=(2� + 2 ~N),

@!( ~N)

@ eN = � 2��(1� �)�
2� + eN(2� �)�2 < 0:

(ii) Similarly, @!( ~N)=@� 2 can be written as,

@!( ~N)

@� 2
=
@!( ~N)

@�

@�

@� 2
=

1� r( ~N)�
1� r( ~N)�

�2 @�@� 2 ;
where @!( ~N)=@� > 0: It su¢ ces to show @�=@� 2 < 0. From (17), we obtain,

� 2 =
(1� �) (1 + �� ��)�2

(1� �+ ��)(1� �2 + �2�)�2
;

which clearly assures @�=@� 2 < 0.�

Proposition 3 The following inequalities hold:

@e�(e�t; e�t�1)
@ eN > 0;

@e�(e�t; e�t�1)
@� 2

> 0:

Proof : See Appendix B.3.�
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Proposition 3 formally con�rms the economic intuition discussed so far in this section.

To help understand the analytical structure, two limiting cases worth noting. If !( ~N) = 1,

then, e�(e�t; e�t�1) = �. Further, if � = 0, e�(e�t; e�t�1) = 1�!( ~N); which is obviously decreasing
in !( ~N), and thus increasing in ~N and � 2.

5 In�ation Dynamics: Numerical Assessment

5.1 Computation and Parameterization

In this section, we numerically illustrate the in�ation dynamics generated by our model.

Because the equilibrium average price p�t has an explicit solution form in our model as shown

in (15), we do not need to rely on any approximation to compute the dynamics.

We summarize the benchmark parametrization used for numerical illustrations: � = 200;

c0 = 100; and � = 200: We show results under di¤erent values for � and �=�: The extrinsic

persistence is determined by �; which takes values of 0, 0.25, and 0.5 in our simulations.

Even in the case where � is zero, our model generates fairly persistent in�ation dynamics, as

discussed in the next subsection. The remaining key parameter is �=�; which indicates the

noisiness of private information (normalized by �). We employ a fairly wide range of �=�

in numerical illustrations and con�rm that, quite naturally, imprecise private signals (i.e., a

large �=�) give rise to noticeably persistent in�ation dynamics. With the parameter set, we

focus on how the results quantitatively change along with the degree of market concentration

represented by ~N in this section.

5.2 Impulse Response Functions

First, we examine the impulse response of changes in average prices in one sector� i.e.,

sectoral in�ation� to a temporary shock to the level of marginal cost. Speci�cally, we give

a one-period negative impulse for �t in (1) and inspect the in�ation dynamics. Note that

this impulse in �t gives rise to a permanent (downward) shift in the level of marginal cost ct

whereas it has no e¤ect on the rate of changes of the marginal cost as depicted in panel (a)

of Figure 3.

Figure 3(b) shows the resulting dynamic responses in sectoral in�ation. Not surprisingly,

in�ation rates respond to the cost shock immediately on impact and die out very quickly
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under the perfect information case, as shown in the center panel in Figure 4. By contrast,

the right-hand panel clearly indicates that negative in�ation rates continue for substantially

multiple periods under the imperfect information case. In addition, the bold line on the

right-hand panel points to a several-periods delay in the maximum impact on in�ation,

or hump-shaped dynamics similar to those generated by Mankiw and Reis (2002). The

underlying mechanism of our model that generates the di¤erence between the center panel

and the right-hand panel is broadly the same as Woodford (2002) and its variants despite

di¤erent consumer preferences and a di¤erent market structure.

Another notable observation in our simulation results, shown in Figure 3, is the discrep-

ancy between the bold lines and the dotted lines in each panel. The bold and dotted lines

indicate, respectively, the in�ation response in markets with low concentration (log( ~N) = 4)

and high concentration (log( ~N) = 0). Clearly, the magnitude of the in�ation responses are

ampli�ed under the case with a large ~N compared to that with a small ~N .

[Figure 3 here]

This numerical result can be summarized in the following proposition.

Proposition 4 De�ne the impulse response function of in�ation 	�;k � @e�t+k=@�t. Then,
the following inequality holds for any k 2 f0; 1; 2; :::g:

@	�;k

@ ~N
> 0:

Proof : See Appendix B.4.�
We will discuss related issues to this proposition later in Section 6.

5.3 In�ation Persistence, Market Concentration andMark-up Shocks

To quantitatively assess the causal relationship between market concentration and in�ation

persistence, we perform Monte Carlo simulations with the parameter sets listed in subsection

5.1. Speci�cally, the cost shocks f�tg
2;000
t=1 in (1) are drawn from a standard normal distri-

bution (i.e., � = 1) and are given to the model. The model generates the sequence of the

average prices and the �rst-order autocorrelations of the in�ation rates (the log di¤erences

of the prices) are calculated. The relationship between the autocorrelation of the simulated
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path of in�ation and the parameter capturing the market concentration ( ~N) is plotted in

Figure 4.

In Figure 4, the vertical axis shows the �rst-order autocorrelation of the in�ation rates.

The horizontal axis indicates ~N in natural logs. Recall that a smaller ~N means higher concen-

tration. An important takeaway from Figure 4 is that downward-sloping curves are observed

unless the private signal is very precise (i.e., �=� is 0.1 in Figure 4). The simulation re-

sults broadly replicate the observed relationship between in�ation persistence and market

concentration, as observed in Section 2 and analytically shown in Section 4.18

[Figure 4 here]

Finally, we incorporate mark-up shocks into our model to check the robustness of the

model�s prediction in comparison with the data. Speci�cally, we consider the case in which

�t in (3) follows a random walk process �t = �t�1 + �t where �t � N (0; �2) represents a
mark-up shock in our model.19 Figure 5 maps the prediction of the model with the mark-up

shocks onto the data. The shaded region in Figure 5 shows the model prediction including

mark-up shocks. The results tend to show noisier relationship between market concentration

and in�ation persistence, particularly if a sector is less concentrated (i.e., N is large in the

sector). The model with the mark-up shocks replicates the data reasonably well.

[Figure 5 here]

6 Discussion

6.1 Price as Endogenous Public Information

In the model presented in Section 4, �rms cannot observe the true marginal cost even after

an in�nitely long period of time.20 Regarding this assumption, it may be argued that �rms

can infer the true marginal cost after observing the average prices set by others. In other

18As the relationship in Section 2 is unconditional (i.e., other sector-speci�c shocks and parameters, in-
cluding information precision �=�, are not controlled), it is not surprising that the negative correlations
appear to be weaker than predicted by Figure 4.
19As noted in Section 3.1, �t represents a demand shift parameter in Melitz and Ottaviano�s (2008)

preference while it can e¤ectively be interpreted as a mark-up shock as shown in (6).
20We follow Woodford (2002) on this assumption.
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words, while the true cost may remain unobservable for a long period of time, actual average

prices are likely to be publicly available data. This subsection demonstrates that our main

results remain intact even if �rms try to infer ct in period t + 1 based on publicly available

data of average price bp�t as long as the publicly available data contain a certain amount of
noise and/or measurement error.21:

We denote noisy public information on the average price (p�t ) as bp�t � N (p�t ; e2) such as
price and de�ator statistics and assume that bp�t is made public/observable in period t + 1:
Here, bp�t contains measurement error of which the variance is e2. In period t+1, the unbiased
public signal on marginal cost denoted by yt � N (ct;Se2) can be formed based on bp�t where,

S �

0@
�
1� �( ~N)

�
(1� r( ~N))�t

1� r( ~N)�t

1A�2

:

Note that S is decreasing in �t 2 (0; 1); and S ! 1 as �t ! 0 holds. This property means

that imprecision of yt stemming from e2 is ampli�ed by a smaller �t (i.e., the private signal

in period t is very noisy). If the private signals arriving in every period are noisy enough,

�rms�beliefs in period t + 1 are marginally a¤ected by the public signal yt and because yt

has very little information value, the updating process of the beliefs with public signal yt

remains broadly the same as that without yt articulated in our main results.

Figures 6 and 7 con�rm that, as long as the price data contain certain measurement error,

our main results remain almost the same quantitatively.22 In Figure 6, panel (a) is the same

as that in Figure 3. Panel (b) indicates that the dynamic responses of sectoral in�ation with

public information are similar to those without such information as depicted in Figure 3.

In terms of the correlation between sectoral in�ation persistence and market concentration,

Figure 7 con�rms that the model�s prediction remains almost unchanged compared with

those in Figure 4.

[Figures 6 and 7 here]

21The following argument follows Amador and Weill (2010).
22As for the derivation of the average price for this numerical illustration, see Appendix C.
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6.2 Relations to Early Studies

6.2.1 Empirical Evidence of Sticky Prices

Our model does not include nominal rigidities in �rms�price-setting to crystallize our main

results focusing on in�ation persistence. In a related vein, an empirical study by Bils and

Klenow (2004) provides an important result. They show scatterplots of sectoral in�ation

persistence and frequency of price changes.23 Based on the scatterplots, they point out that,

there is almost no correlation found between sectoral in�ation persistence and frequency

of price changes across sectors although these two should be negatively correlated if �rms

are following Calvo pricing. In other words, if prices are more sticky in a Calvo model

(i.e., the Calvo parameter measured by the monthly frequency of price changes is lower),

higher in�ation persistence would be observed. They report, however, that sectoral in�ation

persistence and frequency of price changes have a positive correlation of 0.26 using a sample

from January 1995 to June 2000. Their �ndings imply that there exists evidence of sticky

prices, however, sticky prices may not be a major determinant/source of in�ation persistence.

In line with their view, we do not include price stickiness in our model, not because prices

are �exible, but because, bearing in mind that sticky prices are not con�rmed as a major

source of in�ation persistence, we aim to show our results without relying on sticky prices.24

6.2.2 Market Concentration and Price Dynamics

A prima facie idea is that large �rms in a highly concentrated market� conceivably with

strong monopolistic power� may change their prices less frequently. Namely, prices will be

stickier in more concentrated sectors. This hypothesis has been repeatedly tested in the

literature and mixed results have been reported. Bils and Klenow (2004) examine how the

frequency of price changes is related to market concentration, proxied by the same indicator

as ours, the C4 ratio, across sectors. They conclude that there is no robust relationship

between frequency of price changes and market concentration. As argued by Bils and Klenow

(2004) themselves, we reemphasize that there is no clear empirical relationship between price

23See Figures 2 and 3 in Bils and Klenow (2004). Table 4 shows the correlation between (sectoral) in�ation
persistence and frequency of price changes.
24Angeletos and La�O (2009) discuss the interaction of sticky prices, imperfect common knowledge and

strategic complementarity in full detail. Our model can be interpreted as a special case of the Calvo parameter
in their framework, while it also has an additional dimension of strategic complementarity proxied by market
concentration. An early attempt in a similar context was made by Nishimura (1986).
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change frequency and in�ation persistence. Hence, the fact that price change frequency has

no correlation with the C4 ratio provides no direct implication for our �ndings reported in

Section 2.

In a closely related vein, Boivin, Giannoni, and Mihov (2009) estimate the impulse re-

sponses of the price levels of goods to an aggregate shock and argue that more competitive

sectors have higher price �exibility.25 At a glance, their �nding contradicts ours as illus-

trated in Section 2. Conversely, the fact is that our model replicates their empirical �ndings

with respect to the impulse response functions of price levels. As illustrated by the center

and right panels in Figures 3, the solid lines always show larger swings in terms of size (not

persistence in in�ation) than those of the dotted lines. The solid lines indicate the responses

of sectoral in�ation in, let us say, more competitive, sectors. If we focus on the size of the

changes in price levels or the deviation of price levels from the initial level, our model�s

prediction is consistent with the fact that more competitive sectors have higher price (level)

�exibility as noted by Boivin, Giannoni, and Mihov (2009).

This argument is formally summarized in the following proposition.

Proposition 5 De�ne the impulse response function of price levels 	p;k � @p�t+k=@�t. Then,
the following inequality holds for any k 2 f0; 1; 2; :::g:

@	p;k

@ ~N
> 0:

Proof : see Appendix B.5.�

7 Concluding Remarks

This paper presents empirical facts that point to negative correlations between in�ation

persistence (measured autocorrelation of monthly price changes) and market concentration

using US PPI data. Then, to provide a possible explanation for this observation, we build a

dynamic stochastic model in which monopolistically competitive �rms set their prices while

receiving private signals on cost shocks. In the model, �rms in a less concentrated sector

respond to a cost shock more slowly as they rely more on higher-order expectations which

25Boivin, Giannoni, and Mihov (2009) separately estimate the impulse responses of price levels to �aggre-
gate shocks�and �sector-speci�c shocks�which they identi�ed using their factor vector autoregressions.
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tend to be updated only slowly. As a result, the model generates highly persistent sectoral

in�ation, typically with hump-shaped dynamic responses, if the sector is less concentrated

under imprecise private signals. Our model is broadly successful in replicating the cross-

industry relation between market concentration and in�ation persistence observed in the US

PPI data.

Our model can be extended in multiple directions. One extension is to develop a general

equilibrium model following Melitz and Ottaviano�s (2008) approach to explore the impli-

cations for aggregate in�ation dynamics. Another extension could be to endogenize �rms�

information acquisition choice, following models of rational inattention. Such extensions may

provide more helpful insights into the in�ation dynamics observed in the data.
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A Consumer and Demand

The maximization problem of the consumer in period t 2 f0; 1; 2; :::g is given by

max
ffqt(i)gi2[0;N ]; qAg

�

Z
i2[0;N ]

qt(i)di�
�

2

Z
i2[0;N ]

(qt(i))
2di� 


2

�Z
i2[0;N ]

qt(i)di

�2
+ qA;

subject to

Z
i2[0;N ]

qt(i)pt(i)di+ qA = qA:

By substituting the budget constraint into the objective function, the problem in period

t 2 f0; 1; 2; :::g is simpli�ed as,

max
ffqt(i)gi2[0;N ]; qAg

�

Z
i2[0;N ]

qt(i)di�
�

2

Z
i2[0;N ]

(qt(i))
2di�


2

�Z
i2[0;N ]

qt(i)di

�2
+qA�

Z
i2[0;N ]

qt(i)pt(i)di:

By taking the �rst derivatives of the function with respect to qt(i), we derive the �rst-order

condition for qt(i) as,

�� �qt(i)� 

Z
i2[0;N ]

qt(i)di� pt(i) = 0, pt(i) = �� �qt(i)� 

Z
i2[0;N ]

qt(i)di:

By integrating pt(i) over i 2 [0; N ] and dividing with N , we obtain

1

N

Z
i2[0;N ]

pt(i)di = pt = ��
�

N

Z
i2[0;N ]

qt(i)di� 

Z
i2[0;N ]

qt(i)di

,
Z
i2[0;N ]

qt(i)di =
N

� + 
N
(�� pt) :

By substituting
R
i2[0;N ] qt(i)di into the condition, we obtain the (linear) inverse demand

function and the (linear) demand function:

pt(i) =
�

� + 
N
�� �qt(i) +


N

� + 
N
pt;

qt(i) =
1

� + 
N
�� 1

�
pt(i) +


N

�(� + 
N)
pt:
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B Proofs

B.1 Proof of Proposition 2

Because ct is composed of the initial value c0 and the accumulation of stochastic shocks

�t�s for s = f0; 1; ::; t � 1g (ct = ct�1 + �t, �t = ��t�1 + �t), ct has a representation only

with the variables c0 and �t�s as ct = c0 +

t�1X
s=0

�
1��s+1
1��

�
�t�s. Denote �tjt by the value

which is incorporated into the average price in period t (i.e., posterior in period t) as p�t =

�( ~N)�+
�
1� �( ~N)

�
�tjt. We reasonably conjecture that �tjt is the linear composition of c0

and �t�s for s = f0; 1; ::; t� 1g as,

�tjt � c0 +
t�1X
s=0

�
1� �s+1
1� �

�
�t;t�s�t�s:

Similarly, denote �tjt�1 by the �rms�average expectations, in period t�1 (i.e., prior in period
t), about the value which will be incorporated into the average price in period t as,

�tjt�1 � c0 +
t�1X
s=1

�
1� �s+1
1� �

�
�t�1;t�s�t�s:

The term �t;t�s is the weight on �t�s given the information set in period t and �t�1;t�s is

the weight on �t�s given the information set in period t� 1.
To begin with, we build a lemma about the updating process from �tjt�1 to �tjt.

Lemma 3 The following relationship holds:

�tjt = !t( ~N)ct + (1� !t( ~N))�tjt�1;

where,

!t( ~N) =
(1� r( ~N))�t
1� r( ~N)�t

:

Proof : Because the objective function of �rms has linear quadratic nature and the shocks

follow Gaussian, the problem can be restated as Bayesian potential games with the payo¤
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function:

� 1
�
pt(i)

2 +
~N

�(� + ~N)
ptpt(i) +

�
1

� + ~N
�+

ct
�

�
pt(i)�

1

� + ~N
�ct �

~N

�(� + ~N)
ctpt

= �Apt(i)2 � 2B
Z
j2[0;N ]; j 6=i

pt(j)pt(i)dj + 2�(ct)pt(i)

where A � 1=�, B � � ~N=(2�(� + ~N)), and �(ct) � �=(2(� + ~N)) + ct=(2�). De�ne

C � A+B = (2� + ~N)=(2�(� + ~N)); �( ~N) � A=C( ~N) = (2� + 2 ~N)=(2� + ~N) and !t( ~N) =

V ar[ctjHt�1(i)]=(V ar[ctjHt�1(i)] +�( ~N)�
2). Denote �tjt�1(i) by each �rm�s expectations, in

period t� 1, about the value which will be incorporated into its own price in period t.
Then, following Ui and Yoshizawa (2013),26 we obtain each �rm�s price and the average

price in a unique Bayesian Nash equilibrium as,

pt(i)
� =

�
�t

C( ~N)�t + A� 2

��
xt(i)� �tjt�1(i)

2�

�
+
�tjt�1(i)

C( ~N)

= �( ~N)�+
�
1� �( ~N)

�
(!t( ~N)xt(i) + (1� !t( ~N))�tjt�1(i));

p�t = �( ~N)�+
�
1� �( ~N)

�
(!t( ~N)ct + (1� !t( ~N))�tjt�1);

which leads to,

�tjt = !t( ~N)ct + (1� !t( ~N))�tjt�1:

From 1=�( ~N) = 1� r( ~N) and �t = � 2=(V ar[ctjHt�1(i)] + �
2), we obtain

!t( ~N) =

1
�( ~N)

V ar[ctjHt�1(i)]
V ar[ctjHt�1(i)]+�2

1
�( ~N)

V ar[ctjHt�1(i)]
V ar[ctjHt�1(i)]+�2

+ �2

V ar[ctjHt�1(i)]+�2

=
(1� r( ~N))�t
1� r( ~N)�t

:�

Given lemma 3, we have the following lemma.

Lemma 4 The average price in a symmetric Bayesian Nash equilibrium is given as follows:

p�t = �( ~N)�+
�
1� �( ~N)

�(
c0 +

t�1X
s=0

�
1� �s+1
1� �

� s+1X
u=1

"
!t�u+1( ~N)

1� !t�u+1( ~N)

u�1Y
v=0

(1� !t�v( ~N))
#
�t�s

)
;

26Radner (1962), Angeletos and Pavan (2007) and Ui (2009, 2016) show the same results in the games
with �nite number of players.
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where,

!t( ~N) =
(1� r( ~N))�t
1� r( ~N)�t

; �t =
1

� 2

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)];

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)]

= �2
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

8>>>><>>>>:
� 2

�2 +

s�1X
u=0

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)] + � 2

9>>>>=>>>>; :

Proof : From lemma 3, in a symmetric Baysian Nash equilibrium, �tjt and �tjt�1 satisfy

the following equation: �tjt = !t( ~N)ct+(1�!t( ~N))�tjt�1. By substituting �tjt; ct; and �tjt�1
into the equation above, we have the equation:

c0 +
t�1X
s=0

�
1� �s+1
1� �

�
�t;t�s�t�s = c0 +

t�1X
s=0

�
1� �s+1
1� �

��
!t( ~N) + (1� !t( ~N))�t�1;t�s

�
�t�s:

By repeating the same calculation, �t;t�s for any s 2 f0; 1; 2; :::g is uniquely determined as,

�t;t�s = !t( ~N) + (1� !t( ~N))�t�1;t�s = !t( ~N) + (1� !t( ~N))(!t�1( ~N) + (1� !t�1( ~N))�t�2;t�s)

= !t( ~N) + (1� !t( ~N))!t�1( ~N) + (1� !t( ~N))(1� !t�1( ~N))!t�2( ~N) + :::

=
s+1X
u=1

"
!t�u+1( ~N)

1� !t�u+1( ~N)

u�1Y
v=0

(1� !t�v( ~N))
#
;

where �t�s�v;t�s = 0 holds for any v 2 f1; 2; 3; :::g.
By substituting �t;t�s into �tjt, we obtain

�tjt � c0 +
t�1X
s=0

�
1� �s+1
1� �

�
�t;t�s�t�s

= c0 +
t�1X
s=0

(�
1� �s+1
1� �

� s+1X
u=1

"
!t�u+1( ~N)

1� !t�u+1( ~N)

u�1Y
v=0

(1� !t�v( ~N))
#)

�t�s;

p�t = �( ~N)�+
�
1� �( ~N)

�(
c0 +

t�1X
s=0

(�
1� �s+1
1� �

� s+1X
u=1

"
!t�u+1( ~N)

1� !t�u+1( ~N)

u�1Y
v=0

(1� !t�v( ~N))
#)

�t�s

)
:
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Next, we characterize !t( ~N) for t 2 f1; 2; 3; :::g. Because !t( ~N) = (1�r( ~N))�t=
�
1� r( ~N)�t

�
holds, and r( ~N) is a �xed parameter, it is enough to write out �t for t 2 f1; 2; 3; :::g. Based

on the equation ct = c0 +
t�1X
s=0

�
1��s+1
1��

�
�t�s, V ar[ctjHt�1(i)] can be expressed as,

V ar[ctjHt�1(i)] =
t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt�1(i)]:

Following Bayes�theorem for the variance of normal distribution, we obtain,

V ar[ctjHt(i)] =

�
� 2

V ar[ctjHt�1(i)] + � 2

�
V ar[ctjHt�1(i)] = (1� �t)V ar[ctjHt�1(i)]

()
t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)] = (1� �t)

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt�1(i)]

=
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

(1� �t�u)V ar[�t�sjH0(i)]

= �2
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

8>>>><>>>>:
� 2

�2 +
s�1X
u=0

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)] + � 2

9>>>>=>>>>; :

By substituting the following equality

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt�1(i)] =

� 2
t�1X
s=0

�
1��s+1
1��

�2
V ar[�t�sjHt(i)]

� 2 �
t�1X
s=0

�
1��s+1
1��

�2
V ar[�t�sjHt(i)]

;

�t is determined as,

�t =

t�1X
s=0

�
1��s+1
1��

�2
V ar[�t�sjHt�1(i)]

t�1X
s=0

�
1��s+1
1��

�2
V ar[�t�sjHt�1(i)] + � 2

=
1

� 2

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)]:�

Finally, given lemma 4, we derive the average price in the steady state (t!1). Because
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1� �t 2 (0; 1) and (1� �s+1) = (1� �) is bounded above by 1= (1� �) ;

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)]

= �2
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

8>>>><>>>>:
� 2

�2 +
s�1X
u=0

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)] + � 2

9>>>>=>>>>;
= �2

t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

(1� �t);

converges to a certain value, and consequently �t and !t( ~N) also converge. De�ne the values

as � and !( ~N). Then, for t!1,

p�t = �( ~N)�+
�
1� �( ~N)

�(
c0 +

t�1X
s=0

(�
1� �s+1
1� �

� s+1X
u=1

"
!t�u+1( ~N)

1� !t�u+1( ~N)

u�1Y
v=0

(1� !t�v( ~N))
#)

�t�s

)

! �( ~N)�+
�
1� �( ~N)

�(
c0 +

1X
s=0

�
1� �s+1
1� �

�h
1� (1� !( ~N))s+1

i
�t�s

)
:

Finally, we characterize !( ~N). We have the equation to identify � as,

1� � =
� 2

t�1X
s=0

�
1��s+1
1��

�2
V ar[�t�sjHt�1(i)] + � 2

=
� 2

�2
1X
s=1

(1� �)s�1
�
1��s
1��

�2
+ � 2

() � =
(1 + �� ��)�2

(1 + �� ��)�2 + �(1� �+ ��)(1� �2 + �2�)� 2 :

Because � 2 (0; 1) holds, the left hand side of the equation is monotonically increasing in �
from 0 to 1, and the right hand side is monotonically decreasing in � from 1 to � 2=(�2+ � 2).

Therefore there exists a unique � which satis�es the equation above. �
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B.2 Proof of lemma 1

From proposition 2, e�t and e�t�1 are given by,
e�t =

�
1� �( ~N)

� 1X
s=0

�
1� �s+1
1� �

��h
1� (1� !( ~N))s+1

i
�t�s �

h
1� (1� !( ~N))s+1

i
�t�1�s

�
=

�
1� �( ~N)

�(
!( ~N)�t +

1X
s=0

!( ~N)

"�
1� �s
1� �

�
(1� !( ~N))s + �s

 
1� (1� !( ~N))s+1

1� (1� !( ~N))

!#
�t�s

)
;

e�t�1 =
�
1� �( ~N)

� 1X
s=0

�
1� �s+1
1� �

��h
1� (1� !( ~N))s+1

i
�t�s�1 �

h
1� (1� !( ~N))s+1

i
�t�2�s

�
=

�
1� �( ~N)

� 1X
s=1

!( ~N)

"�
1� �s�1
1� �

�
(1� !( ~N))s�1 + �s�1

 
1� (1� !( ~N))s

1� (1� !( ~N))

!#
�t�s:�

B.3 Proof of Proposition 3

Lemma 5 The �rst-order quasi-autocorrelation function e�(e�t; e�t�1) is given by
e�(e�t; e�t�1) = �N

�D
;

where,

�N � (1� !( ~N))�1 + ��2 + �(1� !( ~N))�3 +
�
�+ (1� !( ~N)

�
�4

�(1� !( ~N)) (1 + �) �5 � �(1 + (1� !( ~N)))�6;

�D � �1 + �2 + �3 + 2�4 � 2�5 � 2�6;

�1 �

�
1� (1� !( ~N))

�2
1� (1� !( ~N))2

; �2 �
(1� �)2

1� �2 ;

�3 �

�
1� �(1� !( ~N))

�2
1� �2(1� !( ~N))2

; �4 �
(1� �)

�
1� (1� !( ~N))

�
1� �(1� !( ~N))

;

�5 �

�
1� (1� !( ~N))

��
1� �(1� !( ~N))

�
1� �(1� !( ~N))2

; �6 �
(1� �)

�
1� �(1� !( ~N))

�
1� �2(1� !( ~N))

:

32



Proof : First, from lemma 1, the following equalities hold:

Cov(e�t; e�t�1) =
�
1� �( ~N)

�2 " 1X
s=1

�t�s( ~N)�t�s+1( ~N)

#
�2;

V ar(e�t�1) =
�
1� �( ~N)

�2 " 1X
s=1

�2t�s+1( ~N)

#
�2:

Thus, the �rst-order quasi-autocorrelation function e�(e�t; e�t�1) � Cov(e�t; e�t�1)=V ar(e�t�1) is
given by,

e�(e�t; e�t�1) = " 1X
s=1

�t�s( ~N)�t�s+1( ~N)

#" 1X
s=1

�2t�s+1( ~N)

#�1

=

266664
(1� !( ~N))(1�(1�!(

~N)))
2

1�(1�!( ~N))2 + � (1��)
2

1��2

+�(1� !( ~N))(1��(1�!(
~N)))

2

1��2(1�!( ~N))2 +
�
�+ (1� !( ~N)

�
(1��)(1�(1�!( ~N)))

1��(1�!( ~N))

�(1� !( ~N)) (1 + �) (1�(1�!(
~N)))(1��(1�!( ~N)))

1��(1�!( ~N))2 � �(1 + (1� !( ~N))) (1��)(1��(1�!(
~N)))

1��2(1�!( ~N))

377775
24 (1�(1�!( ~N)))

2

1�(1�!( ~N))2 + (1��)2
1��2 +

(1��(1�!( ~N)))
2

1��2(1�!( ~N))2 + 2
(1��)(1�(1�!( ~N)))

1��(1�!( ~N))

�2(1�(1�!(
~N)))(1��(1�!( ~N)))

1��(1�!( ~N))2 � 2 (1��)(1��(1�!(
~N)))

1��2(1�!( ~N))

35�1

which is the composition of the symmetric functions of � and (1� !( ~N)). �
According to lemma 5, e�(e�t; e�t�1) is the composition of the symmetic functions of �

and (1 � !( ~N)). Because a symmetric polynomial function can be transformed into the
function of elementary symmetric polynomials, the combinations of polynominal functions

(e�(e�t; e�t�1)) can be also transformed into the function of elementary symmetric polynomials.
Suppose the function f(�; (1 � !( ~N)); �) � e�(e�t; e�t�1) � � where � is an arbitraty number
in [0; 1]. Then, there exists a unique function with elementary symmetric polynominals � �
�+ (1� !( ~N)) and � � �(1� !( ~N)), given by g(�; �; �) � e�(e�t; e�t�1)� �: Therefore, there
exists the correspondence satisfying g(�; �; �) = f(�; (1� !( ~N)); �).
For � = (1� !( ~N)) � �, f(�; �; �) has a unique solution because

f(�; �; �) =
4� (1��)

2

1��2 � 2� (1 + �)
(1��)(1��2)

1��3 + �2
(1��2)

2

1��4

4 (1��)
2

1��2 � 4
(1��)(1��2)

1��3 +
(1��2)

2

1��4

� �;
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leads to f(0; 0; �) = �� < 0, f(1; 1; �) = 1� � > 0 and,

@

@�
f(�; �; �) = 2

(1� �)(1 + �2 + 5�4 + �5 + 8�6 � �7 + �8)
(�1 + � � 4�2 + �3 � �4)2

> 0:

Because f(�; �; �) is monotonic, by Intermediate Value Theorem, there exists a unique

solution for f(�; �; �) = 0 for any �. Because � � 2�, � � �2, and � is unique, the combination
of � and � for � is unique too. Therefore, g(�; �; �) = 0 has a unique solution for any �

satisfying

� � �+ (1� !( ~N)); � � �(1� !( ~N)):

There may exist multiple combinations of � and (1 � !( ~N)) for a unique combination of �
and �.

Our argument in the following is, for a �xed (1�!( ~N)), there exists a unique solution �
for the unique combination of �, � for any �xed (1�!( ~N)). To satisfy the equations above,

�2 � ��+ � = 0,
�
�� 1

2
�

�2
� 1
4
�2 + � = 0

, � =
��

p
�2 � 4�
2

;

must hold. Therefore, there possibly exist two solutions, and one of the solution is greater

than �=2 and the other is less than �=2. Fix, without loss of generality, (1 � !( ~N)) and
consider two cases, (i) 1 > � > (1 � !( ~N)) > 0 and (ii) 0 < � < (1 � !( ~N)) < 1 (the

uniqueness of the solution in the case with � = (1�!( ~N)) has already been shown). In case (i)
1 > � > (1�!( ~N)) > 0, � > � > �=2 and � > � hold (� 2 (�=2; �)). Therefore, the solution
is unqiue � = (� +

p
�2 � 4�)=2. On the other hand, in case (ii), 0 < � < (1� !( ~N)) < 1;

by the same logic, �=2 > � > holds (� 2 (�; �=2)). Therefore, the solution is unqiue

� = (� �
p
�2 � 4�)=2. Thus, for any �xed (1 � !( ~N)), there exists a unique � satisfying

f(�; (1�!( ~N)); �) = 0. By the symmetricity of � and (1�!( ~N)), for any �xed �, there exists
a unique (1 � !( ~N)) satisfying f(�; (1 � !( ~N)); �) = 0. Because e�(e�t; e�t�1) is a continuous
function over [0; 1]2 ! [0; 1] and has the one-to-one correspondence with (1 � !( ~N)) for
a �xed �, this function is monotonic to (1 � !( ~N)). Finally, because e�(e�t; e�t�1) = � for

(1�!( ~N)) = 0, and e�(e�t; e�t�1) = 1 for (1�!( ~N)) = 1; it is increasing in (1�!( ~N)): Thus,
together with lemma 2, we �nish the proof. �
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B.4 Proof of Proposition 4

First, from lemma 1 and the assumption that �t 6= 0 and �t�s = 0 for s 2 f:::;�2;�1; 1; 2; :::g
hold, e�t and e�t+k for k 2 f1; 2; 3; :::g are given as follows:
e�t =

�
1� �( ~N)

�
!( ~N)�t =

 
�(� + eN)

2� + eN(2� �)
!
�t;

e�t+k =
�
1� �( ~N)

���1� �k+1
1� �

�h
1� (1� !( ~N))k+1

i
�
�
1� �k
1� �

�h
1� (1� !( ~N))k

i�
�t

=

 
�(� + eN)

2� + eN(2� �)
!8><>:

�k
�
1 + :::+

h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik�1�

+
h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik �

1 + :::+ �k�1
�
+ �k

h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik
9>=>; �t:

Therefore, 	�;0 and 	�;k for k 2 f1; 2; 3; :::g are given by,

@	�;0 � @e�t
@�t

=
�(� + eN)

2� + eN(2� �)
@	�;k � @e�t+k

@�t
=

 
�(� + eN)

2� + eN(2� �)
!8>>>><>>>>:

�k
�
1 + :::+

h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik�1�

+
h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik �

1 + :::+ �k�1
�

+�k
h
2�(1��)+ eN(2�2�)

2�+ eN(2��)
ik

9>>>>=>>>>; :

Here, the following inequalities hold:

@

@ eN
 

�(� + eN)
2� + eN(2� �)

!
=

���
2� + eN(2� �)�2 > 0;

@

@ eN
 
2�(1� �) + eN(2� 2�)

2� + eN(2� �)
!

=
2�(1� �)��

2� + eN(2� �)�2 > 0:
Therefore, 	�;0 and 	�;k for k 2 f1; 2; 3; :::g are monotonically increasing in ~N . �

35



B.5 Proof of Proposition 5

First, using proposition 2 and the assumption that �t 6= 0 and �t�s = 0 for s 2 f:::;�2;�1; 1; 2; :::g
hold, p�t+k for k 2 f0; 1; 2; :::g are given as follows:

p�t+k = �( ~N)�+
�
1� �( ~N)

��
ct�1 +

�
1� �k+1
1� �

�h
1� (1� !( ~N))k+1

i
�t

�
:

Therefore, by substituting 1��( ~N) = (�+ eN)=(2�+ eN) and !( ~N) = ��2� + eN��� =�2� + eN(2� �)�
into p�t+k; 	p;k is expressed as,

	p;k �
@p�t+k
@�t

=
�
1� �( ~N)

��1� �k+1
1� �

�h
1� (1� !( ~N))k+1

i
=

�
1� �( ~N)

��1� �k+1
1� �

�
!( ~N)

kX
s=0

(1� !( ~N))s

=

 
� + eN
2� + eN

!0@
�
2� + eN��t

2� + eN(2� �t)
1A�1� �k+1

1� �

� kX
s=0

(1� !( ~N))s:

Next, we examine the sign of @	p;k=@ ~N . Here, the term
kX
s=0

(1� !( ~N))s must be monoton-

ically increasing in (1� !( ~N)) and (1� !( ~N)) is monotonically decreasing in !( ~N). Thus,

from lemma 2, the term
kX
s=0

(1�!( ~N))s is monotonically increasing in eN . Moreover, because

@

@ eN
8<:
 
� + eN
2� + eN

!0@
�
2� + eN��

2� + eN(2� �)
1A9=; =

@

@ eN
 

�(� + eN)
2� + eN(2� �)

!
=

��t�
2� + eN(2� �)�2 > 0;

holds, 	p;k is increasing in eN for any k 2 f0; 1; 2; :::g. �
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C Average Price with Endogenous Public Information

For Figure 6 and 7 in subsection 6.1, this appendix derives the average price when �rms

obtain endogenous public information from the average price in the previous period.

From lemma 3, in a symmetric Baysian Nash equilibrium, �tjt and �tjt�1 satisfy the

following equation:

�tjt = !A;tct + (1� !A;t)�tjt�1;

where !A;t � (1 � r( ~N))�t=(1 � r( ~N)�t): De�ne the fraction of updating from the ex post

observable signal yt as !B;t. Then, we have,

t�1X
s=0

�
1� �s+1
1� �

�
�t;t�s�t�s =

t�1X
s=0

�
1� �s+1
1� �

�
(!A;t + (1� !A;t)�t�1;t�s) �t�s;

and we can indentify �t;t�s for any s 2 f0; 1; 2; :::g as,

�t;t�s = !A;t + (1� !A;t)�t�1;t�s

= !A;t + (1� !A;t) (!B;t�1 + (1� !B;t�1)�t�2;t�s)

=

8>><>>:
!A;t for s = 0

!A;t + (1� !A;t)
sX
u=1

"
!B;t�u
1�!B;t�u

u�1Y
v=0

(1� !B;t�v�1)
#
for s > 0:

Note that �t�s�v;t�s = 0 obviously holds for any v 2 f1; 2; 3; :::g and that !B;t = !A;t always
holds in period t because the endogenous public signal has not been generated yet. Therefore,

we have

p�t=�(
~N)�+

�
1� �( ~N)

�
c0

+
�
1� �( ~N)

� t�1X
s=0

�
1� �s+1
1� �

�(
!A;t + (1� !A;t)

sX
u=1

"
!B;t�u

1� !B;t�u

u�1Y
v=0

(1� !B;t�v�1)
#)

�t�s:

Denote �0t by the value satisfying !B;t � (1� r( ~N))(�t + �0t)=(1� r( ~N)(�t + �0t)). Then, the
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following equality holds: �t � V ar[ctjHt�1(i)]= (V ar[ctjHt�1(i)] + �
2), and

�0t = (1� �t)
� 2(1� �t)

� 2(1� �t) + e2

(1��( ~N))
2
�
(1�r( ~N))�t
1�r( ~N)�t

�2

=
� 2(1� �t)2(1� r( ~N))2�2t

�
1� �( ~N)

�2
� 2(1� �t)(1� r( ~N))2�2t

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�t

�2 :
Because r( ~N) is a �xed parameter, it is enough to write out �t for t 2 f1; 2; 3; :::g. Note that
�0t = 0. Further, by using the same step as before, we have,

t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)]

= (1� �t)
t�1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt�1(i)]

=
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

(1� �t�u � �0t�u)V ar[�t�sjH0(i)]

= �2
t�1X
s=0

�
1� �s+1
1� �

�2 sY
u=0

(1� �t�u)

0B@ e2
�
1� r( ~N)�t

�2
� 2(1� �t)(1� r( ~N))2�2t

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�t

�2
1CA ;

where �t =

"
�2 +

s�1X
u=0

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)]

#"
�2 +

s�1X
u=1

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)] + �

2

#�1
.

Therefore, there is the unique value for V ar[ctjHt(i)], �t, �
0
t, !A;t and !B;t, respectively.

Next, we derive the price in the steady state when �t ! � and �0t ! �0 (and thus !A;t ! !A

and !B;t ! !B). The price is given by,

p�t=�( ~N)�+
�
1� �( ~N)

�
+
�
1� �( ~N)

� 1X
s=0

�
1� �s+1
1� �

�
f!A + (1� !A) [1� (1� !B)s]g �t�s:
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Because

1X
s=0

�
1� �s+1
1� �

�2
V ar[�t�sjHt(i)]

= �2
t�1X
s=0

(1� �)s

0B@ e2
�
1� r( ~N)�

�2
� 2(1� �)(1� r( ~N))2�2

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�

�2
1CA
s�1�

1� �s+1
1� �

�2
;

and � =

"
�2 +

s�1X
u=0

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)]

#"
�2 +

s�1X
u=1

�
1��u+2
1��

�2
V ar[�t�1�ujHt�1(i)] + �

2

#�1
,

we have the equation:

1� � =
� 2

1X
u=0

�
1��u+1
1��

�2
V ar[�t�ujHt�1(i)] + � 2

=
� 2

�2
1X
s=1

�
1��s+1
1��

�2
(1� �)s�1

�
e2(1�r( ~N)�)

2

�2(1��)(1�r( ~N))2�2(1��( ~N))
2
+e2(1�r( ~N)�)

2

�s�1
+ � 2

() � =
�2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i
�2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i
+ � 2

;

for
 �
�
(1� �) e2

�
1� r( ~N)�

�2� �
� 2(1� �)(1� r( ~N))2�2

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�

�2��1
.

Here, because

1




0B@= � 2(1� r( ~N))2�2
�
1� �( ~N)

�2
e2
�
1� r( ~N)�

�2 +
1

1� �

1CA
is monotonically increasing in � (and the lower bound is 1), 
 is monotonically decreasing

in �.
1

1� 
 �
2�2

1� �
 +
�4

1� �2
 = (1� �)
2
�
�+ �3
2

�
> 0;

leads to �2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i�
�2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i
+ � 2

��1
2 (0; 1):
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Thus, there exists a unique solution of �. Similarly, the sum of � and �0 is given by,

�+ �0 =
� 2(1� �)(1� r( ~N))2�2

�
1� �( ~N)

�2
+ e2�

�
1� r( ~N)�

�2
� 2(1� �)(1� r( ~N))2�2

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�

�2 :
Finally, !A and !B are respectively given by,

!A =
(1� r( ~N))�
1� r( ~N)�

; !B =

(1� r( ~N))
�
�2(1��)(1�r( ~N))2�2(1��( ~N))

2
+e2�(1�r( ~N)�)

2

�2(1��)(1�r( ~N))2�2(1��( ~N))
2
+e2(1�r( ~N)�)

2

�
1� r( ~N)

�
�2(1��)(1�r( ~N))2�2(1��( ~N))

2
+e2�(1�r( ~N)�)

2

�2(1��)(1�r( ~N))2�2(1��( ~N))
2
+e2(1�r( ~N)�)

2

� :
Therefore, the average price with endogenous public information is given by,

p�t =�(
~N)�+

�
1� �( ~N)

�(
c0 +

1X
s=0

�
1� �s+1
1� �

�
f!A + (1� !A) [1� (1� !B)s]g �t�s

)
;

where

!A =
(1� r( ~N))�
1� r( ~N)�

;

!B =

(1� r( ~N))
�
�2(1��)(1�r( ~N))2�2(1��( ~N))

2
+e2�(1�r( ~N)�)

2

�2(1��)(1�r( ~N))2�2(1��( ~N))
2
+e2(1�r( ~N)�)

2

�
1� r( ~N)

�
�2(1��)(1�r( ~N))2�2(1��( ~N))

2
+e2�(1�r( ~N)�)

2

�2(1��)(1�r( ~N))2�2(1��( ~N))
2
+e2(1�r( ~N)�)

2

� ;

� =
�2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i
�2
�

1
1��

�2 h
1

1�
 �
2�2

1��
 +
�4

1��2


i
+ � 2

;


 �
(1� �) e2

�
1� r( ~N)�

�2
� 2(1� �)(1� r( ~N))2�2

�
1� �( ~N)

�2
+ e2

�
1� r( ~N)�

�2 :
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Figure 1: Inflation Persistence and Market Concentration 
of Manufacturers, C4 ratio 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Note: Four-digit level NAICS disaggregation. “Petroleum and coal products 
manufacturing,” “Nonmetallic mineral product manufacturing,” and “Primary metal 
manufacturing” are excluded. Sample period is from January 2004 to November 2016. 

Sources: Census Bureau “Economic Census,” Bureau of Labor Statistics “Producer 
Price Index” 
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Figure 2: Inflation Persistence and Market Concentration 
of Manufacturers, HHI 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Note: Four-digit level NAICS disaggregation. “Petroleum and coal products 
manufacturing,” “Nonmetallic mineral product manufacturing,” and “Primary metal 
manufacturing” are excluded. Sample period is from January 2004 to November 2016. 

Sources: Census Bureau “Economic Census,” Bureau of Labor Statistics “Producer 
Price Index” 
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Figure 3: Impulse Response Functions 
 
                   (a) Level of marginal cost                                 (b) Inflation rate 

                                                      “Perfect information”           “Imperfect information” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Parameters are ρ = 0.6,β = 200,α = 200, 𝑐𝑐0 = 100.  
 𝜏𝜏/𝜎𝜎 is 0 under perfect information and 10 under imperfect information.  

log�𝑁𝑁�� = 0 for “more concentrated” market, and log�𝑁𝑁�� = 4 for “less concentrated” market. 
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Figure 4: Inflation Persistence and Market Concentration (Simulations) 
 

(a) 𝜏𝜏/𝜎𝜎 = 0.1                     (b) 𝜏𝜏/𝜎𝜎 = 0.5                     (c) 𝜏𝜏/𝜎𝜎 = 1                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: ρ is the parameter of persistence of cost shocks. The number of simulated periods is 2,000. 
Parameters are β = 200,α = 200, c0 = 100. 
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Figure 5 : Actual Observation and Theoretical Prediction with Mark-up Shocks; 
Inflation Persistence and Market Concentration of Manufacturers, C4 ratio 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Note: The plotted data are replication of Figure 1. The shaded region indicates the 
“model prediction” based on simulation result with the parameterization:ρ = 0,β = 10,

σ = 1, ξ = √5, and τ ∈ [0, 2]. 

Sources: Census Bureau “Economic Census,” Bureau of Labor Statistics “Producer Price 
Index” 
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Figure 6: Impulse Response Functions with Public Information 
 
                              (a) Level of marginal cost              (b) Inflation rate 

                                                           “With measurement errors” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Parameters are ρ = 0.6, β = 200,α = 200,  𝑐𝑐0 = 100, 𝜏𝜏/𝜎𝜎 =10 and 𝑒𝑒 = 5. 
 log�𝑁𝑁�� = 0 for “more concentrated” market, and log�𝑁𝑁�� = 4 for “less concentrated” market. 
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Figure 7: Inflation Persistence and Market Concentration with Public Information 
 
 

(a) 𝜏𝜏/𝜎𝜎 = 0.1                      (b) 𝜏𝜏/𝜎𝜎 = 0.5                      (c) 𝜏𝜏/𝜎𝜎 = 1                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: ρ is the parameter of persistence of cost shocks. The number of simulated periods is 2,000. 
Parameters are β = 200, α = 200, c0 = 100, and 𝑒𝑒 = 1.
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Table 1: Descriptive Statistics of Sectoral Inflation Persistence 

 
 Boivin, Giannoni, 

and Mihov (2009) 
Extended dataset 

Industries Manufacturers Manufacturers Nonmanufacturers 

Sample Period 1976/2M-2005/6M 2004/1M-2017/2M 

Average 0.14 0.11 -0.08 

Median 0.12 0.06 -0.08 

Minimum -0.44 -0.59 -0.60 

Maximum 0.61 0.75 0.50 

Standard Deviation 0.19 0.23 0.18 

Observations 152 272 111 

Note: The inflation persistence is estimated by an AR(1) model using seasonally-adjusted monthly 

log-difference of sectoral prices (NAICS six-digit Classification). 
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Table 2: Regression Results (1976−2005, Manufacturers) 

Dataset: Boivin, Giannoni, and Mihov (2009) 

Manufacturers, 1976/2M−2005/6M, NAICS six-digit Classification 

Dependent Variable: First-order autocorrelation of monthly inflation (𝜌𝑖) 

 (1) (2) (3) (4) (5) (6) 

Constant 0.225*** 

(0.042) 

0.226*** 

(0.041) 

0.231*** 

(0.041) 

0.190*** 

(0.029) 

0.192*** 

(0.029) 

0.199*** 

(0.030) 

C4i −0.194** 

(0.078) 

−0.192** 

(0.081) 

−0.175** 

(0.082) 

   

HHIi/1000    −0.062*** 

(0.023) 

−0.062*** 

(0.023) 

−0.063*** 

(0.024) 

𝜎𝜎�𝑖
2   −1758.36 

(6340.93) 

  −3437.28 

(6283.96) 

 

d1   −0.073 

(0.045) 

  −0.072 

(0.042) 

d2   0.010 

(0.058) 

  0.033 

(0.056) 

Observations 152 152 152 145 145 145 

Adjusted-R2 0.031 0.024 0.047 0.034 0.028 0.059 

SE 0.188 0.189 0.187 0.189 0.189 0.186 

Note: Estimated by weighted-least-squares. The standard errors are HAC estimators. The dependent 

variable 𝜌𝑖 is estimated by an AR(1) model using seasonally adjusted monthly log-difference of sectoral 

prices. C4 in the 2002 census is used in the regression. 𝜎𝜎�𝑖
2is the sample variance of the residuals of the 

AR(1) model. d1 is a dummy variable for the broad category of food and textiles (NAICS codes starting 

with 31) and d2 is a dummy variable for the broad category of paper, wood, and chemicals (NAICS codes 

starting with 32). 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 
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Table 3: Regression Results (2004−2017, Manufacturers) 

Dataset: Manufacturers, 2004/1M−2017/2M, NAICS six-digit Classification 

Dependent Variable: First-order autocorrelation of monthly inflation (𝜌𝑖) 

 (1) (2) (3) (4) (5) (6) 

Constant 0.177*** 

(0.032) 

0.179*** 

(0.031) 

0.151*** 

(0.039) 

0.146*** 

(0.024) 

0.141*** 

(0.024) 

0.116*** 

(0.032) 

C4i −0.160** 

(0.066) 

−0.199*** 

(0.061) 

−0.185*** 

(0.064) 

 

 

  

HHIi/1000    −0.048*** 

(0.018) 

−0.056*** 

(0.018) 

−0.055*** 

(0.018) 

𝜎𝜎�𝑖
2   11713.56*** 

(4210.32) 

  9798.93*** 

(3537.75) 

 

d1   0.080 

(0.051) 

  0.085 

(0.052) 

d2   0.074 

(0.044) 

  0.071 

(0.042) 

Observations 272 272 272 264 264 264 

Adjusted-R2 0.015 0.043 0.035 0.014 0.031 0.035 

SE 0.227 0.224 0.225 0.225 0.223 0.223 

Note: Estimated by weighted-least-squares. The standard errors are HAC estimators. The dependent 

variable 𝜌𝑖 is estimated by an AR(1) model using seasonally adjusted monthly log-difference of sectoral 

prices. C4 and HHI in the 2007 census are used in the regression. 𝜎𝜎�𝑖
2is the sample variance of the 

residuals of the AR(1) model. d1 is a dummy variable for the broad category of food and textiles (NAICS 

codes starting with 31) and d2 is a dummy variable for the broad category of paper, wood and chemicals 

(NAICS codes starting with 32). 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 
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Table 4: Regression Results (2004−2017, All industries) 

Dataset: All industries, 2004/1M−2017/2M, NAICS six-digit Classification 

Dependent Variable: First-order autocorrelation of monthly inflation (𝜌𝑖) 

 (1) (2) (3) 

Constant 0.087*** 

(0.031) 

0.089*** 

(0.031) 

−0.028 

(0.030) 

C4i −0.080 

(0.064) 

−0.079 

(0.063) 

−0.156*** 

(0.049) 

𝜎𝜎�𝑖
2   −1003.69*** 

(357.8964) 

 

d   0.203*** 

(0.031) 

Observations 383 383 383 

Adjusted-R2 0.003 0.004 0.154 

SE 0.232 0.232 0.214 

Note: Estimated by weighted-least-squares. The standard errors are HAC estimators. The dependent 

variable 𝜌𝑖 is estimated by an AR(1) model using seasonally adjusted monthly log-difference of sectoral 

prices. C4 in the 2007 census is used in the regression. 𝜎𝜎�𝑖
2is the sample variance of the residuals of the 

AR(1) model. d is a dummy variable for manufacturers. 

*** Significant at the 1 percent level. 

** Significant at the 5 percent level. 
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